
HYPE: A Process Algebra for Compositional
Flows and Emergent Behaviour

Vashti Galpin1, Luca Bortolussi2, and Jane Hillston1

1 Laboratory for Foundations of Computer Science, University of Edinburgh
Vashti.Galpin@ed.ac.uk, Jane.Hillston@ed.ac.uk

2 Department of Maths and Computer Science, University of Trieste
luca@dmi.units.it

Abstract. Several process algebras for modelling hybrid systems have
appeared in the literature in recent years. These all assume that contin-
uous variables in the system are modelled monolithically, often with the
differential equations embedded explicitly in the syntax of the process al-
gebra expression. In HYPE an alternative approach is taken which offers
finer-grained modelling with each flow or influence affecting a variable
modelled separately. The overall behaviour then emerges as the com-
position of these flows. This approach is supported by an operational
semantics which distinguishes states as collections of flows and which is
supported by an equivalence which satisfies the property that bisimilar
HYPE models give rise to the same sets of continuous behaviours.

1 Introduction

HYPE is a novel process algebra for modelling hybrid systems. A hybrid system
exhibits both discrete and continuous behaviour. It can be viewed as a system
consisting of values which change continuously over time with respect to specific
dynamics. Discrete events can cause discontinuous jumps in these values after
which different dynamics may come into effect. These events can be triggered
by conditions on the continuously changing values. The novelty of HYPE lies
in how it captures the continuous dynamics of a system, and the separation
of a discrete controller considered in parallel to the system under study. Un-
like existing process algebras for hybrid systems, HYPE captures behaviour at a
fine-grained level, composing distinct flows or influences. The dynamic behaviour
then emerges, via the semantics of the language, from these compositional ele-
ments. We are inspired by the fluid flow semantics of PEPA models [15] which
approximates the behaviour of large numbers of discrete components with a set
of ordinary differential equations (ODEs).

Hybrid behaviour arises in a variety of systems, both engineered and natural.
Consider a thermostatically controlled heater. The continuous variable is air
temperature, and the discrete events are the switching on and off of the heater
by the thermostat in response to the air temperature. Another example would be
a genetic regulatory network, such as the Repressilator [9], in which genes can be
switched on or off by interactions with their environment (more precisely, with

transcription factor proteins). The behaviour of such systems can be regarded as
a collection of sets of ODEs, the discrete events shifting the dynamic behaviour
from the control of one set of ODEs to another. This is the approach taken with
hybrid automata [13].

Process algebras have the advantage of being compositional hence models are
built out of subcomponents and we aim to fully exploit this feature in HYPE.
Existing process algebras for hybrid systems include ACP srt

hs [3], hybrid χ [22],
φ-calculus [20] and HyPA [6]. In [16], Khadim shows substantial differences in
the approaches taken by these process algebras relating to syntax, semantics,
discontinuous behaviour, flow-determinism, theoretical results and availability
of tools. However, they are all similar in their approach in that the dynamic
behaviour of each subcomponent must be fully described with the ODEs for the
subcomponent given explicitly in the syntax of the process algebra, before the
model can be constructed.

We aim for a finer-grained approach where each subcomponent is built up
from a number of flows and hence the ODEs are only obtained once the model is
constructed. By flow, we mean something that has an influence on a quantity of
interest. For example, in a tank with two inlets and an outlet, both the inlets and
the outlet influence the tank level, hence here we would identify three separate
flows. The continuous part of the system is represented by the appropriate vari-
ables and the change over time of a given variable is determined by a number of
active influences which represent flows and are additive in nature. Our approach
also differs in that we explicitly require a controller that consists only of events.

We believe that the use of flows as the basic elements of model construction
has advantages such as ease and simplification of modelling. This approach as-
sists the modeller in allowing them to identify smaller or local descriptions of
the model and then to combine these descriptions to obtain the larger system.
The explicit controller also helps to separate modelling concerns.

The structure of the rest of the paper is as follows. In the next section we
introduce our syntax for hybrid systems, explaining its components. In the fol-
lowing sections, we present the operational semantics and how we go from the
notion of state to the ODEs which describe the system. We then discuss how this
gives rise to a hybrid automaton. We consider a notion of bisimulation and our
main result is that bisimilar systems have identical ODEs and finally we discuss
related work.

2 HYPE Definition

This section will present HYPE by way of a running example of the temperature
control system of an orbiting space vehicle. As the orbiter travels around the
earth, it needs to regulate its temperature to remain within operational limits.
It has insulation but needs to use a heater at low temperatures and at high
temperatures it can erect a shade to reduce temperatures. The modelling spirit
of HYPE focusses on flows. In our example, we identify four flows affecting the
temperature. One is due to thermodynamic cooling, one is due to the heater,

one is due to the heating effect of the sun and one is due to the cooling effect
of the shade. The strength and form of a flow are modified by events. We first
define the heater which can be on or off.

Heat
def= on:(h, rh, const).Heat + off:(h, 0, const).Heat + init:(h, 0, const).Heat

This is a summation of prefixes. Each prefix consists of two actions. Events
(a ∈ E) are actions which happen instantaneously and trigger discrete changes.
They can be caused by a controller or happen randomly and can depend on the
global state of the system, specifically values of variables. In the example, the
events are on, switching on; off, switching off and init, the initialisation event.

Activities (α ∈ A) are influences on the evolution of the continuous part
of the system and define flows. An activity is defined as a triple and can be
parameterised by a set of variables, α(

−→
X) = (ι, r, I (

−→
X)). This triple consists of

an influence name ι, a rate of change (or influence strength) r and an influence
type name I (

−→
X) which describes how that rate is to be applied to the variables

involved, or the actual form of the flow3. In Heat, there are two distinct activi-
ties, (h, rh, const) and (h, 0, const). The first one captures the effect of the heater
being off. It affects influence h which represents the influence from the heater on
the orbiter’s temperature, it has strength 0 and it is associated with the function
called const . The second gives the effect of the heater being on: the influence
name is again h, rh is the strength of the heater, and the form it takes is const .
The interpretation of influence types will be specified separately, so that experi-
mentation with different functional forms of the heating flow can occur without
modifying the subcomponent. Hence, in HYPE we separate the description of
the logical structure of flows from their mathematical interpretation. We now
describe the other flows for the example.

Shade
def= up:(d,−rd, const).Shade + down:(d, 0, const).Shade+

init:(d, 0, const).Shade

Sun
def= light:(s, rs, const).Sun + dark:(s, 0, const).Sun + init:(s, 0, const).Sun

Cool(X) def= init:(c,−1, linear(X)).Cool(X)
The only event in the last definition is the initialisation event, as once cooling is
in effect it does not change. The influence name is c and its strength is −1. The
type linear(X) will be interpreted as a linear function of its formal variable X.
We also need to model the change in sunlight. We do this by keeping track of
time with the following component (which is kept simple for reasons of space).

Time
def= light:(t, 1, const).T ime+dark:(t, 1, const).T ime+init:(t, 1, const).T ime

These subcomponents can be combined and the formal variable X can be in-
stantiated with the actual variable K to give the overall uncontrolled system.

Sys
def= (((Heat BC

{init}
Shade) BC

{init}
Sun) BC

{init}
Cool(K)) BC

{init,light,dark}
Time

Here BC
L

represents parallel synchronisation. L is the set of events over which
synchronisation must occur. Events not in L can occur independently. Sys is
called the uncontrolled system because all events are possible and no causal or

3 For convenience, we will use I for I (
−→
X) when

−→
X can be inferred.

temporal constraints have been imposed yet. For instance, we need to specify
that the heater can only be switched off after it has been switched on. We now
give controllers/sequencers for the heater, the shade and the effect of the sun.

Conh
def= on.off.Conh Cond

def= up.down.Cond Cons
def= light.dark.Cons

Con def= Conh BC
∅

Cond BC
∅

Cons

Controllers only have event prefixes. Their behaviour is affected by the state of
the system through event conditions which determine when events occur. The
controlled system is constructed from synchronisation of the controller and the
uncontrolled system and the controller must be prefixed by the initialisation
event init. For the example, the controlled system is described by
TempCtrl def= Sys BC

M
init.Con with M = {init, on, off,up,down, light,dark}.

This has defined the structure of our system but we require additional definitions
to capture further details. We need to link each influence with an actual variable.
This is done using the function iv . For the example, iv(h)= iv(s)= iv(d)= iv(c)=
K where K is the actual variable for the temperature of the orbiter, and iv(t)=T ,
the variable for time. Note that an influence can only be associated with one
variable, in agreement with the interpretation of influences as flows. This does
not mean that only one variable can be affected by an event. For another variable
Y that was also affected by the heater being on (power consumption, say), we
could define a subcomponent with a prefix on:(p, r, I) and set iv(p) = Y .

We define the influence types as JconstK = 1 and Jlinear(X)K = X. The
influence types are used to describe influences are affected by variables in the
system. The type const is used when there is no effect and linear(X) is used
when the value of the variable X modifies an influence. Mass action can also be
defined through this mechanism.

Finally, we define what triggers an event, and how it affects variables, with
the function ec. Each event condition consists of an activation condition which
is a positive boolean formula containing equalities and inequalities on system
variables or the symbol ⊥, and a variable reset which is a conjunction of equality
predicates on variables V and V ′ where V ′ denotes the new value that V will
have after the reset, while V denotes the previous value. Resets of the form
V = V ′ can be left implicit. For the example, the function ec and associated
event conditions are

ec(init) = (true, (K ′ = t0 ∧ T ′ = 0))
ec(off) = (K ≥ t1, true) ec(on) = (K ≤ t2, true)
ec(up) = (K ≥ t3, true) ec(down) = (K ≤ t4, true)

ec(light) = (T = 12, true) ec(dark) = (T = 24, T ′ = 0)
where the ti(1 ≤ i ≤ 4) are fixed temperature values. Most events are urgent –
the event must occur as soon as its event condition is satisfied. For events that
can happen randomly such as breakdowns, we introduce a special event condition
⊥ which means that the event can happen at some point in the future1. In the
example, the init event has an associated event condition of true and so this

1 We have not done so here but probabilistic resets can be used. Tuffin et al [21] use
a value drawn from a exponential distribution for the time until the next event.

must happen immediately and light happens when 12 hours have passed. The
event init has a reset that defines the values of the variables and on has a reset
of true meaning that no values are changed.

In the preceding informal discussion, we have introduced the main con-
stituents of a HYPE model including the combination of flow components with
a controller component, formal and actual variables, association between influ-
ences and variables, conditions that specify when events occur, and definitions
for the influence type functions. To understand the dynamics of this system,
we need to derive ODEs to describe how the variables change over time. To do
this we present operational semantics that define the behaviour of our controlled
system. Before that we present the formal definition of HYPE.

Definition 1. A controlled system is constructed as follows.

– Subcomponents are defined by Cs(
−→
X) = S, where Cs is the subcomponent

name and S satisfies the grammar S′ ::= a : α.Cs | S′ + S′ (a ∈ E, α ∈ A),
with the free variables of S in

−→
X .

– Components are defined by C(
−→
X) = P , where C is the component name

and P satisfies the grammar P ′ ::= Cs(
−→
X) | C(

−→
X) | P ′ BC

L
P ′, with the free

variables of P in
−→
X and L ⊆ E.

– An uncontrolled system Σ is defined according to the grammar Σ′ ::=
Cs(

−→
V) | C(

−→
V) | Σ′ BC

L
Σ′, where L ⊆ E and

−→
V is a set of system vari-

ables, instantiating the formal variables of C or Cs.
– Controllers only have events: M ::= a.M | 0 | M +M with a ∈ E and L ⊆ E

and Con ::= M | Con BC
L

Con.
– A controlled system is ConSys ::= Σ BC

L
init.Con where L ⊆ E. The set of

controlled systems is CSys .

A controlled system together with the appropriate sets and functions, gives a
HYPE model.

Definition 2. A HYPE model is a tuple
(ConSys,V,X , IN , IT , E ,A, ec, iv ,EC , ID) where

– ConSys is a controlled system as defined above.
– V is a finite set of variables and X is a finite set of formal variables.
– IN is a set of influence names and IT is a set of influence type names.
– E is a set of events of the form a and ai.
– A is a set of activities of the form α(

−→
X) = (ι, r, I (

−→
X)) ∈ (IN × R× IT).

– ec : E → EC maps events to event conditions. Event conditions are pairs of
formulas, the first with free variables in V and the second with free variables
in V ∪ V ′.

– iv : IN → V maps influence names to variable names.
– EC is a set of event conditions.
– ID is a collection of definitions consisting of a real-valued function for each

influence type name JI (
−→
X)K = f(

−→
X) where the variables in

−→
X are from X .

– E, A, IN and IT are pairwise disjoint.

Prefix with
influence:

˙
a : (ι, r, I).E, σ

¸ a−→
˙
E, σ[ι 7→ (r, I)]

¸
Prefix without
influence:

˙
a.E, σ

¸ a−→
˙
E, σ

¸
Choice:

˙
E, σ

¸ a−→
˙
E′, σ′

¸˙
E + F, σ

¸ a−→
˙
E′, σ′

¸ ˙
F, σ

¸ a−→
˙
F ′, σ′

¸˙
E + F, σ

¸ a−→
˙
F ′, σ′

¸
Parallel without
synchronisation:

˙
E, σ

¸ a−→
˙
E′, σ′

¸˙
E BC

M
F, σ

¸ a−→
˙
E′ BC

M
F, σ′

¸ (a 6∈ M)

˙
F, σ

¸ a−→
˙
F ′, σ′

¸˙
E BC

M
F, σ

¸ a−→
˙
E BC

M
F ′, σ′

¸ (a 6∈ M)

Parallel with
synchronisation:

˙
E, σ

¸ a−→
˙
E′, τ

¸ ˙
F, σ

¸ a−→
˙
F ′, τ ′

¸˙
E BC

M
F, σ

¸ a−→
˙
E′ BC

M
F ′, Γ (σ, τ, τ ′)

¸ (a ∈ M, Γ defined)

Constant:

˙
E, σ

¸ a−→
˙
E′, σ′

¸˙
A, σ

¸ a−→
˙
E′, σ′

¸ (A
def
= E)

Fig. 1. Operational semantics for HYPE

When referring to a HYPE model, a term for the controlled system will be used,
such as P , and the tuple will be implied. In the case of two HYPE models
P and Q without reference to the tuple, we will assume two implied tuples
with identical elements except for the first elements. The syntax of HYPE is
moderately complex because hybrid systems are complex structures displaying
continuous and discrete behaviour. The example shows how it is straightforward
to construct a HYPE model once flows and the controller are identified.

3 Operational Semantics

To define the operational semantics, a notion of state is required.

Definition 3. A state of the system is a function σ : IN → (R× IT). The set
of all states is S. A configuration consists of a controlled system together with a
state

〈
ConSys, σ

〉
and the set of configurations is F .

For convenience, states may be written as a set of triples of the form (ι, r, I (
−→
X)).

This is the same form as an activity to reflect the fact that the state captures the
activities that are currently in effect. The notion of state here is not a valuation
of system variables but rather a collection of flows that occur in the system.

The operational semantics give a labelled transition system over configu-
rations (F , E ,→ ⊆ F × E × F). We write F

a−→ F ′ for (F, a, F ′) ∈ →. In the
following, E,F ∈ CSys . The rules are given in Figure 1 and are fairly standard. In
Choice, Prefix without influence, Parallel without synchronisation and Constant,
states are not changed by the application of the rule. For Prefix with influence,
the state needs to be updated, and for Parallel with synchronisation, the two
new states in the premise of the rule need to be merged using the function Γ .

The updating function σ[ι 7→ (r, I)] is defined by σ[ι 7→ (r, I)](x) = (r, I) if
x = ι and σ[ι 7→ (r, I)](x) = σ(x) otherwise. The notation σ[u] will also be used
for an update, with σ[u1 . . . un] denoting σ[u1] . . . [un].

The partial function Γ : S × S × S → S is defined as follows.

(Γ (σ, τ, τ ′))(ι) =

τ(ι) if σ(ι) = τ ′(ι),
τ ′(ι) if σ(ι) = τ(ι),
undefined otherwise.

When synchronisation occurs, two states must be merged and the function uses
the previous state and the new states to determine which values have changed
and then puts these changed values into the new state. Γ will be undefined if
both the second and third argument differ from the first argument, namely if
the values in the new state both differ from the old state since this represents
conflicting updates.

The next two definitions will be useful in referring to the states of the model.

Definition 4. The derivative set of a controlled system P , ds(P) is defined as
the smallest set satisfying

– if 〈P, σ〉 init−→〈P ′, σ′〉 then 〈P ′, σ′〉 ∈ ds(P)
– if 〈P ′, σ′〉 ∈ ds(P) and 〈P ′, σ′〉 a−→〈P ′′, σ′′〉 then 〈P ′′, σ′′〉 ∈ ds(P).

Definition 5. The set of states of the derivative set of a controlled system P
is defined as st(P) = {σ | 〈Q, σ〉 ∈ ds(P)}.

In the TempCntl model, there are eight states of interest (we have omitted the
state before the init event) given in Figure 2. Each state captures the influences
that are currently active. Since the influence strengths and types of c and t do
not change, and each of h, d and s have two possible strengths, there are eight
states. Here k abbreviates const and l(X), linear(X). For example, σ3 reflects
that the heater (h) is off (and has no effect), the shade (d) is up, the sun (s) is
shining, cooling (c) is happening, and time (t) is passing.

4 Hybrid Semantics

We extract a set of ODEs for each state which appears in a configuration in
the labelled transition system. We will label this set as CSσ where CS is the
constant used for the controlled system and σ is the state.

σ0 = {h 7→ (0, k), d 7→ (0, k), s 7→ (0, k), c 7→ (−1, l(K)), t 7→ (1, k)}
σ1 = {h 7→ (0, k), d 7→ (0, k), s 7→ (rs, k), c 7→ (−1, l(K)), t 7→ (1, k)}
σ2 = {h 7→ (0, k), d 7→ (−rd, k), s 7→ (0, k), c 7→ (−1, l(K)), t 7→ (1, k)}
σ3 = {h 7→ (0, k), d 7→ (−rd, k), s 7→ (rs, k), c 7→ (−1, l(K)), t 7→ (1, k)}
σ4 = {h 7→ (rh, k), d 7→ (0, k), s 7→ (0, k), c 7→ (−1, l(K)), t 7→ (1, k)}
σ5 = {h 7→ (rh, k), d 7→ (0, k), s 7→ (rs, k), c 7→ (−1, l(K)), t 7→ (1, k)}
σ6 = {h 7→ (rh, k), d 7→ (−rd, k), s 7→ (0, k), c 7→ (−1, l(K)), t 7→ (1, k)}
σ7 = {h 7→ (rh, k), d 7→ (−rd, k), s 7→ (rs, k), c 7→ (−1, l(K)), t 7→ (1, k)}

Fig. 2. The states of the orbiter temperature control system

Given a controlled system CS, and a derivative 〈CS′, σ〉 ∈ ds(CS), the ODEs
associated with the state σ are defined as follows.

CSσ =
{dV

dt
=

∑{
r × JI (

−→
W)K

∣∣ iv(ι) = V and σ(ι) = (r, I (
−→
W))

} ∣∣∣ V ∈ V
}

So for each state, we have a collection of ODEs, one for each variable V . We
obtain the following ODE from σ3.

TempCntlσ3
=

{dK

dt
= rs − rd −K,

dT

dt
= 1

}
Therefore, this process enables us to obtain ODEs describing how the continu-
ous part of the system evolves, and we have different sets of ODEs to describe
the different dynamics that can be in operation. We wish to combine this in-
formation with the event conditions already defined and an obvious way to do
this is to translate this information into a hybrid automaton. Therefore, this
well-supported formalism provides a powerful back-end for HYPE.

Hybrid automata are dynamic systems presenting both discrete and continu-
ous evolution. They consist of variables evolving continuously in time, subject to
abrupt changes induced by discrete instantaneous control events. When discrete
events happen the automaton enters its next mode, where the rules governing
the flow of continuous variables change. See [13] for further details.

Definition 6. A hybrid automaton is a tuple
H = (V,E,X, E ,flow , init , inv , event , jump, reset , urgent), where:

– X = {X1, . . . , Xn} is a finite set of real-valued variables. The time derivative
of Xj is Ẋj, and the value of Xj after a change of mode is X ′

j.
– the control graph G = (V,E) is a finite labelled graph. Vertices v ∈ V are the

(control) modes, while edges e ∈ E are called (control) switches and model
the happening of a discrete event.

– Associated with each vertex v ∈ V there is a set of ordinary differential equa-
tions Ẋ = flow(v) referred to as the flow conditions. Moreover, init(v) and

inv(v) are two formulae on X specifying the admissible initial conditions and
some invariant conditions that must be true during the continuous evolution
of variables in v.

– Edges e ∈ E of the control graph are labelled by an event event(e) ∈ E
and by jump(e), a formula on X stating for which values of variables each
transition is active, and by reset(e), a formula on X ∪ X′ specifying the
change of the variables’ values after the transition has taken place. Moreover,
each edge e ∈ E can be declared urgent, by setting to true the boolean flag
urgent(e), meaning that the transition is taken at once when jump(e) becomes
true. Otherwise, the transition can be taken nondeterministically whenever
jump(e) is true.

Consider a HYPE model (P0,V,X , IN , IT , E ,A, ec, iv ,EC , ID) and suppose its
initial configuration is 〈P0, σ0〉 ∈ F . For P0 the only possible transition is
the event init. Let 〈P, σ〉 be the configuration reached after its occurrence,
〈P0, σ0〉

init−→〈P, σ〉. Moreover, we denote by acta and resa the activation con-
ditions and the resets associated with an event a ∈ E , so ec(a) = (acta, resa).

Definition 7. The hybrid automaton
H = (V,E,X, E ,flow , init , inv , event , jump, reset , urgent) can be obtained from
the HYPE model (P0,V,X , IN , IT , E ,A, ec, iv ,EC , ID) as follows.

– The set of modes V is the set of configurations reachable in 0 or more steps
from 〈P, σ〉, namely ds(P0).

– The edges E of the control graph connect two modes (v1, v2) iff v1 = 〈P1, σ1〉,
v2 = 〈P2, σ2〉 and 〈P1, σ1〉

a−→〈P2, σ2〉 is a derivation for some a.
– X = V is the set of variables of the HYPE system.
– E is the set of events E of P0.
– Let vj = 〈Pj , σj〉, then

flow(vj)[Xi] =
∑
{rJI (

−→
W)K | iv(ι) = Xi and σj(ι) = (r, I (

−→
W))}

– init(v) =
{

resinit, if v = 〈P, σ〉
false, otherwise

with primes removed from variables1.

– inv(v) = true.
– Let e = (〈P1, σ1〉, 〈P2, σ2〉) with 〈P1, σ1〉

a−→〈P2, σ2〉. Then event(e) = a
and reset(e) = resa. Moreover, if acta 6= ⊥, then jump(e) = acta and
urgent(e) = true, otherwise jump(e) = true and urgent(e) = false.

Figure 3 shows the HYPE model from the example as a hybrid automaton. Note
that which states are visited is determined by the values of the ti(0 ≤ i ≤ 4).

5 Equivalence Semantics

We define equivalent behaviour with respect to the labelled transition system
given in Section 3 thereby focussing on the configuration of the system rather
than evaluations of continuous variables.
1 resinit is a reset so uses primed variables to refer to the new values of variables

whereas init(v) is an initialization condition and refers to variables without primes.

TCσ1

TCσ3

TCσ5

TCσ0

TCσ2

TCσ7

TCσ4

TCσ6

init
K=t0,T=0

K≥
t3 ; up

K≤
t4 ; down

K≤t2; on

K≥t1; off

T=
24

; d
ar

k;
T
′=0

T=
12

; l
ig
ht

T=24; dark; T ′=0

T=12; light

K≥t3; up

K≤t4; down

K≤t2; on

K≥t1; off

K
≤t2

; o
nK

≥t1
; o

ff

T=
24

; d
ar

k;
T
′=0

T=
12

; li
gh

t

K
≥

t3 ; u
p

K
≤

t4 ;d
ow

n K
≤t2

; o
n

K
≥t1

; o
ff

K≥
t3 ; up

K≤
t4 ; down

T=24; dark; T ′=0

T=12; light

Fig. 3. Hybrid automaton of the orbiter temperature control system

Definition 8. A relation B ⊆ CSys × CSys is a system bisimulation if for all
(P,Q) ∈ B whenever

1. 〈P, σ〉 a−→ 〈P ′, σ′〉, there exists 〈Q′, σ′〉 with 〈Q, σ〉 a−→ 〈Q′, σ′〉, (P ′, Q′) ∈ B.
2. 〈Q, σ〉 a−→ 〈Q′, σ′〉, there exists 〈P ′, σ′〉 with 〈P, σ〉 a−→ 〈P ′, σ′〉, (P ′, Q′) ∈ B.

P and Q are system bisimilar, P ∼s Q if they are in a system bisimulation.

System bisimulation is a congruence for our operators.

Theorem 1. ∼s is a congruence for Prefix, Choice and Parallel.

Proof sketch. Straightforward. Let P1 ∼s P2. Interesting cases are Prefix with in-
fluence and Parallel with synchronisation. For the former, 〈a : (ι, r, I).P1, σ〉

a−→
〈P1, σ[ι 7→ (r, I)]〉 and likewise 〈a : (ι, r, I).P2, σ〉

a−→〈P2, σ[ι 7→ (r, I)]〉 as re-
quired. For the latter, we need to show that B = {(P1 BC

L
Q,P2 BC

L
Q)|P1 ∼s P2}

is a system bisimulation. If 〈P1 BC
L

Q, σ〉 a−→〈P ′
1
BC

L
Q′, Γ (σ, σ′, σ′′)〉 and a ∈ L

then 〈P1, σ〉
a−→〈P ′

1, σ
′〉 and 〈Q, σ〉 a−→〈Q′, σ′′〉. Since P1 ∼s P2, 〈P2, σ〉

a−→〈P ′
2, σ

′〉
with P ′

1 ∼s P ′
2, and hence 〈P2 BC

L
Q, σ〉 a−→〈P ′

2
BC

L
Q′, Γ (σ, σ′, σ′′)〉 as required. �

We are interested in the link between the ODEs obtained from bisimilar
systems. Before we can consider this, some definitions and lemmas are required.

As we saw in the example, the init event in the controlled system allows for
the initialisation of variables. Typically subcomponents are defined as a number
of simple loops, reflecting events that can occur and the associated changes in the
continuous part of the system. These requirements can be formalised as follows.

Definition 9.
A well-defined controlled system has the following properties.

1. For each subcomponent Cs(
−→
X) def= S, the only subcomponent name that can

appear in S is Cs(
−→
X).

2. In each subcomponent Cs(
−→
X), the event a can only appear once.

3. In each subcomponent Cs(
−→
X), each ι that appears, must also appear in a

prefix with init.
4. Across all subcomponents, each pair a and ι must appear at most once to-

gether in a prefix.
5. In any component C(

−→
X), any event that appears in more than one subcom-

ponent must be synchronised on.
6. In the controlled system Σ and Con must have the same events and these

must all appear in L.

The example is a well-defined controlled system. For such systems, we can show
that the current state in a configuration does not determine which future events
happen (only the controller can influence this) and hence the state can be dis-
counted in certain settings. Note that Condition 4 guarantees that Γ is always
defined. Consider a prefix a : (ι, r, I (

−→
X)). On the occurrence of a, the value of ι

in the state will be updated exactly once and hence Γ is always defined. If we did
not have Condition 4 and event and influence names appeared multiple times,
Γ could be undefined which is not a desired feature of modelling in HYPE. We
now consider properties of well-defined HYPE systems.

Lemma 1. In a well-defined controlled system, if 〈P ′, σ[u1 . . . un]〉 is a deriva-
tive of 〈P, σ〉, then 〈P ′, τ [u1 . . . un]〉 is a derivative of 〈P, τ〉.

Proof sketch. It can be shown by induction on the derivation of transitions that
if 〈P ′, σ′〉 is a n-step derivative of 〈P, σ〉, 〈P ′, τ ′〉 is a n-step derivative of 〈P, τ〉.
Moreover, σ′ = σ[u1 . . . un] and τ ′ = τ [u1 . . . un] for appropriate u1, . . . , un. �

We can also consider what happens to a system after the first init event. The
first transition must be an init event since Con is prefixed by init and all actions
are synchronised. The following result shows that the starting state is irrelevant
since the init action will set every value in the state.

Lemma 2. Let P be a well-defined controlled system. If 〈P, σ〉 init−→〈P ′, σ′〉 and
〈P, τ〉 init−→〈P ′, τ ′〉 then σ′ = τ ′.

Proof sketch. Since there is exactly one init : (ι, r, I) prefix for every ι, the oc-
currence of an init event will update every ι value in the state and the previous
value of ι is irrelevant. �

The following result shows that it is the prefixes which determine the behaviour
of the controlled systems because of the restrictions imposed on well-defined
controlled systems.

Definition 10. The set of prefixes of an uncontrolled system Sys, pre(Sys) is
defined structurally as follows.

– pre(a : (ι, r, I (
−→
X)).S) = {a : (ι, r, I (

−→
X))}

– pre(S1 + S2) = pre(S1) ∪ pre(S2)
– pre(P BC

L
Q) = pre(P) ∪ pre(Q)

Theorem 2. Let Σ1 BC
L

init.Con and Σ2 BC
L

init.Con be two well-defined con-
trolled systems. If pre(Σ1) = pre(Σ2) then Σ1 BC

L
init.Con ∼s Σ2 BC

L
init.Con.

Proof sketch. We need to show that {(Σ1, Σ2)} is a system bisimulation. Since
the two systems are well-defined, any event can always occur and events ap-
pearing in more than one component are synchronised. Hence Σ1

a−→Σ1 and
Σ2

a−→Σ2 for each event a ∈ pre(Σ1). By congruence, we have the result. �

This result allows us to tell whether two HYPE models are bisimilar by inspect-
ing the prefixes in the model description to see if they are the same. Hence
bisimulation can be checked syntactically. The next two results show that bisim-
ilar HYPE models have the same ODEs.

Lemma 3. Let P and Q be well-defined controlled systems. If P ∼s Q then
their states are equal, st(P) = st(Q).

Proof sketch. Consider 〈P ′, σ′〉 a derivative of 〈P, σ〉 then σ′ ∈ st(P). Since
P ∼s Q, we can find 〈Q′, σ′〉 with σ′ ∈ st(Q). Hence st(P) ⊆ st(Q) and vice
versa. �

Theorem 3. Let P and Q be well-defined controlled systems. If P ∼s Q then
for every state σ ∈ st(P), Pσ = Qσ.

Proof sketch. The well-defined systems are (P,V,X , IN , IT , E ,A, ec, iv ,EC , ID)
and (Q,V,X , IN , IT , E ,A, ec, iv ,EC , ID). By Lemma 3, σ ∈ st(P) implies σ ∈
st(Q). Hence

Pσ =
{

dV

dt
=

∑{
rJI (

−→
W)K

∣∣ iv(ι) = V and σ(ι) = (r, I (
−→
W))

} ∣∣∣ V ∈ V
}

and

Qσ =
{

dV

dt
=

∑{
rJI (

−→
W)K

∣∣ iv(ι) = V and σ(ι) = (r, I (
−→
W))

} ∣∣∣ V ∈ V
}

which are clearly the same. �

The converse of Theorem 3 does not hold. It is possible for two states to
be the same and hence give identical ODEs, but this does not mean that their
associated derivatives are system bisimilar.

6 Related Work

As mentioned in the introduction, HYPE takes a finer grained, less monolithic
approach than the other process algebras for hybrid systems [3, 22, 20, 6] because
it enables the modelling of individual flows. In [16] the comparison of these other
process algebras is based on a train gate controller example and in each case,
the train, gate and controller components have to be fully, sequentially described

and then composed in parallel. This would also be necessary for the modelling
of our orbiter example. For each of these process algebras, somewhere in the
syntactic description of the system, a term such as K̇ = rs − rd −K, as well as
terms for each of the other seven ODEs for the variable K, would need to appear
to describe the continuous behaviour that can occur. By comparison, a modeller
using HYPE would only need to model the individual flows, and not construct
the ODEs explicitly. This could allow non-experts to model hybrid systems more
easily.

A classical formalism for expressing hybrid systems is hybrid automata [13].
They are usually specified by defining explicitly both the control graph and the
dynamical conditions within each mode, in terms of differential equations or,
more generally, differential inclusions. Two hybrid automata can be composed
in parallel by synchronizing transitions on shared events in the control graph [13].
Flow conditions are combined by taking the logical conjunction of the predicates
defining them. Where flows are defined by differential equations, the equation for
each variable X must be defined only in one component, otherwise a logical in-
consistency may arise. However, the variable may depend explicitly on variables
governed by other components.

The modelling style of HYPE is quite different. Activities are identified with
atomic flows acting on system variables. ODEs are then derived for an individual
state by adding the different atomic flows acting on each variable. Activities can
change in response to the happening of discrete events, which are controlled not
by components but by an external controller and triggered by event conditions.
This results in a separation of the description of the response of the system to
events from the discrete control structure imposing causality on the happening of
events. In contrast to hybrid automata, HYPE allows the separate description of
flow conditions, event conditions, and the control graph, making easier the task of
modifying the controller or the interactions with the environment. Furthermore,
the fact that influence types are defined separately from the structure of the
model also separates modelling concerns. In addition, compositionality of HYPE
manifests on the set of activities (the state of the system) rather than on ODEs,
hence we can allow different components of the system to influence the same
continuous variable: the combined effect is obtained by superimposing flows,
namely by addition on the right hand side of ODEs. Since a HYPE model can
be expressed as a hybrid automaton, when using HYPE to model one gets the
advantages of HYPE together with the formalism of hybrid automata. This is a
distinct advantage over languages such as Charon [1], Shift [8], and HyCharts
[11]. These are all compositional formalisms describing hybrid systems which do
not map so readily to hybrid automata. They differ from HYPE in that they do
not have the simple syntax and structured operational semantics of a process
algebra.

Another formalism which has a mechanism to combine flows is hybrid action
systems [19]. This language is based on Dijkstra’s guarded command language
and has predicate transformer semantics. Differential actions consist of guards
before ODEs, and parallel composition of these actions is defined as a linear

combination of functions with the addition of functions over any shared domains.
This differs from our approach where we associate influence names with a specific
variable and then sum over all influences for a given variable to obtain the ODE.

Physical systems can also be modelled by constitutive equations and bond
graphs [18]. This is a modelling technique in which a system’s components are
described by means of equations relating main physical quantities of interest.
Components are then glued together by imposing suitable conservation laws.
This results in a set of differential equations with algebraic constraints, which
after an algebraic manipulation, can be simplified by removing variables and
constraints. There are also hybrid extensions of the bond graph method which
have been represented in a hybrid process algebra [5], to deal with discontinuities
in physical systems (such as a bouncing ball).

In HYPE, instead, the modelling activity concentrates around the notion of
flow or influence, which is not explicitly connected with physical quantities or
with conservation laws, and components are described by specifying the way
they react to external events through flows modifications. This may be less
natural for certain physical systems, as one has to identify the different influences
acting on each variable of interest (without relying on the implicit derivation
mechanism provided by conservation laws). However, HYPE’s modelling style
is straightforwardly applicable to a wider class of systems, at different levels of
abstraction.

6.1 Bisimulations on Hybrid Systems

Other process algebras for hybrid systems use a hybrid transition system with
two types of transition: one type represents discrete events and the other con-
tinuous evolution of the system [16]. By comparison, our transition system only
has transitions for events. This gives a smaller transition system on which it is
possible to consider simpler notions of equivalence.

Bergstra and Middelburg [3] present two bisimulations for their process alge-
bra for hybrid systems, defined over a hybrid transition system. One bisimulation
fits with their axiomatic definition, and the other gives congruence with respect
to the parallel operator. Recast for our transition system and for our language
these two bisimulations equate the same controlled systems and are the same as
our system bisimulation.

The standard notion of bisimulation of hybrid automata is defined for a
transition system encoding the dynamical evolution. Both continuous transitions
and discrete transitions are used. These two relations are combined (usually
interleaving discrete and continuous transitions) into one relation which defines
the behaviour of the system. The hybrid automata bisimulation is defined on this
relation in the usual way [13, 12, 7]. Most of the research into these bisimulations
focusses on finding restrictions on hybrid automata syntax implying the existence
of a finite bisimulation quotient thus guaranteeing decidability of reachability
and of model checking, such as [17].

The transition relation defined for HYPE is very different. It does not en-
code any notion of time-dynamics and hence it acts at the level of the system

description, identifying equivalent modes. In this sense, it is closer to the notion
of U -bisimulation for hybrid automata which acts on the control graph [2]. If we
consider a simplified form of U -bisimulation, we can show that any HYPE mod-
els that are system bisimilar, are also equated by this bisimulation. The converse
does not hold since different states can lead to the same ODEs. Hence bisimu-
lation for hybrid automata is coarser than that for HYPE. In a HYPE model
we make explicit the source of each single flow of the system, while in a hybrid
automaton flows are merged together in differential equations, and they cannot
be separated out into single influences. Stated otherwise, in hybrid automata
ODEs lose information about the logic of the system.

7 Conclusions and Further Work

We have presented a process algebra for hybrid systems with novel features that
include a fine-grained approach to modelling flows and an explicit controller.
Since a HYPE model can be expressed as a hybrid automaton, tools such as the
model checker HyTech [14] can be used to explore these systems.

As well as the orbiter temperature control example, we have successfully
modelled a dual-tank system (as described by [21]), a bottling line (as described
by [3]) and the abstract view of the repressilator [10] (as described by [4]).

Considering further work, we wish to investigate bisimulation between models
which differ in more than the description of the controlled system. This would
involve the use of bijections or surjections between models. We also wish to
consider a more general definition of bisimulation which allows an equivalence
over states yet ensures that the same ODEs are produced. Related to the idea
of equivalence is axiomatisation and this will also be investigated.

Our models currently give rise to hybrid automata with invariants which are
always true (see Definition 7) and we will investigate relaxing this condition.
We have focussed on the embedding of HYPE models in hybrid automata; in
future we wish to identify the class of hybrid automata to which HYPE models
correspond as a way to understand how to solve HYPE models.

Acknowledgements Thanks to Stephen Gilmore and Pieter Cuijpers for their
helpful comments. Vashti Galpin is supported by the EPSRC SIGNAL Project,
Grant EP/E031439/1. Luca Bortolussi is supported by GNCS and FIRB LIBi.
Jane Hillston is supported by the EPSRC under ARF EP/c543696/01.

References

1. R. Alur, R. Grosu, I. Lee, and O. Sokolsky. Compositional modeling and refinement
for hierarchical hybrid systems. Journal of Logic and Algebraic Programming, 68(1-
2):105–128, 2006.

2. M. Antoniotti, B. Mishra, C. Piazza, A. Policriti, and M. Simeoni. Modeling cellular
behavior with hybrid automata: Bisimulation and collapsing. In C. Priami, editor,
Computational Methods in Systems Biology (CMSB 2003), pages 57–74, 2003.

3. J. A. Bergstra and C. A. Middelburg. Process algebra for hybrid systems. Theo-
retical Computer Science, 335(2-3):215–280, 2005.

4. L. Bortolusssi and A. Policriti. Hybrid approximation of stochastic process algebras
for systems biology. In IFAC World Congress, Seoul, South Korea, July 2008.

5. P. Cuijpers, J. Broenink, and P. Mosterman. Constitutive hybrid processes: a
process-algebraic semantics for hybrid bond graphs. SIMULATION, 8:339–358,
2008.

6. P. J. L. Cuijpers and M. A. Reniers. Hybrid process algebra. Journal of Logic and
Algebraic Programming, 62(2):191–245, 2005.

7. J. M. Davoren and P. Tabuada. On simulations and bisimulations of general flow
systems. In A. Bemporad, A. Bicchi, and G. C. Buttazzo, editors, Hybrid Systems:
Computation and Control (HSCC 2007), LNCS 4416, pages 145–158, 2007.

8. A. Deshpande, A. Göllü, and P. Varaiya. SHIFT: A formalism and a programming
language for dynamic networks of hybrid automata. In P. J. Antsaklis, W. Kohn,
A. Nerode, and S. Sastry, editors, Hybrid Systems IV, LNCS 1273, pages 113–133,
1996.

9. M. B. Elowitz and S. Leibler. A synthetic oscillatory network of transcriptional
regulators. Nature, 403:335–338, 2000.

10. V. Galpin, J. Hillston, and L. Bortolussi. HYPE applied to the modelling of hybrid
biological systems. Electronic Notes in Theoretical Computer Science, 218:33–51,
2008.

11. R. Grosu and T. Stauner. Modular and visual specification of hybrid systems: An
introduction to HyCharts. Formal Methods in System Design, 21(1):5–38, 2002.

12. E. Haghverdi, P. Tabuada, and G. J. Pappas. Bisimulation relations for dynami-
cal, control, and hybrid systems. Theoretical Computer Science, 342(2-3):229–261,
2005.

13. T. A. Henzinger. The theory of hybrid automata. In LICS, pages 278–292, 1996.
14. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH: A model checker for

hybrid systems. International Journal on Software Tools for Technology Transfer,
1(1-2):110–122, 1997.

15. J. Hillston. Fluid flow approximation of PEPA models. In Second International
Conference on the Quantitative Evaluation of Systems (QEST 2005), pages 33–43.
IEEE Computer Society, 2005.

16. U. Khadim. A comparative study of process algebras for hybrid systems.
Computer Science Report CSR 06-23, Technische Universiteit Eindhoven, 2006.
http://alexandria.tue.nl/extra1/wskrap/publichtml/200623.pdf.

17. G. Lafferriere, G. J. Pappas, and S. Sastry. O-minimal hybrid systems. Mathemat-
ics of Control, Signals, and Systems, 13(1):1–21, 2000.

18. H. Paynter. Analysis and Design of Engineering Systems. MIT Press, 1961.
19. M. Rönkkö, A. P. Ravn, and K. Sere. Hybrid action systems. Theoretical Computer

Science, 290(1):937–973, 2003.
20. W. C. Rounds and H. Song. The φ-calculus: A language for distributed control

of reconfigurable embedded systems. In O. Maler and A. Pnueli, editors, Hybrid
Systems: Computation and Control (HSCC 2003), LNCS 2623, pages 435–449,
2003.

21. B. Tuffin, D. S. Chen, and K. S. Trivedi. Comparison of hybrid systems and fluid
stochastic Petri nets. Discrete Event Dynamic Systems: Theory and Applications,
11:77–95, 2001.

22. D. van Beek, K. Man, M. Reniers, J. Rooda, and R. Schiffelers. Syntax and consis-
tent equation semantics of hybrid χ. Journal of Logic and Algebraic Programming,
68(1-2):129–210, 2006.

