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Abstract

This paper presents algebraic results that are important for the extetyd#tyxt format [12, 13] which can be used to
describe many different process algebras. This format is based on a many-sorted signature which permits both processes
and labels to be treated syntactically. Existing results for this format permit the comparison of process algebra semantic
equivalences by forming the sum of two transition system specifications and imposing certain conditions. The results
presented in this paper involve the summing of congruences that model the actual process algebra labels, and determine
under what conditions these congruences have important properties such as compatibility and conservativity. The aim of
this paper is to show that the notion of sort-similarity on the sum of signatures is sufficient for the sum of the congruences
induced by each label algebra to be the same as the congruence induced by the summed label algebras. Additionally,
sort-similarity is sufficient for compatibility and conservativity when summing. Finally, conditions on the label algebra are
given that ensure compatibility.
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1 Introduction

This paper focusses on algebraic results which are impor-
tant for the metatheory of process algebras; namely the the-
ory that considers the general form of rules that make up
the structured operational semantics [19] that are used to
define process algebras.

Process algebras provide mathematical models of con-
current computations. A process algebra, in the sense of
CCS (Calculus of Communicating Systems) [18], consists
of three major components

Syntax This provides a language to describe concur-
rent processes and comprises a humber of operators
and actions (labels). These operators represent paral-
lelism, communication, non-determinism, hiding, etc;
and the actions represent the visible behaviour of the
processes. The syntax is usually expressed in BNF, but
can also be expressed by the signature of an algebra.
Processes can be constructed from the BNF grammar
or described by the term algebra of the signature. For
examplega.b.0 + b.a.0 is the process that has a choice
between performing amaction followed by & action,
or ab action followed by aru action, andz.0 | 5.0 is
the process that can perform aaction and & action
in any order.

Operational semanticsThe behaviour of processes is

These rules are used to construct a proof that a par-
ticular transition can occur in the labelled transition
system. This proof involves the deduction of a new
transition from existing transitions. A transition such
asa.b.0 + b.a.0 % b.0 describes the ability of the pro-
cess to perform the actionand become the process
that can perform & action. The process.0 | b.0 can
perform ab action and become the process that can
only perform aru action; this is described by the tran-
sitiona.0 [ 5.0 % .0 | 0.

Semantic equivalencedhese are equivalence relations

(which can be congruences with respect to the oper-
ators of the process algebra) which relate processes
that have the same behaviour, for some notion of be-
haviour. An example of an equivalence is bisimulation
[18] which requires that a transition by one process can
be matched by a similar transition by the other process
andvice versa and that the resulting processes have
this same property. Bisimulation equate8 | .0 and
a.b.0 + b.a.0.

Many process algebras have been proposed to model with
different aspects of concurrent behaviour — some exam-
ples are CCS with locations [6], CCS with local and global
causes [15], CCS with causalities [8], multiprocessor CCS
[16] and pomset CCS [7].

A description of the form taken by the rules of the op-

represented by a labelled transition system. Struc- erational semantics is called a format, and a collection of
tured operational semantics given in the form of rules, operators and rules in a specific format is called a transi-
describe which actions can occur for each operator. tion system specification. Formats provide a general way
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to express process algebras and to reason about them. A&nce induced by the sum of the two algebras?
number of formats have been defined [1, 2, 3, 4, 5, 9, 10, This paper shows that under the condition of sort-
11, 14, 17, 20, 21]. These focus on different aspects of pro-similarity which requires that certain functions appear in
cess algebras such as congruence of bisimulation, negativeoth signatures, the congruence formed by summing two
transitions, predicates and conservative extensions. induced congruences is the same as the congruence in-
Recently, the extendetyft/tyxt format has been pro- duced by the summed algebras.
posed to permit the comparison of process algebra seman-  Additionally, with sort-similarity, the properties of
tic equivalences [12, 13]. This format extends tyi/tyxt compatibility and conservativity are ensured when forming
format [14]. The motivation for this research is the devel- sums of congruences. These two properties are required
opment of many distinct process algebras to model differ- for the major results for the extendédt/tyxt format. Fi-
ent aspects of concurrent computation. This proliferation nally, it is shown that reasonable conditions can be applied
indicates that the notion of process algebra has wide ap-to algebras to ensure compatibility.
plication and is flexible; however, it is often not obvious The main contribution of this paper is to advance the
how a process algebra and its semantic equivalences relatéheory of formats by demonstrating that the conditions for
to other process algebras and equivalences. It is importanthe main results for the extendégt/tyxt format are rea-
both theoretically and practically to understand these rela-sonable. These results are novel since sums of congruences
tionships. have not been considered in this manner previously, and
The extendedyft/tyxt format differs from most other  because compatibility and conservativity are requirements
formats because it is based around a many-sorted signaspecific to the extenddsft/tyxtformat.
ture 3 as opposed to a single-sorted signature. Generally,  Note that two different usages of congruence occur in
with a single sorted signature, processes are treated synthis paper. The one describes a property of bisimulation
tactically and labels are treated schematically. A many- with respect to the operators of the language. The other,
sorted signature permits the label terms of the process alwhich is the focus of the paper, refers to the congruences
gebrato be treated in the same syntactic manner as the prathat the algebras representing the actual process algebra
cess terms. This allows for the expression of more complexlabels induce over the label terms.
process algebras and caters for the use of bisimulation-type  In Section 2, the extendegift/tyxtformat is presented.
equivalences where exact matching on transitions is not re-Section 3 states the existing major results for this format.
quired. This may occur either through the definition of the In Section 4, the results for algebras are presented. The last
bisimulation itself or by the way in which the actual pro- section looks at further work and conclusions. An earlier
cess algebra labels are modelled. version of this material appeared in [12].
As the notion of a format is a syntactic one, processes
and labels are represented by elements of the term algebra
(those terms that can be created from a set of variablesan® ~ Extendedtyft/tyxt format
the operators of the signature). However, the label terms
may need to be interpreted as the syntactic form may makeThis section presents definitions for many-sorted algebras
unnecessary distinctions. Hence the actual labels of the(which are standard, but are presented here to fix notation)
process algebra expressed in the extengifiyxt format and then proceeds to present the definitions required for a
are represented as terms irtaalgebra. Since there is a format. Finally the definition of the format is given.
unigue homomorphism from the term algebra to aiy

algebra which induces a congruence on the elements of thedefinition 2.1 For any setS, an S-sorted setd is a family

term algebra, this congruence is then used to match IabeIS{AS}Ses of sets indexed hy. LetS’ C S, thenAg is the
in the definition of bisimulation. S’-sorted subset of 5.

The major results relating to the extendgfl/tyxtfor-
mat are that bisimulation is a congruence for operators de-
fined in this format when certain properties hold, and when
one extended transition system specification is summed
with an_other, and spe0|f|(_: cond_ltlons hold, then it can be S. Write f : s1...5n — sfor f € F with type(f) =
determined when the bisimulation over the summed sys-(s sn,5),aNdf i— sif n = 0. f :— s is aconstant
tems equates more processes or fewer than the bisimula:" """ """ ' e
tion on the original systems. This permits the comparison | et I/ pe an S-sorted set of variables disjoint frdf
of semantic equivalences. _ In the remainder of this sectiok, = (S, F') is a signature.

In this paper, the focus is on what happens with the
congruences induced by the labels when summing two .. ..
extended transition system specifications. Each extendeqD efinition 2.3 Let W' be an.S-sorted subset of’. For

" e eachs € S, the setT'(£, W), of X-terms of sorts is
transition system specification has a congruence over th -
4 . : he least set containing every € W, and every con-
label terms induced by an algebra associated with these la-
stant symbolf :— s € F, and everyf(ti,...,t,) where
bels. These congruences are summed for the results men-

. ) 1S1... (1 <1< i
tioned above, but how does this sum relate to the congru-i{_] Ts(lz V;SL — s € Fandevery; (1 <i<n)isaterm
) Sit

Definition 2.2 A signatureX is a pair (S, F') whereS'is a
set ofsortsand F' is a set offunction symbols (operators)
such thatF' is equipped with a mappingpe : F' — S* x
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T (3, W) denotes[T(X, W), }ses, theset ofE-terms
over W. T(X,0) denotes the set oflosedor ground
terms abbreviatedT'(X), and is called théground) term
algebraT(X, V), abbreviatedl'(X), denote®pen terms

Y is sensibleif it admits at least one closed term for
each sort, i.e. for alk € S, T(X), # (. The variables
of sorts S’ C S int € T(X), Vars/(¢) is defined by
Varg/(t) = {z} if t = x andz € Vg, and Vak (t)
Varg/(t1)U...UVarg (t,) if t = f(t1,...,tn).f € F.

A substitutiono is a mapping inV — T(X) which
preserves sorts, i.es|V Ve — T(X)s for each
s € S. A substitutions is extended to a mapping :
T(X) — T(X) in the standard way by (f(t1,...,t,)) =
flo(t1),...,o(tn)) for f : s1...sn, — s € F, t; €
T(%),,, 1 <i < n.

Definition 2.4 A X-algebraconsists of arb-sorted family
of non-empty carrier set§A,}cs, also denoted4; and
a total functionf4 : A, x ... x A, — A, for each
fs1...8, > s€F.

Definition 2.5 Let A and B be two X-algebras. AX-
homomorphismh : A — B is a family of maps{h; :
As — Bs}ses such that forallf @ sy...8, — s € F
anda; € Asp,...,an € A, hs(fA(ar, ... a,)) =
fB(hsl ((11), ERE) hsn (an))

Definition 2.6 A X-congruencen aX-algebraA is anS-
sorted equivalence relatioa which is compatible with all
function symbols, i.e= = {=;}scs, and for alls € S,
=, C A, x A, is reflexive, symmetric and transitive, and
foranyf:s;...s, — s € Fandforalla;, b, € A, for
1<i<n,a =, b (1<i<n)= fAar,...,a,) =
fADL, ... by).

Both T(X) and T(X) form X-algebras and it can be
shown that there is a unigue homomorphism denated
from the (ground) term algebfB(X) to anyX.-algebraA.
For each>-algebra, there exists a congruence J¥€E),
defined ag =4 t' wheneveriy(t) = iq(t') for t,t' €
T(X). This congruence is said to be induced Ay

A specific kind of sorted set and signature is required to
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Definition 2.8 Anextended transition system specification
(eTSS)is a pair £ = (X, R) and R a set ofrules of the
form
{pi 2> pi | i€ I}
Py
wherel! is an index setp;, p;,p,p’ € T(X)p, andX;, A €
T(Z)sjori el

p = p' with A € T(X)s andp,p’ € T(X) is atransi-
tion (labelled with)). The elements dfp; KR pi|iel}
are thepremisesof r, and p 2, p’ is the conclusionof r.
The notions of closed, substitution and Var can be extended
to transitions in the obvious way.

A proof of a transitiony from £ is a well-founded,
upwardly branching tree of which the nodes are labelled
by transitionsp L p’ such that the root is labelled with,
and if x is the label of a noder and{x; | ¢ € I} is the
set of labels of the nodes directly abovethen there is
arule{¢; |i e I}/¢in R and a substitutior such that
x =o(¢)andy; = o(¢;) foralli e I.

If a proof of ) from £ exists,q) is provablefrom &,
notation& + .

As this research deals with process algebras, an appro-
priate definition of labelled transition system and bisimu-
lation is required.

Definition 2.9 The (many-sorted) labelled transition sys-
tem (LTS) T'S() specified by the eTSE is given
by TS(€) (T(X)p, T(X)s, — ) Where — C
T(X)p x T(X)s x T(X)p is defined byu % v’ +—=

Fu—.

Definition 2.10 Let £ = (S, A, — ) be anS-sorted LTS,
and let= be anS-sorted equivalence relation ad. A
strong bisimulation with respect to an equivalence relation
= is a binary relationR C S x S such that(s,t) € R
only ifforalla € A

wheneves = ¢, then there exist§ € S andb € A
such thatt % ', a = b and (s',t)eR

1.

2. whenevet % ¢/, then there exists’ € S andb € A
such thats % s/, a = b and(s',t") € R.

represent the terms that appear in the rules of the format.

Let P be a distinguished sort which is understood to the
sort of processes.

Definition 2.7 A signatureX = (SU{P}, F') is suitableif

S does not contai® and is non-empty, and for any func-
tion symbolf € F such thatf : s;...s, — s, whenever
s#Pthenforalll <i<n,s; #P.

Hence only process terms can be built out of other pro-

Two statess andt are strongly bisimilar with respect te,
s ~= t, if there exists a strong bisimulatidR with respect
to = such that(s, t) € R.

Note that for this definition, the equivalence is only
required over label tern¥ (%) s and the definition of the
equivalence ovel' (X)p is irrelevant. As mentioned pre-
viously, when expressing process algebras in this format,
a X.-algebra will be used to define the semantics of the ac-

cess terms. This is reasonable because of the asymmetrjual labels and this will induce a congruence over the term
in the way in which processes and labels are treated. ForalgebrdI'(%)s.

convenience, assume that functions with range Raatke
the nonP arguments first and then the arguments of Bort
For the rest of this sectiof = (S U {P}, F') is a sensible,
suitable signature.
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Definition 2.11 R is in extended tyft/tyxt formaif it con- = is compatiblewith a ruler € R if it is compatible
sists of rules of the form with anyn € T(X)s that appears as the label on the tran-
sition of a premise of or as an argument to the function
{pi ELN |iel} {pi ELN |iel} on the left hand side of the conclusion-ot is compatible
A A with £ if = is compatible with all rules irR.
f(771a---a77m7371,~--a37n)—>p r—p

Compatibility is a technical requirement to ensure the
major results hold. When trying to create a proof for a
matching transition to achieve bisimulation, compatibility
ensures a suitable substitution with which to construct the
o for1 < k < m,n, € T(X),, with Varg(ny) C Vg — proof.

UrcrcmzVars(m) The first major result states that two terms of dort
ST constructed from subterms that are related (eitheehfy
o fori € I, \; € T(X)s fori € I with Vars(\;) C they have sorfS or by bisimulation up to= if they have
Vs = (Urer,ziVars(A) U U crem Vars (me)) sort P) are bisimilar up to=. Hence it can be concluded
that the bisimulation up tee is itself a congruence.

with I anindex setf : s;...5,P...P = P € F, z, z;
(1 < j < n)andy; (i € I) all different variables froni,
pE T(Z)p, A E T(E)S,

e fori € I, p;, € T(X)p with Varg(p;) C Vs —

User Vars(Au). Theorem3.1Let £ = (o, R) be well-founded and=

To relate this material back to the description of a pro- compatible withé.  For all f € F such thatf
cess algebra given in the introduction, the many-sorted sig-51 - - - smP ... P — P, forall ux, vy € T(X)s (1 <k <
nature is used to described the processes and the actioni@), and for allu;, v; € T(X)p (1 < j < n),
they can perform — this is the syntax component. The rule £k = vk andu; ~= v; =
set of the eTSS gives the operational semantics by whichf (115 - - s s U1, - - s up) ~= f(V1,. 00 Vm, V1, On).
all possible transitions can be determined though building
proofs with the rules — this gives rise to a labelled transi-
tion system with sorted labels which represent the actions
of the processes. Additionally, the conditions for the ex-
tendeayft/tyxtformat have been defined, as well as a defi-
nition of bisimulation where matching is done with respect

to an equivalence. When expressing a process algebra irbefinition 32 Lets; — (S; U{P},F) fori — 0,1 be
the format, the processes are expressed as terms with SOt o suitable signatulres suéh thﬁte’FO nF implie’s that
P and the labels/actions are expressed as terms with SO”%ypeo(f) — typer(f). If X is sensible, ando @ X is
from S. However, the actual labels of the process algebra . aivie then theasymmetric) sum Oﬁ:o and ¥, is the
will be expressed by an algebra which will induce an con- signaturé(So US1U{PY, FoUF)).

gruence over the label terms, and this congruence will be = | . o "_ (S, Ry) for;' — 0.1 be two eTSSs withy &
used in the definition of bisimulation. ! P ’

Next to be considered are the results where two eTSSs
are summed together. The notion of the sum of two eTSSs
is required to define the notion of an extension. The second
summand does not necessarily involve a sensible signature,
and so the definitions are asymmetric.

3}, defined. Théasymmetric) sum ofy and&y, & & &1,
is the eTS$EQ @G X, RyU Rl)

3 Existing results for the format In the rest of the papers, I&; = (S; U {P}, F;) for

hi . . . . definiti q i = 0,1 be two sighatures witlhc = Xy @ X defined,
This section gives an overview of important definitions and _ let, — (S, R,) for i = 0,1 be two eTSSs in ex-

results for this format. The aiAm is to explain Fh?. usage of tendedtyft/tyxt format with € — & & & defined and let
sums of congruences and thide that compatibility and £ = (S, R). Let=, be congruences ovak(S;)s compat-
conservativity play since the next section considers resultsible With & 'forz' ;ZO 1. Away to combine céngruences is

about thgse prqperﬂes. X i required since each of the eTSSs has it own congruence.
In this section, some terms will be mentioned that are

not defined. These terms aveell-founded, free, pure,
label-free, label-pure, type-8ndtype-1 Their definitions

are not required here and can be found in [12, 13] together
with the proofs for all the results mentioned in this section.

Firstly, some conditions on the congruence over label patinition 3.4 —, @ =, is conservative with respect ts

Definition 3.3 Thesum of=, and=; (=9 © =) is the
smallest congruence ova(X, & X ) containing both=,
and=,.

terms :_;lre.reqwred for the_ results. In what follows = if (=0 @ =1) N (T(Z)s x T(S)s) = =

(2, R) indicates an eTSS in extendsdt/tyxtformat, and

= is anS-sorted congruence ¢R(X). Hence, conservativity of congruences requires that
summing two congruences does not identify terms from

Definition 3.1 = is compatiblewith € T(X)g if when- one of the component term algebras that were not orig-

evero(n) = pfor p € T(X)g, there exists a substitu- inally identified, although an element from one term al-

tion ¢’ such thaty = ¢'(n) ando(z) = o'(2) for all gebra may be identified with an element from the other

z €Varg(n). term algebra by summing. This property is used to show
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that when two terms from one of the term algebras are noteach&; = (X, R;) there is an associated;-algebra,A4;
bisimilar, it is not possible to make the terms bisimilar by for i = 0,1 to represent the actual label terms. Then
summing congruences. the congruences of interest argy, and= 4, induced by

A notion of a conservative extension up to bisimula- these algebras ovelf(%,) andT(%,) respectively. The-
tion has been defined by Groote and Vaandrager[14]. Theorems 3.2 and 3.3 refer to the sum of these congruences
following are modifications of this definition which de- =4, & =4,. How does this congruence relate to the con-
scribe the relationship between the semantic equivalencegruence= 4,44, induced onT (X, @ X;) by the sum of
defined on one eTSS, and the semantic equivalence definedly and.A;?
on both eTSSs. The first definition describes the situa- This section considers signatures in general, and does
tion where the semantic equivalence on the summed eTSShot need to consider the distinguished $bfor the reason
equates few process than that of the first system, and thehat since no process terms can appear as arguments to la-
second definition deals with opposite case. If conditions bel terms, the label terms form an algebra in their own right
can be found under which these definitions hold, then these(with a different signature consisting the saftaind those
results can be used to compare semantic equivalences. Thiinction symbols with range soff). The definition of the
following two theorems give appropriate conditions. union of two many-sorted sets is straightforward, and this

can be used to define the sum of two algebras.
Definition 3.5 £ is arefining extension of, up to bisim-
ulation with respect tas if for all tg,ug € T(3g)p, Definition 4.1 Let Sy and S; be two sets, and letl; =
to~E @z, o = to~E0 ug. {A;.s}ses, be anS;-sorted set for = 0,1. LetS = Sy U
S1. Then theS-sorted uniorof Ay and A; is defined as

Definition 3.6 £ is an abstracting extension &, up to A ={A;}ses Where
bisimulation with respect tee if for all g, ug € T(3g)p,

to~E0 ug = to~E g, Uo o As=Aosifs €55

Theorem 3.2 Let & and &; be in extendedyft/tyxt for- ¢ As=Aisifs €5 =5

mat. Let=, & =, be conservative with respect#g. If & e A, =ApsUAifse SoNnSy
is pure and label-pure, anfly @ & is type-1, therfy & &; ’ '
is a refining extension. and is denoted);_, ; A;.

Theorem 3.3 Let & and &; be in extendedyft/tyxt for- Definition 4.2 Fori = 0,1, let A; = {4, s}ses, together
mat. Let=q & =; be compatible wittty & &;. If & is with { f4: | f € F;} be¥;-algebras such that the follow-
pure, label-pure and well-founde#, is well-founded, and  ing conditions hold.

Eo @ & istype-0, ther€y @ & is an abstracting extension.
o fors e SoNSi, Ags = Ais,

These theorems and Theorem 3.1 use compatibility, )
conservativity and sums of congruence and these have been® for f € Fo N Fy with f : s1...8, — 5,
shown to be necessary by counter-example [12]. Thesere-  f™°(a1,-..,az) = fA(a1,... a,) for all a; €
sults have been applied in the comparison of multiproces- Ao, for1 <j <n.
sor bigimulation and pomset bisimulation [12, 7, 16]. Define Ay & A, = g, A; plus the functions
It is important to note that although these results have A =01
been presented for arbitrary congruences, when applyingUi:O»l{f "I f e i)
these results to process algebras, the congruences of inter-  ngte that the second condition relies on the fact that
est are those that are mdyced by the algebra that rgpresentsemcef € FyNFy, s; € SoN S, for1 <i < n, hencef
the labels. The next section looks at results to do with theseande1 are defined on the same sets.

specific congruences. For the rest of this paper, lgt; = {A; . }.cs, together
with {4 | f € F;} be X;-algebras fori = 0,1 with
Ag @ A; defined.

4  Algebraic results

This section considers sums of congruences, compatibility Proposition 4.1 Ay @ Ay is a (¥ © X1 )-algebra.

and conservativity required for the results in the previous pyoof: 3, @ 5y = (S, U Sy, Fy U Fy), andlg),_, | 4; i
section and how these relate to the algebras which repre4n g, U 5, -sorted family of non-empty carrier sets. More-

sent the labels of the process algebras. over, it is clear that for eacli € F, U F} there is a total
function f4o®A1 with the appropriate argument sorts and

4.1 Sums of congruences and algebras result sort, regardless of whethgis in the intersection of
Fy andF; or not. [ |

The results in the previous section considered the sum of

two eTSSsEy @ &, and the associated sum of congru- A particular class of signatures is of interest, namely

ences=; @ =;. In this section, it is assumed that for those whose sums satisfy the following definition.
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Definition 4.3 X @ ¥ is sort-similarif for eachs € SyN be any utility in taking these approaches. Sort-similarity is
S, f € FoUF, with f : s;...s, — simpliesf € not an unreasonable condition for label terms, as there is
Fyn Fy. no advantage to be gained by having a function symbol in

. _— . one signature but not the other.
This definition goes beyond that of the sum of two sig-

natures where if a function appears in the intersection of
the two signatures, then it has the same type in each sig
nature. Here it is necessary that any function that has a=Ac®A1 = =4, D=4,

shared result sort, must appear in both signatures. A resulbyqof:  First note, that for any € T(So @ %y), t €

follows from this definition, which is required for the later T(X,) U T(X;) by Proposition 4.2. First show that if

Theorem 4.1 Let the sumxy & X, be sort-similar then

results. t € T(S:), thenig e, (t) = ia,(t) fori = 0,1. This
N o proceeds by induction on the structuretof

Proposition 4.2 Let Xy @ ¥, be sort-similar.  If# < If ¢ is a constant symbol, then this is true. tIf=
T(Z0®%1) has sorts € SoNS1, thent € T(Xo)NT(3). f(ty,...,ty), then assume € T(X,) without loss of
MoreoverT(Zo & %) = T(X0) U T(X1). generality. ia,qp.a, (f(t1,-- - tn)) = fA(ia,@a, (1),
Proof: For the first part of the result, considee T(S0& -+ -+ do@ds (tn)) = fA (i (t1), - - ia, () by the in-
%), for s € Sy N Sy. This proceeds by induction on the ~duction hypothesis and this gives the required result.
structure oft. If ¢ is a constanf :— s thenf € Fy N Fy Next, lett, ' € T(Xo & X4).

and clearlyt € T(Zy) N T(X1). If t = f(t1,...,t,) for
f:s1...8, — s, thenf € Fy N Fy and by the induction
hypothesist; € T(Xy) N T(X;) for 1 < ¢ < n, hence
te T(Eo) N T(El)

Since clearlyT(3y) U T(X1) € T(Zo & X4), itis
necessary to show for arty e T(3, ¢ 3) that either
t € T(Xy) ort € T(31). This proceeds by induction on
the structure of.

If ¢ is a constant symbol, then cleadye T (%y) U
T(X3;). Otherwise considet = f(t1,...,t,). As-
sume thatf € Fy without loss of generality, and that
fi:s81...8, — s, thens;...s,,s € Sy. By the induction
hypothesis, fol < i < n, t; € T(3p) U T(X,). If any
t; € T(Xy), then sinces; € So N Sy, t; € T(Xp) also.

t=sA00A4, tlitEAO@EAlt/: Lett = 4,04, t', then
since this is an congruence this means tlzatdt’ have
the same sort and hence they must be bofi(iB,) or
T(X;). Assume without loss of generality thiat’
T(Xo). By definitioni 4,g.4, (t) = i4,0.4, ("), hence
ia,(t) = ia,(t"). Thereforet =4, ¢ and hence
t =4, B =4,t asrequired.

t =4, D=a,t' =t =a,04, t': This proceeds by in-
duction on the definition of 4, ® =4,.

ot =y, t'ort =4, t'. Assumet =4, t’, then by
definitioni4, (t) = i4,(t') and alsot,t’ € T(X).
It can be shown by a simple induction proof that

Hence forl < i < n, ti € T(X), andt € T(Zo). " ia,(t) = ta,@a4,(t). If ¢t is a constant then this
This result shows how under the condition of sort- is immediate; otherW|s§ it = f(t1,....ta) then

similarity, no closed terms can be created from function Zﬁ’(gyl’f cotn) = (), sdaltn)) =

symbols from both signatures without being in both sets of /7% (ia0@.4, (11); - - -, ia0@.4, (tn)) DY the induc-

closed terms. tion hypothesis and the definition &, ® .4, and this
The sort-similarity condition is not required for the gives the required result.

sum of algebras (Definition 4.2) since the second condi-
tion works becausg-* and f4 are defined on the same
sets; however, it is required for Theorem 4.1 to be proved.
Consider the following example.

e Clearly botht = 4,qg4, t' andt =4, ® =4,t" If t =
t.

o If t =4, P =4,t' by a symmetry argument, then

. a .
Example 4.1 Consider the{s}-sorted signature, = ' =4, ®=a,t, by a shorter inference, hence

({s}.{f}) with f :— s, and the{s}-sorted signature, ' =a,ea, t and thereforet =4,e4, t' since
31 = ({s},{g}) with g :— s. Clearly the sum of these =Ap@A, 1S Symmetric.

two signatures is not sort-similar. The same e} will
be used for both th&-algebra. 4, and X;-algebra A;.
Let fA = g and gt = a. Thenf =4,44, g Since
iAo A (f) = ia,04,(g), but f and g are not equated by

o If t =4, ®=4,t by a transitivity argument, then
there existg” € T(Xo & £1) with t =4, & =4,¢t"
andt” =4, ®=4,t, hence by a shorter inference
t =a.04, tandt” =404, t', thereforet = 4,04,

=4 =4 t' since= 4, .4, is transitive.

It may be possible to work without sort-similarity—
possibly the definition of 4, & =4, could be modified or o If t =4, ®=4t by a congruence argument,
the theorem could be changed to have a one-way implica-  thent = f(ti,....tn), ' = f'(t,....t;) and
tion. There are other choices one could make£gr A;, ti =4, ®=a,t; for 1 < i < n, so by a shorter
such as defining the carrier set for a soes the intersec- inferencet; =a,e4, t; for 1 < i < n. Hence
tion of Ay, and A; 5, however there does not appear to t =a,@4, U, SINCE= 4,04, IS @ CONgruence. n
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4.2 Conservativity and compatibility

It can be shown that 4, © =4, is conservative with re-
spectto=4, and=4, .

Proposition 4.3 LetX & 3, be sort-similar ther= 4, ¢
= 4, is conservative with respect to bathy, and=4,.

Proof: Lett, ¢ € T(3,) (without loss of generality) such
thatt =4, ® =4,t’. Hencet =4, g4, t, SOl A @4, () =
iA.@A, (t'). Hence since,t’ € T(Zg), ia,(t) = ia,(t)
andt = 4, t’ as required. |

Clearly, this does not hold in general since it is pos-
sible in the construction of; & =, from two arbitrary
congruencess; and=, to obtain two terms fronT (%)
that are not identified undetr; to become identified under
=, @ =, by the fact that they may be related to terms that
fall into T'(Zo) N T(X1).

Next, compatibility is considered in the light of sums
of algebras. In the results that involve compatibility, it is
only required thatsy) & =; be compatible withky U R;.

Itis not clear that this can be dealt with in a more general | ax-algebra. Let\ ¢
manner since compatibility depends on the label terms thatvariables ther'.EA is com
e )

appear in the rules. One approach could be to require th

congruences to be compatible with any label term, but this

could impose very strong restrictions on thealgebras

that could be used. However, in the case of sums of alge- e Im(g*) N Im(g{!) = 0 for all g{* :
bras itis possible to obtain a result because of the condition

of sort-similarity.

Proposition 4.4 Let £, @ ¥, be sort-similar. If=4, is
compatible withR; for i = 0,1 then=4, & =4, is com-
patible withRy U R;.

Proof: Since=4, is compatible forRk; for i = 0, 1, there
are two.S;-sorted sets of term§; C T(X)g, fori = 0,1

containing terms that appear as a label on a transition in
a premise or as an argument to the function in the right

hand side of the conclusion of a ruleft). So consider the
following sorts:

s € So — S1: Considern € T(Xg)s. Sinces ¢ Sy,
then clearly no terms iT'(3;) can be equivalent un-
der =4, © =4, to o(n) for any o. So consider
o(n)=4, © =4,p for somey € T(Xy)s, then it can
be shown that ()= 4,1 and hence there exists a sub-
stitution o’ such thaty = ¢'(n) ando(z) =4, o'(2)
for all z € Varg(n). But since=4, is contained in
=4, B =4, thenc(z)=4, ®=4,0'(2) forall z €
Vars (n).

s € S1 — Sy thisis proved in a similar way to the previ-

ous one.

So NSy Considern € T(3g)s N T(X1)s. Consider
o(n)=a,B=a,nforp € T(X)sNT(X1)s. Itcanbe
shownthat () =4, p (@andthaw(n) =4, u). Hence
there exists a substitutiarf such thatu = ¢’ (n) and
o(z) =4, 0'(z) for all z € Varg(n). But since=4, is
contained inE 4, ® =4,, theno (2)=4, ® =4,0'(2)
for all z € Varg(n). [ |
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To see why this does not hold in general for two con-
gruences=, and=; defined onT(%,) andT(3;) com-
patible with two sets of rule®2, and R; respectively, it
may be that some@ appears in the rules dt, but not in
the rules ofR;. If o(n) is also inT(X;) and there exists
p € T(X,), such that(n) =; p, it may not be possible to
find o’ such thay = ¢’(n) ando(z) = o/(z) forall z €
Varg(n), sincen does not appear in the rules Bf.

4.3 Requirements for compatibility

Compatibility is required for a number of results, specifi-
cally the congruence result (Theorem 3.1) and one of the
extension results (Theorem 3.3). Conditionsbalgebras

to ensure compatibility are now considered. The follow-
ing result requires that the term in question contains no
repeated variables. This is not a serious limitation as when
there are repeated variables, the only compatible congru-
ence is the identity relation.

Proposition 4.5 Let® =
T(X) be a term with no repeated
patible with\ if for all function
symbolsy that appear in\ with g4 : A, x ... x A,, —

(S, F') be a signature, and letl

CAl

X

.AS/ X ...
1
As — A,

e g isinjective.
Proof: Leta =4 o(A) for somea € T(X) and a closed
substitutions. It is necessary to find a substitutieshsuch
thato’(\) = cando(z) =4 o’(2) for all z € Var(\). The

proof will be proceed by induction on the structureof
For the base case, assume- z for z € V and defines’

as follows
(0%
o(z")

Then it is clear that the conditions for compatibility are

if 2/ =z

o' (2)) .
otherwise

satisfied. Next considek = g(\q,...,\,) whereg :
s1...8, — s. Hence
iala) = dalo(g(Ar,. . An)))
= talglo(M),...,0(An)))
= g (ial0(\)),- - sialo(Mn)))

Fact 4.1 g*(ay, ...
for someuy, . . .

san) =iala) = a=g(u1,. .., n)

> U
Proof: Suppose not, i.ex = g1 (u}, ...
with g, : s} ..., — s. Then

TYm

s ,) forgr # g

g

A(al, .

iae)
iA(gl (,Ulla s ’:u;n))

g1 (ialph), - - yia(p,))-

)

Contradiction sincdm(g*) N Im(g*) = 0.
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So by this fact, there existy,...u, such thata =

g(p1, ..., pn). Hence
g (ialo(M)), ... ialo(Mn)))
= ialg(pr, .., pn))
= gA(Z.A(.ul)P"viA(uﬂ))

Hencei(o(\;)) = ia(w;) forall 1 < ¢ < n (sincega
is injective) ando (A\;) =4 p; forall 1 < i < n. By the
inductive hypothesis, there are substitutienssuch that
for eachl < i < n, 0;(\;) = p;, ando(z) =4 0i(2)

for all z € Var();). From these substitutions, construct a
substitution that fulfils the compatibility requirements. Let

o' be defined as follows

0i(2)

o' (2 _ i if z¢€ Var()\z)
(=) {U(Z)

otherwise

that reasonable conditions can be found under which tran-
sition equivalence is preserved, and this may lead to sim-
pler proofs for the main results for the format.

To conclude, the results here have demonstrated that
sort-similarity is a reasonable condition to show results
about sums of algebras and congruences, and to ensure that
properties such as compatibility and conservativity hold.
Also, compatibility can be achieved by reasonable condi-
tions on the algebras representing the labels of the process
algebra. These, in turn, demonstrate that the use of these
conditions in the major results for the extendgitityxtfor-
mat are reasonable, and hence that these conditions and
properties do not prevent the application of the results for
the extendedyft/tyxtformat in the comparison of process
algebra semantic equivalences.
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