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Abstract

This paper presents algebraic results that are important for the extendedtyft/tyxt format [12, 13] which can be used to
describe many different process algebras. This format is based on a many-sorted signature which permits both processes
and labels to be treated syntactically. Existing results for this format permit the comparison of process algebra semantic
equivalences by forming the sum of two transition system specifications and imposing certain conditions. The results
presented in this paper involve the summing of congruences that model the actual process algebra labels, and determine
under what conditions these congruences have important properties such as compatibility and conservativity. The aim of
this paper is to show that the notion of sort-similarity on the sum of signatures is sufficient for the sum of the congruences
induced by each label algebra to be the same as the congruence induced by the summed label algebras. Additionally,
sort-similarity is sufficient for compatibility and conservativity when summing. Finally, conditions on the label algebra are
given that ensure compatibility.
Keywords: extendedtyft/tyxt format, many-sorted, comparison of semantic equivalences, sort-similar, process algebra,
bisimulation, operational semantics
Computing Review Categories:D.3.1, F.1.2, F.3.2, F.4.3

1 Introduction

This paper focusses on algebraic results which are impor-
tant for the metatheory of process algebras; namely the the-
ory that considers the general form of rules that make up
the structured operational semantics [19] that are used to
define process algebras.

Process algebras provide mathematical models of con-
current computations. A process algebra, in the sense of
CCS (Calculus of Communicating Systems) [18], consists
of three major components

Syntax This provides a language to describe concur-
rent processes and comprises a number of operators
and actions (labels). These operators represent paral-
lelism, communication, non-determinism, hiding, etc;
and the actions represent the visible behaviour of the
processes. The syntax is usually expressed in BNF, but
can also be expressed by the signature of an algebra.
Processes can be constructed from the BNF grammar
or described by the term algebra of the signature. For
example,a.b.0 + b.a.0 is the process that has a choice
between performing ana action followed by ab action,
or ab action followed by ana action, anda.0 | b.0 is
the process that can perform ana action and ab action
in any order.

Operational semanticsThe behaviour of processes is
represented by a labelled transition system. Struc-
tured operational semantics given in the form of rules,
describe which actions can occur for each operator.

These rules are used to construct a proof that a par-
ticular transition can occur in the labelled transition
system. This proof involves the deduction of a new
transition from existing transitions. A transition such
asa.b.0 + b.a.0 a−→ b.0 describes the ability of the pro-
cess to perform the actiona and become the process
that can perform ab action. The processa.0 | b.0 can
perform ab action and become the process that can
only perform ana action; this is described by the tran-
sitiona.0 | b.0 b−→ a.0 | 0.

Semantic equivalencesThese are equivalence relations
(which can be congruences with respect to the oper-
ators of the process algebra) which relate processes
that have the same behaviour, for some notion of be-
haviour. An example of an equivalence is bisimulation
[18] which requires that a transition by one process can
be matched by a similar transition by the other process
andvice versa, and that the resulting processes have
this same property. Bisimulation equatesa.0 | b.0 and
a.b.0 + b.a.0.

Many process algebras have been proposed to model with
different aspects of concurrent behaviour – some exam-
ples are CCS with locations [6], CCS with local and global
causes [15], CCS with causalities [8], multiprocessor CCS
[16] and pomset CCS [7].

A description of the form taken by the rules of the op-
erational semantics is called a format, and a collection of
operators and rules in a specific format is called a transi-
tion system specification. Formats provide a general way
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to express process algebras and to reason about them. A
number of formats have been defined [1, 2, 3, 4, 5, 9, 10,
11, 14, 17, 20, 21]. These focus on different aspects of pro-
cess algebras such as congruence of bisimulation, negative
transitions, predicates and conservative extensions.

Recently, the extendedtyft/tyxt format has been pro-
posed to permit the comparison of process algebra seman-
tic equivalences [12, 13]. This format extends thetyft/tyxt
format [14]. The motivation for this research is the devel-
opment of many distinct process algebras to model differ-
ent aspects of concurrent computation. This proliferation
indicates that the notion of process algebra has wide ap-
plication and is flexible; however, it is often not obvious
how a process algebra and its semantic equivalences relate
to other process algebras and equivalences. It is important
both theoretically and practically to understand these rela-
tionships.

The extendedtyft/tyxt format differs from most other
formats because it is based around a many-sorted signa-
tureΣ as opposed to a single-sorted signature. Generally,
with a single sorted signature, processes are treated syn-
tactically and labels are treated schematically. A many-
sorted signature permits the label terms of the process al-
gebra to be treated in the same syntactic manner as the pro-
cess terms. This allows for the expression of more complex
process algebras and caters for the use of bisimulation-type
equivalences where exact matching on transitions is not re-
quired. This may occur either through the definition of the
bisimulation itself or by the way in which the actual pro-
cess algebra labels are modelled.

As the notion of a format is a syntactic one, processes
and labels are represented by elements of the term algebra
(those terms that can be created from a set of variables and
the operators of the signature). However, the label terms
may need to be interpreted as the syntactic form may make
unnecessary distinctions. Hence the actual labels of the
process algebra expressed in the extendedtyft/tyxt format
are represented as terms in aΣ-algebra. Since there is a
unique homomorphism from the term algebra to anyΣ-
algebra which induces a congruence on the elements of the
term algebra, this congruence is then used to match labels
in the definition of bisimulation.

The major results relating to the extendedtyft/tyxt for-
mat are that bisimulation is a congruence for operators de-
fined in this format when certain properties hold, and when
one extended transition system specification is summed
with another, and specific conditions hold, then it can be
determined when the bisimulation over the summed sys-
tems equates more processes or fewer than the bisimula-
tion on the original systems. This permits the comparison
of semantic equivalences.

In this paper, the focus is on what happens with the
congruences induced by the labels when summing two
extended transition system specifications. Each extended
transition system specification has a congruence over the
label terms induced by an algebra associated with these la-
bels. These congruences are summed for the results men-
tioned above, but how does this sum relate to the congru-

ence induced by the sum of the two algebras?
This paper shows that under the condition of sort-

similarity which requires that certain functions appear in
both signatures, the congruence formed by summing two
induced congruences is the same as the congruence in-
duced by the summed algebras.

Additionally, with sort-similarity, the properties of
compatibility and conservativity are ensured when forming
sums of congruences. These two properties are required
for the major results for the extendedtyft/tyxt format. Fi-
nally, it is shown that reasonable conditions can be applied
to algebras to ensure compatibility.

The main contribution of this paper is to advance the
theory of formats by demonstrating that the conditions for
the main results for the extendedtyft/tyxt format are rea-
sonable. These results are novel since sums of congruences
have not been considered in this manner previously, and
because compatibility and conservativity are requirements
specific to the extendedtyft/tyxt format.

Note that two different usages of congruence occur in
this paper. The one describes a property of bisimulation
with respect to the operators of the language. The other,
which is the focus of the paper, refers to the congruences
that the algebras representing the actual process algebra
labels induce over the label terms.

In Section 2, the extendedtyft/tyxtformat is presented.
Section 3 states the existing major results for this format.
In Section 4, the results for algebras are presented. The last
section looks at further work and conclusions. An earlier
version of this material appeared in [12].

2 Extendedtyft/tyxt format

This section presents definitions for many-sorted algebras
(which are standard, but are presented here to fix notation)
and then proceeds to present the definitions required for a
format. Finally the definition of the format is given.

Definition 2.1 For any setS, anS-sorted setA is a family
{As}s∈S of sets indexed byS. LetS′ ⊆ S, thenAS′ is the
S′-sorted subset ofAS .

Definition 2.2 A signatureΣ is a pair (S, F ) whereS is a
set ofsortsandF is a set offunction symbols (operators)
such thatF is equipped with a mappingtype : F → S∗ ×
S. Write f : s1 . . . sn → s for f ∈ F with type(f) =
(s1 . . . sn, s), andf :→ s if n = 0. f :→ s is aconstant.

Let V be an S-sorted set of variables disjoint fromF .
In the remainder of this section,Σ = (S, F ) is a signature.

Definition 2.3 Let W be anS-sorted subset ofV . For
eachs ∈ S, the setT (Σ,W )s of Σ-terms of sorts is
the least set containing everyx ∈ Ws and every con-
stant symbolf :→ s ∈ F , and everyf(t1, . . . , tn) where
f : s1 . . . sn → s ∈ F and everyti (1 6 i 6 n) is a term
in T (Σ,W )si .
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T (Σ,W ) denotes{T (Σ,W )s}s∈S , theset ofΣ-terms
over W . T (Σ, ∅) denotes the set ofclosedor ground
terms, abbreviatedT(Σ), and is called the(ground) term
algebra. T (Σ, V ), abbreviatedT(Σ), denotesopen terms.

Σ is sensibleif it admits at least one closed term for
each sort, i.e. for alls ∈ S, T(Σ)s 6= ∅. The variables
of sortsS′ ⊆ S in t ∈ T(Σ), VarS′(t) is defined by
VarS′(t) = {x} if t = x and x ∈ VS′ , and VarS′(t) =
VarS′(t1) ∪ . . . ∪ VarS′(tn) if t = f(t1, . . . , tn),f ∈ F .

A substitutionσ is a mapping inV → T(Σ) which
preserves sorts, i.e.σ|Vs : Vs → T(Σ)s for each
s ∈ S. A substitutionσ is extended to a mappingσ :
T(Σ) → T(Σ) in the standard way byσ(f(t1, . . . , tn)) =
f(σ(t1), . . . , σ(tn)) for f : s1 . . . sn → s ∈ F , ti ∈
T(Σ)si

, 1 6 i 6 n.

Definition 2.4 A Σ-algebraconsists of anS-sorted family
of non-empty carrier sets{As}s∈S , also denotedA; and
a total functionfA : As1 × . . . × Asn

→ As for each
fs1 . . . sn → s ∈ F .

Definition 2.5 Let A and B be two Σ-algebras. AΣ-
homomorphismh : A → B is a family of maps{hs :
As → Bs}s∈S such that for allf : s1 . . . sn → s ∈ F
and a1 ∈ As1 , . . . , an ∈ Asn

, hs(fA(a1, . . . , an)) =
fB(hs1(a1), . . . , hsn(an)).

Definition 2.6 A Σ-congruenceon aΣ-algebraA is anS-
sorted equivalence relation≡ which is compatible with all
function symbols, i.e.≡ = {≡s}s∈S , and for all s ∈ S,
≡s ⊆ As × As is reflexive, symmetric and transitive, and
for anyf : s1 . . . sn → s ∈ F and for allai, bi ∈ Asi for
1 6 i 6 n, ai ≡si

bi (1 6 i 6 n) ⇒ fA(a1, . . . , an) ≡s

fA(b1, . . . , bn).

Both T(Σ) andT(Σ) form Σ-algebras and it can be
shown that there is a unique homomorphism denotediA
from the (ground) term algebraT(Σ) to anyΣ-algebraA.
For eachΣ-algebra, there exists a congruence overT(Σ),
defined ast ≡A t′ wheneveriA(t) = iA(t′) for t, t′ ∈
T(Σ). This congruence is said to be induced byA.

A specific kind of sorted set and signature is required to
represent the terms that appear in the rules of the format.
Let P be a distinguished sort which is understood to the
sort of processes.

Definition 2.7 A signatureΣ = (S∪{P}, F ) is suitableif
S does not containP and is non-empty, and for any func-
tion symbolf ∈ F such thatf : s1 . . . sn → s, whenever
s 6= P then for all1 6 i 6 n, si 6= P.

Hence only process terms can be built out of other pro-
cess terms. This is reasonable because of the asymmetry
in the way in which processes and labels are treated. For
convenience, assume that functions with range sortP take
the non-P arguments first and then the arguments of sortP.
For the rest of this sectionΣ = (S ∪ {P}, F ) is a sensible,
suitable signature.

Definition 2.8 Anextended transition system specification
(eTSS)is a pair E = (Σ, R) andR a set ofrules of the
form

{pi
λi−→ p′i | i ∈ I}

p
λ−→ p′

whereI is an index set,pi, p
′
i, p, p

′ ∈ T(Σ)P, andλi, λ ∈
T(Σ)S for i ∈ I.

p
λ−→ p′ with λ ∈ T(Σ)S andp, p′ ∈ T(Σ) is a transi-

tion (labelled withλ). The elements of{pi
λi−→ p′i | i ∈ I}

are thepremisesof r, andp
λ−→ p′ is theconclusionof r.

The notions of closed, substitution and Var can be extended
to transitions in the obvious way.

A proof of a transitionψ from E is a well-founded,
upwardly branching tree of which the nodes are labelled
by transitionsp

λ−→ p′ such that the root is labelled withψ,
and if χ is the label of a nodeπ and {χi | i ∈ I} is the
set of labels of the nodes directly aboveπ, then there is
a rule {φi | i ∈ I}/φ in R and a substitutionσ such that
χ = σ(φ) andχi = σ(φi) for all i ∈ I.

If a proof of ψ from E exists,ψ is provablefrom E ,
notationE ` ψ.

As this research deals with process algebras, an appro-
priate definition of labelled transition system and bisimu-
lation is required.

Definition 2.9 The (many-sorted) labelled transition sys-
tem (LTS) TS(E) specified by the eTSSE is given
by TS(E) = (T(Σ)P,T(Σ)S , −→ ) where −→ ⊆
T(Σ)P ×T(Σ)S × T(Σ)P is defined byu

α−→ u′ ⇐⇒
E ` u α−→ u′.

Definition 2.10 LetL = (S,A, −→ ) be anS-sorted LTS,
and let≡ be anS-sorted equivalence relation onA. A
strong bisimulation with respect to an equivalence relation
≡ is a binary relationR ⊆ S × S such that(s, t) ∈ R
only if for all a ∈ A

1. whenevers
a−→ s′, then there existst′ ∈ S andb ∈ A

such thatt
b−→ t′, a ≡ b and(s′, t′) ∈ R

2. whenevert
a−→ t′, then there existss′ ∈ S and b ∈ A

such thats
b−→ s′, a ≡ b and(s′, t′) ∈ R.

Two states,s andt arestrongly bisimilar with respect to≡,
s ∼≡ t, if there exists a strong bisimulationR with respect
to≡ such that(s, t) ∈ R.

Note that for this definition, the equivalence is only
required over label termsT(Σ)S and the definition of the
equivalence overT(Σ)P is irrelevant. As mentioned pre-
viously, when expressing process algebras in this format,
aΣ-algebra will be used to define the semantics of the ac-
tual labels and this will induce a congruence over the term
algebraT(Σ)S .

The general definition of an eTSS is now made more
specific to define the extendedtyft/tyxt format. The actual
details of the definition are not important for what follows,
but are included for completeness.
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Definition 2.11 R is in extended tyft/tyxt formatif it con-
sists of rules of the form

{pi
λi−→ yi | i ∈ I}

f(η1, . . . , ηm, x1, . . . , xn) λ−→ p

{pi
λi−→ yi | i ∈ I}

x
λ−→ p

with I an index set,f : s1 . . . smP . . .P → P ∈ F , x, xj

(1 6 j 6 n) andyi (i ∈ I) all different variables fromVP,
p ∈ T(Σ)P, λ ∈ T(Σ)S ,

• for 1 6 k 6 m, ηk ∈ T(Σ)sk
with VarS(ηk) ⊂ VS −⋃

16l6m,l 6=kVarS(ηl)

• for i ∈ I, λi ∈ T(Σ)S for i ∈ I with VarS(λi) ⊂
VS − (

⋃
l∈I,l 6=iVarS(λl) ∪

⋃
16k6mVarS(ηk))

• for i ∈ I, pi ∈ T(Σ)P with VarS(pi) ⊂ VS −⋃
l∈I VarS(λl).

To relate this material back to the description of a pro-
cess algebra given in the introduction, the many-sorted sig-
nature is used to described the processes and the actions
they can perform – this is the syntax component. The rule
set of the eTSS gives the operational semantics by which
all possible transitions can be determined though building
proofs with the rules – this gives rise to a labelled transi-
tion system with sorted labels which represent the actions
of the processes. Additionally, the conditions for the ex-
tendedtyft/tyxt format have been defined, as well as a defi-
nition of bisimulation where matching is done with respect
to an equivalence. When expressing a process algebra in
the format, the processes are expressed as terms with sort
P and the labels/actions are expressed as terms with sorts
from S. However, the actual labels of the process algebra
will be expressed by an algebra which will induce an con-
gruence over the label terms, and this congruence will be
used in the definition of bisimulation.

3 Existing results for the format

This section gives an overview of important definitions and
results for this format. The aim is to explain the usage of
sums of congruences and the rôle that compatibility and
conservativity play since the next section considers results
about these properties.

In this section, some terms will be mentioned that are
not defined. These terms arewell-founded, free, pure,
label-free, label-pure, type-0andtype-1. Their definitions
are not required here and can be found in [12, 13] together
with the proofs for all the results mentioned in this section.

Firstly, some conditions on the congruence over label
terms are required for the results. In what follows,E =
(Σ, R) indicates an eTSS in extendedtyft/tyxt format, and
≡ is anS-sorted congruence onT(Σ).

Definition 3.1 ≡ is compatiblewith η ∈ T(Σ)S if when-
everσ(η) ≡ µ for µ ∈ T(Σ)S , there exists a substitu-
tion σ′ such thatµ = σ′(η) and σ(z) ≡ σ′(z) for all
z ∈VarS(η).

≡ is compatiblewith a ruler ∈ R if it is compatible
with anyη ∈ T(Σ)S that appears as the label on the tran-
sition of a premise ofr or as an argument to the function
on the left hand side of the conclusion ofr. ≡ is compatible
with E if ≡ is compatible with all rules inR.

Compatibility is a technical requirement to ensure the
major results hold. When trying to create a proof for a
matching transition to achieve bisimulation, compatibility
ensures a suitable substitution with which to construct the
proof.

The first major result states that two terms of sortP
constructed from subterms that are related (either by≡ if
they have sortS or by bisimulation up to≡ if they have
sort P) are bisimilar up to≡. Hence it can be concluded
that the bisimulation up to≡ is itself a congruence.

Theorem 3.1 Let E = (σ,R) be well-founded and≡
compatible withE . For all f ∈ F such that f :
s1 . . . smP . . .P → P, for all µk, νk ∈ T(Σ)S (1 6 k 6
m), and for alluj , vj ∈ T(Σ)P (1 6 j 6 n),

µk ≡ νk anduj ∼≡ vj ⇒
f(µ1, . . . , µm, u1, . . . , un) ∼≡ f(ν1, . . . , νm, v1, . . . vn).

Next to be considered are the results where two eTSSs
are summed together. The notion of the sum of two eTSSs
is required to define the notion of an extension. The second
summand does not necessarily involve a sensible signature,
and so the definitions are asymmetric.

Definition 3.2 Let Σi = (Si ∪ {P}, Fi) for i = 0, 1 be
two suitable signatures such thatf ∈ F0 ∩ F1 implies that
type0(f) = type1(f). If Σ0 is sensible, andΣ0 ⊕ Σ1 is
sensible, then the(asymmetric) sum ofΣ0 andΣ1 is the
signature(S0 ∪ S1 ∪ {P}, F0 ∪ F1).

LetEi = (Σi, Ri) for i = 0, 1 be two eTSSs withΣ0⊕
Σ1 defined. The(asymmetric) sum ofE0 andE1, E0 ⊕ E1,
is the eTSS(Σ0 ⊕ Σ1, R0 ∪R1).

In the rest of the papers, letΣi = (Si ∪ {P}, Fi) for
i = 0, 1 be two signatures withΣ = Σ0 ⊕ Σ1 defined,
and letEi = (Σi, Ri) for i = 0, 1 be two eTSSs in ex-
tendedtyft/tyxt format with E = E0 ⊕ E1 defined and let
E = (Σ, R). Let≡i be congruences overT(Σi)S compat-
ible with Ei for i = 0, 1. A way to combine congruences is
required since each of the eTSSs has it own congruence.

Definition 3.3 Thesum of≡0 and≡1 (≡0 ⊕ ≡1) is the
smallest congruence overT(Σ0⊕Σ1) containing both≡0

and≡1.

Definition 3.4 ≡0⊕≡1 is conservative with respect to≡i

if (≡0 ⊕≡1) ∩ (T(Σi)S ×T(Σi)S) = ≡i.

Hence, conservativity of congruences requires that
summing two congruences does not identify terms from
one of the component term algebras that were not orig-
inally identified, although an element from one term al-
gebra may be identified with an element from the other
term algebra by summing. This property is used to show
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that when two terms from one of the term algebras are not
bisimilar, it is not possible to make the terms bisimilar by
summing congruences.

A notion of a conservative extension up to bisimula-
tion has been defined by Groote and Vaandrager[14]. The
following are modifications of this definition which de-
scribe the relationship between the semantic equivalence
defined on one eTSS, and the semantic equivalence defined
on both eTSSs. The first definition describes the situa-
tion where the semantic equivalence on the summed eTSS
equates few process than that of the first system, and the
second definition deals with opposite case. If conditions
can be found under which these definitions hold, then these
results can be used to compare semantic equivalences. The
following two theorems give appropriate conditions.

Definition 3.5 E is a refining extension ofE0 up to bisim-
ulation with respect to≡ if for all t0, u0 ∈ T(Σ0)P,
t0∼E≡0⊕≡1

u0 ⇒ t0∼E0
≡0
u0.

Definition 3.6 E is an abstracting extension ofE0 up to
bisimulation with respect to≡ if for all t0, u0 ∈ T(Σ0)P,
t0∼E0

≡0
u0 ⇒ t0∼E≡0⊕≡1

u0

Theorem 3.2 Let E0 and E1 be in extendedtyft/tyxt for-
mat. Let≡0⊕≡1 be conservative with respect to≡0. If E0

is pure and label-pure, andE0 ⊕E1 is type-1, thenE0 ⊕E1

is a refining extension.

Theorem 3.3 Let E0 and E1 be in extendedtyft/tyxt for-
mat. Let≡0 ⊕ ≡1 be compatible withE0 ⊕ E1. If E0 is
pure, label-pure and well-founded,E1 is well-founded, and
E0⊕E1 is type-0, thenE0⊕E1 is an abstracting extension.

These theorems and Theorem 3.1 use compatibility,
conservativity and sums of congruence and these have been
shown to be necessary by counter-example [12]. These re-
sults have been applied in the comparison of multiproces-
sor bisimulation and pomset bisimulation [12, 7, 16].

It is important to note that although these results have
been presented for arbitrary congruences, when applying
these results to process algebras, the congruences of inter-
est are those that are induced by the algebra that represents
the labels. The next section looks at results to do with these
specific congruences.

4 Algebraic results

This section considers sums of congruences, compatibility
and conservativity required for the results in the previous
section and how these relate to the algebras which repre-
sent the labels of the process algebras.

4.1 Sums of congruences and algebras

The results in the previous section considered the sum of
two eTSSsE0 ⊕ E1, and the associated sum of congru-
ences≡0 ⊕ ≡1. In this section, it is assumed that for

eachEi = (Σi, Ri) there is an associatedΣi-algebra,Ai

for i = 0, 1 to represent the actual label terms. Then
the congruences of interest are≡A0 and≡A1 induced by
these algebras overT(Σ0) andT(Σ1) respectively. The-
orems 3.2 and 3.3 refer to the sum of these congruences
≡A0 ⊕ ≡A1 . How does this congruence relate to the con-
gruence≡A0⊕A1 induced onT(Σ0 ⊕ Σ1) by the sum of
A0 andA1?

This section considers signatures in general, and does
not need to consider the distinguished sortP for the reason
that since no process terms can appear as arguments to la-
bel terms, the label terms form an algebra in their own right
(with a different signature consisting the sortsS and those
function symbols with range sortS). The definition of the
union of two many-sorted sets is straightforward, and this
can be used to define the sum of two algebras.

Definition 4.1 Let S0 and S1 be two sets, and letAi =
{Ai,s}s∈Si

be anSi-sorted set fori = 0, 1. LetS = S0 ∪
S1. Then theS-sorted unionof A0 andA1 is defined as
A = {As}s∈S where

• As = A0,s if s ∈ S0 − S1

• As = A1,s if s ∈ S1 − S0

• As = A0,s ∪A1,s if s ∈ S0 ∩ S1

and is denoteds
⋃

i=0,1Ai.

Definition 4.2 For i = 0, 1, letAi = {Ai,s}s∈Si
together

with {fAi | f ∈ Fi} beΣi-algebras such that the follow-
ing conditions hold.

• for s ∈ S0 ∩ S1,A0,s = A1,s,

• for f ∈ F0 ∩ F1 with f : s1 . . . sn → s,
fA0(a1, . . . , an) = fA1(a1, . . . , an) for all aj ∈
A0,sj

for 1 6 j 6 n.

Define A0 ⊕ A1 = s
⋃

i=0,1Ai plus the functions⋃
i=0,1{fAi | f ∈ Fi}.

Note that the second condition relies on the fact that
sincef ∈ F0 ∩F1, si ∈ S0 ∩S1 for 1 6 i 6 n, hencefA0

andfA1 are defined on the same sets.
For the rest of this paper, letAi = {Ai,s}s∈Si together

with {fAi | f ∈ Fi} be Σi-algebras fori = 0, 1 with
A0 ⊕A1 defined.

Proposition 4.1 A0 ⊕A1 is a (Σ0 ⊕ Σ1)-algebra.

Proof: Σ0 ⊕ Σ1 = (S0 ∪ S1, F0 ∪ F1), and s
⋃

i=0,1Ai is
anS0 ∪ S1-sorted family of non-empty carrier sets. More-
over, it is clear that for eachf ∈ F0 ∪ F1 there is a total
functionfA0⊕A1 with the appropriate argument sorts and
result sort, regardless of whetherf is in the intersection of
F0 andF1 or not.

A particular class of signatures is of interest, namely
those whose sums satisfy the following definition.
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Definition 4.3 Σ0⊕Σ1 is sort-similarif for eachs ∈ S0∩
S1, f ∈ F0 ∪ F1 with f : s1 . . . sn → s implies f ∈
F0 ∩ F1.

This definition goes beyond that of the sum of two sig-
natures where if a function appears in the intersection of
the two signatures, then it has the same type in each sig-
nature. Here it is necessary that any function that has a
shared result sort, must appear in both signatures. A result
follows from this definition, which is required for the later
results.

Proposition 4.2 Let Σ0 ⊕ Σ1 be sort-similar. If t ∈
T(Σ0⊕Σ1) has sorts ∈ S0∩S1, thent ∈ T(Σ0)∩T(Σ1).
MoreoverT(Σ0 ⊕ Σ1) = T(Σ0) ∪T(Σ1).

Proof: For the first part of the result, considert ∈ T(Σ0⊕
Σ1)s for s ∈ S0 ∩ S1. This proceeds by induction on the
structure oft. If t is a constantf :→ s thenf ∈ F0 ∩ F1

and clearlyt ∈ T(Σ0) ∩ T(Σ1). If t = f(t1, . . . , tn) for
f : s1 . . . sn → s, thenf ∈ F0 ∩ F1 and by the induction
hypothesisti ∈ T(Σ0) ∩ T(Σ1) for 1 6 i 6 n, hence
t ∈ T(Σ0) ∩T(Σ1).

Since clearlyT(Σ0) ∪ T(Σ1) ⊆ T(Σ0 ⊕ Σ1), it is
necessary to show for anyt ∈ T(Σ0 ⊕ Σ1) that either
t ∈ T(Σ0) or t ∈ T(Σ1). This proceeds by induction on
the structure oft.

If t is a constant symbol, then clearlyt ∈ T(Σ0) ∪
T(Σ1). Otherwise considert = f(t1, . . . , tn). As-
sume thatf ∈ F0 without loss of generality, and that
f : s1 . . . sn → s, thens1 . . . sn, s ∈ S0. By the induction
hypothesis, for1 6 i 6 n, ti ∈ T(Σ0) ∪ T(Σ1). If any
ti ∈ T(Σ1), then sincesi ∈ S0 ∩ S1, ti ∈ T(Σ0) also.
Hence for1 6 i 6 n, ti ∈ T(Σ0), andt ∈ T(Σ0).

This result shows how under the condition of sort-
similarity, no closed terms can be created from function
symbols from both signatures without being in both sets of
closed terms.

The sort-similarity condition is not required for the
sum of algebras (Definition 4.2) since the second condi-
tion works becausefA0 andfA1 are defined on the same
sets; however, it is required for Theorem 4.1 to be proved.
Consider the following example.

Example 4.1 Consider the{s}-sorted signature,Σ0 =
({s}, {f}) with f :→ s, and the{s}-sorted signature,
Σ1 = ({s}, {g}) with g :→ s. Clearly the sum of these
two signatures is not sort-similar. The same set{a} will
be used for both theΣ0-algebraA0 and Σ1-algebraA1.
Let fA0 = a and gA1 = a. Thenf ≡A0⊕A1 g since
iA0⊕A1(f) = iA0⊕A1(g), butf andg are not equated by
≡A0 ⊕≡A1 .

It may be possible to work without sort-similarity—
possibly the definition of≡A0⊕≡A0 could be modified or
the theorem could be changed to have a one-way implica-
tion. There are other choices one could make forA0⊕A1,
such as defining the carrier set for a sorts as the intersec-
tion of A0,s andA1,s, however there does not appear to

be any utility in taking these approaches. Sort-similarity is
not an unreasonable condition for label terms, as there is
no advantage to be gained by having a function symbol in
one signature but not the other.

Theorem 4.1 Let the sumΣ0 ⊕ Σ1 be sort-similar then
≡A0⊕A1 = ≡A0 ⊕≡A1 .

Proof: First note, that for anyt ∈ T(Σ0 ⊕ Σ1), t ∈
T(Σ0) ∪ T(Σ1) by Proposition 4.2. First show that if
t ∈ T(Σi), theniA0⊕A1(t) = iAi

(t) for i = 0, 1. This
proceeds by induction on the structure oft.

If t is a constant symbol, then this is true. Ift =
f(t1, . . . , tn), then assumet ∈ T(Σ0) without loss of
generality. iA0⊕A1(f(t1, . . . , tn)) = fA0(iA0⊕A1(t1),
. . . , iA0⊕A1(tn)) = fA0(iA0(t1), . . . , iA0(tn)) by the in-
duction hypothesis and this gives the required result.

Next, lett, t′ ∈ T(Σ0 ⊕ Σ1).

t ≡A0⊕A1 t
′ ⇒ t ≡A0 ⊕≡A1t

′: Let t ≡A0⊕A1 t
′, then

since this is an congruence this means thatt andt′ have
the same sort and hence they must be both inT(Σ0) or
T(Σ1). Assume without loss of generality thatt, t′ ∈
T(Σ0). By definitioniA0⊕A1(t) = iA0⊕A1(t

′), hence
iA0(t) = iA0(t

′). Thereforet ≡A0 t′ and hence
t ≡A0 ⊕≡A1t

′ as required.

t ≡A0 ⊕≡A1t
′ ⇒ t ≡A0⊕A1 t

′: This proceeds by in-
duction on the definition of≡A0 ⊕≡A1 .

• t ≡A0 t′ or t ≡A1 t′. Assumet ≡A0 t′, then by
definition iA0(t) = iA0(t

′) and alsot, t′ ∈ T(Σ0).
It can be shown by a simple induction proof that
iA0(t) = iA0⊕A1(t). If t is a constant then this
is immediate; otherwise ift = f(t1, . . . , tn) then
iA0(f(t1, . . . , tn) = fA0(iA0(t1), . . . , iA(tn)) =
fA0⊕A1(iA0⊕A1(t1), . . . , iA0⊕A1(tn)) by the induc-
tion hypothesis and the definition ofA0⊕A1, and this
gives the required result.

• Clearly botht ≡A0⊕A1 t
′ andt ≡A0 ⊕≡A1t

′ if t =
t′.

• If t ≡A0 ⊕≡A1t
′ by a symmetry argument, then

t′ ≡A0 ⊕≡A1t, by a shorter inference, hence
t′ ≡A0⊕A1 t and thereforet ≡A0⊕A1 t′ since
≡A0⊕A1 is symmetric.

• If t ≡A0 ⊕≡A1t
′ by a transitivity argument, then

there existst′′ ∈ T(Σ0 ⊕ Σ1) with t ≡A0 ⊕≡A1t
′′

and t′′ ≡A0 ⊕≡A1t
′, hence by a shorter inference

t ≡A0⊕A1 t
′′ andt′′ ≡A0⊕A1 t

′, thereforet ≡A0⊕A1

t′ since≡A0⊕A1 is transitive.

• If t ≡A0 ⊕≡A1t
′ by a congruence argument,

then t = f(t1, . . . , tn), t′ = f ′(t′1, . . . , t
′
n) and

ti ≡A0 ⊕≡A1t
′
i for 1 6 i 6 n, so by a shorter

inferenceti ≡A0⊕A1 t′i for 1 6 i 6 n. Hence
t ≡A0⊕A1 t

′, since≡A0⊕A1 is a congruence.
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4.2 Conservativity and compatibility

It can be shown that≡A0 ⊕ ≡A1 is conservative with re-
spect to≡A0 and≡A1 .

Proposition 4.3 LetΣ0 ⊕ Σ1 be sort-similar then≡A0 ⊕
≡A1 is conservative with respect to both≡A0 and≡A1 .

Proof: Let t, t′ ∈ T(Σ0) (without loss of generality) such
thatt ≡A0 ⊕≡A1t

′. Hencet ≡A0⊕A1 t
′, soiA0⊕A1(t) =

iA0⊕A1(t
′). Hence sincet, t′ ∈ T(Σ0), iA0(t) = iA0(t

′)
andt ≡A0 t

′ as required.

Clearly, this does not hold in general since it is pos-
sible in the construction of≡1 ⊕ ≡2 from two arbitrary
congruences≡1 and≡2 to obtain two terms fromT(Σ0)
that are not identified under≡1 to become identified under
≡1 ⊕≡2 by the fact that they may be related to terms that
fall into T(Σ0) ∩T(Σ1).

Next, compatibility is considered in the light of sums
of algebras. In the results that involve compatibility, it is
only required that≡0 ⊕ ≡1 be compatible withR0 ∪ R1.
It is not clear that this can be dealt with in a more general
manner since compatibility depends on the label terms that
appear in the rules. One approach could be to require the
congruences to be compatible with any label term, but this
could impose very strong restrictions on theΣ-algebras
that could be used. However, in the case of sums of alge-
bras it is possible to obtain a result because of the condition
of sort-similarity.

Proposition 4.4 Let Σ0 ⊕ Σ1 be sort-similar. If≡Ai
is

compatible withRi for i = 0, 1 then≡A0 ⊕ ≡A1 is com-
patible withR0 ∪R1.

Proof: Since≡Ai
is compatible forRi for i = 0, 1, there

are twoSi-sorted sets of termsCi ⊆ T(Σ)Si
for i = 0, 1

containing terms that appear as a label on a transition in
a premise or as an argument to the function in the right
hand side of the conclusion of a rule inRi. So consider the
following sorts:

s ∈ S0 − S1: Considerη ∈ T(Σ0)s. Since s 6∈ S1,
then clearly no terms inT(Σ1) can be equivalent un-
der ≡A0 ⊕ ≡A1 to σ(η) for any σ. So consider
σ(η)≡A0 ⊕ ≡A1µ for someµ ∈ T(Σ0)s, then it can
be shown thatσ(η)≡A0µ and hence there exists a sub-
stitutionσ′ such thatµ = σ′(η) andσ(z) ≡A0 σ

′(z)
for all z ∈ VarS(η). But since≡A0 is contained in
≡A0 ⊕ ≡A1 , thenσ(z)≡A0 ⊕≡A1σ

′(z) for all z ∈
VarS(η).

s ∈ S1 − S0: this is proved in a similar way to the previ-
ous one.

s ∈ S0 ∩ S1 Considerη ∈ T(Σ0)s ∩ T(Σ1)s. Consider
σ(η)≡A0⊕≡A1µ for µ ∈ T(Σ0)s∩T(Σ1)s. It can be
shown thatσ(η) ≡A0 µ (and thatσ(η) ≡A1 µ). Hence
there exists a substitutionσ′ such thatµ = σ′(η) and
σ(z) ≡A0 σ

′(z) for all z ∈ VarS(η). But since≡A0 is
contained in≡A0 ⊕≡A1 , thenσ(z)≡A0 ⊕≡A1σ

′(z)
for all z ∈ VarS(η).

To see why this does not hold in general for two con-
gruences≡0 and≡1 defined onT(Σ0) andT(Σ1) com-
patible with two sets of rulesR0 andR1 respectively, it
may be that someη appears in the rules ofR0 but not in
the rules ofR1. If σ(η) is also inT(Σ1) and there exists
µ ∈ T(Σ1), such thatσ(η) ≡1 µ, it may not be possible to
find σ′ such thatµ = σ′(η) andσ(z) ≡1 σ

′(z) for all z ∈
VarS(η), sinceη does not appear in the rules ofR1.

4.3 Requirements for compatibility

Compatibility is required for a number of results, specifi-
cally the congruence result (Theorem 3.1) and one of the
extension results (Theorem 3.3). Conditions onΣ-algebras
to ensure compatibility are now considered. The follow-
ing result requires that the term in question contains no
repeated variables. This is not a serious limitation as when
there are repeated variables, the only compatible congru-
ence is the identity relation.

Proposition 4.5 LetΣ = (S, F ) be a signature, and letA
be aΣ-algebra. Letλ ∈ T(Σ) be a term with no repeated
variables, then≡A is compatible withλ if for all function
symbolsg that appear inλ with gA : As1 × . . .×Asn

→
As,

• Im(gA) ∩ Im(gA1 ) = ∅ for all gA1 : As′
1
× . . . ×

As′
m
→ As,

• gA is injective.

Proof: Let α ≡A σ(λ) for someα ∈ T(Σ) and a closed
substitutionσ. It is necessary to find a substitutionσ′ such
thatσ′(λ) = α andσ(z) ≡A σ′(z) for all z ∈ Var(λ). The
proof will be proceed by induction on the structure ofλ.
For the base case, assumeλ = z for z ∈ V and defineσ′

as follows

σ′(z′) =

{
α if z′ = z

σ(z′) otherwise.

Then it is clear that the conditions for compatibility are
satisfied. Next considerλ = g(λ1, . . . , λn) whereg :
s1 . . . sn → s. Hence

iA(α) = iA(σ(g(λ1, . . . , λn)))
= iA(g(σ(λ1), . . . , σ(λn)))
= gA(iA(σ(λ1)), . . . , iA(σ(λn)))

Fact 4.1 gA(a1, . . . , an) = iA(α) ⇒ α = g(µ1, . . . , µn)
for someµ1, . . . , µn.

Proof: Suppose not, i.e.α = g1(µ′1, . . . , µ
′
m) for g1 6= g

with g1 : s′1 . . . s
′
m → s. Then

gA(a1, . . . , an) = iA(α)
= iA(g1(µ′1, . . . , µ

′
m))

= gA1 (iA(µ′1), . . . , iA(µ′m)).

Contradiction sinceIm(gA) ∩ Im(gA1 ) = ∅.
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So by this fact, there existµ1, . . . µn such thatα =
g(µ1, . . . , µn). Hence

gA(iA(σ(λ1)), . . . , iA(σ(λn)))
= iA(g(µ1, . . . , µn))
= gA(iA(µ1), . . . , iA(µn))

HenceiA(σ(λi)) = iA(µi) for all 1 6 i 6 n (sincegA
is injective) andσ(λi) ≡A µi for all 1 6 i 6 n. By the
inductive hypothesis, there are substitutionsσi such that
for each1 6 i 6 n, σi(λi) = µi, andσ(z) ≡A σi(z)
for all z ∈ Var(λi). From these substitutions, construct a
substitution that fulfils the compatibility requirements. Let
σ′ be defined as follows

σ′(z) =

{
σi(z) if z ∈ Var(λi)
σ(z) otherwise.

This is well-defined since there are no repeated variables.
Recall that

σ′(λ) = σ′(g(λ1, . . . , λn))
= g(σ′(λ1), . . . , σ′(λn))
= g(σ1(λ1), . . . , σn(λn))
= g(µ1, . . . , µn)
= α.

Also for z ∈ Var(λ), σ′(z) = σi(z) for a unique1 6 i 6
n, andσi(z) ≡A σ(z), henceσ′(z) ≡A σ(z).

5 Further work and conclusions

The results relating to sums can be summarised as follows.
Given the sort-similar sum of two signatures, and two al-
gebras of each signature respectively, then

• the sum of two algebras is an algebra of the sum of the
signatures (sort-similarity is not necessary for this),

• the congruence induced by the sum of two algebras is
the sum of the congruences induced by each algebra,

• moreover, this congruence is conservative with respect
to each of the other two congruences,

• furthermore if given the sum of two eTSSs with the
two congruences compatible with each eTSS respec-
tively, then the congruences induced by the sum of the
algebras is compatible with the sum of the eTSSs.

The result for compatibility states that the congruence
induced over the term algebra is compatible with an open
term if any function which appears in the open term is in-
jective and has an image which is disjoint from the image
of any other function.

It is not clear whether there is further work possible
that relates to the results presented here. However, a ques-
tion of interest is under what conditions transition equiv-
alence is preserved by sum of eTSSs. It may be the case

that reasonable conditions can be found under which tran-
sition equivalence is preserved, and this may lead to sim-
pler proofs for the main results for the format.

To conclude, the results here have demonstrated that
sort-similarity is a reasonable condition to show results
about sums of algebras and congruences, and to ensure that
properties such as compatibility and conservativity hold.
Also, compatibility can be achieved by reasonable condi-
tions on the algebras representing the labels of the process
algebra. These, in turn, demonstrate that the use of these
conditions in the major results for the extendedtyft/tyxtfor-
mat are reasonable, and hence that these conditions and
properties do not prevent the application of the results for
the extendedtyft/tyxt format in the comparison of process
algebra semantic equivalences.
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