
MFPS 2008

HYPE applied to the modelling of hybrid
biological systems

Vashti Galpin1,4

LFCS, School of Informatics
University of Edinburgh, Scotland

Jane Hillston2,5,6

CSBE and School of Informatics
University of Edinburgh, Scotland

Luca Bortolussi3,7

Department of Maths and Computer Science, University of Trieste
Center for Biomolecular Medicine, Area Science Park, Trieste, Italy

Abstract

HYPE is a process algebra developed to model hybrid systems – systems that show both continuous and
discrete behaviour. It is novel because it allows for the modelling of individual flows which means that
subcomponents can be modelled in terms of these flows and do not need to be described monolithically.
Biological systems display discrete behaviour inherently, but modellers may choose to model systems in a
hybrid fashion, often to deal with differences in scale. We demonstrate how HYPE can be used to model
the Repressilator.

Keywords: systems biology, hybrid systems, process algebra

1 Introduction

Systems biology has provided a productive field of endeavour for theoretical com-
puter science research, both in the area of algorithms and modelling. Stochastic
process algebras such as PEPA [11,5,?] and the stochastic π-calculus [13,15] have

1 Email: Vashti.Galpin@ed.ac.uk
2 Email: Jane.Hillston@ed.ac.uk
3 Email: luca@dmi.units.it
4 Supported by the EPSRC SIGNAL Project, Grant EP/E031439/1
5 The Centre for Systems Biology at Edinburgh is a Centre for Integrative Systems Biology (CISB) funded
by the BBSRC and EPSRC in 2006
6 Supported by the EPSRC under ARF EP/c543696/01
7 Supported by PRIN “Sistemi e calcoli di ispirazione biologica e loro applicazioni” and FIRB LIBi

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:Vashti.Galpin@ed.ac.uk
mailto:Jane.Hillston@ed.ac.uk
mailto:luca@dmi.units.it

Galpin, Hillston and Bortolussi

been applied successfully to the modelling of biological systems resulting in both
stochastic models and deterministic continuous models based on ODEs, and many
other process algebra approaches have been developed [3,7,14,16]. One advantage
of a process algebra approach is a compositional language which allows for the con-
struction of models of systems by the composition of models of smaller components,
which avoids the need to start from a monolithic view of the system. Another ad-
vantage is the provision of various ways in which to analyse the system once it has
been constructed.

Biological systems are inherently discrete and stochastic in behaviour. Due to
the difficulty of modelling systems in this manner, continuous deterministic approx-
imations are frequently used. A third approach is to model these systems as having
hybrid behaviour. Hybrid behaviour contains both discrete elements and continu-
ous elements. In the case of gene activation, a single gene is either on or off and
hence it is difficult to model this as a continuous value that varies between zero
and one. Meanwhile, in the same system other species may exist in such abundance
as to make discrete modelling impracticable. Therefore, taking a hybrid approach
allows the gene status to be modelled as a discrete component of the system and
for other species to be modelled continuously.

Other aspects of a system can be modelled as discrete. For example, a system
where continuous behaviour can be viewed as changing after a threshold concentra-
tion of a specific reagent has been reached, can be modelled as having two distinct
modes of operation, one where the concentration is below the threshold and one
where it is over the threshold. For each mode, appropriate ordinary differential
equations (ODEs) describing the continuous behaviour can be defined. In the case
that one reagent has a significantly lower concentration than the other reagents
then the results of an ODE model may not be reliable. Taking a hybrid approach,
this reagent can be modelled in a discrete fashion (in terms of molecules or in terms
of present versus absent). Behaviour described by sigmoidal curves is common in
biology and this can simulated by a hybrid system with modes that give piecewise
constant and piecewise linear continuous behaviour [12].

HYPE is a process algebra for modelling hybrid systems. It is novel because
unlike other process algebras for hybrid systems [2,6,17,19] it does not require a
monolithic view of subsystems. This means that the continuous behaviour of a sub-
system does not need to be understood in advance of the modelling process. HYPE
achieves this by allowing the modelling of flows, which can be seen as influences on
continuous variables. In systems biology, this involves identifying the different bio-
logical processes that lead to changes in the concentration of a species. For example,
the following are usually considered: production, degradation, transformation and
transportation. Using HYPE these can be modelled as separate subcomponents
which are then composed to obtain the whole system.

In HYPE, a transition system of a model is determined by the operational se-
mantics of the process algebra terms. In this transition system, each node is a pair
or configuration consisting of a process term and a state. A state maps influence
names to influence strengths and influence types (unlike the typical notion of state
which maps variables names to values) and records what influences are in effect
in that state. A configuration identifies a mode, and the state of that configura-

2

Galpin, Hillston and Bortolussi

tion is used to obtain the ordinary differential equations that apply in that mode.
There are three levels of semantics: the operational semantics which describe the
behaviour of the system in terms of discrete events where information about contin-
uous behaviour is recorded in the configurations, the hybrid semantics which uses
the recorded behaviour to obtain the ODEs, and finally equivalence semantics which
describe notions of similar behaviour. A bisimulation equivalence has been defined
and it has been shown that bisimilar systems have the same ODEs [9]. It is also
possible to map the transition system and ODEs to a hybrid automata. Hence, this
process algebra provides a useful modelling front-end to an existing formalism with
numerous tools. HYPE is also important because it could be the basis of a first-pass
modelling tool where different flows could be described directly by biologists. Cur-
rently modelling is a bottleneck with respect to the amounts of data now available
and a formalism that can speed up the process of modelling will be advantageous.

The usefulness of this process algebra for hybrid modelling will be shown through
an example. The Repressilator is a well-known synthetic genetic regulatory network
[8]. It consists of three genes tetR, cI and lacI. Each gene expresses a protein that
affects the expression of one of the other genes. The protein from tetR represses
the expression of cI, the protein from cI represses the expression of lacI and the
protein from lacI represses the expression of tetR. This forms a negative feedback
loop and demonstrates oscillatory behaviour. We will express this network in HYPE
and show various analyses.

The next section introduces the process algebra HYPE together with its opera-
tional and hybrid semantics. After that the Repressilator is modelled in HYPE and
its analysis is given. Finally, we discuss related work in hybrid biological systems
modelling and we finish with a discussion of topics for future work.

2 HYPE definition

This section will present HYPE by way of a simple running example of a gene and
the protein it produces to illustrate the necessary concepts. This gene has a negative
feedback cycle. Once a certain amount of protein is produced, the gene switches off,
the protein production stops and the protein concentration drops as a result of the
stopping of production. Once it has dropped sufficiently, the gene switches back on
and protein productions resumes until it reaches the threshold.

The modelling spirit of HYPE focusses on flows. In our example, we can identify
two flows affecting the concentration of a protein. There is one for the production
of the protein and one for the degradation of the protein. The strength and form of
a flow can be modified by events. So the production activity depends on whether
the gene is switched on or off. In HYPE, we model the production of Protein A by
the following subcomponent.

P prod
A

def= init : (pA, kp, const).P prod
A + expressA : (pA, kp, const).P prod

A +
inhibitA : (pA, 0, const).P prod

A

3

Galpin, Hillston and Bortolussi

This is a summation of prefixed actions. Each prefix consists of two actions.
Events (a ∈ E) are actions which happen instantaneously and trigger discrete
changes. They can be caused by a controller or happen randomly and can de-
pend on the global state of the system, specifically values of variables. For Protein
A, the events are init, the initialisation event; expressA, the switching on of the
expression of Gene A and on1, the switching off of the expression of Gene A.

Activities (α ∈ A) are influences on the evolution of the continuous part of the
system and are used to define flows. An activity is defined as a triple and can be
parameterised by a set of variables, α(

−→
X) = (ι, r, I (

−→
X)). This triple consists of an

influence name ι, a rate of change (or influence strength) r and an influence type
I (
−→
X) which describes how that rate is to be applied to the variables involved, or the

actual form of the flow 1 . In P prod
A , there are two distinct activities, (pA, kp, const)

and (pA, 0, const). The first one captures the effect of the gene being switched on
and protein being produced. It affects influence pA which represents the influence
of protein production on the concentration of the protein, it has strength kp and it
is associated with the function called const . The second gives the effect of the gene
being switched off and no protein being produced: the influence name is again pA, 0
is the strength of the protein production since none is being produced, and the form
it takes is const . We assume that in the initial state, protein is being produced,
hence the activity after init is the same as that after expressA.

Notice that no actual function has been specified for const . The interpretation
of influence types will be specified separately, so that experimentation with different
functional forms of the protein flow can occur without modifying the protein sub-
component. Hence, in HYPE we separate the description of the logical structure of
flows from their mathematical interpretation.

We also require a subcomponent to represent the degradation of the protein.

P degr
A (X) def= init : (dA,−kd, linear(X)).P degr

A (X)

The only event in this definition is the initialisation event, as degradation is an
ongoing process. The influence is named dA and its strength is −kd. The influence
type linear(X) will be interpreted as a linear function of its formal variable X. This
subcomponent must be parameterised by a variable since degradation is affected by
how much of the degrading substance is available.

These two subcomponents are composed and cooperate on their only shared
event init. The formal variable X can be instantiated with the actual variable A to
give the overall model of a protein.

PrA(A) def= (P degr
A (A) ��

{init}
P prod

A)

Here ��
L

represents parallel synchronisation. L is the set of events for which
synchronisation must occur. Events not in L can occur independently. The way
in which HYPE subcomponents are defined means that they are responsive to any
event. However, we may wish to order the events in our models. The component
ConA does this by requiring that expressA and inhibitA events alternate.

1 For convenience, we will use I for I (
−→
X) when

−→
X can be inferred.

4

Galpin, Hillston and Bortolussi

ConA
def= inhibitA.expressA.ConA

In the modelling of computer systems, we call this a controller and we will use this
terminology here. The system without a controller is called the uncontrolled system
because all events are possible and no causal or temporal constraints have been
imposed. Controllers only have event prefixes. The controlled system is constructed
from synchronisation of the controller and the uncontrolled system and the controller
must be prefixed by the initialisation event init.

For the protein , the full system is described by

P def= PrA ��
M

init.ConA with M = {init, expressA, inhibitA}.

This has defined the structure of our protein but we require some additional def-
initions to capture further details. We need to link each influence with a specific
actual variable. This is done using the function iv and for the example, iv(pA) = A

and iv(dA) = A. Note that an influence can only by associated with one variable,
in agreement with the interpretation of influences as flows. We also need to define
the two influence types and we choose JconstK = 1 and Jlinear(X)K = X. Finally,
we need to capture what triggers an event, and what happens to variables imme-
diately after an event. This is done by defining appropriate event conditions via
the function ec. Each event condition consists of an activation condition which is a
positive boolean formula containing equalities and inequalities on system variables
or the symbol ⊥, and a variable reset which is a conjunction of equality predicates
on variables V and V ′ where V ′ denotes the new value that V will have after the
reset, while V denotes the previous value. Resets of the form V = V ′ can be left
implicit. Events are urgent – the event must occur as soon as its event condition is
satisfied. For events that can happen randomly such as breakdowns, we introduce
an special event condition ⊥ which means that the event can happen at some point
in the future 1 . For the example, the function ec and associated event conditions
are

ec(init) = (true, (A = A0))

ec(expressA) = ((A = 5), true)

ec(inhibitA) = ((A = 20, true)

The init event has an associated event condition of true and so this must happen
immediately. The event expressA must happen when the concentration of A drops
to 5, and inhibitA must happen as soon as the concentration reaches 20. The event
init has a reset that defines the new value of A as the initial value A0. Both expressA

and inhibitA have a reset of true meaning that no values are changed.
In the preceding informal discussion, we have introduced the main constituents

of a HYPE model including the combination of flow components with a controller
component, formal and actual variables, association between influences and vari-
ables, conditions that specify when events occur, and definitions for the influence

1 We have not done so here but probabilistic resets can be used. Tuffin et al [18] use a value drawn from
a exponential distribution for the time until the next event.

5

Galpin, Hillston and Bortolussi

type functions. To understand the dynamics of this system, we need to derive ODEs
to describe how the variables change over time. To do this we present operational
semantics that define the behaviour of our controlled system. Before that we present
the formal definition of HYPE.

Definition 2.1 A controlled system is constructed as follows.

• Subcomponents are defined by Cs(
−→
X) = S, where Cs is the subcomponent name

and S satisfies the grammar S′ ::= a : α.Cs | S′ + S′ (a ∈ E , α ∈ A), with the
free variables of S in

−→
X .

• Components are defined by C(
−→
X) = P , where C is the component name and P

satisfies the grammar P ′ ::= Cs(
−→
X) | C(

−→
X) | P ′ ��

L
P ′, with the free variables of

P in
−→
X and L ⊆ E .

• An uncontrolled system Σ is defined according to the grammar Σ′ ::=
Cs(

−→
V) | C(

−→
V) | Σ′ ��

L
Σ′, where L ⊆ E and

−→
V is a set of system variables,

instantiating the formal variables of C or Cs.
• Controllers only have events: M ::= a.M | 0 | M + M with a ∈ E and L ⊆ E and

Con ::= M | Con ��
L

Con.
• A controlled system is ConSys ::= Σ ��

L
init.Con where L ⊆ E . The set of

controlled systems is CSys .

A controlled system together with the appropriate sets and functions give a
HYPE model.

Definition 2.2 A HYPE model is a tuple
(ConSys,V,X , IN , IT , E ,A, ec, iv ,EC , ID) where

• ConSys is a controlled system as defined above.
• V is a finite set of variables and X is a finite set of formal variables.
• IN is a set of influence names and IT is a set of influence types.
• E is a set of events of the form a and ai.
• A is a set of activities of the form α(

−→
X) = (ι, r, I (

−→
X)) ∈ (IN × R× IT).

• ec : E → EC maps events to event conditions.
• iv : IN → V maps influence names to variable names.
• EC is a set of event conditions.
• ID is a collection of definitions consisting of a real-valued function for each influ-

ence type JI (
−→
X)K = f(

−→
X) where the variables in

−→
X are from X .

• E , A, IN and IT are pairwise disjoint.

When referring to a HYPE model, a term for the controlled system will be used,
such as P , and the tuple will be implied. In the case of two HYPE models P and
Q without reference to the tuple, we will assume two implied tuples with identical
elements except for the first elements.

6

Galpin, Hillston and Bortolussi

Prefix with
influence:

〈
a : (ι, r, I).E, σ

〉 a−→
〈
E, σ[ι 7→ (r, I)]

〉
Prefix without
influence:

〈
a.E, σ

〉 a−→
〈
E, σ

〉
Choice:

〈
E, σ

〉 a−→
〈
E′, σ′

〉〈
E + F, σ

〉 a−→
〈
E′, σ′

〉 〈
F, σ

〉 a−→
〈
F ′, σ′

〉〈
E + F, σ

〉 a−→
〈
F ′, σ′

〉
Parallel without
synchronisation:

〈
E, σ

〉 a−→
〈
E′, σ′

〉〈
E ��

M
F, σ

〉 a−→
〈
E′ ��

M
F, σ′

〉(a 6∈ M)

〈
F, σ

〉 a−→
〈
F ′, σ′

〉〈
E ��

M
F, σ

〉 a−→
〈
E ��

M
F ′, σ′

〉(a 6∈ M)

Parallel with
synchronisation:

〈
E, σ

〉 a−→
〈
E′, τ

〉 〈
F, σ

〉 a−→
〈
F ′, τ ′

〉〈
E ��

M
F, σ

〉 a−→
〈
E′ ��

M
F ′,Γ(σ, τ, τ ′)

〉 (a ∈ M,Γ defined)

Constant:

〈
E, σ

〉 a−→
〈
E′, σ′

〉〈
A, σ

〉 a−→
〈
E′, σ′

〉 (A def= E)

Table 1
Operational semantics for HYPE

2.1 Operational semantics

To define the operational semantics, a notion of state is required.

Definition 2.3 A state of the system is a function σ : IN → (R× IT). The set of
all states is S. A configuration consists of a controlled system together with a state〈
ConSys, σ

〉
and the set of configurations is F .

For convenience, states may be written as a set of triples of the form (ι, r, I (
−→
X)).

This is the same form as an activity to reflect the fact that the state captures the
activities that are currently in effect. The notion of state here is not a valuation of
system variables but rather a collection of flows that occur in the system.

The operational semantics give a labelled transition system over configurations
(F , E ,→ ⊆ F × E × F). We write F

a−→ F ′ for (F, a, F ′) ∈ →. In the following,
E,F ∈ CSys . The rules are given in Table 1 and are fairly standard. In Choice,
Prefix without influence, Parallel without synchronisation and Constant, states are
not changed by the application of the rule. For Prefix with influence, the state
needs to be updated, and for Parallel with synchronisation, the two new states in
the premise of the rule need to be merged using the function Γ.

The updating function σ[ι 7→ (r, I)] is defined by σ[ι 7→ (r, I)](x) = (r, I) if x = ι

and σ[ι 7→ (r, I)](x) = σ(x) otherwise. The notation σ[u] will also be used for an
update, with σ[u1 . . . un] denoting σ[u1] . . . [un].

7

Galpin, Hillston and Bortolussi

The partial function Γ : S × S × S → S is defined as follows.

(Γ(σ, τ, τ ′))(ι) =

τ(ι) if σ(ι) = τ ′(ι),
τ ′(ι) if σ(ι) = τ(ι),
undefined otherwise.

When synchronisation occurs, two states must be merged and the function uses the
previous state and the new states to determine which values have changed and then
puts these changed values into the new state. Γ will be undefined if both the second
and third argument differ from the first argument, namely if the values in the new
state both differ from the old state since this represents conflicting updates. The
following definition will be useful.

Definition 2.4 The derivative set of a controlled system P , ds(P) is defined as the
smallest set satisfying

• if 〈P, σ〉 init−→〈P ′, σ′〉 then 〈P ′, σ′〉 ∈ ds(P)
• if 〈P ′, σ′〉 ∈ ds(P) and 〈P ′, σ′〉 a−→〈P ′′, σ′′〉 then 〈P ′′, σ′′〉 ∈ ds(P).

In the protein model, there are two states. Each state captures the influences
that are currently active. State σ0 reflects that the protein is being produced and
degrading and σ1 reflects that the protein is degrading only.

σ0 = {dA 7→ (−kd, linear(A)), pA 7→ (kp, const)}
σ1 = {dA 7→ (−kd, linear(A)), pA 7→ (0, const)}

2.2 Hybrid semantics

We extract a set of ODEs for each state which appears in a configuration in the
labelled transition system. We will label this set as CSσ where CS is the constant
used for the controlled system and σ is the state.

Given a controlled system CS, and a derivative 〈CS′, σ〉 ∈ ds(CS), the ODEs
associated with the state σ are defined as follows.

CSσ =
{dV

dt
=

∑{
rJI (

−→
W)K

∣∣ iv(ι) = V and σ(ι) = (r, I (
−→
W))

} ∣∣∣ V ∈ V
}

So for each state, we have a collection of ODEs, one for each variable V . When
protein is being produced, we obtain the following ODE from σ0.

Pσ0 =
{dA

dt
= −kdA + kp

}
Therefore, this process enables us to obtain ODEs describing how the continuous
part of the system evolves, and we have different sets of ODEs to describe the differ-
ent dynamics that can be in operation. We wish to combine this information with
the event conditions already defined and an obvious way to do this is to translate
this information into a hybrid automaton, thus allowing our modelling language
to be a front-end to a well-known formalism. Hybrid automata are dynamic sys-
tems presenting both discrete and continuous evolution. They consist of variables
evolving continuously in time, subject to abrupt changes induced by discrete in-
stantaneous control events. When discrete events happen the automaton enters its

8

Galpin, Hillston and Bortolussi

next mode, where the rules governing the flow of continuous variables change. See
[10] for further details.

Definition 2.5 A hybrid automaton is a tuple
H = (V,E,X, E ,flow , init , inv , event , jump, reset , urgent), where:

• X = {X1, . . . , Xn} is a finite set of real-valued variables. The time derivative of
Xj is Ẋj , and the value of Xj after a change of mode is X ′

j .
• the control graph G = (V,E) is a finite labelled graph. Vertices v ∈ V are the

(control) modes, while edges e ∈ E are called (control) switches and model the
happening of a discrete event.

• Associated with each vertex v ∈ V there is a set of ordinary differential equations
Ẋ = flow(v) referred to as the flow conditions. Moreover, init(v) and inv(v) are
two formulae on X specifying the admissible initial conditions and some invariant
conditions that must be true during the continuous evolution of variables in v.

• Edges e ∈ E of the control graph are labelled by an event event(e) ∈ E and by
jump(e), a predicate on X stating for which values of variables each transition
is active, and by reset(e), a predicate on X ∪ X′ specifying the change of the
variables’ values after the transition has taken place. Moreover, each edge e ∈ E

can be declared urgent, by setting to true the boolean flag urgent(e), meaning
that the transition is taken at once when jump(e) becomes true. Otherwise, the
transition can be taken nondeterministically whenever jump(e) is true.

Consider a HYPE model (P0,V,X , IN , IT , E ,A, ec, iv ,EC , ID) and suppose its
initial configuration is 〈P0, σ0〉 ∈ F . For P0 the only possible transition is the event
init. Let 〈P, σ〉 be the configuration reached after its occurrence, 〈P0, σ0〉

init−→〈P, σ〉.
Moreover, we denote by acta and resa the activation conditions and the resets
associated with an event a ∈ E , so ec(a) = (acta, resa).

Definition 2.6 The hybrid automaton
H = (V,E,X, E ,flow , init , inv , event , jump, reset , urgent) can be obtained from the
HYPE model (P0,V,X , IN , IT , E ,A, ec, iv ,EC , ID) as follows.

• The set of modes V is the set of configurations reachable in 0 or more steps from
〈P, σ〉, namely ds(P0).

• The edges E of the control graph connect two modes (v1, v2) iff v1 = 〈P1, σ1〉,
v2 = 〈P2, σ2〉 and 〈P1, σ1〉

a−→〈P2, σ2〉 is a derivation for some a.
• X = V is the set of variables of the HYPE system.
• E is the set of events E of P0.
• Let vj = 〈Pj , σj〉, then

flow(vj)[Xi] =
∑
{rJI (

−→
W)K | iv(ι) = Xi and σj(ι) = (r, I (

−→
W))}

• init(v) =

 resinit, if v = 〈P, σ〉

false, otherwise
with primes removed from variables 1 .

1 resinit is a reset so uses primed variables to refer to the new values of variables whereas init(v) is an
initialization condition and refers to variables without primes.

9

Galpin, Hillston and Bortolussi

• inv(v) = true.
• Let e = (〈P1, σ1〉, 〈P2, σ2〉) with 〈P1, σ1〉

a−→〈P2, σ2〉. Then event(e) = a and
reset(e) = resa. Moreover, if acta 6= ⊥, then jump(e) = acta and urgent(e) =
true, otherwise jump(e) = true and urgent(e) = false.

Additionally, bisimulation has defined over HYPE models and congruence has
been shown [9]. Under conditions of well-definedness, it can be shown that bisimilar
HYPE models P and Q have identical ODEs [9].

3 The Repressilator

As mentioned above, the Repressilator is a synthetic genetic regulatory network [8]
with a negative feedback loop and oscillatory changes in protein concentrations. It
consists of three genes tetR, cI and lacI, and these genes code for proteins that can
then affect the expression of another gene negatively. We will model the network
in an abstract fashion and consider three genes, namely Gene A, Gene B and Gene
C. Figure 1 illustrates the network. For Gene A, there is a mRNA transcription
reaction with rate trsA which creates mRNAA and this mRNA is then translated
into the protein PrA with rate trlA. Both the mRNA and the protein can degrade
with rates dmA and dpA respectively. Genes B and C have similar reactions. The
dashed lines indicate the inhibition of mRNA transcription by the relevant protein.

In modelling this network with HYPE, we will apply further abstraction as de-
scribed in Figure 2. We abstract away from the details of transcription and trans-
lation and replace this by a single abstract reaction that represents the production
of protein from the gene. Furthermore, we will assume that there are no differences
between the different reaction rates for the different genes and use kp and kd as the
reaction rates for production and degradation respectively. The dashed lines now
represent the inhibition of the production of protein by another protein.

The HYPE model of a protein has been presented in Section 2 and is restated
in a more general form in Figure 3.

The HYPE model of the Repressilator in Figure 4 consists of three proteins and
their associated event-ordering components. Each protein has been instantiated
with a variable representing the concentration of the protein. For clarity, each
protein has a subscript indicating the protein whose production it inhibits. So
the protein produced by Gene A is AB which shows that this protein inhibits the
production by Gene B of protein BC , and similarly for the others. There is no
cooperation on events apart from on the init event between proteins, and the event-
ordering components for each proteins have no shared events. However, the proteins
and the event-ordering components must cooperate over all events in the model.

We also need to define the other elements of the tuple for the HYPE model.
The variables that measure the concentration of the three proteins make up the set
V, and the two influence types are defined to be the obvious functions: JconstK is
1 and Jlinear(X)K is X as before. It is also necessary to associate the influence
names with variables and this is done using the function iv – dA and pA are related
to the production of the protein AB, and likewise for the other proteins. Finally,
we need to give conditions for the events. For init, it must happen immediately

10

Galpin, Hillston and Bortolussi

GeneA−−−→
trsA

mRNAA−−→
trlA

PrA
↓ dmA ↓ dpA

GeneB −−−→
trsB

mRNAB −−→
trlB

PrB
↓ dmB ↓ dpB

GeneC −−−→
trsC

mRNAC −−→
trlC

PrC
↓ dmC ↓ dpC

Fig. 1. The detailed Repressilator network with abstract names

GeneA −−−−−−−−−−−−→
kp

PrA
↓ kd

GeneB −−−−−−−−−−−−→
kp

PrB
↓ kd

GeneC −−−−−−−−−−−−→
kp

PrC
↓ kd

Fig. 2. The abstract Repressilator network

the system starts, hence the value true. The reason for having an event init is to
initialise the system, hence it sets the initial values for the proteins. For protein AB,
the event inhibitA occurs when the concentration of the protein CA that inhibits
its production reaches a certain concentration. Likewise the event expressA occurs
when the concentration of the protein CA is sufficiently low. The remaining events
are defined in a similar way. No resets of variable values occur for any of these
events, except init.

Once the model is defined, the operational semantics can be used to obtain
the labelled transition system of the model. Figure 5 shows part of a transition
derivation when init occurs at the start of the system. The symbol ∗ is used to

11

Galpin, Hillston and Bortolussi

P degr
x (X) def= init : (dx,−kd, linear(X)).P degr

x (X)

P prod
x

def= init : (px, kp, const).P prod
x

+ inhibitx : (px, 0, const).P prod
x

+ expressx : (px, kp, const).P prod
x

Prx(X) def= (P degr
x (X) ��

{init}
P prod

x)

Conx
def= inhibitx.expressx.Conx

Fig. 3. Proteins in HYPE for x ∈ {A, B, C}

Rep
def= (PrA(AB) ��

init
PrB(BC) ��

init
PrC(CA)) ��

L
init.(ConA ‖ ConB ‖ ConC)

L = {init, inhibitA, inhibitB, inhibitC , expressA, expressB, expressC}

V = {AB, BC , CA}
JconstK = 1 Jlinear(X)K = X

iv(dA) = AB iv(pA) = AB

iv(dB) = BC iv(pB) = BC

iv(dC) = CA iv(pC) = CA

ec(init) = (true, (AB = A0 ∧BC = B0 ∧ CA = C0))
ec(inhibitA) = (CA > p, T) ec(expressA) = (CA ≤ p, T)
ec(inhibitB) = (AB > p, T) ec(expressB) = (AB ≤ p, T)
ec(inhibitC) = (BC > p, T) ec(expressC) = (BC ≤ p, T)

Fig. 4. The Repressilator in HYPE

show an undefined value. This example shows how the function Γ is used to select
the new value of an influence. In the case of dA, τ(dA) is undefined as is τ2(dA) hence
Γ selects the value of τ1(dA) to use in the state that results after the transition.

There are eight configurations in the labelled transition system, each with a
unique state and these states are give in Figure 6. Each gene can be on (producing
protein) or off (not producing protein). The eight states represent all possible
combinations of the three genes being on or off. These states then give rise to the
ODEs that are given in Figure 7. In these equations, the presence of the term kp

represents the gene being on, and its absence the gene being off. Again, these sets of
equations cover all possible combinations of the three genes being on or off. How do
these ODEs relate to the ones proposed in the original deterministic model [8]? The

12

Galpin, Hillston and Bortolussi

〈P degr
A (AB), τ〉 init−→ 〈P degr

A (AB), τ1〉 〈P prod
A , τ〉 init−→ 〈P prod

A , τ2〉

〈P degr
A (AB) ��

init
P prod

A , τ〉 init−→ 〈P degr
A (AB) ��

init
P prod

A , τ3〉

〈PrA(AB), τ〉 init−→ 〈PrA(AB), τ3〉

τ = {dA 7→ ∗, pA 7→ ∗} ∪ S

τ1 = τ [dA 7→ (−1, l(AB))] = {dA 7→ (−1, l(AB)), pA 7→ ∗} ∪ S

τ2 = τ [pA 7→ (kp, c)] = {dA 7→ ∗, pA 7→ (kp, c)} ∪ S

τ3 = Γ(τ, τ1, τ2) = {dA 7→ (−1, l(AB)), pA 7→ (kp, c)} ∪ S

S = {dB 7→ ∗, pB 7→ ∗, dC 7→ ∗, pC 7→ ∗}

Fig. 5. An example transition derivation

σ0 = D ∪ {pA 7→ (0, c), pB 7→ (0, c), pC → (0, c)}
σ1 = D ∪ {pA 7→ (0, c), pB 7→ (0, c), pC 7→ (kp, c)}
σ2 = D ∪ {pA 7→ (0, c), pB 7→ (kp, c), pC 7→ (0, c)}
σ3 = D ∪ {pA 7→ (0, c), pB 7→ (kp, c), pC 7→ (kp, c)}
σ4 = D ∪ {pA 7→ (kp, c), pB 7→ (0, c), pC 7→ (0, c)}
σ5 = D ∪ {pA 7→ (kp, c), pB 7→ (0, c), pC 7→ (kp, c)}
σ6 = D ∪ {pA 7→ (kp, c), pB 7→ (kp, c), pC 7→ (0, c)}
σ7 = D ∪ {pA 7→ (kp, c), pB 7→ (kp, c), pC 7→ (kp, c)}

where D = {dA 7→ (−1, l(AB)), dB 7→ (−1, l(BC)), dC 7→ (−1, l(CA))}.

Fig. 6. The states of the Repressilator

Repσ0 = {dAB
dt = −kdAB, dBC

dt = −kdBC , dCA
dt = −kdCA}

Repσ1 = {dAB
dt = −kdAB, dBC

dt = −kdBC , dCA
dt = −kdCA + kp}

Repσ2 = {dAB
dt = −kdAB, dBC

dt = −kdBC + kp,
dCA
dt = −kdCA}

Repσ3 = {dAB
dt = −kdAB, dBC

dt = −kdBC + kp,
dCA
dt = −kdCA + kp}

Repσ4 = {dAB
dt = −kdAB + kp,

dBC
dt = −kdBC , dCA

dt = −kdCA}

Repσ5 = {dAB
dt = −kdAB + kp,

dBC
dt = −kdBC , dCA

dt = −kdCA + kp}

Repσ6 = {dAB
dt = −kdAB + kp,

dBC
dt = −kdBC + kp,

dCA
dt = −kdCA}

Repσ7 = {dAB
dt = −kdAB + kp,

dBC
dt = −kdBC + kp,

dCA
dt = −kdCA + kp}

Fig. 7. The ODEs for the Repressilator

13

Galpin, Hillston and Bortolussi

Repσ7

Repσ3

Repσ5

Repσ6

Repσ2

Repσ1

Repσ4

Repσ0

in
it

A
B

=
A

0
,B

C
=

B
0
,C

A
=

C
0

C
A≤

p; exp
A

C
A >

p; inh
A

AB>p; inhB

AB≤p; expB

BC
>
p;

in
h C

BC
≤p;

ex
p C

BC>p; inhC

BC≤p; expC

CA>p; inhA

CA≤p; expA

AB>p; inhB

AB≤p; expB

AB
>p;

inhBAB
≤p;

ex
pB

BC
≤p;

ex
pC

BC
>p;

inhC

C
A >

p; inh
A

C
A ≤

p; exp
A AB

>
p;

in
h B

AB
≤p;

ex
p B

C
A≤

p; exp
A

C
A >

p; inh
A

BC>p; inhC

BC≤p; expC

Fig. 8. The Repressilator as a hybrid automaton

original model describes explicitly both the transcription and translation phases,
using two kind of variables, one for protein concentrations (AB,BC ,CB) and one for
mRNA concentrations (MA,MB,MC). Translation is assumed to be proportional to
mRNA concentration, while transcription is modelled using an inhibitory Hill-like
kinetics with exponent 2. The transcription of protein A, for instance, has speed
α/(1+C2

A). The exponent 2, in particular, assumes a cooperative effect of repressor-
binding. The authors also assume a “leakiness” of translation; even in presence of
a saturating amount of the repressor, there is still production of the protein with
rate α0. Introducing degradation mechanisms for proteins and mRNA, we obtain
the following equations for protein AB and mRNA MA.

dMA

dt
= −MA +

α

1 + C2
A

+ α0
dAB

dt
= −βAB + βMA

Our model can be seen as an approximation of this model. We have abstracted
away from the intermediate step of mRNA, assuming proteins to be produced di-
rectly. In addition, our production rate equals kp when the repressor is below the
critical threshold p, and equals zero for when repressor is above p. Inspecting the
transcription rate in the original model [8], and setting the leakiness rate α0 to
zero, we can observe how the term α/(1 + C2

A) has a sigmoid shape, approximately
equal to α when the repressor is low, and to zero when the repressor is high. There-
fore, by assuming an activation threshold, we are simply discretizing this sigmoidal
behaviour.

As described earlier, it is possible to obtain a hybrid automata from a HYPE
model by considering the operational and hybrid semantics. The hybrid automata
obtained from the HYPE model of the Repressilator is given in Figure 8. Each node
in the figure is labelled with the name of a set of ODEs from Figure 7. The arcs are
labelled with event conditions, followed by events. The obvious abbreviations have

14

Galpin, Hillston and Bortolussi

 0

 20

 40

 60

 80

 100

 120

 0 1000 2000 3000 4000 5000

A
B
C

Fig. 9. Changes in protein concentration over time for kp = 1, kd = 0.01, p = 1, A0 = 95, B0 = 5 and
C0 = 0

been used for event names. The arc for the init event has no event conditions but
it does have the appropriate resets. In the following, the name of the set of ODEs
on a mode will be used as the name of the mode.

3.1 Analysis

Given a set of starting values, as well as parameter values for kp, kd and p, we can
draw a graph of how the value of each protein changes over time. The graph in
Figure 3.1 has kp = 1, kd = 0.01, p = 1, and initial values A0 = 95, B0 = 5 and
C0 = 0, and is similar to the graphs in [3] and [4]. A second graph is given in
Figure 3.1 using the parameters kp = 150, kd = 0.07, p = 100, A0 = 1500, B0 = 500
and C0 = 0 and is similar in amplitude and period to the graph presented in the
original paper [8]. Both graphs show the oscillations we expect.

The behaviour shown is deterministic after the first two mode changes. The
system starts in mode Repσ7 and immediately follows a two-edge path to mode
Repσ4 representing Gene B and Gene C being off, so the concentration of proteins
BC and CA are decreasing. Once the concentration of BC goes below the threshold
p, Gene C can switch on and the concentration of CA starts to increase, and the
system is now in mode Repσ5 . As the concentration of CA goes over the thresh-
old, Gene A switches off taking the system to mode Repσ1 . Continuing in this
manner, it can be seem that the deterministic and repeating path in the hybrid
automata is Repσ4 , Repσ5 , Repσ1 , Repσ3 , Repσ2 , Repσ6 , Repσ4 . This is demonstrated
in Figure 11.

When at least one of the initial values differs from the other two, it can be shown
that the model will eventually demonstrate deterministic behaviour for those given
initial values and parameters. This occurs since one of the modes in the above
sequence will always be reached even if the system starts in mode Repσ7 or Repσ0 .

15

Galpin, Hillston and Bortolussi

 0

 500

 1000

 1500

 2000

 0 200 400 600 800 1000

A
B
C

Fig. 10. Changes in protein concentration over time for kp = 150, kd = 0.07, p = 100, A0 = 1500, B0 = 500
and C0 = 0

Repσ7

Repσ3

Repσ5

Repσ6

Repσ2

Repσ1

Repσ4

Repσ0

Fig. 11. The deterministic and repeating path of the Repressilator

When the initial values are identical, pathological behaviour can occur. If the
systems starts in the mode Repσ7 , the protein values will increase simultaneously
until they become greater than p, then nondeterministically, a path (consisting of
three modes) from Repσ7 to Repσ0 will be taken with each event happening imme-
diately. Then almost immediately, the values will drop to p and a nondeterministic
path over three modes will be taken back to Repσ7 and this will repeat infinitely.
Since identical quantities do not occur in nature, it would be unrealistic to use them
in the model and hence the pathological case cannot occur.

16

Galpin, Hillston and Bortolussi

4 Related work

As mentioned earlier, there are other process algebras that have been developed for
hybrid systems: ACP srt

hs [2], HyPA [6], Φ-calculus [17] and hybrid χ [19]. The main
difference between modelling the Repressilator in HYPE versus any of these other
process algebras is that in HYPE we do not need to explicitly embed the ODEs in
the syntax of the model. So to model a single protein, say AB, in one of these other
process algebras, the model would require the equations

dAB

dt
= −kdAB and

dAB

dt
= −kdAB + kp

to both appear in the text of the model – this can be viewed as a monolithic
approach. In contrast, with HYPE the idea is to identify possible influences on
a variable of interest and construct a more fine-grained approach based on these
influences, as can be seen by the use of the influences, pA and dA which both
can contribute to the change in value of the variable AB, and equations can be
constructed from the model rather than added a priori. This gives a more natural
modelling technique.

Other hybrid approaches from computer science have been applied to the mod-
elling of biological systems but differ significantly from our approach. An example
is Alur et al [1] who used the hybrid systems language Charon to model regulatory
networks. Rather than considering some aspects of the system as having discrete
behaviour and some having continuous behaviour as with HYPE, they use a contin-
uous deterministic ODE model of the species when the concentration is sufficiently
high and a discrete stochastic model and simulation when the concentration is not
high enough. Ye et al [20] model excitable cells using cycle-linear hybrid automata
which are linear within a cycle but overall show non-linear behaviour. Excitable
cells tend to be either in the excited state or not whereas other aspects of the model
such as voltage change continuously. The piecewise linear nature of the model allows
for analytical solutions.

Finally, Bortolussi and Policriti [4] discuss a hybrid system for the Repressila-
tor similar to ours, mainly differing in the activation conditions for the ”express”
and ”inhibit” events. They start from a model of Repressilator written in sCCP
[?] and obtain a hybrid automaton via a hybrid semantics defined for sCCP. Ac-
tivation conditions are more complicated: they are derived automatically from the
stochastic program and they use clocks to fire the event at the expected time of the
corresponding stochastic events. However, the behavior of their model is basically
the same as the one presented here. The Repressilator has also been modelled in a
non-hybrid manner using the π-calculus and stochastic simulation [3].

5 Conclusions and further work

We have presented a process algebra for modelling the hybrid behaviour of biological
systems. The process algebra has novel features that include a fine-grained approach
to modelling flows and an explicit controller, and the ability to map the model to
hybrid automaton in a direct manner.

17

Galpin, Hillston and Bortolussi

Considering further work, we wish to do more modelling of both biological and
computer systems. For the Repressilator, we also to build a more concrete model
that demonstrates the production and use of mRNA and “leakiness” where some
mRNA is produced even though the gene appears to be switched off [8]. An impor-
tant step after this would be to show equivalence between the abstract and concrete
models. We also wish to develop models of actual biological systems as well as
synthetic systems.

References

[1] Alur, R., C. Belta, F. Ivanĉić, V. Kumar, M. Mintz, G. J. Pappas, H. Rubin and J. Schug, Hybrid
modeling and simulation of biomolecular networks, in: M. D. D. Benedetto and A. L. Sangiovanni-
Vincentelli, editors, Hybrid Systems: Computation and Control, 4th International Workshop (HSCC
2001), Rome, Italy, LNCS 2034 (2001), pp. 19–32.

[2] Bergstra, J. A. and C. A. Middelburg, Process algebra for hybrid systems, Theoretical Computer Science
335 (2005), pp. 215–280.

[3] Blossey, R., L. Cardelli and A. Phillips, A compositional approach to the stochastic dynamics of gene
networks, in: C. Priami, L. Cardelli and S. Emmott, editors, Transactions on Computational Systems
Biology IV, LNCS 3939 (2006), pp. 99–122.

[4] Bortolussi, L. and A. Policriti, Modeling biological systems in concurrent constraint programming,
Constraints 13 (2008).

[5] Bortolusssi, L. and A. Policriti, Hybrid approximation of stochastic process algebras for systems biology,
in: IFAC World Congress, Seoul, South Korea, 2008.

[6] Calder, M., S. Gilmore and J. Hillston, Modelling the influence of RKIP on the ERK signalling pathway
using the stochastic process algebra PEPA, in: C. Priami, A. Ingólfsdóttir, B. Mishra and H. R. Nielson,
editors, Transactions on Computational Systems Biology VII, LNCS 4230 (2006), pp. 1–23.

[7] Ciocchetta, F. and J. Hillston, Bio-pepa: a framework for the modelling and analysis of biological
systems, Report EDI-INF-RR-1231, School of Informatics, University of Edinburgh (2007).
URL http://www.inf.ed.ac.uk/publications/report/1231.html

[8] Cuijpers, P. J. L. and M. A. Reniers, Hybrid process algebra, Journal of Logic and Algebraic
Programming 62 (2005), pp. 191–245.

[9] Danos, V. and C. Laneve, Formal molecular biology, Theoretical Computer Science 325 (2004), pp. 69–
110.

[10] Elowitz, M. B. and S. Leibler, A synthetic oscillatory network of transcriptional regulators, Nature 403
(2000), pp. 335–338.

[11] Galpin, V., L. Bortolussi and J. Hillston, HYPE: hybrid systems modelled with flows, Report EDI-INF-
RR-1251, School of Informatics, University of Edinburgh (2008).
URL http://www.inf.ed.ac.uk/publications/report/1251.html

[12] Henzinger, T. A., The theory of hybrid automata, in: LICS, 1996, pp. 278–292.

[13] Hillston, J., “A compositional approach to performance modelling,” Cambridge University Press, 1996.

[14] Lincoln, P. and A. Tiwari, Symbolic systems biology: hybrid modeling and analysis of biological
networks, in: R. Alur and G. J. Pappas, editors, Hybrid Systems: Computation and Control, 7th
International Workshop (HSCC 2004), Philadelphia, PA, USA, LNCS 2993 (2004), pp. 660–672.

[15] Priami, C., Stochastic π-calculus, The Computer Journal 38 (1995), pp. 578–589.

[16] Priami, C. and P. Quaglia, Beta binders for biological interactions, in: V. Danos and V. Schächter,
editors, Computational Methods in Systems Biology, International Conference (CMSB 2004), Paris,
France, LNCS 3082 (2004), pp. 20–33.

[17] Priami, C., A. Regev, E. Shapiro and W. Silverman, Application of a stochastic name-passing calculus
to representation and simulation of molecular processes, Information Processing Letters 80 (2001),
pp. 25–31.

[18] Regev, A., E. Panina, W. Silverman, L. Cardelli and E. Shapiro, BioAmbients: an abstraction for
biological compartments, Theoretical Computer Science 325 (2004), pp. 141–167.

18

http://www.inf.ed.ac.uk/publications/report/1231.html
http://www.inf.ed.ac.uk/publications/report/1251.html

Galpin, Hillston and Bortolussi

[19] Rounds, W. C. and H. Song, The Φ-calculus: A language for distributed control of reconfigurable
embedded systems, in: O. Maler and A. Pnueli, editors, Hybrid Systems: Computation and Control,
6th International Workshop (HSCC 2003), Prague, Czech Republic, LNCS 2623 (2003), pp. 435–449.

[20] Tuffin, B., D. S. Chen and K. S. Trivedi, Comparison of hybrid systems and fluid stochastic petri nets,
Discrete Event Dynamic Systems: Theory and Applications 11 (2001), pp. 77–95.

[21] van Beek, D., K. Man, M. Reniers, J. Rooda and R. Schiffelers, Syntax and consistent equation
semantics of hybrid Chi, Journal of Logic and Algebraic Programming 68 (2006), pp. 129–210.

[22] Ye, P., E. Entcheva, R. Grosu and S. A. Smolka, Efficient modeling of excitable cells using hybrid
automata, in: G. Plotkin, editor, Proceedings of Computational Methods in Systems Biology (CMSB
2005), Edinburgh, Scotland, 2005, pp. 216–227.

19

	Introduction
	HYPE definition
	Operational semantics
	Hybrid semantics

	The Repressilator
	Analysis

	Related work
	Conclusions and further work
	References

