

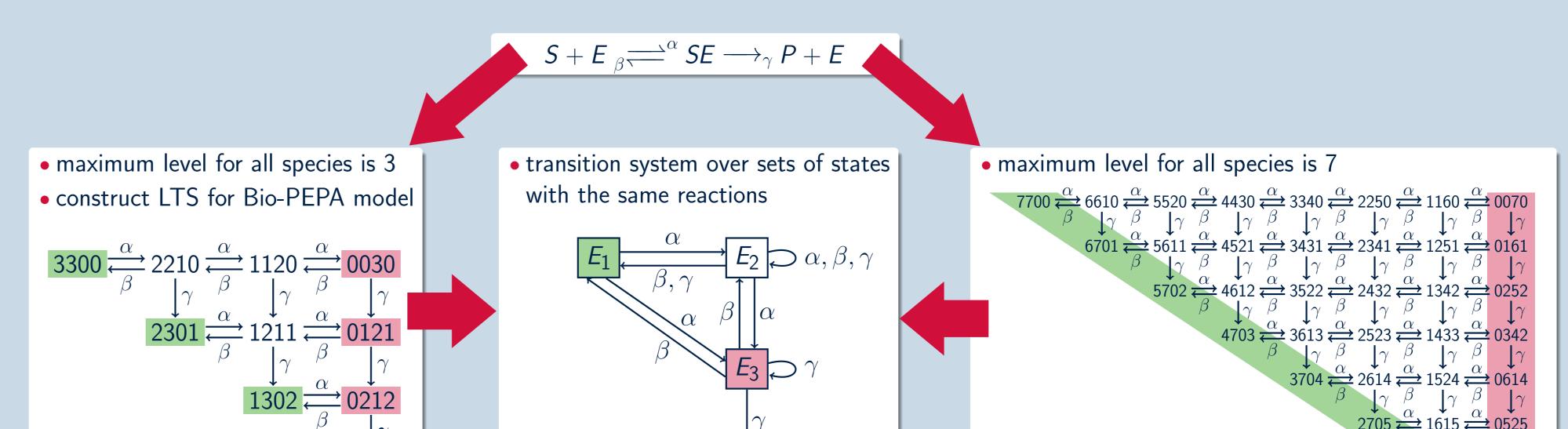
CENTRE FOR SYSTEMS BIOLOGY AT EDINBURGH

Using semantic equivalences to model biological behaviour

Vashti Galpin*, Federica Ciocchetta[‡], Jane Hillston^{*†}

*Laboratory for Foundations of Computer Science, School of Informatics, University of Edinburgh; [‡]COSBI, Trento, Italy; [†]CSBE, University of Edinburgh

Process algebra modelling of biological systems

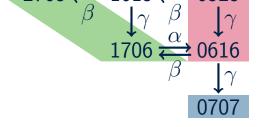

	Bio-PEPA model • $S(x_S) \bowtie E(x_E) \bowtie SE(x_{SE}) \bowtie P(x_P)$		Bio-PEPA model with levels • $S(\ell_S) \Join E(\ell_E) \Join SE(\ell_{SE}) \Join P(\ell_P)$		Labelled transition system (LTS) with levels • transition
Biochemical reactions $S + E_{\beta} \xrightarrow{\alpha} SE \longrightarrow P + E$	 species: S ^{def} = (α, 1) ↓ S + (β, 1) ↑ S E ^{def} = (α, 1) ↓ E + (β, 1) ↑ E(γ, 1) ↑ E SE ^{def} = (α, 1) ↑ SE + (β, 1) ↓ SE + (γ, 1) ↓ SE P ^{def} = (γ, 1) ↑ P sets of information: • compartments: V, species information: N, constants: K, reaction rates: F state of model at a point in time is vector of species concentrations or molecular counts: 	discretisation	 species and sets of information as before discretisation of concentration or molecular counts into small number levels assume a maximum value and pick appropriate step size avoids state space explosion and allows analysis state of model at a point in time is vector of species levels: (l_S, l_E, l_{SE}, l_P) or l_S l_E l_{SE} l_P 		 (ℓ_S, ℓ_E, ℓ_{SE}, ℓ_P) (α,w)/(ℓ_S + i_S, ℓ_E + i_E, ℓ_{SE} + i_{SE}, ℓ_P + i_P) • for a species A • i_A = 0: not involved in reaction α, or as activator or inhibitor • i_A > 0: involved as product, i_A is stoichiometry • i_A < 0: involved as reactant, i_A is stoichiometry • allows qualitative analysis • string w contains information about species and their levels
	(x _S , x _E , x _{SE} , x _P) ODE stochastic analysis simulation				 Continuous time Markov chain (CTMC) with levels transition (ℓ_S, ℓ_E, ℓ_{SE}, ℓ_P) ^r→ (ℓ_S + i_S, ℓ_E + i_E, ℓ_{SE} + i_{SE}, ℓ_P + i_P) for a species A, i_A as above r is the rate of the reaction, and is calculated from function for the reaction constants relevant to the reaction levels of species involved in the reaction step size

Semantic equivalences

• relates Bio-PEPA models that have the same behaviour

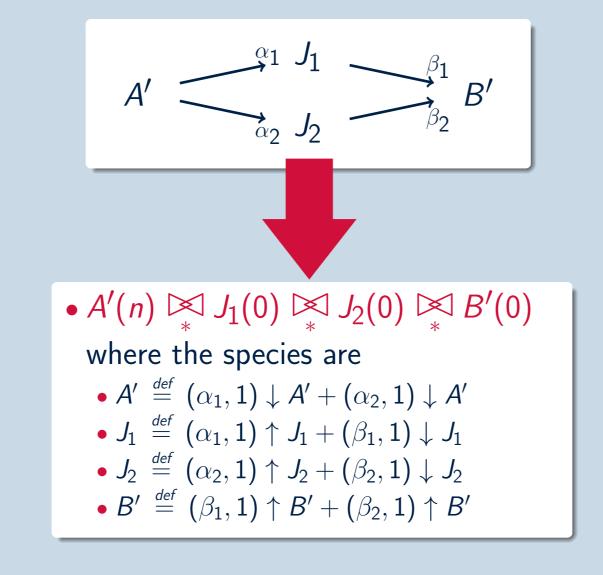
- defined over LTS with levels or CTMC with levels
- various notions of same behaviour
- behaviour exhibited by different discretisations of same Bio-PEPA model
- behaviour seen in different abstractions of reaction
- from computer science bisimulation
- basic bisimulation definition for two models P and Q• for each state in P there is a state in Q• such that if P has a transition, $P \xrightarrow{\theta} P'$ • then Q has a transition, $Q \stackrel{\phi}{\longrightarrow} Q'$ • with reaction info θ and ϕ related

Equivalent behaviour based on two discretisations of same model: compression bisimulation

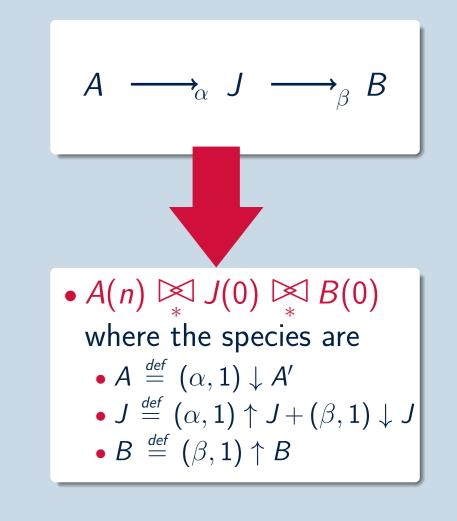

• and the states P' and Q' are related in the same way as P and Q• for each state in Q, the same holds

• types of equivalence

- qualitative does not consider rates of reactions
- quantitative partly determined by rates of reactions


• two models are compression bisimilar when their equivalences classes (based on reactions) and induced labelled transition systems are bisimilar • in this example, identical equivalence classes and induced transition systems are obtained, hence bisimilar

Use and application


Equivalent behaviour based on different abstractions of reactions: parameterised bisimulation

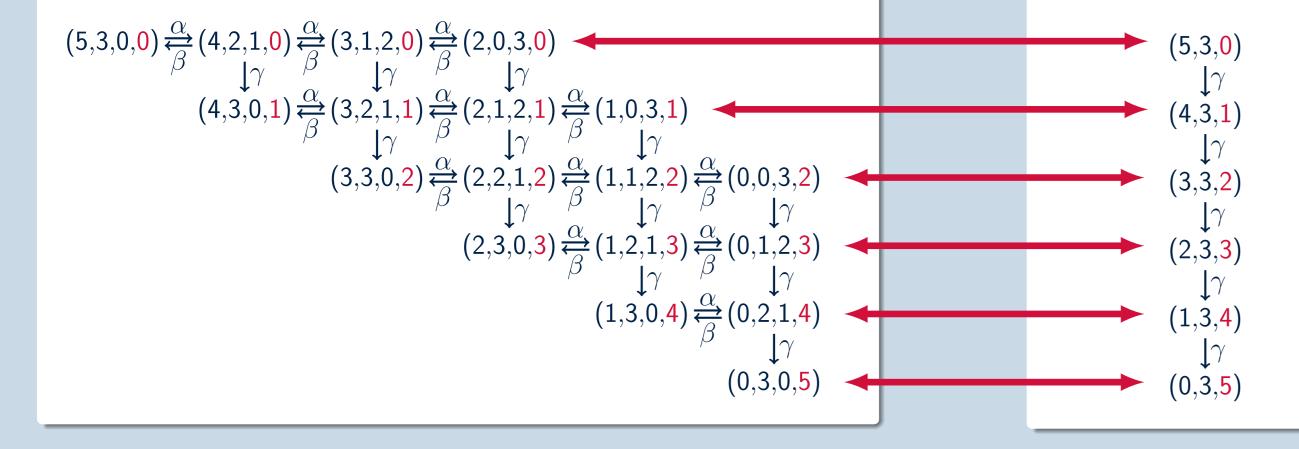
congruence

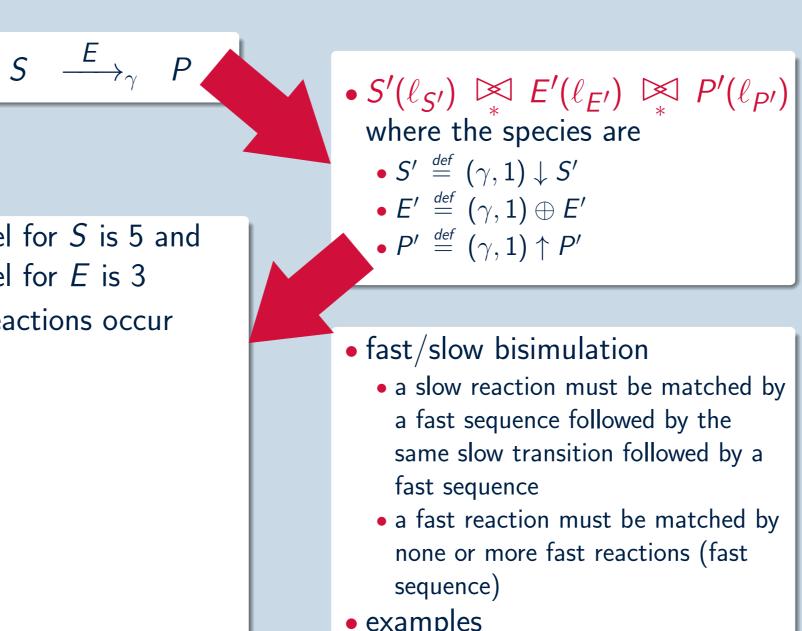
- when a semantic equivalence interacts well with model language
- consider $P \bowtie A$ which adds species A to system P
- if *P* and *Q* have the same behaviour
- then $P \bowtie A$ has the same behaviour as $Q \bowtie A$
- can consider congruence at system level and at species level
- can substitute smaller congruent systems into model
- reduce state space size and gives same behaviour
- further research
- use equivalences developed on other models
- investigate variants of parameterised bisimulation

- parameterised bisimulation uses functions on transition labels to determine which transitions match
- for this example, reaction names need to be matched using the function: $\alpha_1 \rightarrow \alpha$, $\alpha_2 \rightarrow \alpha$, $\beta_1 \rightarrow \beta$, $\beta_2 \rightarrow \beta$
- for this example, rate information can be extracted by summing over transitions with the same reaction name (after applying function)
- state (5, 2, 1, 2) has two transitions
- applying name function and rate extraction
- if $r_1 + r_2 = r$ and target states match then state (5, 3, 2) has a matching transition

Equivalent behaviour based on different abstractions of reactions: fast/slow bisimulation

References and acknowledgements


 $(5, 2, 1, 2) \xrightarrow{(\alpha_1, 5r_1)} (4, 3, 1, 2)$ $(5, 2, 1, 2) \xrightarrow{(\alpha_2, 5r_2)} (4, 2, 2, 2)$


 $\begin{array}{c} \textbf{(5,2,1,2)} \xrightarrow{(\alpha,5(r_1+r_2))} \textbf{(4,3,1,2)} \\ \textbf{(5,2,1,2)} \xrightarrow{(\alpha,5(r_1+r_2))} \textbf{(4,2,2,2)} \end{array}$

 $(5,3,2) \xrightarrow{(\alpha,5r)} (4,4,2)$

• maximum level for S is 5 and maximum level for E is 3 • α and β are fast reactions and can be abstracted away • all states with a given product level match with a state in the more abstract model

- maximum level for S is 5 and maximum level for E is 3 • only slow γ reactions occur
 - a slow reaction must be matched by a fast sequence followed by the same slow transition followed by a
 - a fast reaction must be matched by none or more fast reactions (fast
 - examples
 - $(3,3,2) \xrightarrow{\gamma} (4,3,1)$ matches $(1,1,1,2) \xrightarrow{\gamma} (1,2,1,3)$ • $(3,3,2) \xrightarrow{\gamma} (4,3,1)$ matches
 - $(3,3,0,2) \xrightarrow{\alpha}{\rightarrow} \gamma$ (2,3,0,3)

- F. Ciocchetta and J. Hillston, Bio-PEPA: a framework for the modelling and analysis of biological systems, Theoretical Computer Science, 410:30653084, 2009.
- V. Galpin and J. Hillston, A semantic equivalence for Bio-PEPA based on discretisation of continuous values, Theoretical Computer Science, to appear, 2011.
- V. Galpin, Equivalences for a biological process algebra, submitted for publication
- F. Ciocchetta, V. Galpin and J. Hillston, An equivalence for abstracting from fast reactions, in preparation
- Vashti Galpin is supported by EPSRC Grant EP/E031439/1.
- Jane Hillston is supported by EPSRC ARF EP/C543696/01.
- The Centre for Systems Biology at Edinburgh is a Centre for Integrative Systems Biology (CISB) funded by the BBSRC and EPSRC in 2006.

