
SAICSIT 2000 Algebraic results for structured operational semantics 1

Algebraic results for structured
operational semantics

Vashti Galpin

vashti@cs.wits.ac.za

http://www.cs.wits.ac.za/~vashti

Department of Computer Science

University of the Witwatersrand

SAICSIT 2000 Algebraic results for structured operational semantics 2

Introduction

• process algebras

– many different variants

– CCS (Calculus of Communicating Systems) and extensions

– three components

∗ syntax – description of processes

∗ structured operational semantics – behaviour of processes as

labelled transition system

∗ semantic equivalences – bisimulation

• what is the relationship between different process algebras?

• can use extended tyft/tyxt format to compare

• how conditions for comparison results relate to algebras used to

represent process algebra labels



SAICSIT 2000 Algebraic results for structured operational semantics 3

Outline

• formats – metatheory of process algebras

• extended tyft/tyxt format

• using the format to express process algebras

• comparison results for this format

• summing congruences and algebras

• ensuring conditions for results

SAICSIT 2000 Algebraic results for structured operational semantics 4

Formats

• metatheory of process algebra

– consider form of operational semantics rules

– prove general results that hold when rules have that form

• congruence, conservative extension, axiomatisation, etc.

• extended tyft/tyxt format

– treats labels of transitions syntactically, not schematically

– comparison of process algebra semantic equivalences



SAICSIT 2000 Algebraic results for structured operational semantics 5

Notation and definitions

• many-sorted signature Σ = (S ∪ {P}, F )

– S – set of sorts

– P – sort of processes

– F – set of operators, f : s1, . . . , sn → s

– suitable – only operators with range P take arguments of sort P

• terms over Σ – open T(Σ), closed T(Σ)

• extended transition system specification (eTSS) – E = (Σ, R)

– R – set of rules with specific form

{pi
λi−→ p′i | i ∈ I}
p

λ−→ p′

I an index set, pi, p
′
i, p, p

′ ∈ T(Σ)P, and λi, λ ∈ T(Σ)S for i ∈ I.

SAICSIT 2000 Algebraic results for structured operational semantics 6

Extended tyft/tyxt format

• additional conditions on form of rules

• bisimulation

– use congruence over label terms to match in terms of meaning

– informally, two terms from E are bisimilar up to ≡ (t ∼E
≡ u) if

1. whenever t
α−→ t′ there exists u′ and β such that u

β−→ u′, α ≡ β

and t′ ∼E
≡ u′

2. whenever u
α−→ u′ there exists t′ and β such that t

β−→ t′, α ≡ β

and t′ ∼E
≡ u′

where t, t′, u, u′ ∈ T(Σ)P and α, β ∈ T(Σ)S



SAICSIT 2000 Algebraic results for structured operational semantics 7

Expressing process algebras in extended tyft/tyxt

format

• Σ-algebra

– non-empty carrier sets for each sort in S

– function for each operator in F , mapping from the appropriate

carrier sets to the appropriate carrier set

• unique homomorphism iA from T(Σ) to A

• iA induces congruence ≡A over T(Σ)S

• choose Σ-algebra A to represent labels

• use congruence ≡A for bisimulation

SAICSIT 2000 Algebraic results for structured operational semantics 8

Results for extended tyft/tyxt format

• congruence – bisimulation is a congruence for all operators defined

in the format

• sums of eTSSs – E0 ⊕ E1

– sums of signatures – Σ0 ⊕ Σ1

– union of rule sets – R0 ∪R1

– sum of congruences – ≡A0 ⊕≡A1

• what is the relationship between

∼E0
≡A0

and ∼E0⊕E1
≡A0

⊕≡A1
?



SAICSIT 2000 Algebraic results for structured operational semantics 9

Results for extended tyft/tyxt format (cont.)

• abstracting extension

∼E0
≡A0

⊆ ∼E0⊕E1
≡A0

⊕≡A1

whenever

– E0 pure, label-pure; E1 well-founded; E0 ⊕ E1 type-0

– ≡A0 ⊕≡A1 is compatible with respect to E0 ⊕ E1

• refining extension

∼E0
≡A0

⊇ ∼E0⊕E1
≡A0

⊕≡A1

whenever

– E0 pure, label-pure; E0 ⊕ E1 type-1

– ≡A0 ⊕≡A1 is conservative with respect to ≡A0

SAICSIT 2000 Algebraic results for structured operational semantics 10

More definitions

• ≡A0 ⊕≡A1 compatible with respect to E0 ⊕ E1

for certain label terms that appear in the rules, it is possible to find

a substitution with certain properties

• ≡A0 ⊕≡A1 conservative with respect to ≡A0

on the closed terms T(Σ0), ≡A0 ⊕≡A1 identifies the same terms as

≡A0

• A0 ⊕A1 – sum of algebras

take sorted union of A0 and A1 when

1. the carrier sets are identical for sorts in both Σ0 ∩ Σ1

2. the functions representing operators in F0 ∩ F1 are equal



SAICSIT 2000 Algebraic results for structured operational semantics 11

Questions

1. Is A0 ⊕A1 a (Σ0 ⊕ Σ1)-algebra?

2. Is ≡A0⊕A1 the same as ≡A0 ⊕≡A1?

3. Is ≡A0 ⊕≡A1 conservative with respect to ≡A0?

4. Is ≡A0 ⊕≡A1 compatible with E0 ⊕ E1?

5. Are there general conditions that ensure compatibility?

SAICSIT 2000 Algebraic results for structured operational semantics 12

Answers

1. A0 ⊕A1 is a (Σ0 ⊕ Σ1)-algebra always

2. Under condition of sort-similarity

3. Under condition of sort-similarity

4. Under condition of sort-similarity

5. Under conditions on functions representing the operators that ap-

pears in the terms for which compatibility is required



SAICSIT 2000 Algebraic results for structured operational semantics 13

Sort-similarity

• Σ0 ⊕ Σ1 is sort-similar if for each s ∈ S0 ∩ S1, f ∈ F0 ∪ F1 with

f : s1, . . . , sn → s implies f ∈ F0 ∩ F1

• this implies that the closed terms T(Σ0 ⊕ Σ1) = T(Σ0) ∪ T(Σ1),

namely no new terms are formed by summing the eTSSs

• this also implies that any closed term with a sort from S0∩S1 must

be in T(Σ0) ∩T(Σ1)

SAICSIT 2000 Algebraic results for structured operational semantics 14

Proofs

• ≡A0⊕A1 = ≡A0 ⊕≡A1

– use sort-similarity to show that iA0⊕A1 = iA0

– ⇒: straightforward

– ⇐: induction on the definition of ≡A0 ⊕≡A1

• ≡A0 ⊕≡A1 is conservative with respect to ≡A0

– use the fact that iA0⊕A1 = iA0

• ≡A0 ⊕≡A1 is compatible with E0 ⊕ E1

– s ∈ (S0 ∪ S1)− (S0 ∩ S1) – by conservativity

– s ∈ (S0 ∩ S1) – use the fact that iA0⊕A1 = iA0



SAICSIT 2000 Algebraic results for structured operational semantics 15

Conclusion

• existing results for extended tyft/tyxt format for semantic equiva-

lence comparison

• conditions on algebras used to represent process algebra labels

• under condition of sort-similarity, can work with equivalence in-

duced by sum of algebras

• general conditions under which compatibility can be achieved


