A semi-quantitative equivalence for abstracting from fast reactions

Federica Ciocchetta Vashti Galpin Jane Hillston

LFCS and CSBE, University of Edinburgh

10 September 2011

Outline

Competitive inhibition

Bio-PEPA

Fast-slow bisimilarity

Slow bisimilarity

Conclusions

Example: competitive inhibition, bimolecular

$$S+E+I$$

initially substrate, enzyme, inhibitor

Example: competitive inhibition, bimolecular

$$S + EI \iff S + E + I \iff SE + I \longrightarrow P + E + I$$

- initially substrate, enzyme, inhibitor
- reactions produce two intermediate species and product

$$S + EI \iff S + E + I \iff SE + I \longrightarrow P + E + I$$

- initially substrate, enzyme, inhibitor
- reactions produce two intermediate species and product
- using mass action, can obtain continuous ODE-based model

Competitive inhibition

$$S + EI \iff S + E + I \iff SE + I \longrightarrow P + E + I$$

- initially substrate, enzyme, inhibitor
- reactions produce two intermediate species and product
- using mass action, can obtain continuous ODE-based model

$$\frac{dS}{dt} = \cdots \qquad \frac{dEI}{dt} = \cdots \\
\frac{dE}{dt} = \cdots \qquad \frac{dSE}{dt} = \cdots \\
\frac{dI}{dt} = \cdots \qquad \frac{dP}{dt} = \cdots$$

▶ is it possible to construct model without intermediate species?

- is it possible to construct model without intermediate species?
- smaller model easier to analyse, fitting of fewer parameters

- ▶ is it possible to construct model without intermediate species?
- smaller model easier to analyse, fitting of fewer parameters
- quasi-steady state assumption (QSSA)
 - possible to partition reactions into fast and slow
 - intermediate species produced by fast reactions
 - quickly reach steady state, concentration shows little change
 - derive new model with new rates by setting some ODEs to zero

Competitive inhibition

- is it possible to construct model without intermediate species?
- smaller model easier to analyse, fitting of fewer parameters
- quasi-steady state assumption (QSSA)
 - possible to partition reactions into fast and slow
 - intermediate species produced by fast reactions
 - quickly reach steady state, concentration shows little change
 - derive new model with new rates by setting some ODEs to zero
- example: Michaelis-Menten kinetics for substrate and enzyme

- is it possible to construct model without intermediate species?
- smaller model easier to analyse, fitting of fewer parameters
- quasi-steady state assumption (QSSA)
 - possible to partition reactions into fast and slow
 - intermediate species produced by fast reactions
 - quickly reach steady state, concentration shows little change
 - derive new model with new rates by setting some ODEs to zero
- example: Michaelis-Menten kinetics for substrate and enzyme
- need to understand limitations of abstracted version

ď

Competitive inhibition

Example: competitive inhibition, abstract

$$S \xrightarrow{E,I} P$$

- using QSSA, express competitive inhibition as a single reaction
- results in fewer ODEs
- reaction rate depends on S, E and I

$$S \xrightarrow{E,I} P$$

- using QSSA, express competitive inhibition as a single reaction
- results in fewer ODEs
- reaction rate depends on S, E and I

How can these ideas be used to develop a behavioural equivalence for a biological process algebra?

Competitive inhibition

Bio-PEPA: competitive inhibition, bimolecular

$$S + EI \iff S + E + I \iff SE + I \longrightarrow P + E + I$$

$$S + EI \stackrel{\alpha_1}{\underset{\alpha_{-1}}{\longleftarrow}} S + E + I \stackrel{\beta_1}{\underset{\beta_{-1}}{\longleftarrow}} SE + I \stackrel{\gamma}{\longrightarrow} P + E + I$$

name each reaction

$$S + EI \ \underset{\alpha_{-1}}{\overset{\alpha_1}{\longleftrightarrow}} \ S + E + I \ \underset{\beta_{-1}}{\overset{\beta_1}{\longleftrightarrow}} \ SE + I \ \overset{\gamma}{\longrightarrow} \ P + E + I$$

- name each reaction
- well-defined Bio-PEPA species/sequential components

$$S \stackrel{\text{\tiny def}}{=} (\beta_1, 1) \downarrow S + (\beta_{-1}, 1) \uparrow S$$

$$S + EI \ \underset{\alpha_{-1}}{\overset{\alpha_1}{\longleftrightarrow}} \ S + E + I \ \underset{\beta_{-1}}{\overset{\beta_1}{\longleftrightarrow}} \ SE + I \ \overset{\gamma}{\longrightarrow} \ P + E + I$$

- name each reaction
- well-defined Bio-PEPA species/sequential components

$$S \stackrel{\text{\tiny def}}{=} (\beta_1, 1) \downarrow S + (\beta_{-1}, 1) \uparrow S$$

Prefix notation: (α, κ) op

reaction name

 κ stoichiometry for reaction

op role of species in reaction

$$S + EI \ \begin{picture}(20,10) \put(0,0){\rightarrow} \put(0,0){$\rightarrow$$

- name each reaction
- well-defined Bio-PEPA species/sequential components

$$S + EI \stackrel{\alpha_1}{\underset{\alpha_{-1}}{\longleftarrow}} S + E + I \stackrel{\beta_1}{\underset{\beta_{-1}}{\longleftarrow}} SE + I \stackrel{\gamma}{\longrightarrow} P + E + I$$

- name each reaction
- well-defined Bio-PEPA species/sequential components

$$S + EI \stackrel{\alpha_1}{\underset{\alpha_{-1}}{\longleftarrow}} S + E + I \stackrel{\beta_1}{\underset{\beta_{-1}}{\longleftarrow}} SE + I \stackrel{\gamma}{\longrightarrow} P + E + I$$

 well-defined Bio-PEPA model component, includes quantities/levels for each species

$$M \stackrel{\text{def}}{=} S(\ell_S) \bowtie_* E(\ell_E) \bowtie_* I(\ell_I) \bowtie_* P(\ell_P) \bowtie_* EI(\ell_{EI}) \bowtie_* SE(\ell_{SE})$$

$$S + EI \buildrel { \begin{array}{c} \alpha_1 \\ \longleftarrow \\ \alpha_{-1} \end{array}} S + E + I \buildrel { \begin{array}{c} \beta_1 \\ \longleftarrow \\ \beta_{-1} \end{array}} SE + I \buildrel { \begin{array}{c} \gamma \\ \longleftarrow \end{array}} P + E + I$$

 well-defined Bio-PEPA model component, includes quantities/levels for each species

$$M \stackrel{\text{def}}{=} S(\ell_S) \bowtie_* E(\ell_E) \bowtie_* I(\ell_I) \bowtie_* P(\ell_P) \bowtie_* EI(\ell_{EI}) \bowtie_* SE(\ell_{SE})$$

well-defined Bio-PEPA system, defines context for model

$$\mathcal{P} = \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, Comp, M \rangle$$

volume and location information for model

quantitative information for each species

constant definitions

rate equations for each reaction

Bio-PEPA definition for each species Comp

$$S \xrightarrow{E,I} P$$

well-defined Bio-PEPA species/sequential components

$$S' \stackrel{\scriptscriptstyle def}{=} (\gamma,1) \downarrow S' \quad P' \stackrel{\scriptscriptstyle def}{=} (\gamma,1) \uparrow P'$$

$$S \xrightarrow{E,I} P$$

well-defined Bio-PEPA species/sequential components

$$S' \stackrel{\text{def}}{=} (\gamma, 1) \downarrow S' \quad P' \stackrel{\text{def}}{=} (\gamma, 1) \uparrow P'$$
 $E' \stackrel{\text{def}}{=} (\gamma, 1) \oplus E' \quad I' \stackrel{\text{def}}{=} (\gamma, 1) \ominus I'$

. . .

$$S \xrightarrow{E,I} P$$

well-defined Bio-PEPA species/sequential components

$$S' \stackrel{\text{def}}{=} (\gamma, 1) \downarrow S' \quad P' \stackrel{\text{def}}{=} (\gamma, 1) \uparrow P'$$
 $E' \stackrel{\text{def}}{=} (\gamma, 1) \oplus E' \quad I' \stackrel{\text{def}}{=} (\gamma, 1) \ominus I'$

well-defined Bio-PEPA model

$$M' \stackrel{\text{def}}{=} S'(\ell_{S'}) \bowtie_{*} E'(\ell_{E'}) \bowtie_{*} I'(\ell_{I'}) \bowtie_{*} P'(\ell_{P'})$$

$$S \xrightarrow{E,I} P$$

well-defined Bio-PEPA species/sequential components

$$S' \stackrel{\text{def}}{=} (\gamma, 1) \downarrow S' \quad P' \stackrel{\text{def}}{=} (\gamma, 1) \uparrow P'$$
 $E' \stackrel{\text{def}}{=} (\gamma, 1) \oplus E' \quad I' \stackrel{\text{def}}{=} (\gamma, 1) \ominus I'$

well-defined Bio-PEPA model

$$M' \stackrel{\text{def}}{=} S'(\ell_{S'}) \bowtie E'(\ell_{E'}) \bowtie I'(\ell_{I'}) \bowtie P'(\ell_{P'})$$

Bio-PEPA model in vector form

$$(\ell_{S'}, \ell_{E'}, \ell_{I'}, \ell_{P'})$$

$$S \xrightarrow{E,I} P$$

well-defined Bio-PEPA species/sequential components

$$S' \stackrel{\text{def}}{=} (\gamma, 1) \downarrow S' \quad P' \stackrel{\text{def}}{=} (\gamma, 1) \uparrow P'$$
 $E' \stackrel{\text{def}}{=} (\gamma, 1) \oplus E' \quad I' \stackrel{\text{def}}{=} (\gamma, 1) \ominus I'$

well-defined Bio-PEPA model

$$M' \stackrel{\text{def}}{=} S'(\ell_{S'}) \bowtie_{*} E'(\ell_{E'}) \bowtie_{*} I'(\ell_{I'}) \bowtie_{*} P'(\ell_{P'})$$

Bio-PEPA model in vector form

$$(\ell_{S'}, \ell_{E'}, \ell_{I'}, \ell_{P'})$$
 and $(\ell_{S}, \ell_{E}, \ell_{I}, \ell_{P}, \ell_{EI}, \ell_{SE})$

ď

Bio-PEPA semantics

ightharpoonup operational semantics for capability relation $ightharpoonup_c$

Bio-PEPA semantics

- \triangleright operational semantics for capability relation \rightarrow_c
- Choice, Cooperation for $\alpha \notin L$, Constant as expected

Bio-PEPA semantics

- \triangleright operational semantics for capability relation \rightarrow_c
- Choice, Cooperation for $\alpha \notin L$, Constant as expected
- Prefix rules

- \triangleright operational semantics for capability relation \rightarrow_c
- Choice, Cooperation for $\alpha \notin L$, Constant as expected
- Prefix rules

$$((\alpha, \kappa) \downarrow S)(\ell) \xrightarrow{(\alpha, [S: \downarrow(\ell, \kappa)])}_{c} S(\ell - \kappa) \quad \kappa \leq \ell \leq N_{S}$$

$$((\alpha, \kappa) \uparrow S)(\ell) \xrightarrow{(\alpha, [S: \uparrow(\ell, \kappa)])}_{c} S(\ell + \kappa) \quad 0 \leq \ell \leq N_{S} - \kappa$$

$$((\alpha, \kappa) \oplus S)(\ell) \xrightarrow{(\alpha, [S: \oplus(\ell, \kappa)])}_{c} S(\ell) \quad \kappa \leq \ell \leq N_{S}$$

$$((\alpha, \kappa) \oplus S)(\ell) \xrightarrow{(\alpha, [S: \oplus(\ell, \kappa)])}_{c} S(\ell) \quad 0 \leq \ell \leq N_{S}$$

$$((\alpha, \kappa) \oplus S)(\ell) \xrightarrow{(\alpha, [S: \oplus(\ell, \kappa)])}_{c} S(\ell) \quad 0 \leq \ell \leq N_{S}$$

$$((\alpha, \kappa) \oplus S)(\ell) \xrightarrow{(\alpha, [S: \oplus(\ell, \kappa)])}_{c} S(\ell) \quad 0 \leq \ell \leq N_{S}$$

- \triangleright operational semantics for capability relation \rightarrow_c
- Choice, Cooperation for $\alpha \notin L$, Constant as expected
- Prefix rules

$$((\alpha, \kappa) \downarrow S)(\ell) \xrightarrow{(\alpha, [S: \downarrow(\ell, \kappa)])}_{c} S(\ell - \kappa) \quad \kappa \leq \ell \leq N_{S}$$

$$((\alpha, \kappa) \uparrow S)(\ell) \xrightarrow{(\alpha, [S: \uparrow(\ell, \kappa)])}_{c} S(\ell + \kappa) \quad 0 \leq \ell \leq N_{S} - \kappa$$

$$((\alpha, \kappa) \oplus S)(\ell) \xrightarrow{(\alpha, [S: \oplus(\ell, \kappa)])}_{c} S(\ell) \quad \kappa \leq \ell \leq N_{S}$$

$$((\alpha, \kappa) \oplus S)(\ell) \xrightarrow{(\alpha, [S: \ominus(\ell, \kappa)])}_{c} S(\ell) \quad 0 \leq \ell \leq N_{S}$$

$$((\alpha, \kappa) \oplus S)(\ell) \xrightarrow{(\alpha, [S: \ominus(\ell, \kappa)])}_{c} S(\ell) \quad 0 \leq \ell \leq N_{S}$$

$$\frac{P \xrightarrow{(\alpha,v)}_{c} P' \quad Q \xrightarrow{(\alpha,u)}_{c} Q'}{P \bowtie_{L} Q \xrightarrow{(\alpha,v::u)}_{c} P' \bowtie_{L} Q'} \quad \alpha \in L$$

$$\frac{P \xrightarrow{(\alpha, \mathbf{v})}_{c} P' \quad Q \xrightarrow{(\alpha, \mathbf{u})}_{c} Q'}{P \bowtie_{L} Q \xrightarrow{(\alpha, \mathbf{v} :: \mathbf{u})}_{c} P' \bowtie_{L} Q'} \quad \alpha \in L$$

$$\frac{P \xrightarrow{(\alpha,v)}_{c} P' \quad Q \xrightarrow{(\alpha,u)}_{c} Q'}{P \bowtie_{L} Q \xrightarrow{(\alpha,v::u)}_{c} P' \bowtie_{L} Q'} \quad \alpha \in L$$

can define stochastic relation which is quantitative

Bio-PEPA semantics (continued)

▶ Cooperation for $\alpha \in L$

$$\frac{P \xrightarrow{(\alpha,v)}_{c} P' \quad Q \xrightarrow{(\alpha,u)}_{c} Q'}{P \bowtie_{L} Q \xrightarrow{(\alpha,v::u)}_{c} P' \bowtie_{L} Q'} \quad \alpha \in L$$

- can define stochastic relation which is quantitative
- we work semi-quantitatively with capability relation

$$\frac{P \xrightarrow{(\alpha,v)}_{c} P' \quad Q \xrightarrow{(\alpha,u)}_{c} Q'}{P \bowtie_{L} Q \xrightarrow{(\alpha,v::u)}_{c} P' \bowtie_{L} Q'} \quad \alpha \in L$$

- can define stochastic relation which is quantitative
- we work semi-quantitatively with capability relation
- reaction names are partitioned into two sets

 \mathcal{A}_f : fast reactions

 A_s : slow reactions

- identify initial reactants and products
- compounds formed during reactions are intermediate species
- Δ: species in the reactions that are not intermediate

- identify initial reactants and products
- compounds formed during reactions are intermediate species
- \triangleright Δ : species in the reactions that are not intermediate
- define new transitions

$$\begin{split} w_{\Delta} &= \{C : \mathrm{op}\left(I,\kappa\right) \in w \mid C \in \Delta\} \\ &\text{If } P \xrightarrow{(\alpha,w)}_{c} P' \text{ and } \alpha \in \mathcal{A}_{f} \text{ then } P \twoheadrightarrow P' \\ &\text{If } P \xrightarrow{(\alpha,w)}_{c} P' \text{ and } \alpha \in \mathcal{A}_{s} \text{ then } P \xrightarrow{\alpha,w_{\Delta}} P' \end{split}$$

- identify initial reactants and products
- compounds formed during reactions are intermediate species
- $ightharpoonup \Delta$: species in the reactions that are not intermediate
- define new transitions

$$\begin{split} w_{\Delta} &= \{C : \mathrm{op}\,(I,\kappa) \in w \mid C \in \Delta\} \\ &\text{If } P \xrightarrow{(\alpha,w)}_{c} P' \text{ and } \alpha \in \mathcal{A}_{f} \text{ then } P \xrightarrow{\alpha,w_{\Delta}} P' \\ &\text{If } P \xrightarrow{(\alpha,w)}_{c} P' \text{ and } \alpha \in \mathcal{A}_{s} \text{ then } P \xrightarrow{\alpha,w_{\Delta}} P' \end{split}$$

- identify initial reactants and products
- compounds formed during reactions are intermediate species
- Δ: species in the reactions that are not intermediate
- define new transitions

$$\begin{split} w_{\Delta} &= \{C : \mathrm{op}(I,\kappa) \in w \mid C \in \Delta\} \\ &\text{If } P \xrightarrow{(\alpha,w)}_{c} P' \text{ and } \alpha \in \mathcal{A}_{f} \text{ then } P \twoheadrightarrow P' \\ &\text{If } P \xrightarrow{(\alpha,w)}_{c} P' \text{ and } \alpha \in \mathcal{A}_{s} \text{ then } P \xrightarrow{\alpha,w_{\Delta}} P' \end{split}$$

▶ fast-slow bisimilarity, $P \approx_{\mathcal{A}_f} Q$ if whenever

- 1. $P \rightarrow P'$ then $Q(\rightarrow)^* Q'$ and $P' \approx_{\mathcal{A}_f} Q'$
- 2. $Q \rightarrow Q'$ then $P(\rightarrow)^* P'$ and $P' \approx_{\mathcal{A}_f} Q'$

• fast-slow bisimilarity, $P \approx_{\mathcal{A}_f} Q$ if whenever

- 1. $P \rightarrow P'$ then $Q(\rightarrow)^* Q'$ and $P' \approx_{A_E} Q'$
- 2. $Q \rightarrow Q'$ then $P(\rightarrow)^* P'$ and $P' \approx_{A_{\mathcal{E}}} Q'$

and for all $\alpha \in A_{\epsilon}$

- 3. $P \xrightarrow{\alpha, w_{\Delta}}_{c} P'$ then $Q (\twoheadrightarrow)^{*} \xrightarrow{\alpha, w_{\Delta}}_{c} (\twoheadrightarrow)^{*} Q'$ and $P' \approx_{A_{f}} Q'$ 4. $Q \xrightarrow{\alpha, w_{\Delta}}_{c} Q'$ then $P (\twoheadrightarrow)^{*} \xrightarrow{\alpha, w_{\Delta}}_{c} (\twoheadrightarrow)^{*} P'$ and $P' \approx_{A_{f}} Q'$

▶ fast-slow bisimilarity, $P \approx_{\mathcal{A}_f} Q$ if whenever

- 1. $P \rightarrow P'$ then $Q(\rightarrow)^* Q'$ and $P' \approx_{A_E} Q'$
- 2. $Q \rightarrow Q'$ then $P(\rightarrow)^* P'$ and $P' \approx_{A_{\mathcal{E}}} Q'$

and for all $\alpha \in A_{\epsilon}$

- 3. $P \xrightarrow{\alpha, w_{\Delta}}_{c} P'$ then $Q (\twoheadrightarrow)^{*} \xrightarrow{\alpha, w_{\Delta}}_{c} (\twoheadrightarrow)^{*} Q'$ and $P' \approx_{A_{f}} Q'$ 4. $Q \xrightarrow{\alpha, w_{\Delta}}_{c} Q'$ then $P (\twoheadrightarrow)^{*} \xrightarrow{\alpha, w_{\Delta}}_{c} (\twoheadrightarrow)^{*} P'$ and $P' \approx_{A_{f}} Q'$
- similar definition to Milner's weak bisimilarity
- fast reactions play same role as τ labelled transitions

Congruence of fast-slow bisimilarity

congruence for cooperation if no shared fast reactions

$$P_1 \approx_{\mathcal{A}_f} P_2 \Rightarrow P_1 \bowtie_{\iota} Q \approx_{\mathcal{A}_f} P_2 \bowtie_{\iota} Q, \quad Q \bowtie_{\iota} P_1 \approx_{\mathcal{A}_f} Q \bowtie_{\iota} P_2$$

Congruence of fast-slow bisimilarity

congruence for cooperation if no shared fast reactions

$$P_1 \approx_{\mathcal{A}_f} P_2 \Rightarrow P_1 \bowtie_{\mathcal{L}} Q \approx_{\mathcal{A}_f} P_2 \bowtie_{\mathcal{L}} Q, \quad Q \bowtie_{\mathcal{L}} P_1 \approx_{\mathcal{A}_f} Q \bowtie_{\mathcal{L}} P_2$$

biological motivation, not identical to weak bisimilarity

congruence for cooperation if no shared fast reactions

$$P_1 \; \approx_{\mathcal{A}_f} P_2 \; \Rightarrow \; P_1 \, \, \bowtie_{\mathcal{L}} Q \; \approx_{\mathcal{A}_f} P_2 \, \, \bowtie_{\mathcal{L}} Q, \quad \, Q \, \, \bowtie_{\mathcal{L}} P_1 \; \approx_{\mathcal{A}_f} Q \, \, \bowtie_{\mathcal{L}} P_2 \; \big|$$

- biological motivation, not identical to weak bisimilarity
- species extension operator, A and B have no shared reactions

$$A \stackrel{\text{def}}{=} \sum_{i=1}^{n} (\alpha_i, \kappa_i) \text{op}_i A$$
 and $B \stackrel{\text{def}}{=} \sum_{j=1}^{m} (\beta_j, \lambda_j) \text{op}_j B$

Congruence of fast-slow bisimilarity

congruence for cooperation if no shared fast reactions

$$P_1 \approx_{\mathcal{A}_f} P_2 \Rightarrow P_1 \bowtie_{\iota} Q \approx_{\mathcal{A}_f} P_2 \bowtie_{\iota} Q, \quad Q \bowtie_{\iota} P_1 \approx_{\mathcal{A}_f} Q \bowtie_{\iota} P_2$$

- biological motivation, not identical to weak bisimilarity
- species extension operator, A and B have no shared reactions

$$A \stackrel{\text{def}}{=} \sum_{i=1}^{n} (\alpha_i, \kappa_i) \operatorname{op}_i A \text{ and } B \stackrel{\text{def}}{=} \sum_{j=1}^{m} (\beta_j, \lambda_j) \operatorname{op}_j B$$
$$A\{B\} \stackrel{\text{def}}{=} \sum_{i=1}^{n} (\alpha_i, \kappa_i) \operatorname{op}_i A\{B\} + \sum_{j=1}^{m} (\beta_j, \lambda_j) \operatorname{op}_j A\{B\}$$

congruence for cooperation if no shared fast reactions

$$P_1 \; \approx_{\mathcal{A}_f} P_2 \; \Rightarrow \; P_1 \, \bowtie_{L} Q \; \approx_{\mathcal{A}_f} P_2 \, \bowtie_{L} Q, \quad Q \, \bowtie_{L} P_1 \; \approx_{\mathcal{A}_f} Q \, \bowtie_{L} P_2 \; \big|$$

- biological motivation, not identical to weak bisimilarity
- species extension operator, A and B have no shared reactions

$$A \stackrel{\text{def}}{=} \sum_{i=1}^{n} (\alpha_i, \kappa_i) \operatorname{op}_i A \text{ and } B \stackrel{\text{def}}{=} \sum_{j=1}^{m} (\beta_j, \lambda_j) \operatorname{op}_j B$$
$$A\{B\} \stackrel{\text{def}}{=} \sum_{i=1}^{n} (\alpha_i, \kappa_i) \operatorname{op}_i A\{B\} + \sum_{j=1}^{m} (\beta_j, \lambda_j) \operatorname{op}_j A\{B\}$$

congruence for extension operator if no shared reactions

$$A_1 \approx_{\mathcal{A}_f} A_2 \Rightarrow A_1\{B\} \approx_{\mathcal{A}_f} A_2\{B\} \text{ and } B\{A_1\} \approx_{\mathcal{A}_f} B\{A_2\}$$

ш,

▶ M, detailed model, large state space

- ▶ *M*, detailed model, large state space
- ightharpoonup M', reduced model, smaller state space

- ▶ M, detailed model, large state space
- M', reduced model, smaller state space
- $ightharpoonup M \equiv M'$, capturing some notion of same behaviour

- ▶ M, detailed model, large state space
- ▶ M', reduced model, smaller state space
- $ightharpoonup M \equiv M'$, capturing some notion of same behaviour
- L, another model of a related system or supersystem

- M, detailed model, large state space
- ▶ M', reduced model, smaller state space
- $ightharpoonup M \equiv M'$, capturing some notion of same behaviour
- L, another model of a related system or supersystem
- ▶ then $L \bowtie M \equiv L \bowtie M'$ by congruence

- M, detailed model, large state space
- ightharpoonup M', reduced model, smaller state space
- ▶ $M \equiv M'$, capturing some notion of same behaviour
- ▶ L, another model of a related system or supersystem
- ▶ then $L \bowtie_* M \equiv L \bowtie_* M'$ by congruence
- ightharpoonup can reduce size of overall model by replacing M with M'

- M, detailed model, large state space
- ▶ M', reduced model, smaller state space
- $ightharpoonup M \equiv M'$, capturing some notion of same behaviour
- L, another model of a related system or supersystem
- ▶ then $L \bowtie M \equiv L \bowtie M'$ by congruence
- \triangleright can reduce size of overall model by replacing M with M'
- can understand how L interacts with other systems

- M, detailed model, large state space
- ▶ M', reduced model, smaller state space
- $ightharpoonup M \equiv M'$, capturing some notion of same behaviour
- L, another model of a related system or supersystem
- ▶ then $L \bowtie M \equiv L \bowtie M'$ by congruence
- \triangleright can reduce size of overall model by replacing M with M'
- can understand how L interacts with other systems
- use in model checking with appropriate logics

Applying bisimulation to competitive inhibition

$$(4,3,0,0,0,0,0) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftharpoons}} (3,2,0,0,0,1) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftharpoons}} (2,1,0,0,0,2) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftharpoons}} (1,0,0,0,0,3) \\ \downarrow \gamma \qquad \qquad \downarrow \gamma \qquad \qquad \downarrow \gamma \qquad \qquad \downarrow \gamma \\ (3,3,0,1,0,0) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftharpoons}} (2,2,0,1,0,1) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftharpoons}} (1,1,0,1,0,2) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftharpoons}} (0,0,0,1,0,3) \\ \downarrow \gamma \qquad \qquad \downarrow \gamma \qquad \qquad \downarrow \gamma \\ (2,3,0,2,0,0) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftharpoons}} (1,2,0,2,0,1) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftharpoons}} (0,1,0,2,0,2) \\ \downarrow \gamma \qquad \qquad \downarrow \gamma \\ (1,3,0,3,0,0) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftharpoons}} (0,2,0,3,0,1) \\ \downarrow \gamma \qquad \qquad \qquad \downarrow \gamma \\ (0,3,0,4,0,0)$$

Applying bisimulation to competitive inhibition
$$(4,3,0,0,0,0,0) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftarrows}} (3,2,0,0,0,0,1) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftarrows}} (2,1,0,0,0,0,2) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftarrows}} (1,0,0,0,0,3) \qquad (4,3,0,0) \\ \downarrow \gamma \qquad \downarrow \gamma \\ (3,3,0,1,0,0) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftarrows}} (2,2,0,1,0,1) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftarrows}} (1,1,0,1,0,2) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftarrows}} (0,0,0,1,0,3) \qquad (3,3,0,1) \\ \downarrow \gamma \qquad \downarrow \gamma \qquad \downarrow \gamma \qquad \downarrow \gamma \\ (2,3,0,2,0,0) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftarrows}} (1,2,0,2,0,1) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftarrows}} (0,1,0,2,0,2) \qquad (2,3,0,2) \\ \downarrow \gamma \qquad \downarrow \gamma \qquad \downarrow \gamma \qquad \downarrow \gamma \\ (1,3,0,3,0,0) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftarrows}} (0,2,0,3,0,1) \qquad (1,3,0,3) \\ \downarrow \gamma \qquad \downarrow \gamma \qquad \downarrow \gamma \qquad (0,3,0,4,0,0) \qquad (0,3,0,4)$$

abstract

Applying bisimulation to competitive inhibition

$$(4,3,0,0,0,0,0) \underset{\beta-1}{\overset{\beta_1}{\rightleftarrows}} (3,2,0,0,0,0,1) \underset{\beta-1}{\overset{\beta_1}{\rightleftarrows}} (2,1,0,0,0,0,2) \underset{\beta-1}{\overset{\beta_1}{\rightleftarrows}} (1,0,0,0,0,3) \qquad (4,3,0,0) \\ \downarrow \gamma \qquad (3,3,0,1,0,0) \underset{\beta-1}{\overset{\beta_1}{\rightleftarrows}} (2,2,0,1,0,1) \underset{\beta-1}{\overset{\beta_1}{\rightleftarrows}} (1,1,0,1,0,2) \underset{\beta-1}{\overset{\beta_1}{\rightleftarrows}} (0,0,0,1,0,3) \qquad (3,3,0,1) \\ \downarrow \gamma \qquad \qquad \downarrow \gamma \qquad \qquad \downarrow \gamma \qquad \qquad \downarrow \gamma \qquad \qquad \downarrow \gamma \qquad (2,3,0,2,0,0) \underset{\beta-1}{\overset{\beta_1}{\rightleftarrows}} (1,2,0,2,0,1) \underset{\beta}{\overset{\beta_1}{\rightleftarrows}} (0,1,0,2,0,2) \qquad (2,3,0,2) \\ \downarrow \gamma \qquad \qquad \downarrow \gamma$$

abstract

Applying disimulation to competitive innibition
$$(4,3,0,0,0,0,0) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftharpoons}} (3,2,0,0,0,1) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftharpoons}} (2,1,0,0,0,2) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftharpoons}} (1,0,0,0,0,3) \qquad (4,3,0,0) \\ \downarrow \gamma \qquad \downarrow \gamma \qquad \downarrow \gamma \qquad \downarrow \gamma \qquad \downarrow \gamma \\ (3,3,0,1,0,0) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftharpoons}} (2,2,0,1,0,1) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftharpoons}} (1,1,0,1,0,2) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftharpoons}} (0,0,0,1,0,3) \qquad (3,3,0,1) \\ \downarrow \gamma \qquad \downarrow \gamma \qquad \downarrow \gamma \qquad \qquad \downarrow \gamma \\ (2,3,0,2,0,0) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftharpoons}} (1,2,0,2,0,1) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftharpoons}} (0,1,0,2,0,2) \qquad (2,3,0,2) \\ \downarrow \gamma \qquad \qquad \downarrow \gamma \qquad \qquad \downarrow \gamma \\ (1,3,0,3,0,0) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftharpoons}} (0,2,0,3,0,1) \qquad (1,3,0,3) \\ \downarrow \gamma \qquad \qquad \downarrow \gamma \qquad \qquad \downarrow \gamma \\ (0,3,0,4,0,0) \qquad (0,3,0,4)$$

bimolecular

abstract

Applying bisimulation to competitive inhibition
$$(4,3,0,0,0,0,0) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftharpoons}} (3,2,0,0,0,1) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftharpoons}} (2,1,0,0,0,2) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftharpoons}} (1,0,0,0,0,3) \qquad (4,3,0,0) \\ \downarrow \gamma \qquad \downarrow \gamma \\ (3,3,0,1,0,0) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftharpoons}} (2,2,0,1,0,1) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftharpoons}} (1,1,0,1,0,2) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftharpoons}} (0,0,0,1,0,3) \qquad (3,3,0,1) \\ \downarrow \gamma \qquad \qquad \downarrow \gamma \qquad \qquad \downarrow \gamma \\ (2,3,0,2,0,0) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftharpoons}} (1,2,0,2,0,1) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftharpoons}} (0,1,0,2,0,2) \qquad (2,3,0,2) \\ \downarrow \gamma \qquad \qquad \downarrow \gamma \qquad \qquad \downarrow \gamma \\ (1,3,0,3,0,0) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftharpoons}} (0,2,0,3,0,1) \qquad (1,3,0,3) \\ \downarrow \gamma \qquad \qquad \downarrow \gamma \qquad \qquad \downarrow \gamma \\ (0,3,0,4,0,0) \qquad (0,3,0,4)$$

abstract

Applying disimulation to competitive innibition
$$(4,3,0,0,0,0,0) \overset{\beta_1}{\underset{\beta-1}{\rightleftharpoons}} (3,2,0,0,0,1) \overset{\beta_1}{\underset{\beta-1}{\rightleftharpoons}} (2,1,0,0,0,2) \overset{\beta_1}{\underset{\beta-1}{\rightleftharpoons}} (1,0,0,0,0,3) \qquad (4,3,0,0) \\ \downarrow \gamma \qquad \downarrow \gamma \qquad \downarrow \gamma \qquad \downarrow \gamma \qquad \downarrow \gamma \\ (3,3,0,1,0,0) \overset{\beta_1}{\underset{\beta-1}{\rightleftharpoons}} (2,2,0,1,0,1) \overset{\beta_1}{\underset{\beta-1}{\rightleftharpoons}} (1,1,0,1,0,2) \overset{\beta_1}{\underset{\beta-1}{\rightleftharpoons}} (0,0,0,1,0,3) \qquad (3,3,0,1) \\ \downarrow \gamma \qquad \qquad \downarrow \gamma \qquad \qquad \downarrow \gamma \\ (2,3,0,2,0,0) \overset{\beta_1}{\underset{\beta-1}{\rightleftharpoons}} (1,2,0,2,0,1) \overset{\beta_1}{\underset{\beta}{\rightleftharpoons}} (0,1,0,2,0,2) \qquad (2,3,0,2) \\ \downarrow \gamma \qquad \qquad \downarrow \gamma \qquad \qquad \downarrow \gamma \\ (1,3,0,3,0,0) \overset{\beta_1}{\underset{\beta}{\rightleftharpoons}} (0,2,0,3,0,1) \qquad (1,3,0,3) \\ \downarrow \gamma \qquad \qquad \downarrow \gamma \qquad \qquad \downarrow \gamma$$

abstract

Applying bisimulation to competitive inhibition
$$(4,3,0,0,0,0,0) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftarrows}} (3,2,0,0,0,0,1) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftarrows}} (2,1,0,0,0,0,2) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftarrows}} (1,0,0,0,0,3) \qquad (4,3,0,0) \\ \downarrow \gamma \qquad \downarrow \gamma \\ (3,3,0,1,0,0) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftarrows}} (2,2,0,1,0,1) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftarrows}} (1,1,0,1,0,2) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftarrows}} (0,0,0,1,0,3) \qquad (3,3,0,1) \\ \downarrow \gamma \qquad \downarrow \gamma \qquad \downarrow \gamma \qquad \downarrow \gamma \\ (2,3,0,2,0,0) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftarrows}} (1,2,0,2,0,1) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftarrows}} (0,1,0,2,0,2) \qquad (2,3,0,2) \\ \downarrow \gamma \qquad \downarrow \gamma \qquad \downarrow \gamma \qquad \downarrow \gamma \\ (1,3,0,3,0,0) \overset{\beta_1}{\underset{\beta_{-1}}{\rightleftarrows}} (0,2,0,3,0,1) \qquad (1,3,0,3) \\ \downarrow \gamma \qquad \downarrow \gamma \qquad \downarrow \gamma \qquad \downarrow \gamma \\ (0,3,0,4,0,0) \qquad (0,3,0,4)$$

abstract

• first let $\mathcal{A}_f = \{\alpha_1, \alpha_{-1}, \beta_1, \beta_{-1}\}$

- first let $A_f = \{\alpha_1, \alpha_{-1}, \beta_1, \beta_{-1}\}$
- define \mathcal{R} as

$$\left\{ \left((n-(k+j), m-(j+l), p-l, k, l, j), (n-k, m, p, k) \right) \mid 0 \le k \le n, \ 0 \le j \le \min\{m, n-k\}, \ 0 \le l \le p, \ j+l \le m \right\}$$

- first let $A_f = \{\alpha_1, \alpha_{-1}, \beta_1, \beta_{-1}\}$
- define \mathcal{R} as

$$\left\{ \left((n-(k+j), m-(j+l), p-l, \frac{k}{k}, l, j), (n-k, m, p, \frac{k}{k}) \right) \mid 0 \le k \le n, \ 0 \le j \le \min\{m, n-k\}, \ 0 \le l \le p, \ j+l \le m \right\}$$

- first let $\mathcal{A}_f = \{\alpha_1, \alpha_{-1}, \beta_1, \beta_{-1}\}$
- ightharpoonup define \mathcal{R} as

$$\left\{ \left((n-(k+j), m-(j+l), p-l, k, l, j), (n-k, m, p, k) \right) \mid 0 \le k \le n, \ 0 \le j \le \min\{m, n-k\}, \ 0 \le l \le p, \ j+l \le m \right\}$$

check this is a fast-slow bisimulation

- first let $\mathcal{A}_f = \{\alpha_1, \alpha_{-1}, \beta_1, \beta_{-1}\}$
- ightharpoonup define \mathcal{R} as

$$\left\{ \left((n-(k+j), m-(j+l), p-l, k, l, j), (n-k, m, p, k) \right) \mid 0 \le k \le n, \ 0 \le j \le \min\{m, n-k\}, \ 0 \le l \le p, \ j+l \le m \right\}$$

- check this is a fast-slow bisimulation
 - ightharpoonup check each γ transition
 - check each fast transition

ъ,

- first let $A_f = \{\alpha_1, \alpha_{-1}, \beta_1, \beta_{-1}\}$
- \triangleright define \mathcal{R} as

$$\left\{ \left((n-(k+j), m-(j+l), p-l, k, l, j), (n-k, m, p, k) \right) \mid 0 \le k \le n, \ 0 \le j \le \min\{m, n-k\}, \ 0 \le l \le p, \ j+l \le m \right\}$$

- check this is a fast-slow bisimulation
 - check each γ transition
 - check each fast transition.
- lots of regularity, exploit parametricity

- first let $\mathcal{A}_f = \{\alpha_1, \alpha_{-1}, \beta_1, \beta_{-1}\}$
- ightharpoonup define \mathcal{R} as

$$\left\{ \left((n-(k+j), m-(j+l), p-l, k, l, j), (n-k, m, p, k) \right) \mid 0 \le k \le n, \ 0 \le j \le \min\{m, n-k\}, \ 0 \le l \le p, \ j+l \le m \right\}$$

- check this is a fast-slow bisimulation
 - ightharpoonup check each γ transition
 - check each fast transition
- ▶ lots of regularity, exploit parametricity

can this be done more efficiently by just checking slow reactions?

ð

Slow bisimilarity

Slow bisimilarity

▶ slow bisimilarity, $P \approx_{\mathcal{A}_s} Q$ if for all $\alpha \in \mathcal{A}_s$ whenever

▶ slow bisimilarity, $P \approx_{\mathcal{A}_s} Q$ if for all $\alpha \in \mathcal{A}_s$ whenever

1.
$$P \xrightarrow{\alpha,w_{\Delta}}_{c} P'$$
 then $Q (\twoheadrightarrow)^{*} \xrightarrow{\alpha,w_{\Delta}}_{c} (\twoheadrightarrow)^{*} Q'$ and $P' \approx_{\mathcal{A}_{s}} Q'$

2.
$$Q \xrightarrow{\alpha, w_{\Delta}}_{c} Q'$$
 then $P (\twoheadrightarrow)^{*} \xrightarrow{\alpha, w_{\Delta}}_{c} (\twoheadrightarrow)^{*} P'$ and $P' \approx_{\mathcal{A}_{s}} Q'$

Vashti Galpin

ð

▶ slow bisimilarity, $P \approx_{\mathcal{A}_s} Q$ if for all $\alpha \in \mathcal{A}_s$ whenever

1.
$$P \xrightarrow{\alpha, w_{\Delta}}_{c} P'$$
 then $Q (\twoheadrightarrow)^{*} \xrightarrow{\alpha, w_{\Delta}}_{c} (\twoheadrightarrow)^{*} Q'$ and $P' \approx_{A_{s}} Q'$
2. $Q \xrightarrow{\alpha, w_{\Delta}}_{c} Q'$ then $P (\twoheadrightarrow)^{*} \xrightarrow{\alpha, w_{\Delta}}_{c} (\twoheadrightarrow)^{*} P'$ and $P' \approx_{A_{s}} Q'$

identify conserved, fast and slow variables by transforming stoichiometry matrix [Gómez-Uribe et al, 2008]

▶ slow bisimilarity, $P \approx_{\mathcal{A}_s} Q$ if for all $\alpha \in \mathcal{A}_s$ whenever

1.
$$P \xrightarrow{\alpha, w_{\Delta}}_{c} P'$$
 then $Q (\rightarrow)^{*} \xrightarrow{\alpha, w_{\Delta}}_{c} (\rightarrow)^{*} Q'$ and $P' \approx_{\mathcal{A}_{s}} Q'$

2.
$$Q \xrightarrow{\alpha, w_{\Delta}}_{c} Q'$$
 then $P(\rightarrow)^* \xrightarrow{\alpha, w_{\Delta}}_{c} (\rightarrow)^* P'$ and $P' \approx_{\mathcal{A}_s} Q'$

- identify conserved, fast and slow variables by transforming stoichiometry matrix [Gómez-Uribe et al, 2008]
- result about relationship between bisimulations

 M_1 has slow variables and fast variables M_2 has same slow variables, no fast variable and $\Delta_2 = \Delta_1$ $\mathcal{R} = \{((s_1, \dots, s_n, f_1, \dots, f_m), (s_1, \dots, s_n)) \mid \text{ranges for } s_i, f_i\}$ \mathcal{R} slow bisimulation $\Rightarrow \mathcal{R}$ fast-slow bisimulation.

 variables are pairwise independent linear combinations of species

- variables are pairwise independent linear combinations of species
- conserved variables are unchanged by reactions

- variables are pairwise independent linear combinations of species
- conserved variables are unchanged by reactions
- slow variables are only modified by slow reactions

- variables are pairwise independent linear combinations of species
- conserved variables are unchanged by reactions
- slow variables are only modified by slow reactions
- fast variables are modified by fast and slow reactions

- variables are pairwise independent linear combinations of species
- conserved variables are unchanged by reactions
- slow variables are only modified by slow reactions
- fast variables are modified by fast and slow reactions
- transform stoichiometry matrix to this form

$$\mathbf{Q} = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{Q}_{ss} & \mathbf{0} \\ \mathbf{Q}_{ss} & \mathbf{Q}_{ss} \end{bmatrix}$$
Columns: reaction groups: slow Rows: variables groups: some groups

Columns: reactions groups: slow, fast

groups: conserved, slow, fast

- variables are pairwise independent linear combinations of species
- conserved variables are unchanged by reactions
- slow variables are only modified by slow reactions
- fast variables are modified by fast and slow reactions
- transform stoichiometry matrix to this form

$$\mathbf{Q} = egin{bmatrix} \mathbf{0} & \mathbf{0} & \operatorname{Columns: reaction} \\ \mathbf{Q}_{ss} & \mathbf{0} & \operatorname{groups: slow} \\ \mathbf{Q}_{fs} & \mathbf{Q}_{ff} & \operatorname{groups: constant} \\ \end{bmatrix}$$

Columns: reactions groups: slow, fast

groups: conserved, slow, fast

species values can be recovered from transformed matrix

▶ how to determine classification

Variable classification (cont.)

how to determine classification
 conserved variables are simply species invariants

Variable classification (cont.)

▶ how to determine classification

conserved variables are simply species invariants

slow variables are species invariants after fast reactions are removed

Slow bisimilarity

Variable classification (cont.)

how to determine classification

conserved variables are simply species invariants

slow variables are species invariants after fast reactions are removed

use Bio-PEPA Eclipse Plug-in to discover potential variables

Slow bisimilarity

Variable classification (cont.)

how to determine classification

conserved variables are simply species invariants

slow variables are species invariants after fast reactions are removed

- use Bio-PEPA Eclipse Plug-in to discover potential variables
- choose independent variables

Variable classification (cont.)

how to determine classification

conserved variables are simply species invariants

slow variables are species invariants after fast reactions are removed

- use Bio-PEPA Eclipse Plug-in to discover potential variables
- choose independent variables
- choose sufficient fast variables so that there are the same number of variables as species

Applying classification to competitive inhibition

$$S + EI \iff S + E + I \iff SE + I \implies P + E + I$$

$$S + EI \iff S + E + I \iff SE + I \longrightarrow P + E + I$$

himolecular model

$$X_{S_T} = S + SE + P = S_0 = n$$
 conserved
 $X_{E_T} = E + EI + SE = E_0 = m$ conserved
 $X_{I_T} = EI + I = I_0 = p$ conserved
 $X_P = P = k$ slow
 $X_{EI} = EI = I$ fast
 $X_{SF} = SE = I$ fast

Applying classification to competitive inhibition (cont.)

$$S \xrightarrow{E,I} P$$

abstract model

$$S \xrightarrow{E,I} P$$

abstract model

$$X_{S'_T} = S' + P' = S_0 = n$$
 conserved
 $X_{E'} = E'_0 = m$ conserved
 $X_{I'} = I'_0 = p$ conserved
 $X_{P'} = P' = k$ slow

$$S \xrightarrow{E,I} P$$

abstract model

$$X_{S'_T} = S' + P' = S_0 = n$$
 conserved
 $X_{E'} = E'_0 = m$ conserved
 $X_{I'} = I'_0 = p$ conserved
 $X_{P'} = P' = k$ slow

ignore conserved variables as they never change

Applying classification to competitive inhibition (cont.)

$$S \xrightarrow{E,I} P$$

abstract model

$$X_{S'_{\mathcal{T}}} = S' + P' = S_0 = n$$
 conserved
 $X_{E'} = E'_0 = m$ conserved
 $X_{I'} = I'_0 = p$ conserved
 $X_{P'} = P' = k$ slow

- ignore conserved variables as they never change
- choose non-intermediate species

$$\Delta = \{P\}$$

without loss of information, states can be transformed

```
bimolecular model: (\ell_S, \ell_E, \ell_I, \ell_P, \ell_{EI}, \ell_{SE}) to (\ell_P, \ell_{EI}, \ell_{SE})
     abstract model: (\ell_{S'}, \ell_{E'}, \ell_{I'}, \ell_{P'}) to (\ell_P)
```

without loss of information, states can be transformed

bimolecular model:
$$(\ell_S, \ell_E, \ell_I, \ell_P, \ell_{EI}, \ell_{SE})$$
 to $(\ell_P, \ell_{EI}, \ell_{SE})$ abstract model: $(\ell_{S'}, \ell_{E'}, \ell_{I'}, \ell_{P'})$ to (ℓ_P)

relation \mathcal{R} was defined as

$$\left\{ \left(\left(n - (k+j), m - (j+l), p - l, \frac{k}{k}, l, j \right), \left(n - k, m, p, \frac{k}{k} \right) \right) \mid 0 \le k \le n, \ 0 \le j \le \min\{m, n - k\}, \ 0 \le l \le p, \ j + l \le m \right\}$$

without loss of information, states can be transformed

bimolecular model:
$$(\ell_S, \ell_E, \ell_I, \ell_P, \ell_{EI}, \ell_{SE})$$
 to $(\ell_P, \ell_{EI}, \ell_{SE})$ abstract model: $(\ell_{S'}, \ell_{E'}, \ell_{I'}, \ell_{P'})$ to (ℓ_P)

relation \mathcal{R} was defined as

$$\left\{ \left((n - (k+j), m - (j+l), p - l, \frac{k}{k}, l, j), (n-k, m, p, \frac{k}{k}) \right) \mid 0 \le k \le n, \ 0 \le j \le \min\{m, n-k\}, \ 0 \le l \le p, \ j+l \le m \right\}$$

 $ightharpoonup \mathcal{R}'$ is defined over the new transition system as

$$\left\{ \left(\left(\begin{matrix} k \end{matrix}, l, j \right), \left(\begin{matrix} k \end{matrix} \right) \right) \mid 0 \le k \le n, 0 \le j \le \min\{m, n-k\}, 0 \le l \le p, j+l \le m \right\}$$

Slow bisimilarity

Proof that \mathcal{R}' is a slow bisimulation

$$\blacktriangleright \text{ let } (P)_i = \{P: \uparrow (1, i)\}$$

- ▶ let $(P)_i = \{P: \uparrow (1, i)\}$
- $((k, l, j), (k)) \in \mathcal{R}'$ for $0 \le k < n, 0 \le l \le p, 0 < j \le \min\{m, n-k\}$

$$(k) \xrightarrow{\gamma,(P)_k} (k+1)$$
 matches $(k,l,j) \xrightarrow{\gamma,(P)_k} (k+1,l,j-1)$ and $v.v.$

- ▶ let $(P)_i = \{P: \uparrow (1, i)\}$
- $((k, l, j), (k)) \in \mathbb{R}'$ for $0 < k < n, 0 < l < p, 0 < j < \min\{m, n k\}$

$$(k) \xrightarrow{\gamma,(P)_k} (k+1)$$
 matches $(k,l,j) \xrightarrow{\gamma,(P)_k} (k+1,l,j-1)$ and $v.v.$

 $((k, 1, 0), (k)) \in \mathcal{R}'$ for 0 < k < n, 0 < l < p

ð

- ▶ let $(P)_i = \{P: \uparrow (1, i)\}$
- $((k, l, j), (k)) \in \mathbb{R}'$ for $0 < k < n, 0 < l < p, 0 < j < \min\{m, n k\}$

$$(k) \xrightarrow{\gamma,(P)_k} (k+1) \text{ matches } (k,l,j) \xrightarrow{\gamma,(P)_k} (k+1,l,j-1) \text{ and } v.v.$$

- $((k, 1, 0), (k)) \in \mathcal{R}'$ for 0 < k < n, 0 < l < p
 - ightharpoonup if m > p and 0 < l < p, or if m < p and 0 < l < m-1

$$(k) \xrightarrow{\gamma,(P)_k} (k+1)$$
 is matched by $(k,l,0) \rightarrow (k,l,1) \xrightarrow{\gamma,(P)_k} (k+1,l,0)$

- ▶ let $(P)_i = \{P: \uparrow (1, i)\}$
- $((k, l, j), (k)) \in \mathbb{R}'$ for $0 < k < n, 0 < l < p, 0 < j < \min\{m, n k\}$

$$(k) \xrightarrow{\gamma,(P)_k} (k+1)$$
 matches $(k,l,j) \xrightarrow{\gamma,(P)_k} (k+1,l,j-1)$ and $v.v.$

- $((k, 1, 0), (k)) \in \mathcal{R}'$ for 0 < k < n, 0 < l < p
 - ightharpoonup if m > p and 0 < l < p, or if m < p and 0 < l < m-1

$$(k) \xrightarrow{\gamma,(P)_k} (k+1)$$
 is matched by $(k,l,0) \twoheadrightarrow (k,l,1) \xrightarrow{\gamma,(P)_k} (k+1,l,0)$

ightharpoonup if m < p and l = m

$$(k) \xrightarrow{\gamma,(P)_k} (k+1)$$
 is matched by $(k,0,m) \twoheadrightarrow (k,0,m+1) \twoheadrightarrow (k,1,m+1) \xrightarrow{\gamma,(P)_k} (k+1,0,m-1)$

Equivalence between competitive inhibition models

result holds

Equivalence between competitive inhibition models

- result holds
- ▶ in \mathcal{R}' states match for slow variables: $\{((k,l,j),(k)) \mid \ldots\}$
- $\Delta_1 = \Delta_2 = \Delta$
- $\triangleright \mathcal{R}'$ is a slow bisimulation for $\{\gamma\}$

- result holds
- ▶ in \mathcal{R}' states match for slow variables: $\{((k,l,j),(k)) \mid \ldots\}$
- $\triangleright \mathcal{R}'$ is a slow bisimulation for $\{\gamma\}$
- ▶ hence \mathcal{R}' is a fast-slow bisimulation for $\{\alpha_1, \alpha_{-1}, \beta_1, \beta_{-1}\}$

Equivalence between competitive inhibition models

- result holds
- ▶ in \mathcal{R}' states match for slow variables: $\{((k,l,j),(k)) \mid \ldots\}$
- $\Delta_1 = \Delta_2 = \Delta$
- $\triangleright \mathcal{R}'$ is a slow bisimulation for $\{\gamma\}$
- ▶ hence \mathcal{R}' is a fast-slow bisimulation for $\{\alpha_1, \alpha_{-1}, \beta_1, \beta_{-1}\}$
- transformed transition system is isomorphic to the original transition system
- ▶ hence \mathcal{R} is a fast-slow bisimulation for $\{\alpha_1, \alpha_{-1}, \beta_1, \beta_{-1}\}$

- result holds
- ▶ in \mathcal{R}' states match for slow variables: $\{((k,l,j),(k)) \mid \ldots\}$
- $ightharpoonup \mathcal{R}'$ is a slow bisimulation for $\{\gamma\}$
- ▶ hence \mathcal{R}' is a fast-slow bisimulation for $\{\alpha_1, \alpha_{-1}, \beta_1, \beta_{-1}\}$
- transformed transition system is isomorphic to the original transition system
- ▶ hence \mathcal{R} is a fast-slow bisimulation for $\{\alpha_1, \alpha_{-1}, \beta_1, \beta_{-1}\}$
- \blacktriangleright hence M and M' are fast-slow bisimilar

ď

Conclusions and further work

equivalence motivated by quasi-steady-state assumption

Vashti Galpin

Conclusions

Conclusions and further work

- equivalence motivated by quasi-steady-state assumption
- abstraction from fast reactions, time-scale difference

Conclusions and further work

- equivalence motivated by quasi-steady-state assumption
- abstraction from fast reactions, time-scale difference
- simpler equivalence can be used on certain models

Vashti Galpin

Conclusions

Conclusions and further work

- equivalence motivated by quasi-steady-state assumption
- abstraction from fast reactions, time-scale difference
- simpler equivalence can be used on certain models
- use of invariants for variable classification

Conclusions and further work

- equivalence motivated by quasi-steady-state assumption
- abstraction from fast reactions, time-scale difference
- simpler equivalence can be used on certain models
- use of invariants for variable classification
- currently semi-quantitative, quantitative as further work

Vashti Galpin

Conclusions

Conclusions and further work

- equivalence motivated by quasi-steady-state assumption
- abstraction from fast reactions, time-scale difference
- simpler equivalence can be used on certain models
- use of invariants for variable classification
- currently semi-quantitative, quantitative as further work
- investigate application to other process algebras

Thank you

Vashti Galpin

A semi-quantitative equivalence for abstracting from fast reactions

ð

Conclusions

 stochastic process algebra for modelling biological systems [Ciocchetta and Hillston 2008]

- stochastic process algebra for modelling biological systems [Ciocchetta and Hillston 2008]
- ▶ different analyses: ODEs, CTMCs, stochastic simulation

- stochastic process algebra for modelling biological systems
 [Ciocchetta and Hillston 2008]
- different analyses: ODEs, CTMCs, stochastic simulation
- semantic equivalences capture notion of same behaviour

Vashti Galpin

- stochastic process algebra for modelling biological systems [Ciocchetta and Hillston 2008]
- different analyses: ODEs, CTMCs, stochastic simulation
- semantic equivalences capture notion of same behaviour
- can base on ideas from biology

Conclusions

Bio-PFPA

- stochastic process algebra for modelling biological systems [Ciocchetta and Hillston 2008]
- different analyses: ODEs, CTMCs, stochastic simulation
- semantic equivalences capture notion of same behaviour
- can base on ideas from biology
- how to decide which behaviours are the same?
 - 1. different abstractions of the same model discretisation
 - 2. ideas from biology fast/slow reactions, grouping of species
 - 3. existing equivalences PEPA, bisimulation-based

__

Conclusions

Bio-PEPA syntax

two-level syntax

Bio-PEPA syntax

- two-level syntax
- sequential component, species

$$S ::= (\alpha, \kappa) \text{ op } S \mid S + S$$

op
$$\in \{\uparrow, \downarrow, \oplus, \ominus, \odot\}$$

- two-level syntax
- sequential component, species

$$S ::= (\alpha, \kappa) \text{ op } S \mid S + S \qquad \text{op } \in \{\uparrow, \downarrow, \oplus, \ominus, \odot\}$$

- lacktriangleright lpha action, reaction name, κ stoichiometric coefficient
- ↑ product, ↓ reactant
- ▶ ⊕ activator, ⊖ inhibitor, ⊙ generic modifier

ъ,

Bio-PEPA syntax

- two-level syntax
- sequential component, species

$$S ::= (\alpha, \kappa) \text{ op } S \mid S + S \quad \text{op } \in \{\uparrow, \downarrow, \oplus, \ominus, \odot\}$$

- \triangleright α action, reaction name, κ stoichiometric coefficient
- ▶ ↑ product, ↓ reactant
- ⊕ activator, ⊖ inhibitor, ⊙ generic modifier

- two-level syntax
- sequential component, species

$$S ::= (\alpha, \kappa) \text{ op } S \mid S + S \qquad \text{ op } \in \{\uparrow, \downarrow, \oplus, \ominus, \odot\}$$

- \triangleright α action, reaction name, κ stoichiometric coefficient
- ↑ product, ↓ reactant
- → activator,
 → inhibitor,
 → generic modifier
- model component, system

$$P ::= S(\ell) \mid P \bowtie_{L} P$$

- two-level syntax
- sequential component, species

$$S ::= (\alpha, \kappa) \text{ op } S \mid S + S \qquad \text{ op } \in \{\uparrow, \downarrow, \oplus, \ominus, \odot\}$$

- \triangleright α action, reaction name, κ stoichiometric coefficient
- ↑ product, ↓ reactant
- → activator,
 → inhibitor,
 → generic modifier
- model component, system

$$P ::= S(\ell) \mid P \bowtie_{\iota} P$$

- two-level syntax
- sequential component, species

$$S ::= (\alpha, \kappa) \text{ op } S \mid S + S \qquad \text{ op } \in \{\uparrow, \downarrow, \oplus, \ominus, \odot\}$$

- \triangleright α action, reaction name, κ stoichiometric coefficient
- ↑ product, ↓ reactant
- → activator,
 → inhibitor,
 → generic modifier
- model component, system

$$P ::= S(\ell) \mid P \bowtie P$$

Bio-PEPA syntax

- two-level syntax
- sequential component, species

$$S ::= (\alpha, \kappa) \text{ op } S \mid S + S \qquad \text{ op } \in \{\uparrow, \downarrow, \oplus, \ominus, \odot\}$$

- \triangleright α action, reaction name, κ stoichiometric coefficient
- ↑ product, ↓ reactant
- ▶ ⊕ activator, ⊖ inhibitor, ⊙ generic modifier
- model component, system

$$P ::= S(\ell) \mid P \bowtie_{L} P$$

work with a more constrained form

well-defined Bio-PEPA species

$$C \stackrel{\text{def}}{=} (\alpha_1, \kappa_1) \circ p_1 C + \ldots + (\alpha_n, \kappa_n) \circ p_n C$$
 with all α_i 's distinct

well-defined Bio-PEPA species

$$C \stackrel{\text{\tiny def}}{=} (\alpha_1, \kappa_1) \operatorname{op}_1 C + \ldots + (\alpha_n, \kappa_n) \operatorname{op}_n C$$
 with all α_i 's distinct

well-defined Bio-PEPA species

$$C \stackrel{\text{def}}{=} (\alpha_1, \kappa_1) \operatorname{op}_1 C + \ldots + (\alpha_n, \kappa_n) \operatorname{op}_n C$$
 with all α_i 's distinct

well-defined Bio-PEPA species

$$C \stackrel{\text{\tiny def}}{=} (\alpha_1, \kappa_1) \operatorname{op}_1 C + \ldots + (\alpha_n, \kappa_n) \operatorname{op}_n C$$
 with all α_i 's distinct

well-defined Bio-PEPA model

$$P \stackrel{\text{def}}{=} C_1(\ell_1) \bowtie_{\mathcal{L}_1} \dots \bowtie_{\mathcal{L}_{m-1}} C_m(\ell_m)$$
 with all C_i 's distinct

well-defined Bio-PEPA species

$$C \stackrel{\text{\tiny def}}{=} (\alpha_1, \kappa_1) \operatorname{op}_1 C + \ldots + (\alpha_n, \kappa_n) \operatorname{op}_n C$$
 with all α_i 's distinct

well-defined Bio-PEPA model

$$P \stackrel{\text{def}}{=} C_1(\ell_1) \bowtie_{\mathcal{L}_1} \dots \bowtie_{\mathcal{L}_{m-1}} C_m(\ell_m)$$
 with all C_i 's distinct

well-defined Bio-PEPA species

$$C \stackrel{\text{\tiny def}}{=} (\alpha_1, \kappa_1) \operatorname{op}_1 C + \ldots + (\alpha_n, \kappa_n) \operatorname{op}_n C$$
 with all α_i 's distinct

well-defined Bio-PEPA model

$$P \stackrel{\text{def}}{=} C_1(\ell_1) \bowtie_{\mathcal{L}_1} \ldots \bowtie_{\mathcal{L}_{m-1}} C_m(\ell_m)$$
 with all C_i 's distinct

well-defined Bio-PEPA system

$$\mathcal{P} = \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, Comp, P \rangle$$

well-defined Bio-PEPA species

$$C \stackrel{\text{\tiny def}}{=} (\alpha_1, \kappa_1) \operatorname{op}_1 C + \ldots + (\alpha_n, \kappa_n) \operatorname{op}_n C$$
 with all α_i 's distinct

well-defined Bio-PEPA model

$$P \stackrel{\text{def}}{=} C_1(\ell_1) \bowtie_{\mathcal{L}_1} \ldots \bowtie_{\mathcal{L}_{m-1}} C_m(\ell_m)$$
 with all C_i 's distinct

well-defined Bio-PEPA system

$$\mathcal{P} = \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, Comp, P \rangle$$

- well-defined Bio-PEPA model component with levels
 - minimum and maximum concentrations/number of molecules
 - fix step size, convert to minimum and maximum levels
 - \triangleright species S: 0 to N_S levels