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Abstract. Bio-PEPA is a process algebra for modelling biological systems. An
important aspect of Bio-PEPA is the ability it provides to discretise concentra-
tions resulting in a smaller, more manageable state space. The discretisation is
based on a step size which determines the size of each discrete level and also the
maximum number of levels. This paper considers the relationship between two
discretisations of the same Bio-PEPA model that differ only in the step size and
hence the maximum number of levels, by using the idea of equivalence from con-
currency and process algebra. We present a novel behavioural semantic equiv-
alence, compression bisimulation, that equates two discretisations of the same
model and we show that this equivalence is a congruence with respect to the syn-
chronisation operator.

1 Introduction

The use of process algebras for modelling biological systems has become a popular
technique [1–5]. Some approaches use the process algebra as originally defined for de-
scription of computer systems and in others a process algebra is tailored to be specific
to systems biology. One of the latter class is Bio-PEPA [6] which was developed from
the stochastic process algebra PEPA [7] and has been successfully used to model Gold-
beter’s model of cyclin oscillation [8, 9], the Repressilator [10], genetic networks [6],
the MAPK model [11], the Neurospora circadian clock [12] and the gp130/JAK/STAT
pathway [13]. This paper investigates a semantic equivalence for Bio-PEPA.

An important aspect of Bio-PEPA is the ability it provides for the discretisation of
concentrations. Instead of working with a “process-as-molecule” approach, it uses a
“process-as-species” approach whereby a process can either be parameterised by con-
centration or by a discrete level which is obtained from dividing the concentration into
a discrete number of chunks. Typically, there is a fixed step size and each species has a
maximum number of levels dependent on its maximum concentration. For a given step
size, we call a system with levels a discretisation.

Bio-PEPA distinguishes itself from many other process algebras for modelling bi-
ological systems by providing multiple analyses including continuous-time Markov
chains (CTMCs), ordinary differential equations (ODEs), stochastic simulation and
model checking. By developing a semantic equivalence for Bio-PEPA, we have a new
type of analysis based on behaviour that can be used to compare models.

Semantic equivalences are an important technique in process algebra for specifying
notions of equivalent behaviour. They equate processes that have the same behaviour,



and can be divided into qualitative equivalences which only consider the behaviour in
terms of which actions can be performed and quantitative equivalences which consider
the rates at which actions can happen as part of the behaviour. In this paper we consider
a qualitative equivalence. Adding quantitative aspects is ongoing research.

Semantic equivalences typically have two important properties – they are equiva-
lence relations (hence the name) and congruence relations. A congruence relation is a
relation that is preserved by the operators of the process algebra. For example, if � is a
binary operator, then an equivalence ≡ is preserved by this operator if P ≡ Q implies
that P � R ≡ Q � R and R � P ≡ R � Q for every process R.

These properties are important when modelling and evaluating the concurrent be-
haviour of computer systems as they let us substitute like for like thereby exploiting
the compositionality provided by a process algebra. This allows for the substitution of
a system with a smaller state space or other desirable properties, and make the analysis
of the system easier. In applying the idea of a semantic equivalence in systems biology,
similar advantages will be gained hence the importance and timeliness of this research.
Moreover, since the semantic equivalence we define is based upon what reactions can
be observed, it is well suited for biological modelling.

In searching for a suitable equivalence, there are at least two approaches that can be
taken. One is to consider existing equivalences from the literature. The other is to con-
sider what behaviours we want to consider as identical and to develop an equivalence
from this starting point. This is the approach taken here.

We have a immediate candidate for what we want to consider the same. For a Bio-
PEPA system, we can consider two different discretisations of that system. Since they
both represent the same system, we want their behaviours to be identified (assuming
neither have few enough levels to give pathological behaviour). This approach is suit-
able since semantic equivalences are used to identify the same behaviour in different
abstractions of a system, and clearly two discretisations are two abstractions.

Starting from this point, we define an equivalence relation over the states of the
model that relates states that have the same possible reactions. This equivalence relation
defines equivalence classes of states with the same behaviour and from this we can use
a classical notion of equivalence, bisimulation, to define our semantic equivalence.

This new semantic equivalence, compression bisimulation, has not been chosen ran-
domly but through understanding the differences between discretisations and ensuring
that the semantic equivalence has the desirable properties mentioned above. Ensuring
a semantic equivalence is an equivalence relation is not hard. Establishing congruence
is much harder because stoichiometry coefficients greater than one lead to a complex
transition system. Being able to prove congruence played a major role in the selection of
compression equivalence. Moreover, since two discretisations of a single species should
have the same behaviour under the equivalence, it was necessary to prove this as well.

The first result of this paper shows that in the sequential case, a single species,
two discretisations are related by compression bisimulation. The second shows that
compression bisimulation is a congruence with respect to the cooperation operator. A
corollary of this is that in the general case of a Bio-PEPA system, namely with multiple
species, two discretisations are related by compression bisimulation.



The structure of the document is as follows. First, we introduce Bio-PEPA, then we
present some basic ideas relating to semantic equivalences and then we present com-
pression bisimulation and show it has the desired properties. We then give an example.

2 Bio-PEPA

This section presents an overview of Bio-PEPA [6]. The main components of a Bio-
PEPA system are the sequential components describing the behaviour of each of the
species and the model component describing the interactions between the species and
initial amounts. Additionally, a context is defined, including functional rates, compart-
ments, parameters. The syntax of the sequential (species) components is defined as

S ::= (α, κ) op S | S + S | C op ::= ↓ | ↑ | ⊕ | 	 | �.

In the prefix term (α, κ) op S, α is an action name and can be viewed as the name
or label of a reaction, κ is the stoichiometry coefficient of the species and the prefix
combinator op represents the role of the element in the reaction. Specifically, ↓ is a
reactant, ↑ a product, ⊕ an activator, 	 an inhibitor and � a generic modifier. The
operator + expresses the choice between possible actions and the constant C is defined
by an equation C

def= S. The syntax of model components is defined as

P ::= P BC
L

P | S(x)

The process P BC
L

Q denotes the synchronisation between components P and Q and
the set L specifies those activities on which the components must synchronise. In the
model component S(x), the parameter x ∈ R represents the concentration or level.
We work with a constrained set of Bio-PEPA model components as given by the fol-
lowing definition which specifies a well-formed set of components. We ensure that a
species consists of a choice between reactions, and no reaction name is repeated within
a species. At the model level, there can only be one species component for each species.

Definition 1. A Bio-PEPA sequential component C is well-defined if it has the form

C
def= (α1, κ1) op1 C + . . . + (αn, κn) opn C written as C

def=
n∑

i=1

(αi, κi) opi C

where αi 6= αj for i 6= j.
A Bio-PEPA model component P is well-defined if it has the form

P
def= C1(x1) BC

L1
. . . BC

Lp−1
Cp(xp),

each Ci is a well-defined sequential component, the elements of each Lj appear in P
and if i 6= j then Ci 6= Cj .

We define a Bio-PEPA system, consisting of a set of well-defined sequential com-
ponents, a well-defined model component and context, as follows.



prefixReac

(α, κ)↓S(l)
(α,[S:↓(l,κ)])−−−−−−−−→c S(l − κ)

κ ≤ l ≤ NS

prefixProd

(α, κ)↑S(l)
(α,[S:↑(l,κ)])−−−−−−−−→c S(l + κ)

0 ≤ l ≤ NS − κ

prefixMod
(α, κ) op S(l)

(α,[S:op(l,κ)])−−−−−−−−−→c S(l)

0 < l ≤ NS if op = ⊕
0 ≤ l ≤ NS if op ∈ {	,�}

choice1
S1(l)

(α,w)−−−→c S′
1(l)

(S1 + S2)(l)
(α,w)−−−→c S′

1(l)

choice2
S2(l)

(α,w)−−−→c S′
2(l)

S1 + S2(l)
(α,w)−−−→c S′

2(l)

constant
S(l)

(α,[S: op (l,κ)])−−−−−−−−−−→c S′(l)

C(l)
(α,[C: op (l,κ)])−−−−−−−−−−→c S′(l)

C
def
= S

coop1
P1

(α,w)−−−→c P ′
1

P1 BC
M

P2
(α,w)−−−→c P ′

1
BC
M

P2

α 6∈ M

coop2
P2

(α,w)−−−→c P ′
2

P1 BC
M

P2
(α,w)−−−→c P1 BC

M
P ′

2

α 6∈ M

coop3
P1

(α,w1)−−−−→c P ′
1 P2

(α,w2)−−−−→ P ′
2

P1 BC
M

P2
(α,w1::w2)−−−−−−−→c P ′

1
BC
M

P ′
2

α ∈ M

Fig. 1. Operational semantics of Bio-PEPA

Definition 2. A Bio-PEPA system P is a 6-tuple 〈V,N ,K,F , Comp, P 〉, where V is
the set of compartments, N is the set of quantities describing each species, K is the
set of parameters, F is the set of functional rates, Comp is the set of well-defined
sequential components and P is a well-defined model component.

Elements of N have the form C : H = h, N = n, M = m,V = v, unit = u
where C is a species name that is defined in Comp, H = h defines the step size,
N = n defines the maximum number of levels for C, M = m defines the maximum
concentration for C, V = v names the compartment in which C appears and unit = u
defines the measurement unit of the concentration.

The notation 〈T , P 〉 will be used for 〈V,N ,K,F , Comp, P 〉 since the details of the
tuple are not relevant here. The model component is defined in terms of concentrations,
but can be expressed terms of levels where these are a discretisation of the concentra-
tion. In N , for each species, there are three elements H , N and M which represent the
step size, the maximum number of levels and the maximum concentration respectively.
Their relationship is defined as N = dM/He. A species with a concentration then has
an associated level in the range 0, 1, . . . , N − 1, N , giving a total of N + 1 possible
levels. We call the system obtained in this way a Bio-PEPA system with levels. We will
assume that the step size H is the same for all species to ensure conservation of mass.



Final
P

(α,w)−−−→c P ′

〈V,N ,K,F , Comp, P 〉 (α,rα[w,N ,K])−−−−−−−−−→s 〈V,N ,K,F , Comp, P ′〉

Enrich
P

(α,w)−−−→c P ′

〈V,N ,K,F , Comp, P 〉 (α,w)−−−→sc 〈V,N ,K,F , Comp, P ′〉

Fig. 2. Operational semantics of Bio-PEPA (continued)

The operational semantics for Bio-PEPA systems with levels is given in Tables 1 and
2. In the first table, NS refers to the maximum number of levels for the species S. In the
rule coop3, w1::w2 represents list concatenation. For the rule Final, rα[w,N ,K] =
fα[w,N ,K]/H ∈ (0,∞) where fα is the functional rate for the reaction α from F and
H is the step size. We do not discuss this or the string w further as the equivalences in
this paper only consider the action α and ignore the rest of the transition label.

The operational semantics creates three different transition systems. The rules for
−→c define the capability relation. The rule Final defines the system/stochastic relation
−→s which includes the context, and the rate at which the transition takes place appears
together with the action. The rule Enrich defines the system-capability relation −→sc.
This relation is necessary since it contains the context information as well as the detailed
information that is captured in the list of strings w.

The following definition describes the derivative set for the relation −→sc. In this
paper, we work almost exclusively with this relation since it provides the necessary
information about the context.

Definition 3. The system-capability derivative set ds(P) is the smallest set such that
P ∈ ds(P) and if P ′ ∈ ds(P) and P ′ (α,r)−−−→sc P ′′ then P ′′ ∈ ds(P).

The next definition captures the reactions that are immediately possible with respect
to the operational semantics. This means it takes into account the stoichiometry of a
reaction as well as the current level of a species.

Definition 4. The set of current actions enabled in 〈T , P 〉 is defined as A(〈T , P 〉) =
A(P ) where NS is the maximum number of levels for species component S.

A(((α, κ) ↓ S)(l)) = {α} if κ ≤ l ≤ NS otherwise ∅
A(((α, κ) ↑ S)(l)) = {α} if 0 ≤ l ≤ NS − κ otherwise ∅
A(((α, κ)⊕ S)(l)) = {α} if 0 < l ≤ NS otherwise ∅
A(((α, κ)	 S)(l)) = {α} if 0 ≤ l ≤ NS otherwise ∅
A(((α, κ)� S)(l)) = {α} if 0 ≤ l ≤ NS otherwise ∅
A((S1 + S2)(l)) = A(S1(l)) ∪ A(S2(l))

A(C(l)) = A(S(l)) where C
def= S

A(P1 BC
L

P2) = A(P1) \ L ∪ A(P2) \ L ∪ (A(P1) ∩ A(P2) ∩ L)



The stoichiometry plays a role in defining the set of current actions. A species defi-
nition specifies a set of actions (reactions), but the current action set may be a subset if
the current level is insufficient to satisfy the constraints imposed by the stoichiometry.

Since we are working with Bio-PEPA systems that vary only in step size and maxi-
mum numbers of levels, we require notation to capture this. Given a Bio-PEPA system
P we can define a system where the lowest maximum number of levels for any species
is n. As mentioned previously, we assume that H is identical for all components.

Definition 5. LetP = 〈V,N ,K,F , Comp, P 〉 be a Bio-PEPA system with well-defined
P parameterised by concentration. For n ∈ N, the Bio-PEPA system with levels Pn is
defined as Pn = 〈V,N ′,K,F , Comp, P ′〉 where

1. γ = (1/n) ·min{m | C : H = h, N = n′,M = m,V = v, unit = u ∈ N}
2. C : H = h, N = n′,M = m,V = v, unit = u ∈ N ⇒

C : H = γ, N = dm/γe,M = m,V = v, unit = u ∈ N ′

3. P
def= C1(x1) BC

L1
. . . BC

Lp−1
Cp(xp) ⇒ P ′ def= C1(dx1/γe) BC

L1
. . . BC

Lp−1
Cp(dxp/γe)

N contains information about each species. The definition above identifies the species
with the smallest concentration, determines the new step size that will ensure n levels
for that species and then adjusts the other species to use the same step size (to conserve
mass) hence modifying N . Since P is a Bio-PEPA system with species components
parameterised by concentration and we wish to work with a system with levels, the
initial concentrations in the third point are transformed to initial levels. We will use the
notation Pn = 〈T n, P 〉 to indicate that the lowest number of maximum levels for any
species is n and refer to Pn as a discretisation of P .

3 Semantic Equivalences

In process algebras, a semantic equivalence defines what it means for two models to
have the same behaviour. A classical notion of equivalence is that of bisimulation [14].

Definition 6. A binary relation R is a bisimulation if for any (P,Q) ∈ R and for any
θ whenever

1. P
θ−→ P ′, there exists Q′ such that Q

θ−→ Q′ and (P ′, Q′) ∈ R, and
2. Q

θ−→ Q′, there exists P ′ such that P
θ−→ P ′ and (P ′, Q′) ∈ R

P and Q are bisimilar, P ∼ Q if (P,Q) ∈ R for some bisimulation R.

This leads to the definition ∼ =
⋃
{R | R a bisimulation} and one can show that

∼ is the largest bisimulation. Moreover, it can also be shown that bisimulation is an
equivalence relation therefore it is reflexive, symmetric and transitive. Bisimulation is
a fine-grained notion of behaviour and equates far fewer models than language/trace
equivalence, for example. It requires that related models can match each other’s transi-
tions and that the resultant models also have this property. Consider the labelled transi-
tion systems in Figure 3. They generate the same strings/traces but they are not bisimilar
because we cannot find anything to match with Q1. Q2 is not suitable since it only has
a b transition and Q′

2 is not suitable since it only has a c transition.
As mentioned in the introduction, we also wish that our new semantic equivalence

be a congruence with respect to the language we use.



P1

Q1

R1 R′
1

a

b c

P2

Q2 Q′
2

R2 R′
2

a a

b c

Fig. 3. Example of transition systems that are not bisimilar

〈T 2, A(2)〉 〈T 2, A(1)〉 〈T 2, A(0)〉

〈T 3, A(3)〉 〈T 3, A(2)〉 〈T 3, A(1)〉 〈T 3, A(0)〉

(α, v1) (α, v0)

(α, u2) (α, u1) (α, u0)

Fig. 4. Example of discretisations that are not bisimilar

3.1 Compression Bisimulation

We now define the new equivalence. As noted in the introduction, our approach here
is to consider the systems we want to be equivalent and to work from there. We want
our equivalence to be a congruence and we also want to equate discretisations with
sufficiently large numbers of levels because this is our starting point. However, having
said that, we are still interested in an equivalence that is similar to classical equivalences
such as bisimulation. Note that we cannot use bisimulation directly here. This can be
shown by the species component A

def= (α, 1)↑A. Figure 4 gives the transition system
for two different discretisation, one where the maximum level is 2 and the other where
it is 3. We can relate 〈T 2, A(i)〉 and 〈T 3, A(i)〉 for 0 ≤ i ≤ 2 but we cannot relate
〈T 3, A(3)〉 to any of 〈T 2, A(i)〉.

However, although we cannot use bisimulation directly, we are able to use it in-
directly over equivalence classes and achieve the goals of congruence and equating
discretisations. We now present definitions that allow us to achieve that.

We first need to define the equivalence relation that will define the relevant equiv-
alence classes. The current level together with the stoichiometry associated with a re-
action determine which reactions can occur, therefore we are interested in grouping to-
gether those states of the Bio-PEPA system for which the same reactions can take place.
The collection of enabled reactions becomes our underlying notion of behaviour. This
captures the similarities that we see between different discretisations. From a biological
point of view, this is sensible because it is an observational notion of equivalence.

In light of this, we can define an equivalence relation over Bio-PEPA systems that
depends on A which defines the actions that are currently enabled. Two processes are
related if their current action sets are the same.

Definition 7. The current action relation H over well-defined Bio-PEPA systems is de-
fined as H = {(P1,P2) | A(P1) = A(P2)}.

Proposition 1. H is an equivalence relation.



Because H is an equivalence relation, it defines equivalence classes of Bio-PEPA
systems which have the same current actions. For a set of Bio-PEPA systems X , the
equivalence classes of X with respect to H is denoted X/H. A can be extended to the
equivalence classes in the obvious manner. Hence, for P ∈ H an equivalence class,
A(H) = A(P).

We are interested in considering the equivalence classes over the derivative set of
a given Bio-PEPA system P because we want to consider the overall behaviour of
individual Bio-PEPA systems and we define PH = ds(P)/H. Since we want to de-
fine a bisimulation-style equivalence we need to define transitions between equivalence
classes. The basic idea is that if there is a transition between individual members of two
equivalence classes then there is a transition between those equivalence classes.

Definition 8. For H,H ′ ∈ PH, H α↪−→ H ′ if there exists P ∈ H and P ′ ∈ H ′ such
that P (α,w)−−−→sc P ′.

We can then finalise the definition for our new equivalence as follows. We use Def-
inition 6 for the definition of ∼ but substitute α↪−→ for all instances of θ−→ and, moreover
the relation ∼ is defined between equivalence classes.

Definition 9. P and Q are compression bisimilar, P l Q, if PH ∼ QH.

3.2 Equivalence and Congruence Results

This section details results about the new equivalence. First we need show that it is an
equivalence relation.

Proposition 2. P l Q is an equivalence relation.

Proof. This is straightforward because ∼ is an equivalence relation. ut

Next, we consider the sequential case of two discretisations and show that they are
equated by the new equivalence. The sequential case consists of considering a single
species and two discretisations. The first theorem of the paper shows that given a single
species component and two discretisations, then the two discretisations are compres-
sion bisimilar because their induced equivalence classes are bisimilar (in fact, they are
isomorphic). First, some notation and various lemmas are required. The complexity of
these results is due to the fact that stoichiometry can be larger than one. For a sequential
Bio-PEPA component C

def=
∑m

i=1(αi, κi) opi C, let

T↑ = {κi | (αi, κi) ↑ C appears in the definition of C} t↑ = |T↑|
T↓ = {κi | (αi, κi) ↓ C appears in the definition of C} ∪

{1 | (αi, κi)⊕ C appears in the definition of C} t↓ = |T↓|
AC = {αi | (αi, κi) opi C appears in the definition of C}
km = max{k↓, k↑, 1}, k↓ = max(T↓), k↑ = max(T↑), hence km ≥ k↓, km ≥ k↑.

The diagram in Figure 5 illustrates the equivalence classes for two discretisations of
C

def= (α, 2) ↑ C + (β, 3) ↑ C + (γ, 4) ↓ C + (δ, 1)⊕ C with n = 11 and n′ = 13. It



|{z} | {z } | {z } |{z} | {z }
[0, 0] [1, 3] [4, 8] = [ic, jc] [9, 9] [10, 11]

|{z} | {z } | {z } |{z} | {z }
[0, 0] [1, 3] [4, 10] = [i′c, j

′
c] [11, 11] [12, 13]

0

0

k↓

k↓

n

n′

n−k↑

n′−k↑

Fig. 5. The equivalence classes of two discretisations of a species component

also demonstrates how the various stoichiometry coefficients result in different equiva-
lent classes. The lemmas that follow prove the properties of the equivalence classes as
shown in this diagram.

The next lemma establishes that equivalence classes can be ordered which makes
them easier to manipulate in later lemmas. The following lemma builds on this and
shows that there are a fixed number of equivalence classes if there are sufficient levels
and it contributes to the definition of the isomorphism in the first theorem.

Lemma 1. For a sequential Bio-PEPA component C
def=

∑m
i=1(αi, κi) opi C and the

Bio-PEPA system Sn = 〈T n, C〉, the equivalence classes of Sn
H form a strict order.

Proof. The set ds(Sn) contains elements of the form 〈T n, C(l)〉, where l ranges over
0, . . . , n. Each equivalence class is a subsequence of 0, . . . , n because of the side con-
ditions of the prefix rules. Therefore a class can be described by its smallest and largest
elements [i, j] for i ≤ j. These intervals do not overlap because the equivalence classes
form a partition. Hence for any two equivalence classes [i, j] and [i′, j′], either j < i′

or j′ < i, and this property defines a strict order over the equivalence classes. ut

Lemma 2. For a sequential Bio-PEPA component C
def=

∑m
i=1(αi, κi) opi C and the

Bio-PEPA system Sn = 〈T n, C〉, if n ≥ k↑ + k↓ + 1, then Sn
H has t↑ + t↓ + 1

equivalence classes.

Proof. By Lemma 1, a sequence of equivalence classes [i1, j1], [i2, j2], . . . , [it, jt] par-
titioning Sn

H exist. We show that there is an equivalence class [ic, jc] with A([ic, jc]) =
AC , ic = k↓ and jc = n−k↑. This is well-defined since n ≥ k↓+k↑+1. Consider l ∈
[ic, jc]. Any production prefix (α, κ)↑C is enabled since 0 ≤ ic ≤ l ≤ n− k↑ ≤ n−κ.
Any reactant prefix (α, κ)↓C is enabled because κ ≤ k↓ ≤ l ≤ n − k↑ ≤ n. Prefixes
containing 	 or � can always generate transitions. Since l ≥ 1, any prefix of the form
(α, κ)⊕ C is enabled. Hence A([ic, jc]) = AC and the class cannot be larger.

Next we consider the equivalence classes that come before [ic, jc]. Order the ele-
ments of T↓ from smallest to largest, τ1, τ2, . . . , τt↓−1, τt↓ where τt↓ = k↓ then we
have that [i1, j1], [i2, j2], . . . , [ic−1, jc−1] is [0, τ1− 1], [τ1, τ2− 1], . . . , [τt↓−1, τt↓ − 1]
which gives t↓ equivalence classes.

Similarly, we have t↑ equivalence classes corresponding to the elements of T↑. This
means that there are t↓ + t↑ + 1 equivalence classes in total. ut



Corollary 1. Let C def=
∑m

i=1(αi, κi) opi C be a sequential Bio-PEPA component which
has stoichiometry coefficient 1 for all reactant prefixes and product prefixes then any
discretisation with n ≥ 3 has three equivalence classes.

The next lemma establishes a lower bound on the size of the equivalence class that is
capable of performing all actions, namely the “central” class [ic, jc] with A([ic, jc]) =
Ac. This class is the only one that differs in cardinality for different discretisations, and
it grows in size as the number of levels are increased. The other classes do not differ
between different discretisations because they are defined by the same stoichiometry
coefficients. The value km is used since knowing that km is a bound on the size of
[ic, jc] is important for a later lemma.

Lemma 3. Let C
def=

∑m
i=1(αi, κi) opi C be a sequential Bio-PEPA component and let

Sn = 〈T n, C〉 for n ≥ k↑+km +k↓. Then [ic, jc], the equivalence class of Sn/H with
A[ic, jc] = AC , has cardinality greater than km.

Proof. It is the case that ic = k↓ and jc = n−k↑. The cardinality of [ic, jc] is jc− ic +
1 = n− k↑ − k↓ + 1 ≥ k↑ + km + k↓ − k↑ − k↓ + 1 = km + 1 > km. ut

This implies that the cardinality/width of [ic, jc] is greater than both k↓ and k↑. The
next lemma relates the equivalence classes obtained for two different values of n by
expressing the classes for the larger value in terms of the intervals of the smaller value.

Lemma 4. Let C
def=

∑m
i=1(αi, κi) opi C be a sequential Bio-PEPA component and

let S = 〈T , C〉. Let n′ = n + d. Then the equivalence classes of Sn
H are described

by the ordered intervals [0, j1], . . . , [ic, jc], . . . , [it−1, jt−1], [it, n] and the equivalence
classes of Sn′

H are described by the ordered intervals [0, j1], . . . , [ic, jc +d], . . . , [it−1+
d, jt−1 + d], [it + d, n + d] where [ic, jc] and [ic, jc + d] are the equivalence classes in
which all actions of C are possible.

Proof. The elements of Sn
H are [0, j1], . . . , [ic, jc], . . . , [it−1, jt−1], [it, n] and those of

Sn′

H are [0, j′1], . . . , [i
′
c, j

′
c], . . . , [i

′
t−1, j

′
t−1], [i

′
t, n

′]. The first t↓ equivalence classes are
the same in both cases because they are defined by the same stoichiometric coefficients
so Sn

H is [0, j1], . . . , [ic, j′c], . . . , [i
′
t−1, j

′
t−1], [i

′
t, n

′]. Since jc = n−k↑ and j′c = n′−k↑,
j′c = jc + d and this offset is the same throughout the remaining equivalence classes
which are defined by the same stoichiometric coefficients hence Sn

H can be written
[0, j1], . . . , [ic, jc + d], . . . , [it−1 + d, jt−1 + d], [it + d, n + d]. ut

Finally the most important lemma shows that the same transitions occur between
equivalence classes if the numbers of levels are large enough. This contributes to the
isomorphism defined in the theorem about sequential Bio-PEPA systems.

Lemma 5. Let C
def=

∑m
i=1(αi, κi) opi C be a sequential Bio-PEPA component and let

S = 〈T , C〉. Let E1, . . . , Et be the ordered equivalence classes of Sn
H and E′

1, . . . , E
′
t

be the ordered equivalence classes of Sn′

H . If n ≥ k↓ + km + k↑ then Ep
α↪−→ Eq if and

only if E′
p

α↪−→ E′
q.



Proof. Let n′ = n + d. Lemma 4 gives notation for the two sequences of equivalence
classes and let [ic, jc] and [i′c, j

′
c] be the classes whose current action set is AC . Con-

sider [ip, jp]
α↪−→ [iq, jq]. Since A([ip, jp]) = A([i′p, j

′
p]), [i′p, j

′
p]

α↪−→ [i′, j′]. We need
to show that [i′, j′] = [i′q, j

′
q]. There are two transitions 〈T n, C(l)〉 (α,w)−−−→ 〈T n, C(l1)〉

with l ∈ [ip, jp] and l1 ∈ [iq, jp] and 〈T n′ , C(l′)〉 (α,w′)−−−−→ 〈T n′ , C(l′1)〉 with l′ ∈
[i′p, j

′
p] and l′1 ∈ [i′, j′]. So we need to show that l′1 ∈ [i′q, j

′
q]. We also need to con-

sider the other direction. If [i′p, j
′
p]

α↪−→ [i′q, j
′
q] then [ip, jp]

α↪−→ [i, j] and we need to
show that l ∈ [iq, jq].
Prefixes (α, κ) op C where op ∈ {⊕,	,�}: A transition does not result in a change
of level therefore p = q and [i′, j′] = [i′p, j

′
p]. Similarly for the other direction.

We now consider the relative positions of p, q and c. The cases (p < c and q > c)
and (q < c and p > c) cannot occur due to Lemma 3 as no transition can change the
value of l or l′ sufficiently.
Prefixes of the form (α, κ)↑C: Here the level l changes to l + κ and p ≤ q.

If q < c then l ∈ [ip, jp] and l + κ ∈ [iq, jq] hence choosing l′ = l leads to
l′ ∈ [ip, jp] and l′ + κ ∈ [iq, jq] as required. The other direction is similar.

For q = c and p < c, let l′ = l then l′+κ ∈ [ic, jc +d] since l′+κ ∈ [ic, jc]. For
the other direction, l′ ∈ [ip, jp] and l′ + κ ∈ [ic, jc + d]. We need to show that l + κ ∈
[ic, jc]. The largest value l′ can take is ic−1. The width of [ic, jc] is jc−ic +1 > km by
Lemma 3. Therefore l+κ = l′+κ ≤ ic−1+κ ≤ ic−1+km < ic−1+jc−ic+1 ≤ jc.

If p > c, then l ∈ [ip, jp] and l+κ ∈ [iq, jq], Let l′ = l+d then l′ ∈ [ip+d, jp+d]
and l′+κ ∈ [iq +d, jq +d] = [i′q, j

′
q] as required. For the other direction, let l = l′−d.

If p = c and q = c let l′ = l then l + κ ∈ [ic, jc] implies l′ + κ ∈ [ic, jc + d]. For
the other direction, we need to show that l, l + κ ∈ [ic, jc]. Choose l = ic and note that
l + κ = ic + κ ≤ ic + km < jc + 1 by Lemma 3 therefore l + κ ≤ jc.

If p = c and q > c then l ∈ [ic, jc] and l + κ ∈ [iq, jq]. To match this, choose
l′ = l + d. For the other direction, l′ ∈ [ic, jc + d] and l′ + κ ∈ [iq + d, jq + d]. Let
l = l′−d, then l ∈ [ic−d, jc] and l+κ ∈ [iq, jq]. We need to show l ≥ ic. The smallest
value that l′ + κ can take is jc + d + 1 which implies l + d + κ = l′ + κ ≥ jc + d + 1.
So l ≥ jc − κ + 1 ≥ jc − km + 1 > ic by Lemma 3.
Prefixes of the form (α, κ)↓C: The level changes from l to l− κ and p ≥ q. These are
similar to the previous case. ut

The following theorem shows that for large enough value of n, two discretisations
of a sequential Bio-PEPA system are compression bisimilar.

Theorem 1. Let S = 〈T , C〉 be a well-defined Bio-PEPA system with the single species
component C

def=
∑m

i=1(αi, κi) opi C then Sn l Sn′ for n, n′ ≥ k↓ + km + k↑.

Proof. Without loss of generality, assume that n is the maximum number of levels for
species C in Sn and n′ is the maximum number of levels for species C in Sn′ .

We will show that Sn
H is isomorphic to Sn′

H hence Sn
H ∼ Sn′

H and therefore Sn l
Sn′ . Let f : Sn

H → Sn′

H be defined as f(B) = D if A(B) = A(D). This function
is well-defined by Lemma 2 since Sn

H and Sn′

H have the same number of equivalence
classes and hence for B,B′ ∈ Sn

H, f(B) = f(B′) implies B = B′ and for any
D ∈ Sn′

H , there exists B ∈ Sn
H such that f(B) = D.



Additionally, define f(B α↪−→ B′) = f(B) α↪−→ f(B′). This is a homomorphism be-
cause it preserves transitions. By Lemma 5, for any D α↪−→ D′, there exist B,B′ ∈ Sn

H
such that f(B) α↪−→ f(B′). Hence f is a isomorphism. ut

Classically in congruence proofs, there would be a proof for each operator, hence
there would be one for each of the prefix operators and then one for the choice operator.
We do not need to show that the new semantic equivalence is a congruence with respect
to the prefix operators and the choice operator since we work specifically with well-
defined model components which give a constrained syntax that restricts how the prefix
operators and the choice operator can be used.

We next consider a congruence result for the synchronisation operator. In this theo-
rem, the notation [P]H refers to the equivalence class generated byH, the current action
relation, that contains the Bio-PEPA system P . From this it is possible to obtain the re-
sult about compression bisimilarity between two different discretisations of a model
component. First, we need a lemma and then a property describing the actions that are
possible in a synchronisation. The property captures the idea that the actions in L are
those that are shared by both components in the synchronisation.

Lemma 6. Equality with respect to A is preserved by cooperation. In other words,

A(〈T , P1〉) = A(〈T , P2〉) ⇒

{
A(〈T , P1 BC

L
Q〉) = A(〈T , P2 BC

L
Q〉) and

A(〈T , Q BC
L

P1〉) = A(〈T , Q BC
L

P2〉)

Definition 10. Given a well-defined Bio-PEPA system of the form 〈T , P BC
L

Q〉, it has
the current action decomposition property if A(〈T , P1 BC

L
Q1〉) = A(〈T , P2 BC

L
Q2〉)

implies A(〈T , P1〉) = A(〈T , P2〉) and A(〈T , Q1〉) = A(〈T , Q2〉) for all systems
〈T , P1 BC

L
Q1〉, 〈T , P2 BC

L
Q2〉 ∈ ds(〈T , P BC

L
Q〉).

Theorem 2. Let 〈T1, P1〉, 〈T2, P2〉, 〈T1, Q1〉 and 〈T2, Q2〉 be well-defined Bio-PEPA
systems such that 〈T1, P1 BC

L
Q1〉 and 〈T2, P2 BC

L
Q2〉 both have the current action

decomposition property. If 〈T1, P1〉 l 〈T2, P2〉 and 〈T1, Q1〉 l 〈T2, Q2〉 then it is the
case that 〈T1, P1 BC

L
Q1〉 l 〈T2, P2 BC

L
Q2〉.

Proof. LetR =
{(

[〈T1, P
′
1 BC

L
Q′

1〉]H, [〈T2, P
′
2 BC

L
Q′

2〉]H
)
| [〈T1, P

′
1〉]H ∼ [〈T2, P

′
2〉]H

and [〈T1, Q
′
1〉]H ∼ [〈T2, Q

′
2〉]H

}
. We want to show that R is a bisimulation. This proof

follows the standard technique for this case but requires a few additional steps. We only
consider the case of α ∈ L. The other two cases are simpler.

Consider a transition from [〈T1, P
′
1 BC

L
Q′

1〉]H. This may be generated by a transi-
tion from another system in this class, say 〈T1, P

′
3 BC

L
Q′

3〉
(α,w)−−−→sc 〈T1, P

′′
3 BC

L
Q′′

3〉.
By shorter inferences and by the definition of transitions between equivalence classes
we can infer [〈T1, P

′
3〉]H

α↪−→ [〈T1, P
′′
3 〉]H and [〈T1, Q

′
3〉]H

α↪−→ [〈T1, Q
′′
3〉]H.

From the current action decomposition property, we know that these transitions are
[〈T1, P

′
1〉]H

α↪−→ [〈T1, P
′′
3 〉]H and [〈T1, Q

′
1〉]H

α↪−→ [〈T1, Q
′′
3〉]H.

By the definition ofR, there exist P ′′
2 and Q′′

2 such that [〈T2, P
′
2〉]H

α↪−→ [〈T2, P
′′
2 〉]H

and [〈T2, Q
′
2〉]H

α↪−→ [〈T2, Q
′′
2〉]H such that [〈T1, P

′′
3 〉]H∼ [〈T2, P

′′
2 〉]H and [〈T1, Q

′′
3〉]H

∼ [〈T2, Q
′′
2〉]H.
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Fig. 6. Transition system for MC when n = 3 (left) and associated equivalence classes (right).

We can then infer 〈T2, P
′
4〉

(α,w2)−−−−→sc 〈T2, P
′′
4 〉 with A(〈T2, P

′
4〉) = A(〈T2, P

′
2〉)

and A(〈T2, P
′′
4 〉) = A(〈T2, P

′′
2 〉) and 〈T2, Q

′
2〉

(α,v2)−−−−→sc 〈T2, Q
′′
2〉 with A(〈T2, Q

′
4〉) =

A(〈T2, Q
′
2〉) and A(〈T2, Q

′′
4〉) = A(〈T2, Q

′′
2〉).

By Lemma 6 and the above equalities, A(〈T2, P
′
4 BC

L
Q′

4〉) = A(〈T2, P
′
2 BC

L
Q′

2〉)
and A(〈T2, P

′′
4 BC

L
Q′′

4〉) = A(〈T2, P
′′
2 BC

L
Q′′

2〉).
We can infer 〈T2, P

′
4 BC

L
Q′

4〉
(α,w)−−−→sc 〈T2, P

′′
4 BC

L
Q′′

4〉which leads to the matching
transition [〈T2, P

′
2 BC

L
Q′

2〉]H
α↪−→ [〈T2, P

′′
2 BC

L
Q′′

2〉]H and by definition we know that(
[〈T1, P

′′
3 BC

L
Q′′

3〉]H, [〈T2, P
′′
2 BC

L
Q′′

2〉]H
)
∈ R. ut

Corollary 2. Let P = 〈T , P 〉 be a well-defined Bio-PEPA system then Pn l Pn′ for
n, n′ ≥ k↓ + km + k↑ if the current action decomposition property applies to pairs of
subcomponents of Pn and Pn′ .

Proof. Since P is well-defined, P
def= C1(l1) BC

L1
. . . BC

Lm−1
Cm(lm) with each Ci a se-

quential component. By Theorem 1 and n, n′ > k↓ + km + k↑, 〈T n, Ci〉 l 〈T n′ , Ci〉
for all i. By repeated applications of Theorem 2, 〈T n, P 〉l〈T n′ , P ′〉. ut

4 Example

We give an example of discretisations and the associated equivalence classes. Consider
the substrate-enzyme-product reactions S+E � SE → P +E which can be expressed
in Bio-PEPA as

S
def= (α, 1) ↓ S + (β, 1) ↑ S E

def= (α, 1) ↓ E + (β, 1) ↑ E + (γ, 1) ↑ E

SE
def= (α, 1) ↑ SE + (β, 1) ↓ SE + (γ, 1) ↓ SE P

def= (γ, 1) ↑ P

MC
def= S(x) BC

{α,β}
E(x) BC

{α,β,γ}
SE(0) BC

{γ}
P (0)

Figure 6 gives the transition system for MC when the maximum number of levels for
all species is three as well as that for the equivalence classes. In the transition system for
MC each state is a Bio-PEPA system and is indicated by its vector representation which
describes the level of each species in that system using the vector (S, E, SE, P ) but we
omit the brackets and commas in the diagram. Additionally, we have omitted the strings
w from the diagram for reasons of space. The shading shows the different equivalence
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Fig. 7. The transition system for MC when n = 7

classes in both diagrams. Figure 7 gives the system when the maximum number of
levels is seven and the equivalence classes are also shown. This demonstrates how the
two discretisations are related by the equivalence classes given in Figure 6.

5 Related work

The use of process algebras for modelling systems biology has multiplied rapidly since
the first paper advocated the use of the π-calculus [15]. Approaches include the κ-
calculus [2], stochastic π-calculus [3, 1], Beta-binders [4] and Bio-Ambients [5]. Most
of these approaches use stochastic simulation as their analysis tool, and few approaches
have considered the use of semantic equivalences. Weak bisimulation is shown to be
a congruence for the bio-κ-calculus as is a context bisimulation which allows for the
modelling of cell interaction [16]. Observational equivalence has been used to show that
CCS specifications of elements of lactose operon regulation have the same behaviour as
more detailed models [17]. In an example of biological modelling using hybrid systems,
bisimulation is used to quotient the state space with respect to a subset of variables as
a technique for state space reduction [18]. Bisimulation has also been used in the com-
parison of ambient-style models and membrane-style models [19] and the comparison
of a term-rewriting calculus and a simple brane calculus [20].

6 Conclusions and Further Research

This paper has presented a new semantic equivalence for Bio-PEPA called compression
bisimulation and shown that it is a congruence and it identifies different discretisations
of the same system.

A first step for further work is to find a syntactic characterisation of the Bio-PEPA
systems that exhibit the current action decomposition property so that those systems
with this property can be easily identified. Since reactions have unique names in Bio-
PEPA, an extension that would be useful is to allow for a relation over names to relate
different reactions in different models. We would also like to extend the equivalence to
be quantitative and take into account reaction rates but it is not immediately obvious
how to do this. Finally, we wish to apply the equivalence to various biological models
and to other formalisms using discretisation.
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