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Abstract

A number of extensions to the process algebra CCS (Calculus of Communicating Systems) have been proposed to deal
with noninterleaving behaviour such as location and causality. The aim of the paper is to use existing and new comparison
results to provide a hierarchy of these semantic equivalences over pure finite CCS terms. It is not possible to include some
extensions in this hierarchy and the reasons for the exclusion are given.
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1 Introduction

Process algebras provide mathematical models of concur-
rent behaviour and are used for the specification and verifi-
cation of concurrent systems. A well-known process al-
gebra is Milner’s Calculus for Communicating Systems
(CCS) [36, 37]. Many extensions to and modifications
of CCS have been proposed to deal with different aspects
of concurrent behaviour, such as location and causality.
These types of behaviour are sometimes referred as nonin-
terleaving, in contrast to the interleaving semantics of stan-
dard CCS. This paper considers the relationships between
the noninterleaving semantic equivalences over finite pure
CCS processes.

Process algebras consist of three components: a syn-
tax to describe processes and their actions, operational se-
mantics to describe the behaviour of the processes in terms
of actions (in CCS, the behaviour is expressed as a labelled
transition system) and semantic equivalences which equate
processes that are understood to have the same behaviour
(in CCS, bisimulation relates processes with the same be-
haviour with respect to the actions that can be performed).

This paper considers how the semantic equivalences
(specifically bisimulations) of these extensions relate to
each other with respect to CCS processes. As new exten-
sions have been proposed, these have been compared with
a subset of previous approaches, but the comparison is not
complete. The aim of this paper is to present a complete
comparison of some of these extensions by gathering to-
gether existing results and providing new results.

The approach taken here isad hoc in the sense that
each result is individually obtained using techniques spe-
cific to the equivalences being compared. Processes are
compared over finite, pure CCS processes, namely over the
processes consisting only of the operators defined for CCS,
and only for those processes exhibiting finite behaviour.

Since the comparison is based on results proved by a va-
riety of techniques, a wide range of equivalences can be
compared in this manner. However, there are some limita-
tions, as will be discussed when considering equivalences
that cannot be compared over these CCS terms.

Interleaving semantic equivalences defined on labelled
transition systems have been extensively investigated by
van Glabbeek [46, 47], with respect to linear and branch-
ing time, and abstraction from internal actions. He has
developed a complete lattice of 11 different semantic
notions which do not abstract from internal actions for
finitely branching processes – the finest is bisimulation
and the coarsest trace equivalence [46]. He has also in-
vestigated semantics which abstract from internal actions,
and presents a hierarchy of 155 different equivalences
[47]. The research presented here looks at noninterleav-
ing equivalences and instead of using arbitrary transition
systems, considers those transition systems generated for
pure finite CCS terms by the process algebras.

Other research has approached the issue of comparison
in lessad hocmanner, by presenting formal frameworks in
which to do the comparison. A brief discussion of this
work is presented here as related research. Each of these
approaches has limitations as to what can be compared.
Some research has attempted an overview of the different
semantics and models. Category theoretical approaches
are taken in [30, 35, 38, 44] and other approaches appear
in [7, 17, 20, 24, 45]. Many of these approaches do not
investigate semantic equivalences, but focus on comparing
the behavioral semantics of processes [7, 30, 35, 38, 44].
The approaches most relevant are now discussed briefly.

Gorrieri and Laneve [25] compare equivalences over
split action transition systems. They use transition sys-
tem/transition preserving homomorphisms between transi-
tion systems to show that transition systems are bisimilar.

Some of the process algebras proposed in the liter-
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α.P
α−→ P
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α−→ P ′

P \L α−→ P ′\L
α, α 6∈ L

P
α−→ P ′

P | Q α−→ P ′ | Q
P

α−→ P ′

Q | P α−→ Q | P ′

P
a−→ P ′ Q

a−→ Q′

P | Q τ−→ P ′ | Q′

P
α−→ P ′

P [f ]
f(α)−−−→ P ′[f ]

Table 1: Rules for CCS

ature allow for the comparison of different equivalences
over CCS processes. The observation trees of Deganoet al
[18] permit different types of observations to be made and
hence it is possible to compare the different equivalences
generated by these observations. The observation trees
are also used in a parametric approach to compare equiva-
lences using mixed orderings and partial orderings, and lo-
calities and causalities [40] and also used in extended tran-
sition systems to define and compare a number of different
equivalences [29]. Kiehn defines a new transition system
based on local and global causes [32, 33]. By changing the
function used in the definition of bisimulation, different se-
mantic equivalences can be compared based on local and
global causes as well as ST-equivalence.

Results for the extendedtyft/tyxt format give condi-
tions under which the sum of two transition system speci-
fications in the extendedtyft/tyxtformat can give coarser or
finer bisimulations compared to those of the original sys-
tems [23, 24]. The AdS format allows for comparison by
using different algebras to interpret the labels of the transi-
tion system specification [21].

In the next section, CCS is introduced and an indica-
tion is given of how extensions can be defined. In Section 3
the comparison is given in terms of a hierarchy in the spirit
of similar work by van Glabbeek [46, 47], and reasons are
given for the fact that some extensions cannot be included.
Earlier versions of this work has appeared as [22, 23]

2 CCS and its extensions

In this section, a brief overview of Milner’s Calculus for
Communicating Systems (CCS) [36, 37] is given, as well
as a brief discussion of the extensions to CCS that will be
considered in this paper.

2.1 An overview of CCS

LetA be an infinite set of namesa, b, c, . . ., andA be the
set of co-namesa, b, c, . . ., with a = a. A ∪ A is the set
of actions ranged over bya. τ is a distinguished action
not inA ∪ A called the silent, internal or perfect action.
Let Act = A ∪ A ∪ {τ}, ranged over byα. A relabelling
functionf : Act→ Act is a function such thatf(a) = f(a)
andf(τ) = τ . ProcessesP are generated by the grammar

P ::= 0 | α.P | P + P | P |P | P \L | P [f ]

with α ∈ Act, L ⊂ A andf a relabelling function.

The operational semantics of CCS are defined in terms
of a labelled transition system,(P, Act, { α−→ | α ∈ Act}),
where the relation

α−→ is defined to be the smallest rela-
tion satisfying the rules in Table 1.α.P represents a pro-
cess that can perform anα action and then behave like
P , P + P represents the nondeterministic choice between
two processes,P | P represents two processes in parallel,
P \L restricts the action a process can perform, andP [f ]
renames the actions of a process. 0 is the process which
can perform no actions.

Example 1 Consider(a.b.0 + c.0 | a.0)\{a} which has
the following transition built out of the rules

a.b.0 a−→ b.0

a.b.0 + c.0 a−→ b.0 a.0 a−→ 0
(a.b.0 + c.0) | a.0 τ−→ b.0 | 0

((a.b.0 + c.0) | a.0)\{a} τ−→ (b.0 | 0)\{a}
.

It also has the transition

c.0 c−→ 0

a.b.0 + c.0 c−→ 0
(a.b.0 + c.0) | a.0 c−→ 0 | a.0

((a.b.0 + c.0) | a.0)\{a} c−→ (0 | a.0)\{a}
.

The semantic equivalence of interest in this pa-
per is (weak) bisimulation. This equivalence abstracts
from internal actions in the sense that they do not
have to be matched when considering bisimilar pro-
cesses. First, lett = α1 . . . αn ∈ Act∗ then

t⇒ =
( τ−→ )∗ α1−→ ( τ−→ )∗ . . . ( τ−→ )∗ αn−−→ ( τ−→ )∗. Note that

ε⇒ =
( τ−→ )∗ whereε is the empty string of actions. The follow-
ing definition is chosen for reasons of elegance, but other
formulations of this equivalence exist [37].

Definition 1 A (weak) bisimulationis a binary relation
R ⊆ P × P such that(P,Q) ∈ R only if for all s ∈ Act∗

1. P
s⇒ P ′ implies∃Q′, Q

s⇒ Q′ and(P ′, Q′) ∈ R

2. Q
s⇒ Q′ implies∃P ′, P

s⇒ P ′ and(P ′, Q′) ∈ R.

P andQ are(weakly) bisimilar, P ≈ Q, if there exists a
(weak) bisimulationR such that(P,Q) ∈ R.

Using this definition,a.0 | b.0 ≈ a.b.0 + b.a.0. This
identification of a process with concurrency with a process
that has no concurrency but sequential nondeterminism is
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the reason that bisimulation is called interleaving. The se-
quential processa.b.0 + b.a.0 represents all possible inter-
leavings of the actions in the parallel processa.0 | b.0. By
contrast with this, many of the extensions to CCS, partic-
ularly those discussed in this paper, do not identify these
two processes and hence are known as noninterleaving or
are sometimes described as having true concurrency. Also
(a.b.0 | b.c.0)\{b} ≈ a.c.0 andτ.a.0 ≈ a.0 ≈ a.τ.0.

2.2 Extensions to CCS

This section will give an indication of how CCS can be
modified to deal with different aspects of concurrent be-
haviour, but due to space constraints it is not possible to
give full details of each process algebra. The reader is re-
ferred to the original papers. Each semantic equivalence
for a CCS extension in the hierarchy will be briefly dis-
cussed. Most of the extensions involve the introduction
of new operators and the modification of the labelled tran-
sition system, as well as the modification of definition of
bisimulation to deal with the new labels of the transition
system.

Location bisimulation (≈l) [9]
As an example, CCS with locations [9] will be consid-

ered in more detail than the others. In this case, additional
syntax is added, that of location prefix. LetL be a set of
locations distinct from the actions, then forl ∈ L, l :: P is
a process. This describes the idea that the actions ofP are
located atl. The rules of the operational semantics are also
modified. The rule for prefix is replaced with

α.P
α−→
l

l :: P
l ∈ L

to associate a location with each process. A new rule is
introduced for processes prefixed with locations

P
α−→
u

P ′

l :: P
α−→
lu

l :: P ′

whereu is a string of locations. Note that transitions of the
labelled transition system now carry both action and loca-
tion information; the transitions in all other rules need to
be modified to carry both action and location information.
The only transitions without locations areτ transitions and
these are obtained from the original rules for CCS with the
addition of a rule for the location prefix operator. Also the
transition system now has many transitions from a process
α.P , one for each possible location.

The notion of bisimulation also needs to be modified
to take account of the fact that there are both actions and
locations, and it is changed to require that a transition with
an action and string of locations is matched by a transition
with the same action and string of locations – this is called
location bisimulation.

This extension to CCS takes into account location in-
formation; essentially, actions are associated with a string

of locations that represent which actions have occurred
previously at that location. This distinguishes actions that
occur in a process exhibiting sequential nondeterminism to
those that occur in a process with concurrency, and hence
a.b.0 + b.a.0 6≈l a.0 | b.0

Example 2 The processa.b.0 | c.0 has the transition

a.b.0 a−→
l1

l1 :: b.0

a.b.0 | c.0 a−→
l1

l1 :: b.0 | c.0

and the resulting process has the transitions

b.0 b−→
l2

l2 :: 0

l1 :: b.0 b−−→
l1l2

l1 :: l2 :: 0

l1 :: b.0 | c.0 b−−→
l1l2

l1 :: l2 :: 0 | c.0

and
c.0 c−→

l3
l3 :: 0

l1 :: b.0 | l3 :: 0 c−→
l3

l1 :: b.0 | l3 :: 0

Loose location bisimulation(≈ll) [8]
Loose location bisimulation has a similar definition to

that of location bisimulation, but the underlying opera-
tional semantics has a different rule for action prefix where
any string of locations (including the empty string), and not
just a single location can be associated with an action.

Static location bisimulation (≈s
l ) [11]

This is based on transitions composed of actions and lo-
cations as are the previous two notions. Locations are only
introduced by the location prefix operator (hence the tran-
sition system only has one transition from a processα.P
which has the empty string as its location). This requires
a more complex notion of bisimulation based on families
of bisimulations to match up locations between two pro-
cesses.

Equivalence with location observations(≈loc) [39]
This is a parametric approach (in the sense that it is pa-

rameterised on different types of observations) based on
observation trees where location-oriented observations are
made after which a standard form of bisimulation appro-
priate to observation trees is applied.

Distributed bisimulation (≈d) [10, 12]
Transitions have the formP

a−→ 〈P ′, P ′′〉 whereP ′ is
the local residual andP ′′ is the global residual, in the sense
thatP ′ represents what the local component changes to af-
ter the transition andP ′′ represents what the whole process
changes to after the transition. Bisimulation requires that
the local residuals are bisimilar and the global residuals are
bisimilar.
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Figure 1: A hierarchy of equivalences for finite CCS processes

K-grapes distributed bisimulation (≈da) [14]
Generalised distributed bisimulation (≈g) [14]
Distributed grapes equivalence/maximal distribution
equivalence(≈dg) [13, 14]

All these approaches rely on decomposing CCS pro-
cesses into sequential components called grapes. The
bisimulations are defined with respect to sets of grapes
which represent processes.

Weak causal bisimulation(≈c) [15, 16]
The transition systems keeps track of which previous ac-

tions the current action is causally dependent on; either as a
result of sequential behaviour or communication between
processes. Transitions have the formP

〈a,K〉−−−−→ P ′ where
K records the previous actionsa is dependent on. Bisimu-
lation requires that actions have the same dependencies.

Local/global cause bisimulation(≈lg) [32]
Local cause bisimulation(≈lc) [32]
Global cause bisimulation(≈gc) [32]

Each transition is labelled with an action, a set of local
causes, a set of global causes and the current cause. Lo-
cal causes are due to actions that occurred in the sequential
component from which the current action came, and global
causes are understood to come from an action in any com-
ponent. The bisimulation equivalences are parameterised
by a function which extracts the appropriate information
from the causes on a transition.

Read-write bisimulation (≈rw) [43]
The proved transition system (a transition system where

each transition is labelled with the proof that was used to
obtain the transition) is translated into a labelled transition
system labelled with actions and cause sets. This trans-
formation determines causality with respect to sequential
behaviour, or asymmetric communication. Causality is
obtained from asymmetric communication by considering
the flow of information – an output actiona is viewed as
causing the corresponding input actiona. Bisimulation
matches on actions and sets of causes.

ST-bisimulation (≈ST ) [27]
In the transition system, an actiona is understood to be

split into two parts – the start of the actions(a) and the
finish of the actionf(a). Bisimulation requires that start
actions match with start actions and finish actions with fin-
ish actions.

3 Comparison over pure CCS pro-
cesses

In this section, the results for the comparison of extensions
to CCS are presented. These results will yield a hierarchy
of equivalences with respect to pure CCS processes. Ad-
ditionally, examples of process algebras which cannot be
included in this hierarchy will be given and discussed.

As mentioned above, a number of extensions to CCS
have been proposed which permit noninterleaving seman-
tics. It is possible to compare the equivalences on finite
CCS processes, although most of the process algebras used
for the definition of these equivalences have additional op-
erators. This comparison is possible because pure CCS
processes are still valid processes in these process algebras
and they also display the specific concurrent behaviour for
which the process algebra is designed. Many authors when
presenting a new process algebra based on CCS, compare
their process algebra with a few others using pure CCS
terms. However, many gaps remain and it is important to
fill in these gaps and assemble these results together. Be-
cause many of the existing comparisons are over pure CCS
terms, it makes sense to continue the comparison in this
fashion.

3.1 The hierarchy

In the spirit of van Glabbeek, a hierarchy of equivalences
that are finer than Milner’s observation equivalence is de-
veloped, by assembling results from the literature and pro-
viding additional counter-examples. The equivalences de-
scribed in Section 2.2 appear in the hierarchy and Fig-
ure 1 displays the relationship between these equivalences.
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A (c.a | b.(c + a))\{c} (b.c | c.a)\{c}

B (e.(c.Σa + d.Πa + c.Σb + d.Πb) | (e.(c.Σa + d.Πa + c.Σb + d.Πb) |

(d.Σb + c.Πb + c.Σa + d.Πa))\{c, d} (c.Σb + d.Πb + d.Σa + c.Πa))\{c, d}

C (a.e.c | b.e.d)\{e} (a.e.d | b.e.c)\{e}

D (a.b | c.d) (a.(e.b + b) | c.(e.d + d))\{e}

E (a.c + b.d | c.b + d.a) (a.c + b.d | c.b + d.a) + a.b

F (a.c + b.d | c.b + d.a) (a.c + b.d | c.b + d.a) + (a | b)

G (a.b | b.c)\{b} a.c

H (a.e.c | b.e.d)\{e} (a.e.c | b.e.d)\{e}

I (a.b.d | b.c)\{b}+ (c.b | b.a.d)\{b} (a.d | c)

J (a | b) + (a.c | c.b)\{c} (a | b)

K (a.b | b.c) + a.c (a.b | b.c)

L a.(b + τ.c) + a.c a.(b + τ.c)

M (e.j.(m.a.p | n.c) | (j.f.s.(m.a.b | p.c) |
((m.a.n | b.c) | s.m)))\{b, j, m, n, p, s}

(e.j.(m.a.p | n.c) | (j.f.s.(m.a.b | b.c) |
((m.a.n | p.c) | s.m)))\{b, j, m, n, p, s}

whereΣa = a1a2 + a2a1 and Πa = a1 | a2.

Table 2: CCS processes used for comparison

A path from an equivalence to one lower in the diagram
means that the higher equivalence is contained in the lower
one. This means that the lower equivalence equates the
same processes that the higher one does, but also equates
other processes as well, namely it is coarser1. Note that
observation equivalence is the coarsest of all these equiv-
alences as would be expected. The equivalences that are
not connected by a downwards path are incomparable; that
is, it is possible to find two pairs of processes such that
the first pair is equated by the first equivalence but not the
second, and such that the second pair is equated by the sec-
ond equivalence, but not the first. It is also known that on
finite restriction and renaming free CCS,≈d, ≈l and≈ll

coincide [9], as do≈d,≈da,≈g and≈dg [14]; and that on
finite restriction and renaming free CCS without commu-
nication,≈l, ≈c and≈ST have the same axiomatisation
[31]. Aceto and Murphy show that their timed bisimula-
tion coincides with these equivalences on this subset [4].

Figure 1 shows that ST-bisimulation and read-write
bisimulation are not comparable and do not relate to any
of the other equivalences. Local/global cause bisimulation
is finer than any of the location bisimulations and causal
bisimulation. It is interesting that there appear to be a num-
ber of possible approaches to obtaining a location-based
bisimulation, and that there are many different ways to ob-
tain the location bisimulation of Boudolet al. It is to be

1An equivalence that makes more equations than another equivalence
is said to becoarser, and an equivalence that makes fewer equations than
another equivalence is said to befiner. This usage is consistent with the
fact that a finer equivalence results in more equivalence classes than one
that is coarser.

expected that unlike the work of van Glabbeek where there
is one finest equivalence, here there are likely to be many,
as there is little utility in combining the features of the in-
comparable equivalences to construct a finer one.

The details of the comparison are given in Tables 2
and 3. These tables are constructed out of existing results
in the literature, new counter-examples and rules of logical
implication. The two tables can be interpreted as follows

• Table 2 contains pairs of processes that are used to
show that certain equivalences are incomparable. Note
that the0 operator has been omitted in these processes.

• Table 3 describes the relationship between each pair of
equivalences. For each pairwise comparison, there is
a block in the table. In the centre of each block, there
is a symbol giving the relationship –# indicates when
the two equivalences in question are incomparable. As
an example, the block at the fourth column and third
row of Table 3 is to be read as≈g ⊂ ≈da. If the result
of the comparison comes from the literature, there will
be a citation at the bottom of the block. Finally, if the
two equivalences are incomparable, there may be two
letters at the top of the block, each of which refer to a
pair of processes in Table 2. The first pair is equated
by the equivalence that appears in the column, and not
equated by the equivalence that appears in the row; and
the second pair is not equated by the equivalence that
appears in the column, and equated by the equivalence
that appears in the row. These pairs of letters do not
appear for all incomparable equivalences – since there

SART / SACJ, No , 2000 5



Research Article

are a number of identical equivalences in the table, let-
ter pairs are only given to one (usually the first one) in
a group of equivalences that are the same.

Example 3 For example, consider≈l and≈ST . They are
not comparable.≈l does not equate(a.b.0 | b.c.0)\{b}
anda.c (the pair of processes labelled G) since after two
transitions the first process can become(l1 :: 0 | c.0)\{b}.
This process has the transition

(l1 :: 0 | c.0)\{b} c−→
l2

(l1 :: 0 | l2 :: 0)\{b}

The second process cannot match this transition since from
l1 :: c.0 the only transitions have a string of two locations.

l1 :: c.0 c−−→
l1l2

l1 :: l2 :: 0

However,≈ST does equate these processes as both can
only perform the sequence of actionss(a), f(a), s(c),
f(c) (abstracting fromτ actions). The pair of processes
labelled J are equated by≈l since no location informa-
tion is conveyed between the actions on different sides
of the parallel operator, hence the actions resulting from
(a.c.0 | c.b.0)\{c} can be matched by those of(a.0 | b.0).
These processes are not equated by≈ST since in(a.c.0 |
c.b.0)\{c} it is not possible to do as(b) action before an
f(a), but in(a.0 | b.0) it is possible.

3.2 Other semantic equivalences

There are a number of equivalences based on extensions to
CCS that are not suitable to add to this hierarchy using this
type of comparison.

• For some extensions to CCS, pure CCS processes do
not exhibit noninterleaving behaviour or only a subset
of possible noninterleaving behaviour. Examples are
distributed CCS [34], multiprocessor CCS [34] and
the process algebra with a dynamic parallel operator
developed by Fanchon [19].

• The comparison here has been done for semantic
equivalences which abstract from internal actions.
Some extensions to CCS only have a strong equiva-
lence which does not abstract from these actions. Ex-
amples are distributed CCS [34], multiprocessor CCS
[34] and the split-action bisimulations of Gorrieri and
Laneve [25]. In the latter,τ is split and it is not clear
how a weak semantic equivalence can be defined.

• Some process algebras have operators and hence
processes that differ from those of CCS, therefore
comparison is not possible. For example, the ST-
equivalences of Aceto and Hennessy are based on a
process algebra consisting of actions (as opposed to
prefixed actions) and a termination predicate [2, 3].
In Murphy’s algebra of located processes, a subset of
CCS is used where processes represent parallel com-
binations of sequential process [42]. However, there
are some comparison results proved for these process
algebras.

– In the work of Aceto, a subset of CCS processes
is used in a process algebra with static localities,
where the static operators of CCS, namely paral-
lel, renaming and relabelling, can only appear at
the highest level of a term [1]. These processes
are callednets of automata. Aceto has shown
that on the set of nets, his equivalence coincides
with location bisimulation [9]. Moreover, this
work has been generalised, and the generalisa-
tion≈s

l [11] is included in the hierarchy.

– In the work of Mukund and Nielsen, CCS
with guarded sums is given operational seman-
tics based on asynchronous transition systems.
Hence the set of CCS processes is only a sub-
set of the pure CCS processes [41]. The equiv-
alence defined coincides with the equivalence of
Aceto [1] on nets of automata and the authors
conjecture that their equivalence coincides with
location bisimulation [9] on CCS with guarded
sums.

• Also note that for many other process algebras that
are extensions of CCS, the equivalence over pure CCS
processes is the same as weak bisimulation over CCS
processes. This is particularly true for those exten-
sions based on time, priorities and probabilities. So
this method of comparison does not work, since it is
not powerful enough to distinguish meaningful differ-
ences.

• Additionally, note that some equivalences for the pro-
cess algebras are not based on bisimulation such as
applying testing equivalence to split actions [28], and
hence are not included here.

4 Conclusion

This paper has taken 14 (noninterleaving) semantic equiva-
lences from the literature and done a complete comparison
of them using existing results and new counter-examples.
This has resulted in a hierarchy of these equivalences. All
of these equivalences are finer than weak bisimulation, and
many are incomparable.

The method used of comparing over pure, finite CCS
processes has utility for these semantic equivalences since
the process algebras under consideration demonstrate all
their possible noninterleaving behaviour over these terms.
Other semantic equivalences have been omitted for reasons
of not being defined on all appropriate CCS processes, or
because not all noninterleaving behaviour is displayed by
these processes.

In conclusion, this paper has demonstrated the rela-
tionship between these equivalences in a manner which has
not been done before, and shown the utility of the approach
of doing the comparison over pure CCS terms.
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≈ ≈d ≈da ≈g ≈ll ≈l ≈s
l ≈lc ≈dg ≈loc ≈c ≈gc ≈lg ≈rw ≈ST

≈ — ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂
[10] [8] [32] [43] [27]

A,B E,F A,H A,F
≈d — = ⊂ # ⊂ ⊂ ⊂ ⊂ ⊂ # # ⊂ # #

[14] [14] [8] [9]
A,B E,F A,H A,F

≈da — ⊂ # ⊂ ⊂ ⊂ ⊂ ⊂ # # ⊂ # #

A,M E,F A,H A,J
≈g — # ⊂ ⊂ ⊂ ⊂ ⊂ # # ⊂ # #

[14] [14]
C,D G,H G,J

≈ll — ⊂ ⊂ ⊂ ⊂ ⊂ # # ⊂ # #
[9] [8]

E,F G,H G,J
≈l — = = = = # # ⊂ # #

[11] [32] [13] [39] [9] [43]

≈s
l — = = = # # ⊂ # #

≈lc — = = # # ⊂ # #
[32]

≈dg — = # # ⊂ # #

≈loc — # # ⊂ # #

≈c — = ⊂ # #
[32] [43]

G,H D,K
≈gc — ⊂ # #

[32]
I,H G,L

≈lg — # #

H,I
≈rw — #

≈ST —

Table 3: Summary of relationship between equivalences
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