Discretization and Equivalences in Bio-PEPA

Vashti Galpin LFCS, University of Edinburgh

Jane Hillston LFCS and CSBE, University of Edinburgh

31 August 2009

Vashti Galpin and Jane Hillston

Discretisation and Equivalence in Bio-PEPA

Outline

Bio-PEPA

Syntax and semantics

Equivalence choice

Equivalence definition

Results

Vashti Galpin and Jane Hillston

Discretisation and Equivalence in Bio-PEPA

Bio-PEPA	Syntax and semantics	Equivalence definition	
Bio-PEPA	N .		

 stochastic process algebra for modelling biological systems [Ciocchetta and Hillston 2008]

ð

- stochastic process algebra for modelling biological systems [Ciocchetta and Hillston 2008]
- different analyses: ODEs, CTMCs, stochastic simulation

- stochastic process algebra for modelling biological systems [Ciocchetta and Hillston 2008]
- different analyses: ODEs, CTMCs, stochastic simulation
- semantic equivalences same behaviour

- stochastic process algebra for modelling biological systems [Ciocchetta and Hillston 2008]
- different analyses: ODEs, CTMCs, stochastic simulation
- semantic equivalences same behaviour
- what behaviours are the same?

- stochastic process algebra for modelling biological systems [Ciocchetta and Hillston 2008]
- different analyses: ODEs, CTMCs, stochastic simulation
- semantic equivalences same behaviour
- what behaviours are the same?
 - 1. use existing equivalences

- stochastic process algebra for modelling biological systems [Ciocchetta and Hillston 2008]
- different analyses: ODEs, CTMCs, stochastic simulation
- semantic equivalences same behaviour
- what behaviours are the same?
 - $1. \ \text{use existing equivalences} \\$
 - 2. get ideas from biology

- stochastic process algebra for modelling biological systems [Ciocchetta and Hillston 2008]
- different analyses: ODEs, CTMCs, stochastic simulation
- semantic equivalences same behaviour
- what behaviours are the same?
 - 1. use existing equivalences
 - 2. get ideas from biology
 - 3. consider different abstractions of the same model

句

- stochastic process algebra for modelling biological systems [Ciocchetta and Hillston 2008]
- different analyses: ODEs, CTMCs, stochastic simulation
- semantic equivalences same behaviour
- what behaviours are the same?
 - 1. use existing equivalences
 - 2. get ideas from biology
 - 3. consider different abstractions of the same model
- qualitative consider action, not rate

- stochastic process algebra for modelling biological systems [Ciocchetta and Hillston 2008]
- different analyses: ODEs, CTMCs, stochastic simulation
- semantic equivalences same behaviour
- what behaviours are the same?
 - 1. use existing equivalences
 - 2. get ideas from biology
 - 3. consider different abstractions of the same model
- qualitative consider action, not rate
- Bio-PEPA systems with finite number of levels, CTMCs

sequential component, species

$${old S}::=\ (lpha,\kappa) ext{ op } {old S} \ | \ {old S}+{old S} ext{ op } \in \{ \uparrow, \downarrow, \oplus, \ominus, \odot \}$$

sequential component, species

$$S ::= (\alpha, \kappa) \text{ op } S \mid S + S \quad \text{ op } \in \{\uparrow, \downarrow, \oplus, \ominus, \odot\}$$

sequential component, species

 $\blacktriangleright~\alpha$ action, reaction name, κ stoichiometric coefficient

sequential component, species

 $\blacktriangleright~\alpha$ action, reaction name, κ stoichiometric coefficient

• \uparrow product, \downarrow reactant

ð

sequential component, species

- $\blacktriangleright~\alpha$ action, reaction name, κ stoichiometric coefficient
- \uparrow product, \downarrow reactant
- \oplus activator, \ominus inhibitor, \odot generic modifier

ð

sequential component, species

$$S ::= (\alpha, \kappa) \text{ op } S \mid S + S \quad \text{ op } \in \{\uparrow, \downarrow, \oplus, \ominus, \odot\}$$

- $\blacktriangleright~\alpha$ action, reaction name, κ stoichiometric coefficient
- \uparrow product, \downarrow reactant
- $\blacktriangleright \oplus$ activator, \ominus inhibitor, \odot generic modifier

sequential component, species

$${f S}::=\ (lpha,\kappa) \ {f op} \ {f S} \ \mid \ {f S}+{f S} \ {f op} \ \in \{\ \uparrow,\downarrow,\oplus,\ominus,\odot \ \}$$

- $\blacktriangleright~\alpha$ action, reaction name, κ stoichiometric coefficient
- \uparrow product, \downarrow reactant
- $\blacktriangleright \oplus$ activator, \ominus inhibitor, \odot generic modifier
- model component, system

$$P ::= S(\ell) \mid P \bowtie_L P$$

sequential component, species

$${\sf S}::=\ (lpha,\kappa) \ {\sf op} \ {\sf S} \ \mid \ {\sf S}+{\sf S} \qquad {\sf op} \ \in \{\ \uparrow,\downarrow,\oplus,\ominus,\odot \ \}$$

- $\blacktriangleright~\alpha$ action, reaction name, κ stoichiometric coefficient
- \uparrow product, \downarrow reactant
- $\blacktriangleright \oplus$ activator, \ominus inhibitor, \odot generic modifier
- model component, system

$$P ::= \frac{S(\ell)}{P \bowtie_{L} P}$$

ð

sequential component, species

$$\mathcal{S} ::= (\alpha, \kappa) \text{ op } \mathcal{S} \mid \mathcal{S} + \mathcal{S} \qquad \text{ op } \in \{\uparrow, \downarrow, \oplus, \ominus, \odot \}$$

- $\blacktriangleright~\alpha$ action, reaction name, κ stoichiometric coefficient
- \uparrow product, \downarrow reactant
- \oplus activator, \ominus inhibitor, \odot generic modifier
- model component, system

$$P ::= S(\ell) \mid P \bowtie_{L} P$$

sequential component, species

 $S ::= (\alpha, \kappa) \text{ op } S \mid S + S \quad \text{ op } \in \{\uparrow, \downarrow, \oplus, \ominus, \odot \}$

- α action, reaction name, κ stoichiometric coefficient
- \uparrow product, \downarrow reactant
- \oplus activator, \ominus inhibitor, \odot generic modifier
- model component, system

 $P ::= S(\ell) \mid P \bowtie_{l} P$

well-defined Bio-PEPA model component with levels

句

sequential component, species

 ${\it S}::= \ (\alpha,\kappa) \ {\rm op} \ {\it S} \ \mid \ {\it S}+{\it S} \qquad {\rm op} \ \in \{\ \uparrow,\downarrow,\oplus,\ominus,\odot \ \}$

- α action, reaction name, κ stoichiometric coefficient
- \uparrow product, \downarrow reactant
- \oplus activator, \ominus inhibitor, \odot generic modifier
- model component, system

 $P ::= S(\ell) \mid P \bowtie_L P$

well-defined Bio-PEPA model component with levels

• $C \stackrel{\text{def}}{=} (\alpha_1, \kappa_1) \operatorname{op}_1 C + \ldots + (\alpha_n, \kappa_n) \operatorname{op}_n C$ with all α_i 's distinct

sequential component, species

 $S ::= (\alpha, \kappa) \text{ op } S \mid S + S \quad \text{ op } \in \{\uparrow, \downarrow, \oplus, \ominus, \odot \}$

- $\blacktriangleright~\alpha$ action, reaction name, κ stoichiometric coefficient
- \uparrow product, \downarrow reactant
- \oplus activator, \ominus inhibitor, \odot generic modifier
- model component, system

 $P ::= S(\ell) \mid P \bowtie_{l} P$

well-defined Bio-PEPA model component with levels

• $C \stackrel{\text{def}}{=} (\alpha_1, \kappa_1) \operatorname{op}_1 C + \ldots + (\alpha_n, \kappa_n) \operatorname{op}_n C$ with all α_i 's distinct

sequential component, species

 ${\it S}::= \ (\alpha,\kappa) \ {\rm op} \ {\it S} \ \mid \ {\it S}+{\it S} \qquad {\rm op} \ \in \{\ \uparrow,\downarrow,\oplus,\ominus,\odot \ \}$

- α action, reaction name, κ stoichiometric coefficient
- \uparrow product, \downarrow reactant
- \oplus activator, \ominus inhibitor, \odot generic modifier
- model component, system

 $P ::= S(\ell) \mid P \bowtie_L P$

well-defined Bio-PEPA model component with levels

• $C \stackrel{\text{def}}{=} (\alpha_1, \kappa_1) \operatorname{op}_1 C + \ldots + (\alpha_n, \kappa_n) \operatorname{op}_n C$ with all α_i 's distinct

$$\blacktriangleright P \stackrel{\text{\tiny def}}{=} C_1(\ell_1) \underset{\ell_1}{\bowtie} \dots \underset{\ell_{m-1}}{\bowtie} C_m(\ell_m) \text{ with all } C_i\text{'s distinct}$$

ð

sequential component, species

 $S ::= (\alpha, \kappa) \text{ op } S \mid S + S \quad \text{ op } \in \{\uparrow, \downarrow, \oplus, \ominus, \odot \}$

- α action, reaction name, κ stoichiometric coefficient
- \uparrow product, \downarrow reactant
- \oplus activator, \ominus inhibitor, \odot generic modifier
- model component, system

 $P ::= S(\ell) \mid P \bowtie_{l} P$

well-defined Bio-PEPA model component with levels

• $C \stackrel{\text{def}}{=} (\alpha_1, \kappa_1) \operatorname{op}_1 C + \ldots + (\alpha_n, \kappa_n) \operatorname{op}_n C$ with all α_i 's distinct

$$\blacktriangleright P \stackrel{\text{def}}{=} C_1(\ell_1) \underset{\ell_1}{\bowtie} \dots \underset{\ell_{m-1}}{\bowtie} C_m(\ell_m) \text{ with all } C_i \text{ 's distinct}$$

ð

Example: reaction with enzyme $\blacktriangleright S + E \stackrel{\longrightarrow}{\leftarrow} SE \stackrel{\longrightarrow}{\rightarrow} P + E$

Vashti Galpin and Jane Hillston

Discretisation and Equivalence in Bio-PEPA

$$\blacktriangleright S + E \stackrel{\longrightarrow}{\longleftarrow} SE \longrightarrow P + E$$

• $S(\ell_S) \bowtie E(\ell_E) \bowtie SE(\ell_{SE}) \bowtie P(\ell_P)$ where

$$\triangleright S + E \underset{\longleftarrow}{\longrightarrow} SE \longrightarrow P + E$$

• $S(\ell_S) \boxtimes E(\ell_E) \boxtimes SE(\ell_{SE}) \boxtimes P(\ell_P)$ where

$$\begin{split} S &\stackrel{\text{def}}{=} (\alpha, 1) \downarrow S + (\beta, 1) \uparrow S \\ E &\stackrel{\text{def}}{=} (\alpha, 1) \downarrow E + (\beta, 1) \uparrow E + (\gamma, 1) \uparrow E \\ SE &\stackrel{\text{def}}{=} (\alpha, 1) \uparrow SE + (\beta, 1) \downarrow SE + (\gamma, 1) \downarrow SE \\ P &\stackrel{\text{def}}{=} (\gamma, 1) \uparrow P \end{split}$$

$$\blacktriangleright S + E \underset{\longleftarrow}{\longrightarrow} SE \longrightarrow P + E$$

• $S(\ell_S) \bowtie E(\ell_E) \bowtie SE(\ell_{SE}) \bowtie P(\ell_P)$ where

$$S \stackrel{\text{def}}{=} (\alpha, 1) \downarrow S + (\beta, 1) \uparrow S$$
$$E \stackrel{\text{def}}{=} (\alpha, 1) \downarrow E + (\beta, 1) \uparrow E + (\gamma, 1) \uparrow E$$
$$SE \stackrel{\text{def}}{=} (\alpha, 1) \uparrow SE + (\beta, 1) \downarrow SE + (\gamma, 1) \downarrow SE$$
$$P \stackrel{\text{def}}{=} (\gamma, 1) \uparrow P$$

$$\blacktriangleright S + E \xrightarrow{\longrightarrow} SE \longrightarrow P + E$$

• $S(\ell_S) \boxtimes E(\ell_E) \boxtimes SE(\ell_{SE}) \boxtimes P(\ell_P)$ where

$$\begin{split} S \stackrel{\text{def}}{=} & (\alpha, 1) \downarrow S + (\beta, 1) \uparrow S \\ E \stackrel{\text{def}}{=} & (\alpha, 1) \downarrow E + (\beta, 1) \uparrow E + (\gamma, 1) \uparrow E \\ SE \stackrel{\text{def}}{=} & (\alpha, 1) \uparrow SE + (\beta, 1) \downarrow SE + (\gamma, 1) \downarrow SE \\ P \stackrel{\text{def}}{=} & (\gamma, 1) \uparrow P \end{split}$$

 $\blacktriangleright S + E \stackrel{\longrightarrow}{\longleftarrow} SE \longrightarrow P + E$

• $S(\ell_S) \bowtie E(\ell_E) \bowtie SE(\ell_{SE}) \bowtie P(\ell_P)$ where

$$S \stackrel{def}{=} (\alpha, 1) \downarrow S + (\beta, 1) \uparrow S$$
$$E \stackrel{def}{=} (\alpha, 1) \downarrow E + (\beta, 1) \uparrow E + (\gamma, 1) \uparrow E$$
$$SE \stackrel{def}{=} (\alpha, 1) \uparrow SE + (\beta, 1) \downarrow SE + (\gamma, 1) \downarrow SE$$
$$P \stackrel{def}{=} (\gamma, 1) \uparrow P$$

$$\blacktriangleright S + E \stackrel{\longrightarrow}{\longleftarrow} SE \longrightarrow P + E$$

•
$$S(\ell_S) \bowtie E(\ell_E) \bowtie SE(\ell_{SE}) \bowtie P(\ell_P)$$
 where

$$\begin{split} S &\stackrel{\text{def}}{=} (\alpha, 1) \downarrow S + (\beta, 1) \uparrow S \\ E &\stackrel{\text{def}}{=} (\alpha, 1) \downarrow E + (\beta, 1) \uparrow E + (\gamma, 1) \uparrow E \\ SE &\stackrel{\text{def}}{=} (\alpha, 1) \uparrow SE + (\beta, 1) \downarrow SE + (\gamma, 1) \downarrow SE \\ P &\stackrel{\text{def}}{=} (\gamma, 1) \uparrow P \end{split}$$

 $\triangleright S \xrightarrow{E} P$

Michaelis-Menten kinetics

$$\blacktriangleright S + E \stackrel{\longrightarrow}{\longleftarrow} SE \longrightarrow P + E$$

•
$$S(\ell_S) \bowtie E(\ell_E) \bowtie SE(\ell_{SE}) \bowtie P(\ell_P)$$
 where

$$\begin{split} S \stackrel{\text{def}}{=} & (\alpha, 1) \downarrow S + (\beta, 1) \uparrow S \\ E \stackrel{\text{def}}{=} & (\alpha, 1) \downarrow E + (\beta, 1) \uparrow E + (\gamma, 1) \uparrow E \\ SE \stackrel{\text{def}}{=} & (\alpha, 1) \uparrow SE + (\beta, 1) \downarrow SE + (\gamma, 1) \downarrow SE \\ P \stackrel{\text{def}}{=} & (\gamma, 1) \uparrow P \end{split}$$

 $\blacktriangleright S \stackrel{E}{\longrightarrow} P \qquad \qquad \text{Michaelis-Menten kinetics}$

• $S(\ell_S) \bowtie E(\ell_E) \bowtie P(\ell_P)$ where

Vashti Galpin and Jane Hillston

Discretisation and Equivalence in Bio-PEPA

$$\triangleright S + E \stackrel{\longrightarrow}{\longleftarrow} SE \longrightarrow P + E$$

•
$$S(\ell_S) \bowtie E(\ell_E) \bowtie SE(\ell_{SE}) \bowtie P(\ell_P)$$
 where

$$S \stackrel{def}{=} (\alpha, 1) \downarrow S + (\beta, 1) \uparrow S$$
$$E \stackrel{def}{=} (\alpha, 1) \downarrow E + (\beta, 1) \uparrow E + (\gamma, 1) \uparrow E$$
$$SE \stackrel{def}{=} (\alpha, 1) \uparrow SE + (\beta, 1) \downarrow SE + (\gamma, 1) \downarrow SE$$
$$P \stackrel{def}{=} (\gamma, 1) \uparrow P$$

► $S \xrightarrow{E} P$ Michaelis-Menten kinetics ► $S(\ell_S) \Join E(\ell_E) \Join P(\ell_P)$ where $S \stackrel{def}{=} (\delta, 1) \downarrow S \quad E \stackrel{def}{=} (\delta, 1) \oplus E \quad P \stackrel{def}{=} (\delta, 1) \uparrow P$

$$\triangleright S + E \stackrel{\longrightarrow}{\longleftarrow} SE \longrightarrow P + E$$

•
$$S(\ell_S) \bowtie E(\ell_E) \bowtie SE(\ell_{SE}) \bowtie P(\ell_P)$$
 where

$$\begin{split} S &\stackrel{\text{def}}{=} (\alpha, 1) \downarrow S + (\beta, 1) \uparrow S \\ E &\stackrel{\text{def}}{=} (\alpha, 1) \downarrow E + (\beta, 1) \uparrow E + (\gamma, 1) \uparrow E \\ SE &\stackrel{\text{def}}{=} (\alpha, 1) \uparrow SE + (\beta, 1) \downarrow SE + (\gamma, 1) \downarrow SE \\ P &\stackrel{\text{def}}{=} (\gamma, 1) \uparrow P \end{split}$$

► $S \xrightarrow{E} P$ Michaelis-Menten kinetics ► $S(\ell_S) \Join E(\ell_E) \Join P(\ell_P)$ where $S \stackrel{\text{def}}{=} (\delta, 1) \downarrow S E \stackrel{\text{def}}{=} (\delta, 1) \oplus E P \stackrel{\text{def}}{=} (\delta, 1) \uparrow P$

Vashti Galpin and Jane Hillston

Discretisation and Equivalence in Bio-PEPA

CMSB 2009

Bio-PEPA system

$$\blacktriangleright \mathcal{P} = \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, \textit{Comp}, \textit{P} \rangle$$

$$\blacktriangleright \mathcal{P} = \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, \textit{Comp}, \textit{P} \rangle$$

V is the set of locations

Vashti Galpin and Jane Hillston

$$\blacktriangleright \mathcal{P} = \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, \textit{Comp}, \textit{P} \rangle$$

- \mathcal{V} is the set of locations
- $\blacktriangleright~\mathcal{N}$ is the set of quantities describing each species

Vashti Galpin and Jane Hillston

- $\blacktriangleright \mathcal{P} = \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, \textit{Comp}, \textit{P} \rangle$
 - \mathcal{V} is the set of locations
 - $\blacktriangleright~\mathcal{N}$ is the set of quantities describing each species
 - \mathcal{K} is the set of parameters

- $\blacktriangleright \mathcal{P} = \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, \textit{Comp}, \textit{P} \rangle$
 - \mathcal{V} is the set of locations
 - $\blacktriangleright~\mathcal{N}$ is the set of quantities describing each species
 - \mathcal{K} is the set of parameters
 - \mathcal{F} is the set of functional rates

Vashti Galpin and Jane Hillston

- $\blacktriangleright \mathcal{P} = \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, \textit{Comp}, \textit{P} \rangle$
 - $\blacktriangleright \ \mathcal{V}$ is the set of locations
 - $\blacktriangleright~\mathcal{N}$ is the set of quantities describing each species
 - \mathcal{K} is the set of parameters
 - \mathcal{F} is the set of functional rates
 - Comp is the set of well-defined sequential components/species

- $\blacktriangleright \mathcal{P} = \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, \textit{Comp}, \textit{P} \rangle$
 - $\blacktriangleright \ \mathcal{V}$ is the set of locations
 - $\blacktriangleright~\mathcal{N}$ is the set of quantities describing each species
 - \mathcal{K} is the set of parameters
 - \mathcal{F} is the set of functional rates
 - Comp is the set of well-defined sequential components/species
 - P is a well-defined model component

Bio-PEPA systems with levels

Vashti Galpin and Jane Hillston

- Bio-PEPA systems with levels
 - each species has a finite number of levels

Vashti Galpin and Jane Hillston

- Bio-PEPA systems with levels
 - each species has a finite number of levels
 - current levels are specified in P

Vashti Galpin and Jane Hillston

- Bio-PEPA systems with levels
 - each species has a finite number of levels
 - current levels are specified in P
- \blacktriangleright elements of ${\cal N}$

- Bio-PEPA systems with levels
 - each species has a finite number of levels
 - current levels are specified in P
- \blacktriangleright elements of ${\cal N}$

•
$$S: H = h, N_S = n, M_S = m, V = v, unit = u$$

- Bio-PEPA systems with levels
 - each species has a finite number of levels
 - current levels are specified in P
- \blacktriangleright elements of ${\cal N}$
 - $S: H = h, N_S = n, M_S = m, V = v, unit = u$
 - ► *H* is the step size, assume the same across all species

- Bio-PEPA systems with levels
 - each species has a finite number of levels
 - current levels are specified in P
- \blacktriangleright elements of ${\cal N}$
 - $S: H = h, N_S = n, M_S = m, V = v, unit = u$
 - ► *H* is the step size, assume the same across all species
 - N_S is the maximum level for S

- Bio-PEPA systems with levels
 - each species has a finite number of levels
 - current levels are specified in P
- \blacktriangleright elements of ${\cal N}$
 - $S: H = h, N_S = n, M_S = m, V = v, unit = u$
 - ► *H* is the step size, assume the same across all species
 - ► N_S is the maximum level for S
 - M_S is the maximum concentration S can have

- Bio-PEPA systems with levels
 - each species has a finite number of levels
 - current levels are specified in P
- \blacktriangleright elements of ${\cal N}$
 - $S: H = h, N_S = n, M_S = m, V = v, unit = u$
 - ► *H* is the step size, assume the same across all species
 - ► N_S is the maximum level for S
 - M_S is the maximum concentration S can have
 - $N_S = \lceil M_S/H \rceil$, levels $0, 1, \ldots, N_S$

- Bio-PEPA systems with levels
 - each species has a finite number of levels
 - current levels are specified in P
- \blacktriangleright elements of ${\cal N}$
 - $S: H = h, N_S = n, M_S = m, V = v, unit = u$
 - ► *H* is the step size, assume the same across all species
 - ► N_S is the maximum level for S
 - M_S is the maximum concentration S can have
 - $N_S = \lceil M_S / H \rceil$, levels $0, 1, \ldots, N_S$
- obtain CTMCs from operational semantics

句

 \blacktriangleright operational semantics for capability relation \rightarrow_c

Vashti Galpin and Jane Hillston

Discretisation and Equivalence in Bio-PEPA

- \blacktriangleright operational semantics for capability relation \rightarrow_c
- Prefix rules

 $((\alpha,\kappa) \downarrow S)(\ell) \xrightarrow{(\alpha,[S: \downarrow (\ell,\kappa)])} S(\ell-\kappa) \quad \kappa \leq \ell \leq N_S$ $((\alpha,\kappa)\uparrow S)(\ell) \xrightarrow{(\alpha,[S:\uparrow(\ell,\kappa)])} S(\ell+\kappa) \quad 0 \leq \ell \leq N_S - \kappa$ $((\alpha,\kappa)\oplus S)(\ell) \xrightarrow{(\alpha,[S:\oplus(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$ $((\alpha,\kappa)\ominus S)(\ell) \xrightarrow{(\alpha,[S:\ominus(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$ $((\alpha, \kappa) \odot S)(\ell) \xrightarrow{(\alpha, [S: \odot(\ell, \kappa)])} S(\ell)$ $0 < \ell < N_S$

- \blacktriangleright operational semantics for capability relation \rightarrow_c
- Prefix rules

 $((\alpha,\kappa) \downarrow S)(\ell) \xrightarrow{(\alpha,[S: \downarrow (\ell,\kappa)])} S(\ell-\kappa) \quad \kappa \leq \ell \leq N_S$ $((\alpha,\kappa)\uparrow S)(\ell) \xrightarrow{(\alpha,[S:\uparrow(\ell,\kappa)])} S(\ell+\kappa) \quad 0 \leq \ell \leq N_S - \kappa$ $((\alpha,\kappa)\oplus S)(\ell) \xrightarrow{(\alpha,[S:\oplus(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$ $((\alpha,\kappa)\ominus S)(\ell) \xrightarrow{(\alpha,[S:\ominus(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$ $((\alpha, \kappa) \odot S)(\ell) \xrightarrow{(\alpha, [S: \odot(\ell, \kappa)])} S(\ell)$ $0 < \ell < N_S$

- \blacktriangleright operational semantics for capability relation \rightarrow_c
- Prefix rules

 $((\alpha,\kappa) \downarrow S)(\ell) \xrightarrow{(\alpha,[S: \downarrow (\ell,\kappa)])} S(\ell - \kappa) \quad \kappa \leq \ell \leq N_S$ $((\alpha,\kappa)\uparrow S)(\ell) \xrightarrow{(\alpha,[S:\uparrow(\ell,\kappa)])} S(\ell+\kappa) \quad 0 \leq \ell \leq N_S - \kappa$ $((\alpha,\kappa)\oplus S)(\ell) \xrightarrow{(\alpha,[S:\oplus(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$ $((\alpha,\kappa) \ominus S)(\ell) \xrightarrow{(\alpha,[S: \ominus (\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$ $((\alpha, \kappa) \odot S)(\ell) \xrightarrow{(\alpha, [S: \odot(\ell, \kappa)])} S(\ell)$ $0 < \ell < N_S$

- \blacktriangleright operational semantics for capability relation \rightarrow_c
- Prefix rules

 $((\alpha,\kappa)\downarrow S)(\ell) \xrightarrow{(\alpha,[S:\downarrow(\ell,\kappa)])} S(\ell-\kappa) \quad \kappa \leq \ell \leq N_S$ $((\alpha,\kappa) \uparrow S)(\ell) \xrightarrow{(\alpha,[S:\uparrow(\ell,\kappa)])} S(\ell+\kappa) \quad 0 \leq \ell \leq N_S - \kappa$ $((\alpha,\kappa)\oplus S)(\ell) \xrightarrow{(\alpha,[S:\oplus(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$ $((\alpha,\kappa)\ominus S)(\ell) \xrightarrow{(\alpha,[S:\ominus(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_{S}$ $((\alpha, \kappa) \odot S)(\ell) \xrightarrow{(\alpha, [S: \odot(\ell, \kappa)])} S(\ell)$ $0 < \ell < N_S$

- \blacktriangleright operational semantics for capability relation \rightarrow_c
- Prefix rules

 $((\alpha,\kappa)\downarrow S)(\ell) \xrightarrow{(\alpha,[S:\downarrow(\ell,\kappa)])} S(\ell-\kappa) \quad \kappa \leq \ell \leq N_S$ $((\alpha,\kappa)\uparrow S)(\ell) \xrightarrow{(\alpha,[S:\uparrow(\ell,\kappa)])} S(\ell+\kappa) \quad 0 \le \ell \le N_S - \kappa$ $((\alpha,\kappa)\oplus S)(\ell) \xrightarrow{(\alpha,[S:\oplus(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$ $((\alpha,\kappa)\ominus S)(\ell) \xrightarrow{(\alpha,[S:\ominus(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_{S}$ $((\alpha, \kappa) \odot S)(\ell) \xrightarrow{(\alpha, [S: \odot(\ell, \kappa)])} S(\ell)$ $0 < \ell < N_S$

- \blacktriangleright operational semantics for capability relation \rightarrow_c
- Prefix rules

 $((\alpha,\kappa) \downarrow S)(\ell) \xrightarrow{(\alpha,[S: \downarrow (\ell,\kappa)])} S(\ell-\kappa) \quad \kappa \leq \ell \leq N_S$ $((\alpha,\kappa)\uparrow S)(\ell) \xrightarrow{(\alpha,[S:\uparrow(\ell,\kappa)])} S(\ell+\kappa) \quad 0 \leq \ell \leq N_S - \kappa$ $((\alpha,\kappa)\oplus S)(\ell) \xrightarrow{(\alpha,[S:\oplus(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$ $((\alpha,\kappa)\ominus S)(\ell) \xrightarrow{(\alpha,[S:\ominus(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$ $((\alpha, \kappa) \odot S)(\ell) \xrightarrow{(\alpha, [S: \odot(\ell, \kappa)])} S(\ell)$ $0 < \ell < N_S$

- \blacktriangleright operational semantics for capability relation \rightarrow_c
- Prefix rules

 $((\alpha,\kappa) \downarrow S)(\ell) \xrightarrow{(\alpha,[S: \downarrow (\ell,\kappa)])} S(\ell-\kappa) \quad \kappa \leq \ell \leq N_S$ $((\alpha,\kappa)\uparrow S)(\ell) \xrightarrow{(\alpha,[S:\uparrow(\ell,\kappa)])} S(\ell+\kappa) \quad 0 \leq \ell \leq N_S - \kappa$ $((\alpha,\kappa)\oplus S)(\ell) \xrightarrow{(\alpha,[S:\oplus(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$ $((\alpha,\kappa)\ominus S)(\ell) \xrightarrow{(\alpha,[S:\ominus(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$ $((\alpha, \kappa) \odot S)(\ell) \xrightarrow{(\alpha, [S: \odot(\ell, \kappa)])} S(\ell)$ $0 < \ell < N_S$

- \blacktriangleright operational semantics for capability relation \rightarrow_c
- Prefix rules

 $((\alpha,\kappa) \downarrow S)(\ell) \xrightarrow{(\alpha,[S: \downarrow (\ell,\kappa)])} S(\ell-\kappa) \quad \kappa \leq \ell \leq N_S$ $((\alpha,\kappa)\uparrow S)(\ell) \xrightarrow{(\alpha,[S:\uparrow(\ell,\kappa)])} S(\ell+\kappa) \quad 0 \leq \ell \leq N_S - \kappa$ $((\alpha,\kappa)\oplus S)(\ell) \xrightarrow{(\alpha,[S:\oplus(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$ $((\alpha,\kappa) \ominus S)(\ell) \xrightarrow{(\alpha,[S:\ominus(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$ $((\alpha, \kappa) \odot S)(\ell) \xrightarrow{(\alpha, [S: \odot(\ell, \kappa)])} S(\ell)$ $0 < \ell < N_S$

- operational semantics for capability relation \rightarrow_c
- Prefix rules

 $((\alpha,\kappa) \downarrow S)(\ell) \xrightarrow{(\alpha,[S: \downarrow (\ell,\kappa)])} S(\ell-\kappa) \quad \kappa \leq \ell \leq N_S$ $((\alpha,\kappa)\uparrow S)(\ell) \xrightarrow{(\alpha,[S:\uparrow(\ell,\kappa)])} S(\ell+\kappa) \quad 0 \leq \ell \leq N_S - \kappa$ $((\alpha,\kappa)\oplus S)(\ell) \xrightarrow{(\alpha,[S:\oplus(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$ $((\alpha,\kappa) \ominus S)(\ell) \xrightarrow{(\alpha,[S:\ominus(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$ $((\alpha, \kappa) \odot S)(\ell) \xrightarrow{(\alpha, [S: \odot (\ell, \kappa)])} S(\ell)$ $0 < \ell < N_S$

- \blacktriangleright operational semantics for capability relation \rightarrow_c
- Prefix rules

 $((\alpha,\kappa) \downarrow S)(\ell) \xrightarrow{(\alpha,[S: \downarrow (\ell,\kappa)])} S(\ell-\kappa) \quad \kappa \leq \ell \leq N_S$ $((\alpha,\kappa)\uparrow S)(\ell) \xrightarrow{(\alpha,[S:\uparrow(\ell,\kappa)])} S(\ell+\kappa) \quad 0 \leq \ell \leq N_S - \kappa$ $((\alpha,\kappa)\oplus S)(\ell) \xrightarrow{(\alpha,[S:\oplus(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$ $((\alpha,\kappa)\ominus S)(\ell) \xrightarrow{(\alpha,[S:\ominus(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$ $((\alpha,\kappa) \odot S)(\ell) \xrightarrow{(\alpha,[S: \odot(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$

- \blacktriangleright operational semantics for capability relation \rightarrow_c
- Prefix rules

 $((\alpha,\kappa) \downarrow S)(\ell) \xrightarrow{(\alpha,[S: \downarrow (\ell,\kappa)])} S(\ell-\kappa) \quad \kappa \leq \ell \leq N_S$ $((\alpha,\kappa)\uparrow S)(\ell) \xrightarrow{(\alpha,[S:\uparrow(\ell,\kappa)])} S(\ell+\kappa) \quad 0 \leq \ell \leq N_S - \kappa$ $((\alpha,\kappa)\oplus S)(\ell) \xrightarrow{(\alpha,[S:\oplus(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$ $((\alpha,\kappa)\ominus S)(\ell) \xrightarrow{(\alpha,[S:\ominus(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$ $((\alpha,\kappa) \odot S)(\ell) \xrightarrow{(\alpha,[S: \odot (\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$

Constant

$$\frac{S(\ell) \xrightarrow{(\alpha,w)} c S'(\ell')}{C(\ell) \xrightarrow{(\alpha,w)} c S'(\ell')} \quad C \stackrel{def}{=} S$$

Vashti Galpin and Jane Hillston

Constant

$$\frac{S(\ell) \xrightarrow{(\alpha,w)} c S'(\ell')}{C(\ell) \xrightarrow{(\alpha,w)} c S'(\ell')} \quad C \stackrel{\text{\tiny def}}{=} S$$

$$\frac{S_1(\ell) \xrightarrow{(\alpha,w)}_c S'(\ell')}{(S_1 + S_2)(\ell) \xrightarrow{(\alpha,w)}_c S'(\ell')} \quad \frac{S_2(\ell) \xrightarrow{(\alpha,w)}_c S'(\ell')}{(S_1 + S_2)(\ell) \xrightarrow{(\alpha,w)}_c S'(\ell')}$$

Vashti Galpin and Jane Hillston

► Constant $\frac{S(\ell) \xrightarrow{(\alpha,w)} c S'(\ell')}{C(\ell) \xrightarrow{(\alpha,w)} c S'(\ell')} \quad C \stackrel{\text{def}}{=} S$

Choice

$$\frac{S_1(\ell) \xrightarrow{(\alpha,w)}_c S'(\ell')}{(S_1 + S_2)(\ell) \xrightarrow{(\alpha,w)}_c S'(\ell')} \quad \frac{S_2(\ell) \xrightarrow{(\alpha,w)}_c S'(\ell')}{(S_1 + S_2)(\ell) \xrightarrow{(\alpha,w)}_c S'(\ell')}$$

• Cooperation for $\alpha \not\in L$

$$\frac{P \xrightarrow{(\alpha,w)}_{c} P'}{P \bowtie_{L} Q \xrightarrow{(\alpha,w)}_{c} P' \bowtie_{L} Q} \qquad \frac{Q \xrightarrow{(\alpha,w)}_{c} Q'}{P \bowtie_{L} Q \xrightarrow{(\alpha,w)}_{c} P \bowtie_{L} Q'}$$

• Cooperation for $\alpha \in L$

$$\frac{P \xrightarrow{(\alpha, \mathbf{V})}_{c} P' \quad Q \xrightarrow{(\alpha, \mathbf{U})}_{c} Q'}{P \bigotimes_{L} Q \xrightarrow{(\alpha, \mathbf{V} :: \mathbf{U})}_{c} P' \bigotimes_{L} Q'} \quad \alpha \in L$$

Vashti Galpin and Jane Hillston

▶ Cooperation for $\alpha \in L$

$$\frac{P \xrightarrow{(\alpha, \mathbf{V})}_{c} P' \quad Q \xrightarrow{(\alpha, \mathbf{U})}_{c} Q'}{P \bowtie_{L} Q \xrightarrow{(\alpha, \mathbf{V} :: \mathbf{U})}_{c} P' \bowtie_{L} Q'} \quad \alpha \in L$$

▶ Cooperation for $\alpha \in L$

$$\frac{P \xrightarrow{(\alpha, \mathbf{v})}_{c} P' \quad Q \xrightarrow{(\alpha, \mathbf{u})}_{c} Q'}{P \bigotimes_{L} Q \xrightarrow{(\alpha, \mathbf{v} :: \mathbf{u})}_{c} P' \bigotimes_{L} Q'} \quad \alpha \in L$$

• operational semantics for stochastic relation \rightarrow_s

$$\frac{P \xrightarrow{(\alpha, v)} c P'}{(\alpha, \mathcal{K}, \mathcal{F}, \mathsf{Comp}, P)} \xrightarrow{(\alpha, f_{\alpha}(v, \mathcal{N}, \mathcal{K})/h)} s \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, \mathsf{Comp}, P' \rangle$$

Vashti Galpin and Jane Hillston

Discretisation and Equivalence in Bio-PEPA

▶ Cooperation for $\alpha \in L$

$$\frac{P \xrightarrow{(\alpha, \mathbf{v})}_{c} P' \quad Q \xrightarrow{(\alpha, \mathbf{u})}_{c} Q'}{P \bigotimes_{L} Q \xrightarrow{(\alpha, \mathbf{v} :: \mathbf{u})}_{c} P' \bigotimes_{L} Q'} \quad \alpha \in L$$

• operational semantics for stochastic relation \rightarrow_s

$$\frac{P \xrightarrow{(\alpha, \mathbf{V})}_{c} P'}{\mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, Comp, P} \xrightarrow{(\alpha, f_{\alpha}(\mathbf{v}, \mathcal{N}, \mathcal{K})/h)}_{s} \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, Comp, P' \rangle$$

• qualitative, only consider α

Example: reaction with enzyme, max level 3

▶ state vector (S, E, SE, P) and $N_S = N_E = N_{SE} = N_P = 3$

Vashti Galpin and Jane Hillston

Example: reaction with enzyme, max level 3

▶ state vector (S, E, SE, P) and $N_S = N_E = N_{SE} = N_P = 3$

Vashti Galpin and Jane Hillston

Discretisation and Equivalence in Bio-PEPA

Example: reaction with enzyme, max level 7

▶ state vector *S E SE P* and $N_S = N_E = N_{SE} = N_P = 7$

Vashti Galpin and Jane Hillston

Example: reaction with enzyme, max level 7

▶ state vector *S E SE P* and $N_S = N_E = N_{SE} = N_P = 7$

Vashti Galpin and Jane Hillston

Discretisation and Equivalence in Bio-PEPA

CMSB 2009

modelling with levels leads to different discretisations

- modelling with levels leads to different discretisations
- P^n discretisation with smallest maximum level n

- modelling with levels leads to different discretisations
- P^n discretisation with smallest maximum level n
- each discretisation P^n is an abstraction of the system

- modelling with levels leads to different discretisations
- P^n discretisation with smallest maximum level n
- each discretisation P^n is an abstraction of the system
- assume different abstractions have the same behaviour

- modelling with levels leads to different discretisations
- P^n discretisation with smallest maximum level n
- each discretisation P^n is an abstraction of the system
- assume different abstractions have the same behaviour
- develop an equivalence to capture this

 $P^n \equiv P^m$ for certain *m* and *n*

- modelling with levels leads to different discretisations
- P^n discretisation with smallest maximum level n
- each discretisation P^n is an abstraction of the system
- assume different abstractions have the same behaviour
- develop an equivalence to capture this

 $P^n \equiv P^m$ for certain *m* and *n*

prove it is a congruence for relevant operators

 $P_1 \equiv P_2$ and $Q_1 \equiv Q_2$ implies $P_1 \parallel Q_1 \equiv P_2 \parallel Q_2$

Approach taken

aim for a bisimulation-style equivalence

Vashti Galpin and Jane Hillston

Discretisation and Equivalence in Bio-PEPA

Bio-PEPA	Syntax and semantics	Equivalence choice	Equivalence definition	Results
Approad	ch taken			
► a	im for a bisimulatio	n-style equivalence	9	

- y 4

► bisimilarity,
$$P \sim Q$$
 if
1. $P \xrightarrow{(\alpha,v)}_{c} P'$, $Q \xrightarrow{(\alpha,u)}_{c} Q'$ and $P' \sim Q'$
2. $Q \xrightarrow{(\alpha,u)}_{c} Q'$, $P \xrightarrow{(\alpha,v)}_{c} P'$ and $P' \sim Q'$

BIO-PEPA	Syntax and semantics	Equivalence choice	Equivalence definition	Results
Approach	ı taken			
► air	n for a bisimulation-	style equivalence		

► bisimilarity,
$$P \sim Q$$
 if
1. $P \xrightarrow{(\alpha,\nu)}_{c} P'$, $Q \xrightarrow{(\alpha,u)}_{c} Q'$ and $P' \sim Q'$
2. $Q \xrightarrow{(\alpha,u)}_{c} Q'$, $P \xrightarrow{(\alpha,\nu)}_{c} P'$ and $P' \sim Q'$

Bio-PEPA	Syntax and semantics	Equivalence choice	Equivalence definition	Results
Approacl	h taken			
► ai	m for a bisimulatio	n-style equivalence	e	

► bisimilarity,
$$P \sim Q$$
 if
1. $P \xrightarrow{(\alpha,v)}_{c} P'$, $Q \xrightarrow{(\alpha,u)}_{c} Q'$ and $P' \sim Q'$
2. $Q \xrightarrow{(\alpha,u)}_{c} Q'$, $P \xrightarrow{(\alpha,v)}_{c} P'$ and $P' \sim Q'$

- approach taken
 - determine definition of equivalence

Bio-PEPA	Syntax and semantics	Equivalence choice	Equivalence definition	Results
Approach	taken			

- aim for a bisimulation-style equivalence
 - \blacktriangleright bisimilarity, $P \sim Q$ if 1. $P \xrightarrow{(\alpha,\nu)} P'$. $Q \xrightarrow{(\alpha,u)} Q'$ and $P' \sim Q'$ 2. $Q \xrightarrow{(\alpha, u)} Q' P \xrightarrow{(\alpha, v)} P'$ and $P' \sim Q'$
 - approach taken
 - determine definition of equivalence
 - prove it relates to two discretisations of a single species

句

aim for a bisimulation-style equivalence

► bisimilarity,
$$P \sim Q$$
 if
1. $P \xrightarrow{(\alpha,v)}_{c} P'$, $Q \xrightarrow{(\alpha,u)}_{c} Q'$ and $P' \sim Q'$
2. $Q \xrightarrow{(\alpha,u)}_{c} Q'$, $P \xrightarrow{(\alpha,v)}_{c} P'$ and $P' \sim Q'$

approach taken

- determine definition of equivalence
- prove it relates to two discretisations of a single species
- prove it is a congruence for cooperation operator

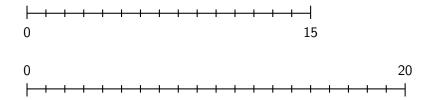
aim for a bisimulation-style equivalence

► bisimilarity,
$$P \sim Q$$
 if
1. $P \xrightarrow{(\alpha,v)}_{c} P'$, $Q \xrightarrow{(\alpha,u)}_{c} Q'$ and $P' \sim Q'$
2. $Q \xrightarrow{(\alpha,u)}_{c} Q'$, $P \xrightarrow{(\alpha,v)}_{c} P'$ and $P' \sim Q'$

approach taken

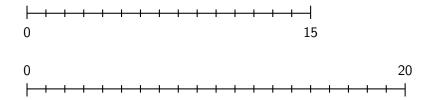
- determine definition of equivalence
- prove it relates to two discretisations of a single species
- prove it is a congruence for cooperation operator
- prove that it relates two discretisations of a system with many species

$$\blacktriangleright B \stackrel{\scriptscriptstyle def}{=} (\alpha, \ 3 \) \downarrow B \ + \ (\beta, \ 4 \) \uparrow B \ + \ (\gamma, 1) \uparrow B$$



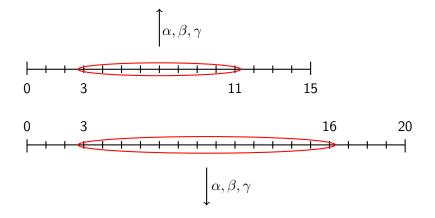
Vashti Galpin and Jane Hillston

$$\blacktriangleright B \stackrel{\text{\tiny def}}{=} (\alpha, \mathbf{3}) \downarrow B + (\beta, \mathbf{4}) \uparrow B + (\gamma, 1) \uparrow B$$



Vashti Galpin and Jane Hillston

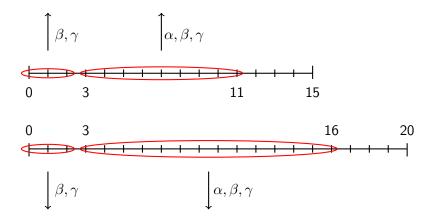
$$\blacktriangleright B \stackrel{\scriptscriptstyle def}{=} (\alpha, \ 3 \) \downarrow B \ + \ (\beta, \ 4 \) \uparrow B \ + \ (\gamma, 1) \uparrow B$$



Vashti Galpin and Jane Hillston

Discretisation and Equivalence in Bio-PEPA

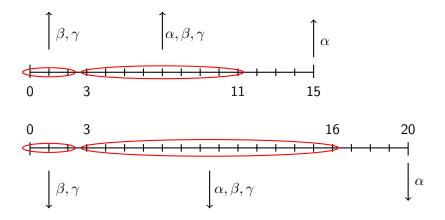
$$\blacktriangleright B \stackrel{\text{\tiny def}}{=} (\alpha, 3) \downarrow B + (\beta, 4) \uparrow B + (\gamma, 1) \uparrow B$$



Vashti Galpin and Jane Hillston

Discretisation and Equivalence in Bio-PEPA

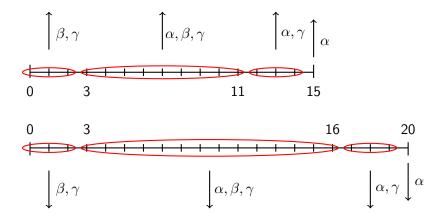
$$\blacktriangleright B \stackrel{\text{\tiny def}}{=} (\alpha, 3) \downarrow B + (\beta, 4) \uparrow B + (\gamma, 1) \uparrow B$$



Vashti Galpin and Jane Hillston

Discretisation and Equivalence in Bio-PEPA

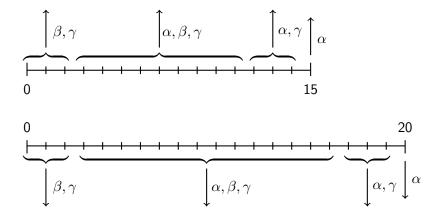
$$\blacktriangleright B \stackrel{\text{\tiny def}}{=} (\alpha, 3) \downarrow B + (\beta, 4) \uparrow B + (\gamma, 1) \uparrow B$$



Vashti Galpin and Jane Hillston

Discretisation and Equivalence in Bio-PEPA

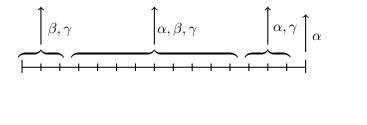
$$\blacktriangleright B \stackrel{\text{\tiny def}}{=} (\alpha, 3) \downarrow B + (\beta, 4) \uparrow B + (\gamma, 1) \uparrow B$$

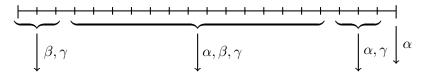


Vashti Galpin and Jane Hillston

Discretisation and Equivalence in Bio-PEPA

$$\blacktriangleright B \stackrel{\text{\tiny def}}{=} (\alpha, 3) \downarrow B + (\beta, 4) \uparrow B + (\gamma, 1) \uparrow B$$

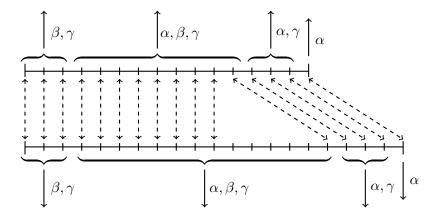




Vashti Galpin and Jane Hillston

Discretisation and Equivalence in Bio-PEPA

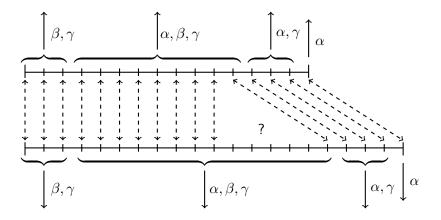
$$\blacktriangleright \ B \stackrel{\scriptscriptstyle def}{=} (\alpha, \ 3 \) \downarrow B \ + \ (\beta, \ 4 \) \uparrow B \ + \ (\gamma, 1) \uparrow B$$



Vashti Galpin and Jane Hillston

Discretisation and Equivalence in Bio-PEPA

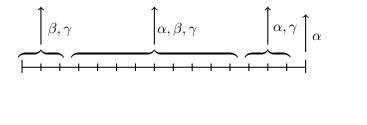
$$\blacktriangleright B \stackrel{\scriptscriptstyle def}{=} (\alpha, \ 3 \) \downarrow B \ + \ (\beta, \ 4 \) \uparrow B \ + \ (\gamma, 1) \uparrow B$$

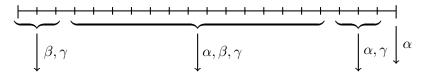


Vashti Galpin and Jane Hillston

Discretisation and Equivalence in Bio-PEPA

$$\blacktriangleright B \stackrel{\text{\tiny def}}{=} (\alpha, 3) \downarrow B + (\beta, 4) \uparrow B + (\gamma, 1) \uparrow B$$

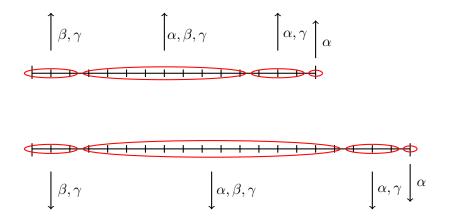




Vashti Galpin and Jane Hillston

Discretisation and Equivalence in Bio-PEPA

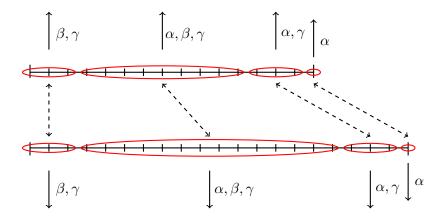
$$\blacktriangleright B \stackrel{\text{\tiny def}}{=} (\alpha, 3) \downarrow B + (\beta, 4) \uparrow B + (\gamma, 1) \uparrow B$$



Vashti Galpin and Jane Hillston

Discretisation and Equivalence in Bio-PEPA

$$\blacktriangleright B \stackrel{\text{\tiny def}}{=} (\alpha, \ 3 \) \downarrow B \ + \ (\beta, \ 4 \) \uparrow B \ + \ (\gamma, 1) \uparrow B$$



Vashti Galpin and Jane Hillston

Discretisation and Equivalence in Bio-PEPA

▶ $(P, Q) \in \mathcal{H}$ if they can perform the same actions

Vashti Galpin and Jane Hillston

Discretisation and Equivalence in Bio-PEPA

- ▶ $(P, Q) \in \mathcal{H}$ if they can perform the same actions
- \mathcal{H} is an equivalence relation

Vashti Galpin and Jane Hillston

- ▶ $(P, Q) \in \mathcal{H}$ if they can perform the same actions
- \mathcal{H} is an equivalence relation

•
$$[P] \xrightarrow{\alpha} [Q] \text{ if } P \xrightarrow{(\alpha, v)} _{c} Q$$

- ▶ $(P, Q) \in \mathcal{H}$ if they can perform the same actions
- \blacktriangleright ${\cal H}$ is an equivalence relation

$$\blacktriangleright [P] \stackrel{\alpha}{\hookrightarrow} [Q] \text{ if } P \stackrel{(\alpha, v)}{\longrightarrow}_{c} Q$$

base equivalence on standard bisimilarity

- ▶ $(P, Q) \in \mathcal{H}$ if they can perform the same actions
- *H* is an equivalence relation

$$\blacktriangleright [P] \stackrel{\alpha}{\hookrightarrow} [Q] \text{ if } P \stackrel{(\alpha, v)}{\longrightarrow}_{c} Q$$

- base equivalence on standard bisimilarity
- compression bisimilarity, P ≏ Q if [P] ~ [Q], namely if
 1. [P] → [P'], [Q] → [Q'] and [P'] ~ [Q']
 2. [Q] → [Q'], [P] → [P'] and [P'] ~ [Q']

- ▶ $(P, Q) \in \mathcal{H}$ if they can perform the same actions
- *H* is an equivalence relation

$$\blacktriangleright [P] \stackrel{\alpha}{\hookrightarrow} [Q] \text{ if } P \stackrel{(\alpha, v)}{\longrightarrow}_{c} Q$$

- base equivalence on standard bisimilarity
- ► compression bisimilarity, $P \simeq Q$ if $[P] \sim [Q]$, namely if 1. $[P] \stackrel{\alpha}{\longrightarrow} [P']$, $[Q] \stackrel{\alpha}{\longrightarrow} [Q']$ and $[P'] \sim [Q']$ 2. $[Q] \stackrel{\alpha}{\longrightarrow} [Q']$, $[P] \stackrel{\alpha}{\longrightarrow} [P']$ and $[P'] \sim [Q']$

• equivalence classes: *n* levels, E_1, \ldots, E_p ; *m* levels, F_1, \ldots, F_q

- ▶ $(P, Q) \in \mathcal{H}$ if they can perform the same actions
- *H* is an equivalence relation

$$\blacktriangleright [P] \stackrel{\alpha}{\hookrightarrow} [Q] \text{ if } P \stackrel{(\alpha, v)}{\longrightarrow}_{c} Q$$

- base equivalence on standard bisimilarity
- compression bisimilarity, P ≏ Q if [P] ~ [Q], namely if
 1. [P] → [P'], [Q] → [Q'] and [P'] ~ [Q']
 2. [Q] → [Q'], [P] → [P'] and [P'] ~ [Q']
- equivalence classes: *n* levels, E_1, \ldots, E_p ; *m* levels, F_1, \ldots, F_q
- maximum stoichiometry for reactant: k_{\downarrow}

句

Equivalence definition

- ▶ $(P, Q) \in \mathcal{H}$ if they can perform the same actions
- \mathcal{H} is an equivalence relation

$$\blacktriangleright [P] \stackrel{\alpha}{\hookrightarrow} [Q] \text{ if } P \stackrel{(\alpha, v)}{\longrightarrow}_{c} Q$$

- base equivalence on standard bisimilarity
- compression bisimilarity, P ≏ Q if [P] ~ [Q], namely if
 1. [P] ↔ [P'], [Q] ↔ [Q'] and [P'] ~ [Q']
 2. [Q] ↔ [Q'], [P] ↔ [P'] and [P'] ~ [Q']
- equivalence classes: *n* levels, E_1, \ldots, E_p ; *m* levels, F_1, \ldots, F_q
- maximum stoichiometry for reactant: k_{\downarrow}
- ► maximum stoichiometry for product: k_↑

Bio-PEPA	Syntax and semantics		Equivalence definition	Results				
Results								
► for a well-defined Bio-PEPA species, $C^n \simeq C^m$ if								
<i>n</i> ,	$k_{\downarrow},m\geq k_{\downarrow}+\max\{k_{\downarrow}\}$	$,k_{\uparrow}\}+k_{\uparrow}$						

Vashti Galpin and Jane Hillston

BIO-PEPA	Syntax and semantics	Equivalence choice	Equivalence definition	Results				
Results								
 for a well-defined Bio-PEPA species, Cⁿ ≃ C^m if n, m ≥ k_↓ + max{k_↓, k_↑} + k_↑ 								
 equivalence classes are intervals and hence ordered 								

Bio-PEPA	Syntax and semantics			Results			
Results							
► for a well-defined Bio-PEPA species, $C^n \simeq C^m$ if $n, m \ge k_{\downarrow} + \max\{k_{\downarrow}, k_{\uparrow}\} + k_{\uparrow}$							
	 equivalence classes 	are intervals and he	ence ordered				
	• if <i>n</i> large enough, fi	xed number of equi	valence classes				

- for a well-defined Bio-PEPA species, Cⁿ ≏ C^m if n, m ≥ k_↓ + max{k_↓, k_↑} + k_↑
 - equivalence classes are intervals and hence ordered
 - ▶ if *n* large enough, fixed number of equivalence classes
 - "central" equivalence class has size greater than $\max\{k_{\downarrow}, k_{\uparrow}\}$

- ► for a well-defined Bio-PEPA species, $C^n \simeq C^m$ if $n, m \ge k_{\downarrow} + \max\{k_{\downarrow}, k_{\uparrow}\} + k_{\uparrow}$
 - equivalence classes are intervals and hence ordered
 - ▶ if *n* large enough, fixed number of equivalence classes
 - ▶ "central" equivalence class has size greater than max $\{k_{\downarrow},k_{\uparrow}\}$
 - other pairs of equivalence classes E_i and F_i are the same size

- ► for a well-defined Bio-PEPA species, $C^n \simeq C^m$ if $n, m \ge k_{\downarrow} + \max\{k_{\downarrow}, k_{\uparrow}\} + k_{\uparrow}$
 - equivalence classes are intervals and hence ordered
 - ▶ if *n* large enough, fixed number of equivalence classes
 - ▶ "central" equivalence class has size greater than max $\{k_{\downarrow},k_{\uparrow}\}$
 - other pairs of equivalence classes E_i and F_i are the same size
 - if n, m large enough then $E_i \stackrel{\alpha}{\longrightarrow} E_j$ if and only if $F_i \stackrel{\alpha}{\longrightarrow} F_j$

- ► for a well-defined Bio-PEPA species, $C^n \simeq C^m$ if $n, m \ge k_{\downarrow} + \max\{k_{\downarrow}, k_{\uparrow}\} + k_{\uparrow}$
 - equivalence classes are intervals and hence ordered
 - ▶ if *n* large enough, fixed number of equivalence classes
 - ▶ "central" equivalence class has size greater than max $\{k_{\downarrow},k_{\uparrow}\}$
 - other pairs of equivalence classes E_i and F_i are the same size
 - if n, m large enough then $E_i \stackrel{\alpha}{\longrightarrow} E_j$ if and only if $F_i \stackrel{\alpha}{\longrightarrow} F_j$
 - transition-preserving isomorphism between equivalence classes

- ► for a well-defined Bio-PEPA species, $C^n \simeq C^m$ if $n, m \ge k_{\downarrow} + \max\{k_{\downarrow}, k_{\uparrow}\} + k_{\uparrow}$
 - equivalence classes are intervals and hence ordered
 - ▶ if *n* large enough, fixed number of equivalence classes
 - "central" equivalence class has size greater than $\max\{k_{\downarrow}, k_{\uparrow}\}$
 - other pairs of equivalence classes E_i and F_i are the same size
 - if n, m large enough then $E_i \stackrel{\alpha}{\hookrightarrow} E_j$ if and only if $F_i \stackrel{\alpha}{\hookrightarrow} F_j$
 - transition-preserving isomorphism between equivalence classes
 - equivalence classes are bisimilar

- CADP: current action decomposition property
 - ▶ $(P_1 \bowtie Q_1, P_2 \bowtie Q_2) \in \mathcal{H}$ and derivatives of same model then $(P_1, P_2) \in \mathcal{H}, (Q_1, Q_2) \in \mathcal{H}$

- CADP: current action decomposition property
 - ▶ $(P_1 \bowtie Q_1, P_2 \bowtie Q_2) \in \mathcal{H}$ and derivatives of same model then $(P_1, P_2) \in \mathcal{H}, (Q_1, Q_2) \in \mathcal{H}$
- ▶ if $P_1 \simeq P_2$, $Q_1 \simeq Q_2$ and $P_1 \bowtie_L Q_1$ has CADP and $P_2 \bowtie_L Q_2$ has CADP then $P_1 \bowtie_l Q_1 \simeq P_2 \bowtie_l Q_2$

- CADP: current action decomposition property
 - ▶ $(P_1 \bowtie Q_1, P_2 \bowtie Q_2) \in \mathcal{H}$ and derivatives of same model then $(P_1, P_2) \in \mathcal{H}, (Q_1, Q_2) \in \mathcal{H}$
- ▶ if $P_1 \simeq P_2$, $Q_1 \simeq Q_2$ and $P_1 \bowtie Q_1$ has CADP and $P_2 \bowtie Q_2$ has CADP then $P_1 \bowtie Q_1 \simeq P_2 \bowtie Q_2$

► $(P_1, P_2) \in \mathcal{H}$ then $(P_1 \Join_l Q, P_2 \Join_l Q) \in \mathcal{H}$

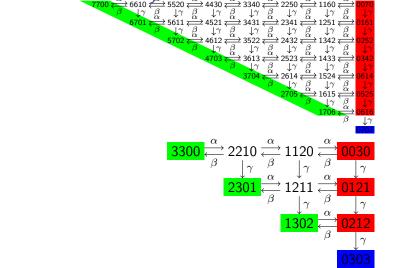
- CADP: current action decomposition property
 - ▶ $(P_1 \bowtie Q_1, P_2 \bowtie Q_2) \in \mathcal{H}$ and derivatives of same model then $(P_1, P_2) \in \mathcal{H}, (Q_1, Q_2) \in \mathcal{H}$
- ▶ if $P_1 \simeq P_2$, $Q_1 \simeq Q_2$ and $P_1 \bowtie_{L} Q_1$ has CADP and $P_2 \bowtie_{L} Q_2$ has CADP then $P_1 \bowtie_{L} Q_1 \simeq P_2 \bowtie_{L} Q_2$
 - ► $(P_1, P_2) \in \mathcal{H}$ then $(P_1 \Join_{L} Q, P_2 \Join_{L} Q) \in \mathcal{H}$
 - construct a suitable bisimulation over equivalence classes

- CADP: current action decomposition property
 - ▶ $(P_1 \bowtie Q_1, P_2 \bowtie Q_2) \in \mathcal{H}$ and derivatives of same model then $(P_1, P_2) \in \mathcal{H}, (Q_1, Q_2) \in \mathcal{H}$
- ▶ if $P_1 \simeq P_2$, $Q_1 \simeq Q_2$ and $P_1 \bowtie_l Q_1$ has CADP and $P_2 \bowtie_l Q_2$ has CADP then $P_1 \bowtie_l Q_1 \simeq P_2 \bowtie_l Q_2$

►
$$(P_1, P_2) \in \mathcal{H}$$
 then $(P_1 \Join_{\iota} Q, P_2 \Join_{\iota} Q) \in \mathcal{H}$

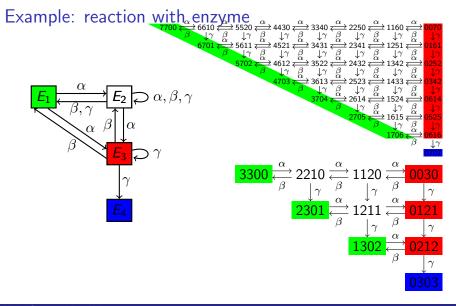
- construct a suitable bisimulation over equivalence classes
- For a well-defined Bio-PEPA system, Pⁿ ≏ P^m if they both have CADP and n, m ≥ k_↓ + max{k_↓, k_↑} + k_↑

Example: reaction with enzyme



Vashti Galpin and Jane Hillston

Discretisation and Equivalence in Bio-PEPA



Vashti Galpin and Jane Hillston

Discretisation and Equivalence in Bio-PEPA

- investigation of CADP
 - syntactic characterisation
 - implications

Vashti Galpin and Jane Hillston

- investigation of CADP
 - syntactic characterisation
 - implications
- more general use of compression bisimilarity
 - relation over reaction names
 - modelling examples

- investigation of CADP
 - syntactic characterisation
 - implications
- more general use of compression bisimilarity
 - relation over reaction names
 - modelling examples
- quantitative equivalence
 - inequality of rates between equivalence classes

- investigation of CADP
 - syntactic characterisation
 - implications
- more general use of compression bisimilarity
 - relation over reaction names
 - modelling examples
- quantitative equivalence
 - inequality of rates between equivalence classes

Thank you

Vashti Galpin and Jane Hillston

Discretisation and Equivalence in Bio-PEPA