Algebraic results for structured operational semantics

Vashti Galpin

vashti@cs.wits.ac.za
http://www.cs.wits.ac.za/~vashti

Department of Computer Science University of the Witwatersrand

SAICSIT 2000

Algebraic results for structured operational semantics

2

Introduction

- process algebras
 - many different variants
 - CCS (Calculus of Communicating Systems) and extensions
 - three components
 - * syntax description of processes
 - * structured operational semantics behaviour of processes as labelled transition system
 - * semantic equivalences bisimulation
- what is the relationship between different process algebras?
- can use extended *tyft/tyxt* format to compare
- how conditions for comparison results relate to algebras used to represent process algebra labels

Outline

- formats metatheory of process algebras
- extended tyft/tyxt format
- using the format to express process algebras
- comparison results for this format
- summing congruences and algebras
- ensuring conditions for results

SAICSIT 2000

Algebraic results for structured operational semantics

Formats

- metatheory of process algebra
 - consider form of operational semantics rules
 - prove general results that hold when rules have that form
- congruence, conservative extension, axiomatisation, etc.
- extended tyft/tyxt format
 - treats labels of transitions syntactically, not schematically
 - comparison of process algebra semantic equivalences

4

Notation and definitions

- many-sorted signature $\Sigma = (S \cup \{\mathsf{P}\}, F)$
 - -S set of sorts
 - P sort of processes
 - F set of operators, $f: s_1, \ldots, s_n \to s$
 - suitable only operators with range P take arguments of sort P
- terms over Σ open $\mathbb{T}(\Sigma)$, closed $\mathbf{T}(\Sigma)$
- extended transition system specification (eTSS) $\mathcal{E} = (\Sigma, R)$
 - R set of rules with specific form

$$\frac{\{p_i \xrightarrow{\lambda_i} p'_i \mid i \in I\}}{p \xrightarrow{\lambda} p'}$$

I an index set, $p_i, p'_i, p, p' \in \mathbb{T}(\Sigma)_{\mathsf{P}}$, and $\lambda_i, \lambda \in \mathbb{T}(\Sigma)_S$ for $i \in I$.

SAICSIT 2000

Extended tyft/tyxt format

- additional conditions on form of rules
- bisimulation
 - use congruence over label terms to match in terms of meaning
 - informally, two terms from \mathcal{E} are bisimilar up to $\equiv (t \sim_{\equiv}^{\mathcal{E}} u)$ if
 - 1. whenever $t \xrightarrow{\alpha} t'$ there exists u' and β such that $u \xrightarrow{\beta} u', \alpha \equiv \beta$ and $t' \sim_{\equiv}^{\mathcal{E}} u'$
 - 2. whenever $u \xrightarrow{\alpha} u'$ there exists t' and β such that $t \xrightarrow{\beta} t'$, $\alpha \equiv \beta$ and $t' \sim_{\equiv}^{\mathcal{E}} u'$
 - where $t, t', u, u' \in \mathbf{T}(\Sigma)_{\mathsf{P}}$ and $\alpha, \beta \in \mathbf{T}(\Sigma)_S$

6

Expressing process algebras in extended tyft/tyxt format

- Σ -algebra
 - non-empty carrier sets for each sort in S
 - function for each operator in F, mapping from the appropriate carrier sets to the appropriate carrier set
- unique homomorphism $i_{\mathcal{A}}$ from $\mathbf{T}(\Sigma)$ to \mathcal{A}
- $i_{\mathcal{A}}$ induces congruence $\equiv_{\mathcal{A}}$ over $\mathbf{T}(\Sigma)_S$
- choose Σ -algebra \mathcal{A} to represent labels
- use congruence $\equiv_{\mathcal{A}}$ for bisimulation

SAICSIT 2000

Algebraic results for structured operational semantics

8

Results for extended *tyft/tyxt* format

- congruence bisimulation is a congruence for all operators defined in the format
- sums of $eTSSs \mathcal{E}_0 \oplus \mathcal{E}_1$
 - sums of signatures $\Sigma_0 \oplus \Sigma_1$
 - union of rule sets $-R_0 \cup R_1$
 - sum of congruences $-\equiv_{\mathcal{A}_0} \oplus \equiv_{\mathcal{A}_1}$
- what is the relationship between

$$\sim_{\equiv_{\mathcal{A}_0}}^{\mathcal{E}_0}$$
 and $\sim_{\equiv_{\mathcal{A}_0}\oplus\equiv_{\mathcal{A}_1}}^{\mathcal{E}_0\oplus\mathcal{E}_1}$?

Results for extended tyft/tyxt format (cont.)

• abstracting extension

$$\sim_{\equiv_{\mathcal{A}_0}}^{\mathcal{E}_0} \subseteq \sim_{\equiv_{\mathcal{A}_0}\oplus\equiv_{\mathcal{A}_1}}^{\mathcal{E}_0\oplus\mathcal{E}_1}$$

whenever

- \mathcal{E}_0 pure, label-pure; \mathcal{E}_1 well-founded; $\mathcal{E}_0 \oplus \mathcal{E}_1$ type-0
- $-\equiv_{\mathcal{A}_0} \oplus \equiv_{\mathcal{A}_1}$ is compatible with respect to $\mathcal{E}_0 \oplus \mathcal{E}_1$
- refining extension

$$\sim_{\equiv_{\mathcal{A}_0}}^{\mathcal{E}_0} \supseteq \sim_{\equiv_{\mathcal{A}_0}\oplus_{\equiv_{\mathcal{A}_1}}}^{\mathcal{E}_0\oplus_{\mathcal{E}_1}}$$

whenever

- \mathcal{E}_0 pure, label-pure; $\mathcal{E}_0 \oplus \mathcal{E}_1$ type-1
- $-\equiv_{\mathcal{A}_0} \oplus \equiv_{\mathcal{A}_1}$ is **conservative** with respect to $\equiv_{\mathcal{A}_0}$

SAICSIT 2000

Algebraic results for structured operational semantics

More definitions

• $\equiv_{\mathcal{A}_0} \oplus \equiv_{\mathcal{A}_1}$ compatible with respect to $\mathcal{E}_0 \oplus \mathcal{E}_1$

for certain label terms that appear in the rules, it is possible to find a substitution with certain properties

- $\equiv_{\mathcal{A}_0} \oplus \equiv_{\mathcal{A}_1}$ conservative with respect to $\equiv_{\mathcal{A}_0}$ on the closed terms $\mathbf{T}(\Sigma_0), \equiv_{\mathcal{A}_0} \oplus \equiv_{\mathcal{A}_1}$ identifies the same terms as $\equiv_{\mathcal{A}_0}$
- A₀ ⊕ A₁ sum of algebras take sorted union of A₀ and A₁ when
 1. the carrier sets are identical for sorts in both Σ₀ ∩ Σ₁
 2. the functions representing operators in F₀ ∩ F₁ are equal

10

Questions

- 1. Is $\mathcal{A}_0 \oplus \mathcal{A}_1$ a $(\Sigma_0 \oplus \Sigma_1)$ -algebra?
- 2. Is $\equiv_{\mathcal{A}_0 \oplus \mathcal{A}_1}$ the same as $\equiv_{\mathcal{A}_0} \oplus \equiv_{\mathcal{A}_1}$?
- 3. Is $\equiv_{\mathcal{A}_0} \oplus \equiv_{\mathcal{A}_1}$ conservative with respect to $\equiv_{\mathcal{A}_0}$?
- 4. Is $\equiv_{\mathcal{A}_0} \oplus \equiv_{\mathcal{A}_1}$ compatible with $\mathcal{E}_0 \oplus \mathcal{E}_1$?
- 5. Are there general conditions that ensure compatibility?

SAICSIT 2000

Algebraic results for structured operational semantics

12

Answers

- 1. $\mathcal{A}_0 \oplus \mathcal{A}_1$ is a $(\Sigma_0 \oplus \Sigma_1)$ -algebra always
- 2. Under condition of sort-similarity
- 3. Under condition of sort-similarity
- 4. Under condition of sort-similarity
- 5. Under conditions on functions representing the operators that appears in the terms for which compatibility is required

Sort-similarity

- $\Sigma_0 \oplus \Sigma_1$ is **sort-similar** if for each $s \in S_0 \cap S_1$, $f \in F_0 \cup F_1$ with $f: s_1, \ldots, s_n \to s$ implies $f \in F_0 \cap F_1$
- this implies that the closed terms $\mathbf{T}(\Sigma_0 \oplus \Sigma_1) = \mathbf{T}(\Sigma_0) \cup \mathbf{T}(\Sigma_1)$, namely no new terms are formed by summing the eTSSs
- this also implies that any closed term with a sort from S₀ ∩ S₁ must be in T(Σ₀) ∩ T(Σ₁)

SAICSIT 2000

Algebraic results for structured operational semantics

14

Proofs

- $\equiv_{\mathcal{A}_0 \oplus \mathcal{A}_1} = \equiv_{\mathcal{A}_0} \oplus \equiv_{\mathcal{A}_1}$
 - use sort-similarity to show that $i_{\mathcal{A}_0 \oplus \mathcal{A}_1} = i_{\mathcal{A}_0}$
 - \Rightarrow : straightforward
 - \Leftarrow : induction on the definition of $\equiv_{\mathcal{A}_0} \oplus \equiv_{\mathcal{A}_1}$
- $\equiv_{\mathcal{A}_0} \oplus \equiv_{\mathcal{A}_1}$ is conservative with respect to $\equiv_{\mathcal{A}_0}$ - use the fact that $i_{\mathcal{A}_0 \oplus \mathcal{A}_1} = i_{\mathcal{A}_0}$
- $\equiv_{\mathcal{A}_0} \oplus \equiv_{\mathcal{A}_1}$ is compatible with $\mathcal{E}_0 \oplus \mathcal{E}_1$
 - $-s \in (S_0 \cup S_1) (S_0 \cap S_1)$ by conservativity
 - $-s \in (S_0 \cap S_1)$ use the fact that $i_{\mathcal{A}_0 \oplus \mathcal{A}_1} = i_{\mathcal{A}_0}$

Conclusion

- existing results for extended tyft/tyxt format for semantic equivalence comparison
- conditions on algebras used to represent process algebra labels
- under condition of sort-similarity, can work with equivalence induced by sum of algebras
- general conditions under which compatibility can be achieved