# Women in Computing around the World: an Initial Comparison of International Statistics 

Vashti Galpin<br>School of Computer Science, University of the Witwatersrand, South Africa<br>vashti@cs.wits.ac.za, http://www.cs.wits.ac.za/~vashti


#### Abstract

This technical report describes the participation of women in computing in more than 30 countries, by focussing on participation at undergraduate level. A brief discussion covers how societal and cultural factors may affect women's participation. Statistics from many different sources are presented for comparison. Generally, participation is low - most countries fall in the $10-40 \%$ range with a few below $10 \%$ and a few above above $40 \%$. In the appendices, the approach to data collection is described and statistics for women in computing and mathematics are presented.


## 1 Introduction

This report presents a picture of the participation of women in computing around the world. Much has been published on the low participation of women in computing in the USA, UK and Australia; and there are researchers active in other countries seeking to describe and understand their own situations. It is important to consider the situation in different countries to avoid incorrect assumptions and to find appropriate solutions.

Recently, steps have been taken to obtain a global picture of the situation with the introduction of the ACM-W Ambassador program by the ACM's Committee on Women in Computing (ACM-W). Each ACM-W Ambassador will provide information about the status of women in computing in their country via a website - links to these sites can be found at http://www.acm.org/women.

This paper focusses on participation in academic study, specifically university undergraduate level, as this is a relatively available statistic. Other measures will be used to fill out the picture where necessary. Computing has been described as a discipline that contains aspects of science, engineering and mathematics [16]. As a result of this complex nature, it is not possible to infer the situation of women in computing from information about women in science, or information about women in engineering. Hence, published statistical information that aggregates disciplines is not useful in determining the status of women in computing. This article presents mostly information about computing, but presents more general information in places to broaden the picture.

The next section briefly considers how cultural factors affect the participation of women in computing. The main section of the paper then presents data from different countries. The data is presented compactly in tables, and details of how the tables can be interpreted are given. Finally, a brief discussion of the data is given. The first appendix describes how data was collected and the second appendix presents the percentage of women studying computer science and mathematics at tertiary level for 100 countries.

## 2 The effect of culture and society

The reasons that women choose to study computing will vary from culture to culture, and from country to country, and it is beyond the scope of this paper to consider this issue in detail. When seeking solutions for women's low participation in computing, it is important to consider all cultural and societal factors that may affect this participation. This also allows us to identify when a solution from one country may or may not be suitable to use in another country. For example, Mukhopadhyay [34] argues that the 'internal' 'self-selection' model used to explain the participation of women in science in the USA, cannot be applied to India. A model with the family as decision-maker is more appropriate and explains why there is lower participation in the applied sciences such as engineering and technology when compared to the pure sciences such as physics, chemistry and mathematics.

In 1994, Science published a special issue comparing women in science across a number of cultures and countries. Factors that were associated to high numbers of women in science are [4]: girls-only schooling (India, predominantly Catholic countries), compulsory mathematics and science through secondary school (Poland, Italy), family-friendly societies (Israel, Mediterranean countries), perceptions of science as a low-status occupation when compared to disciplines such as engineering (Portugal, Turkey, India), class issues (India, Latin American countries) and recently developed science capabilities (Portugal, Mexico, Argentina).

It is not clear whether these factors apply to computer science as well. Researchers have investigated crosscultural gender issues in computing and some of these studies are now briefly described. Janssen Reinen and Plomp [27] considered primary and secondary school students from Austria, Bulgaria, Greece, India, Japan, Latvia, the Netherlands, Slovenia and the USA collected in 1989 and 1992. All countries showed gender differences in basic knowledge and skills except Bulgaria, USA and India. The lack of difference in the USA was attributed to high number of female teachers, parental encouragement and computer use outside school, and in Bulgaria it was attributed to high number of female teachers.

In their study of university students in 23 countries, Weil and Rosen [69] found that in Thailand, Italy and Kenya, males were significantly more anxious about computers, whereas in Israel and Hungary, women were significantly more anxious. There were significantly more male technophobes in Kenya, and significantly more female technophobes in the USA, Hungary and Australia. In the USA, Singapore, Kenya, Israel, Hungary, Czechoslovakia, Belgium, Australia and South Africa [11], men had significantly more positive cognitions with the reverse in Northern Ireland. In one country, Indonesia, female students had significantly more experience than males, and the opposite was found in Yugoslavia-Croatia, Thailand, Mexico, Japan, Italy, India, Hungary, Germany, Czechoslovakia and Australia.

Makrakis [31] considered computer self-efficacy amongst Japanese and Swedish secondary school pupils and found no gender differences in either country. The research showed the 'We can, I can't' paradox [47, cited in [18]] appeared amongst Japanese students of both genders but not amongst the Swedish students, and this was attributed to a greater focus in Japanese society on group identity. A similar study investigating self-efficacy amongst Romanian and Scottish higher education students [17] found differences between the male and female students but there was no interaction of gender and nationality. Collis and Williams [12] found that there were fewer gender-based differences between Chinese students than Canadian students. The main gender-based difference for Chinese students was in the perceptions of women's abilities where female students were much more positive than male students. This difference also occurred amongst the Canadian students.

Within a country, students of different backgrounds can have different experiences. Von Hellens and Nielsen [68] note that amongst IT students at an Australian university, female Asian students feel they are ignored by non-Asian students and male Asian students, whereas female non-Asian students feel they are the focus of sexual harassment and unwanted positive discrimination.

Not all countries have low participation by women. In 1987 more than $50 \%$ of application/analyst programmers and system analyst/designers in Singapore were female, and the majority of graduates from computer courses were female [29]. Uden [64] argues that this occurs because of government promotion of the use of computers, perceptions of good career prospects in IT, a preference amongst women for computing as opposed to engineering which also pays well, exposure to computers at schools level in a gender-neutral manner, and assistance with domestic responsibilities by older family members or employees.

## 3 Women's participation in computing

The specific measure that will be considered in the tables that follow is women as a percentage of the total number of undergraduate computing students or computing graduates. Hence, the data collected concentrates on students taking computing at tertiary education level as a major subject, in the sense that their qualification will focus on computing. In some cases, the data refers to students in a particular year of study who are taking computing courses at a major level. Where is was not possible to determine the type of course, the course has been briefly described. Most data is drawn from universities, but as the tertiary education system varies from country to country, information has been drawn from other types of institutions such as technical colleges. Other data not specific to computing at tertiary level will be used to give a more complete picture.

Not all countries publish easily available national data recording the percentages, so data has been obtained from two other sources: data from individual universities and data reported by individuals attending or presenting classes at university level. There are four tables, Tables 1-4, grouping together countries from similar geographical areas. For a discussion of the approach taken in collecting data, see Appendix A.

| Country | Data | Year | Trend | Type | Source |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Botswana | $10 \%(2)$ | 1998 |  | UG fy, CS | Ind, U of Botswana ${ }^{a}$ [54] |
| Eritrea | $<10 \%$ | 2001 |  | UG, CS | Ind, U of Asmara ${ }^{b}$ [33] |
| Madagascar | $11.1 \%$ | $1997 ?$ |  | Other $^{c}$ | National [67] |
| Kenya | $11.1 \%(3)$ | 2001 |  | Deg, CS | Ind, U of Nairobi [46] |
| Libya | $35.7 \%(606)$ | 2002 |  | Deg, CT | Insts, Alfateh U, 7th of April U, <br>  |
| Nigeria | $31.3 \%(10)$ | 1997 |  |  | Altakadum U [2] |
|  | $20 \%-30 \%$ | $1994-6$ |  | UG, CS | Ind, Ogun State U [51] |
|  | $32.6 \%$ | 1994 | $28.7 \% 1991$ | CS CS | Ind, U of Benin [1] |
|  |  | 1998 | none 1991 | Deg, CS\&IS | Insts, Nigerian polytechnics [23] |
| South Africa | $32.1 \%(337)$ | 1996 | $14 \% 1993$ | UG, Inf | Insts, U of Dar-es-Salam, Sokoine <br> and Muhimbili [67] |
| Tanzania | $3 \%(2)$ |  |  |  | UG fy, CS |

${ }^{a}$ The University of Botswana is the only university in Botswana offering a BSc in Computer Science.
${ }^{b}$ The University of Asmara is the only university in Eritrea.
${ }^{c}$ Computer Science higher education teachers.
Table 1: Africa

### 3.1 Reading the tables

The first four tables have the format described below. Information that is unclear is marked with a question mark, and figures that are approximate are indicated with $\sim$.

Country: Some countries have more than one entry, when the data is reported from different sources. The data is presented as discovered, so there is the possibility of contradictory or disparate data.

Data: In this column, a percentage is given calculated from the total number of women and the total number of people, and if available, the actual number of women is given in brackets.

Year: This is the year or years that the data comes from. Where year information was given as an academic year split over two calendar years, the most recent year of the two is used in these tables.

Trend: This indicates any trends in the percentage data. If the percentage in the Trend column is less that that in the Data column, this means that since the year given in the Trend column, there has been an overall trend for the data to increase. If the percentage in the Trend column is more than that in the Data column, then since the year given in the Trend column, there has been a trend for the data to decrease. If 'none' appears in the trend column then since the year indicated in the Trend column, there has been no discernible trend. In some cases, the trends have been inferred from the data available, and in other cases, it has been described as a trend by the source of the data.

Type: This column covers the level and the discipline to which the data refers. As mentioned above, the data collected refers to the study of computing at major level at tertiary institutions. Where it was not possible to determine whether this was the case, the category 'Other' has been used.

The abbreviations for level are: 'UG' - undergraduate study, 'fy' - final year, '1y' - first year, 'dist' - distance learning, 'Deg' - first/undergraduate degree (this category excludes postgraduate/graduate qualifications), 'PG' postgraduate study, 'Acc' - applicants accepted to degree programmes. The abbreviation 'UG\&MSc' is used when figures are given for both undergraduate and MSc study. If the level could not be determined from the source, the level is not given.

The abbreviations used for discipline are: 'CS' - Computer Science, 'Inf' - Informatics, 'IT' - Information Technology, 'IT\&T' - Information Technology and Telecommunications, 'Cmp' - Computing, 'CmpSci' - Computing Science, ‘CmpStd’ - Computer Studies, ‘CSS’ - Computer and System Sciences, ‘CSys’ - Computer Systems, 'BusCmp' - Business Computing, 'Tech' - Technology, 'CT' - Computer Technology, 'TechInf' - Technical Informatics, and 'IS' - Information Systems.

| Country | Data | Year | Trend | Type | Source |
| :--- | :--- | :--- | :--- | :--- | :--- |
| India | $20.3 \%(15)$ | 2002 | none 1993 | UG, CS | Inst, Annamalai U [59] |
|  | $11.3 \%(11)$ | 1996 |  | CSS | Inst, J Nehru U [10] |
|  | $7.84 \%(22,857)$ | 1994 | none 1992 | Other ${ }^{a}$ | National [10] |
|  | $28.42 \%(27)$ | 1993 | $7.3 \% 1982$ | IT | Inst, Andhra U [22] |
| Iran | $41 \%$ | $1999 ?$ |  | CS | Insts, vocational and training insti- |
|  |  |  |  |  | tutions [50] |
| Pakistan | $18.2 \%(8)$ | 2000 |  | PG, CS | Insts, Q.A.U. Islamabad [5] |
|  | $4.99 \%(685)$ | 1998 |  | Other $^{b}$ | Insts [5] |
| Malaysia | $51.4 \%(2,167)$ | 1991 |  | Other $^{c}$ | National [39] |
| Singapore | $>50 \%$ | $1987 ?$ |  | Other $^{d}$ | Insts [29] |
| Thailand | $55 \%(158,286)$ | 1998 | $57.2 \% 1996$ | Other ${ }^{e}$ | Insts [36] |
| Turkey | $20.4 \%(1,753)$ | 2001 | $18.3 \% 1997$ | UG, CSys | National [37, 3] |
| Australia | $19 \%$ | 1998 | $22 \% ~ 1994$ | IT\&T | National [38] |
|  | $49 \%$ | 1995 | $\sim 35 \% 1990$ | UG, BusCmp | Inst, Victoria U [13] |
| New | $20 \%$ | $1992-6$ |  | Deg, CS\&IS | Inst, Massey U [48] |
| Zealand | $26 \%$ | $1989-96$ |  | UG 1y, Cmp | Inst, Auckland U [48] |
|  | $17-23 \%$ | $1990-6$ |  | UG 1y, CS | Inst, Victoria U of Wellington [7] |

${ }^{a}$ Students studying Engineering and Technology. National statistics do not give separate figures for computing [10].
Most computer science departments are located in faculties of Engineering and Technology [22].
${ }^{b}$ Enrollment at universities of engineering and technology.
${ }^{c}$ Students enrolled for computer related courses at tertiary institutions.
${ }^{d}$ Graduates from computer courses from four public institutions.
${ }^{e}$ Participation in computer courses at private vocational institutes.
Table 2: Asia and Australasia

| Country | Data | Year | Trend | Type | Source |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Czech | $9.6 \%(51)$ | 2001 |  | UG, Inf | Ind, Masaryk U [9] |
| Republic | $25 \%$ | $1989-94$ |  |  | UG\&MSc, CS |
| Ind, Charles U [58] |  |  |  |  |  |
| Denmark | $6 \%$ | 1996 |  | CS | National [43] |
| Finland | $20 \%$ | 1997 | $31 \% 1985$ | UG 1y, IT | National [43] |
| Germany | $10.5 \%(610)$ | 2000 | $16.2 \% 1995$ | Deg,Inf | National [57] |
|  | $8.8 \%(46)$ | 1999 |  | Inf | Inst, U Karlsruhe [28] |
|  | $9 \%$ | 1999 |  | Inf | Inst, RWTH Aachen [28] |
|  | $9.5 \%(2,958)$ | 1994 | $18.8 \% 1979$ | UG, Inf | National (West Germany) [41] |
| Iceland | $24 \%(47)$ | 2000 |  | CS | Inst, U of Iceland [52] |
|  | $28 \%(42)$ | 1999 |  | UG, CS | Inst, Reykjavík U [52] |
| Netherlands | $6.6 \%(7)$ | 1999 |  | TechInf | Inst, Technical U Delft [28] |
|  | $18 \%$ | 1992 |  | UG dist, Inf | Inst, Open U of the Netherlands [15] |
|  | $12 \%$ | 1991 |  | Tech | Insts, traditional universities [63] |
| Norway | $23.2 \%(1,691)$ | 1999 | $20.4 \% 1996$ | Tech | National [56] |
|  | $34 \%(69)$ | 1998 | $6 \% 1996$ | CS | Inst, Norwegian U of Science and |
|  |  |  |  |  | Technology (NTNU) [40] |
| Slovenia | $6.7 \%(94)$ | $2000 ?$ |  | CS\&Inf | Inst, U of Ljubljana [55] |
| Spain | $25.2 \%(1,101)$ | 1998 |  | Deg, Inf ${ }^{a}$ | National [25] |
| Sweden | $30 \%(16,245)$ | 2000 |  | UG, Tech | National [60] |
|  | $\sim 10 \%(\sim 24)$ | $1990-4$ |  | UG, CS | Inst, Uppsala U [6] |
| Switzerland | $11.4 \%(122)$ | 2001 | $4,2 \%$ |  | UG, Inf |

${ }^{a}$ Students graduating with Diplomado Informática, Ing. Téc. Informática de Sistemas, and Ing. Informática.
Table 3: Europe

| Country | Data | Year | Trend | Type | Source |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Canada | $24 \%(211)$ | 2000 | $16 \% 1993$ | UG, CS | Inst, UBC [62] |
|  | $12 \%(55)$, | 1997 |  | UG, CmpSci | Inst, Simon Fraser U [61] |
| USA | $26.7 \%(7,166)$ | 1998 | $37.1 \% 1984$ | Deg, CS\&IS | National [35] |
| USA <br> Canada | $20.4 \%(2,372)$ | 2000 |  | Deg, CS | Inst, PhD granting departments [8] |
| Mexico | $39.2 \%(55,154)$ | 1999 | $43.1 \% 1992$ | UG, Cmp ${ }^{a}$ | National [26] |
| Brazil $^{b}$ | $34.8 \%(5,641)$ | 1993 |  | UG, CS | National [32] |
|  | $20 \%$ | 1993 |  | UG, CS | Insts, U of São Paulo, U of Camp- <br>  |
|  |  |  |  |  | inas [32] |
| Bolivia | $34.1 \%(15)$ | 1997 |  | Inf | Insts, private universities [45] |
| Guyana | $54.5 \%(22)$ | 2001 | none 1998 | Deg, CS | Ind, University of Guyana ${ }^{c}$ [14] |

${ }^{a}$ Students registered for a Licenciatura in Computación y Sistemas.
${ }^{b}$ Other data records 5-10\% female students at University of São Paolo, in the last ten years and not more than $20 \%$ at other institutions in the same period [53].
${ }^{c}$ The University of Guyana is the only university in Guyana.
Table 4: North and South America
'Other' is used when the data is not about major-level computing at university or a similar tertiary institution, and a footnote is given describing the data.

Source: If the data is national, 'National' is used. 'Inst' is used for published or official data from a specific university or institution, and 'Insts' for similar data from a group of universities or institutions. 'Ind' is used for data given by an individual. For both institutional and individual data, the names of the institutions are given where known.

### 3.2 Other data

The 1998 UNESCO Statistical Yearbook [66] gives figures on participation on women in the subject area Mathematics and Computer Science, both in terms of enrollment and graduates. This data is of interest, but must be considered with care as a high participation in mathematics may mask a low participation in computer science or vice versa. The 1999 editions of the Statistical Yearbook does not give this breakdown - it only gives figures of female participation for the broad fields Education, Humanities, Social Sciences, Natural Sciences, Medical Sciences and Others - and no future issues are planned of this yearbook [19]. A summary of the statistics from the 1998 UNESCO Statistical Yearbook can be found in Appendix B.

### 3.3 Discussion

As can be seen from the tables, there is a wide range in participation in computing by women. As the information covers different courses and different levels, it is difficult to do a direct comparison between countries. It can be seen from the data, participation is between $10 \%$ and $40 \%$ in most countries and courses, with a wide spread in this range. Hence, there is a strong indication that there is an underrepresentation of women in computing worldwide, at least in terms of undergraduate participation. There are some countries and courses where women's participation is below $10 \%$, some with participation above $40 \%$, and a few where women are in the majority. Some countries and courses show an increasing trend and some decreasing, so it is not possible to predict future changes. To conclude, women appear to be under represented in the discipline of computing, when we consider the figures for undergraduate participation, and there is no clear indication that this will improve in the near future. Ongoing research is required to determine causes and solutions.

Acknowledgements: The author thanks Sibongile Eland, Hlamalani Huhlwane, Yolanda Martins, Ana Rowe, Francesc Lucio-González and Pétur Pétursson for their assistance in finding and interpreting information.

Request for Information: The research that lead to this article is ongoing and the author appreciates any information about countries not discussed in this article, or more recent information about countries mentioned here.

## A Data collection

For the record, this appendix details the process that was used to collect data for this survey. In general, finding information of this type is fairly difficult because:

- it often doesn't exist because it hasn't been collected.
- data exists but it is not identifiable. For example, it often not clear whether computer science is categorised under the headings Natural Science, Engineering or Technology.
- data exists, but it is not disaggregated. So for example, even if it is possible to determine that Computer Science is included under Natural Science, it is not possible to obtain the Computer Science statistics.
- it is not clear from the data source to what the data refers. For example, it can be difficult to determine whether the figures cover all tertiary education or university-level education.

Because of these difficulties, the approach taken in this report has been to give the reader as much information as possible about the data and its source. This is done to show that the data is not necessarily comparable and to give the important details of the data. As can be seen from the tables in the body of the report, these details include the actual percentage, the actual count (if available), trend information (if available), the year, the level of study and field of study, the type of information and the source of the information.

The majority of this data was collected online in the following fashion:

- searching with appropriate terms in a search engine such as Google (www.google.com).
- working through lists of national statistical websites such as those at
- United Nations (www.un.org/Depts/unsd/gs_natstat.htm)
- Statistics Netherlands (www.cbs.nl/en/services/links/default.asp)

Other data was collected through journal articles and books. There are a number of limitations to this general approach:

- Lack of consistency in terms of what is measured because it comes from a variety of sources.
- Lack of detailed information - it may be the case with a national statistical site that there is a non-electronic document with the information being sought for. Clearly a web search will not find this document.

As, can be seen from the data presented in the first part of the report, there is clearly substantial variation in what is being measured. However, within the limitation of the approach taken in data collection, it is a comprehensive survey, and the author is not aware of any similar work.

## B Computer Science and Mathematics

This appendix summarises data from the 1998 UNESCO Statistical Yearbook [66] and from an European Union Report [44]. These appear to be one of the few sources of global statistics that specifically mention computer science as a field of study. Unfortunately, it is aggregated with mathematics, and hence high participation in the mathematics may hide low participation in computer science, and vice versa. However, because of its breadth, this data is included in this report.

## B. 1 UNESCO data

The UNESCO data covers 'general programmes in mathematics, statistics, actuarial science, computer science', and is presented for the following academic levels:

ISCED Level 5: Programmes leading to an award not equivalent to a first university degree.
ISCED Level 6: Programmes leading to a first university degree or equivalent qualification
ISCED Level 7: Programmes leading to a post-graduate university degree or equivalent qualification

| Country | \% | Country | \% | Country | \% | Country | \% |
| :--- | :--- | :--- | :---: | :--- | :---: | :--- | :--- |
| Albania $^{a}$ | 52 | Estonia | 25 | Latvia | 38 | Romania | 51 |
| Austria $^{\text {Belgium }}{ }^{a}$ | 20 | Finland | 30 | Lithuania | 36 | Slovakia | 18 |
| Bulgaria | 18 | Germany | 22 | Macedonia | 40 | Slovenia | 14 |
| Czech Republic | 53 | 15 | Hungary | Ireland | 29 | Netherlands | 14 |
| Denmark | 22 | Italy | 33 | Poland | 47 | Swain | 29 |
| $a_{1997}$ | 45 | Portugal | 38 | United Kingdom ${ }^{a}$ | 35 |  |  |

Table 5: Participation in tertiary level mathematics and computer science 1998 [44]

Data is given for number of students as well as number of graduates. Not all countries have data for the number of women, and those that do not are excluded.

The approach taken in summarising the data is to present data for all tertiary education, namely ISCED Level 5, 6, and 7 (Tables 6 and 7), and for first university degrees, namely ISCED Level 6 (Tables 8 and 9). For both of these types of data, the most common data available is number of students. In a few cases, this data was not available, and the number of graduates is used instead The tables have the following format:

Country: This is the country name. The same list is used for both sets of tables, even though for ISCED Level 6 some countries have no data.

Percentage: This is the number of women expressed as a percentage of the total number of students.
Year: This is the year that the data comes from. In the case of academic years split over two calendar years, the more recent year is used.

Count: This is the actual number of female students or graduates.
Type: This is the type of data, either students or graduates. Note that when considering actual numbers, care should be taken in comparing student numbers with graduate numbers.

Change: For some countries, two years of student numbers are given. In this case, if there has been a change of five percent in the percentage figure, this is indicated as either an increase or decrease. If the change is smaller than this, it is indicated by the word 'Static'. given.

The tables show a wide range of participation rates from $1.3 \%$ at ISCED Level 6 to $81.0 \%$ at ISCED Level 6 . No clear trends can be determined from the change indicators - some countries have seen an increase in participation, some a decrease, but most show little change. Considering the countries with a majority of women participation, a number come from the Far East, Middle East and Eastern Europe. A sociological analysis of cultural factors may be able to explain these patterns, but this is beyond the scope of this report.

## B. 2 European Union data

The European Union (EU) information covers computer science and mathematics and computer science data for a number of European countries - EU member states as well as countries from Central and Eastern Europe (the PHARE countries). This data is provided here because it is more recent than the UNESCO data, but it is tabulated separately because of a change in the ISCED classification system [65]. The data is for the new ISCED levels 5 and 6 which covers all tertiary education. It is not clear whether this can be directly equated with the previous ISCED levels 5, 6 and 7 as described above. Table 5 presents the the percentage of women studying computer science and mathematics. There is no clear pattern in this data. All countries with a majority of women are in Eastern Europe. Italy, Macedonia, Latvia, Lithuania and Portugal have more than $35 \%$ participation. The lowest figures (less than 20\%) are found in a range of countries - Belgium, Czech Republic, the Netherlands, Slovenia and Slovakia. Again, an analysis of the factors causing these differences are beyond the scope of this report.

| Country | \% | Year | Count | Type | Change |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Albania | 56.2\% | 1997 | 224 | Students | Increase (1991) |
| Algeria | 36.0\% | 1996 | 7,006 | Students |  |
| Armenia | 50.9\% | 1996 | 665 | Students |  |
| Australia | 25.0\% | 1996 | 7,001 | Students |  |
| Austria | 20.5\% | 1996 | 3,651 | Students | Static (1991) |
| Bahrain | 67.5\% | 1991 | 329 | Students |  |
| Belgium | 22.9\% | 1994 | 2,378 | Students | Static (1991) |
| Botswana | 30.4\% | 1997 | 45 | Students |  |
| Brazil | 40.3\% | 1994 | 37,413 | Students | Static (1990) |
| Brunei Darussalam | 48.8\% | 1996 | 22 | Students |  |
| Bulgaria | 53.6\% | 1997 | 1,974 | Students | Static (1991) |
| Burkina Faso | 5.4\% | 1995 | 5 | Students | Static (1991) |
| Burundi | 17.6\% | 1992 | 9 | Students |  |
| Canada | 27.6\% | 1996 | 16,235 | Students | Static (1991) |
| Congo | 6.8\% | 1991 | 13 | Students |  |
| Côte d'Ivoire | 18.6\% | 1994 | 515 | Students |  |
| Croatia | 26.3\% | 1997 | 195 | Students | Decrease (1993) |
| Cuba | 28.7\% | 1997 | 202 | Students | Decrease (1991) |
| Cyprus | 39.4\% | 1997 | 290 | Students | Static (1991) |
| Czech Republic | 15.2\% | 1996 | 464 | Students | Static (1993) |
| Denmark | 27.2\% | 1996 | 1,538 | Students | Static (1991) |
| Eqypt | 43.4\% | 1996 | 708 | Students | Increase (1991) |
| Eritrea | 3.7\% | 1998 | 5 | Students |  |
| Estonia | 45.8\% | 1997 | 261 | Students | Decrease (1993) |
| Ethiopia | 17.8\% | 1996 | 171 | Students | Static (1991) |
| Finland | 16.9\% | 1996 | 2,425 | Students | Decrease (1991) |
| Georgia | 52.1\% | 1996 | 795 | Students |  |
| Germany | 22.5\% | 1996 | 25,783 | Students | Static (1993) |
| Ghana | 11.4\% | 1991 | 26 | Students |  |
| Greece | 32.5\% | 1993 | 4,377 | Students | Decrease (1990) |
| Guyana | 32.6\% | 1995 | 49 | Students |  |
| Honduras | 6.6\% | 1994 | 177 | Students | Decrease (1990) |
| Hungary | 40.3\% | 1995 | 1,609 | Students | Increase (1991) |
| Iceland | 12.0\% | 1995 | 32 | Students |  |
| Indonesia | 34.2\% | 1996 | 43,861 | Students | Decrease (1993) |
| Iran | 39.1\% | 1997 | 11,225 | Students | Increase (1991) |
| Ireland | 27.3\% | 1996 | 816 | Students | Static (1991) |
| Israel | 34.6\% | 1993 | 2,129 | Students | Static (1991) |
| Italy | 42.2\% | 1996 | 21,016 | Students | Static (1991) |
| Japan | 20.1\% | 1992 | 4,218 | Students |  |
| Jordan | 42.1\% | 1997 | 4,044 | Students | Increase (1991) |
| Kazakstan | 38.6\% | 1995 | 2,502 | Students |  |
| Korea | 33.2\% | 1997 | 49,206 | Students | Static (1991) |
| Kuwait | 80.9\% | 1996 | 507 | Students |  |
| Kyrgyzstan | 72.5\% | 1994 | 1,359 | Students |  |
| Lao People's DR | 28.5\% | 1993 | 62 | Students |  |
| Latvia | 31.5\% | 1997 | 1506 | Students |  |
| Lebanon | 37.6\% | 1996 | 840 | Students |  |
| Lesotho | 32.5\% | 1997 | 13 | Students |  |
| Lithuania | 43.2\% | 1997 | 831 | Students |  |

Table 6: ISCED Levels 5, 6 and 7

| Country | \% | Year | Count | Type | Change |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Macau | 20.5\% | 1997 | 15 | Graduates |  |
| Macedonia | 64.2\% | 1997 | 560 | Students | Increase (1993) |
| Madagascar | 26.2\% | 1997 | 152 | Students | Increase (1991) |
| Malaysia | 50.9\% | 1991 | 2,322 | Students |  |
| Mali | 4.9\% | 1991 | 3 | Students |  |
| Malta | 13.3\% | 1991 | 4 | Students |  |
| Mauritania | 13.2\% | 1994 | 7 | Students |  |
| Mauritius | 29.9\% | 1991 | 38 | Students |  |
| Mexico | 46.6\% | 1995 | 29,937 | Students | Increase (1991) |
| Mongolia | 48.7\% | 1997 | 626 | Students |  |
| Mozambique | 27.1\% | 1993 | 38 | Students |  |
| Myanmar | 62.2\% | 1995 | 9,702 | Students |  |
| Netherlands | 9.9\% | 1996 | 794 | Students | Decrease (1991) |
| New Zealand | 32.0\% | 1996 | 438 | Students | Increase (1990) |
| Nicaragua | 48.1\% | 1995 | 1,849 | Students | Decrease (1990) |
| Norway | 21.4\% | 1996 | 337 | Students | Decrease (1991) |
| Oman | 59.0\% | 1992 | 36 | Students |  |
| Palestine | 31.7\% | 1997 | 683 | Students |  |
| Panama | 53.1\% | 1994 | 830 | Students |  |
| Papua New Guinea | 32.5\% | 1995 | 27 | Students |  |
| Paraguay | 46.0\% | 1993 | 1,215 | Students |  |
| Poland | 56.2\% | 1994 | 7,214 | Students | Static (1991) |
| Portugal | 46.4\% | 1995 | 5,961 | Students | Static (1991) |
| Qatar | 66.0\% | 1992 | 113 | Students |  |
| Romania | 51.5\% | 1997 | 6,423 | Students |  |
| Russian Federation | 54.9\% | 1995 | 84,717 | Students |  |
| Rwanda | 13.6\% | 1990 | 6 | Graduates |  |
| Saudi Arabia | 76.7\% | 1996 | 6,197 | Students | Increase (1991) |
| Senegal | 12.4\% | 1992 | 22 | Students |  |
| Slovakia | 21.8\% | 1997 | 224 | Students | Static (1993) |
| Slovenia | 42.9\% | 1997 | 89 | Students | Increase (1992) |
| South Africa | 34.9\% | 1994 | 10,653 | Students |  |
| Spain | 30.7\% | 1996 | 27,006 | Students | Static (1991) |
| Sri Lanka | 33.4\% | 1995 | 106 | Students |  |
| St Kitts and Nevis | 46.2\% | 1993 | 31 | Students |  |
| Sudan | 29.9\% | 1991 | 260 | Students |  |
| Sweden | 28.9\% | 1996 | 4,651 | Students | Increase (1991) |
| Switzerland | 14.3\% | 1996 | 413 | Students | Static (1991) |
| Syrian Arab Republic | 39.0\% | 1995 | 345 | Students | Decrease (1991) |
| Tanzania | 2.7\% | 1996 | 2 | Students |  |
| Togo | 2.9\% | 1990 | 6 | Students |  |
| Tunisia | 27.5\% | 1997 | 708 | Students | Increase (1991) |
| Turkey | 34.8\% | 1995 | 10,010 | Students | Static (1991) |
| UAE | 64.7\% | 1991 | 167 | Students |  |
| Uganda | 17.9\% | 1996 | 48 | Students | Increase (1991) |
| United Kingdom | 23.9\% | 1995 | 26,423 | Students | Static (1991) |
| USA | 37.1\% | 1995 | 26,749 | Graduates |  |
| US Virgin Islands | 67.4\% | 1993 | 60 | Students |  |
| Yemen | 26.3\% | 1992 | 19 | Students |  |
| Zimbabawe | 36.6\% | 1996 | 343 | Students | Static (1990) |

Table 7: ISCED Levels 5, 6 and 7 (Cont.)

| Country | \% | Year | Count | Type | Change |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Albania | 46.4\% | 1991 | 58 | Students |  |
| Algeria | 32.9\% | 1996 | 4,368 | Students |  |
| Armenia |  |  |  |  |  |
| Australia | 24.7\% | 1996 | 5,343 | Students |  |
| Austria | 20.9\% | 1996 | 3,192 | Students | Static (1991) |
| Bahrain |  |  |  |  |  |
| Belgium | 28.4\% | 1994 | 664 | Students | Static (1991) |
| Botswana | 25.4\% | 1997 | 16 | Students |  |
| Brazil | 40.4\% | 1994 | 37,413 | Students | Static (1990) |
| Brunei Darussalam |  |  |  |  |  |
| Bulgaria | 53.9\% | 1997 | 1,935 | Students | Static (1991) |
| Burkina Faso | 5.4\% | 1995 | 5 | Students | Static (1991) |
| Burundi | 17.6\% | 1992 | 9 | Students |  |
| Canada | 27.8\% | 1996 | 7,578 | Students | Static (1991) |
| Congo | 7.1\% | 1991 | 13 | Students |  |
| Côte d'Ivoire |  |  |  |  |  |
| Croatia | 26.4\% | 1997 | 195 | Students | Decrease (1993) |
| Cuba | 28.8\% | 1997 | 202 | Students | Decrease (1991) |
| Cyprus | 57.0\% | 1997 | 142 | Students |  |
| Czech Republic | 15.0\% | 1996 | 399 | Students |  |
| Denmark | 27.2\% | 1996 | 1,538 | Students | Static (1991) |
| Eqypt | 62.0\% | 1996 | 529 | Students | Increase (1991) |
| Eritrea | 3.8\% | 1998 | 5 | Students |  |
| Estonia | 39.9\% | 1997 | 144 | Students | Decrease (1993) |
| Ethiopia | 8.7\% | 1996 | 49 | Students | Static (1991) |
| Finland | 16.8\% | 1996 | 1,890 | Students | Static (1991) |
| Georgia | 52.0\% | 1996 | 714 | Students |  |
| Germany | 22.5\% | 1996 | 25,358 | Students | Static (1993) |
| Ghana | 10.7\% | 1991 | 22 | Students |  |
| Greece | 34.1\% | 1993 | 4,115 | Students | Decrease (1990) |
| Guyana | 29.8\% | 1995 | 25 | Students |  |
| Honduras | 6.4\% | 1994 | 170 | Students | Decrease (1990) |
| Hungary | 21.5\% | 1991 | 94 | Students |  |
| Iceland | 10.3\% | 1995 | 14 | Students |  |
| Indonesia | 27.4\% | 1996 | 14,272 | Students | Decrease (1993) |
| Iran | 41.2\% | 1997 | 10,025 | Students | Increase (1991) |
| Ireland | 40.7\% | 1996 | 399 | Graduates |  |
| Israel | 35.8\% | 1993 | 1,771 | Students | Static (1991) |
| Italy | 42.0\% | 1996 | 20,745 | Students | Static (1991) |
| Japan | 20.0\% | 1992 | 3,852 | Students |  |
| Jordan | 32.4\% | 1997 | 2,141 | Students | Static (1991) |
| Kazakstan | 38.6\% | 1995 | 2,502 | Students |  |
| Korea | 35.2\% | 1997 | 35,391 | Students | Increase (1991) |
| Kuwait | 81.0\% | 1996 | 506 | Students |  |
| Kyrgyzstan |  |  |  |  |  |
| Lao People's DR | 28.6\% | 1993 | 62 | Students |  |
| Latvia | 32.6\% | 1997 | 1,302 | Students |  |
| Lebanon | 37.6\% | 1996 | 840 | Students |  |
| Lesotho |  |  |  |  |  |
| Lithuania | 39.8\% | 1997 | 517 | Students |  |

Table 8: ISCED Level 6

| Country |  | Year | Count | Type | Change |
| :--- | ---: | ---: | ---: | :--- | :--- |
| Macau | $21.4 \%$ | 1997 | 15 | Graduates |  |
| Macedonia | $64.3 \%$ | 1997 | 560 | Students | Increase (1993) |
| Madagascar | $16.1 \%$ | 1991 | 71 | Students |  |
| Malaysia | $49.4 \%$ | 1991 | 678 | Students |  |
| Mali | $4.9 \%$ | 1991 | 3 | Students |  |
| Malta | $13.3 \%$ | 1991 | 4 | Students |  |
| Mauritania | $13.2 \%$ | 1994 | 7 | Students |  |
| Mauritius | $17.5 \%$ | 1991 | 11 | Students |  |
| Mexico | $47.3 \%$ | 1995 | 29,311 | Students | Increase (1991) |
| Mongolia | $47.5 \%$ | 1997 | 549 | Students |  |
| Mozambique | $27.1 \%$ | 1993 | 38 | Students |  |
| Myanmar | $62.1 \%$ | 1995 | 9,423 | Students |  |
| Netherlands | $16.0 \%$ | 1991 | 450 | Students |  |
| New Zealand | $24.6 \%$ | 1996 | 172 | Students | Increase (1990) |
| Nicaragua | $48.3 \%$ | 1995 | 1,843 | Students | Decrease (1990) |
| Norway | $14.6 \%$ | 1996 | 86 | Students | Decrease (1991) |
| Oman | $59.0 \%$ | 1992 | 36 | Students |  |
| Palestine | $32.3 \%$ | 1997 | 676 | Students |  |
| Panama | $53.7 \%$ | 1994 | 746 | Students |  |
| Papua New Guinea | $32.5 \%$ | 1995 | 27 | Students |  |
| Paraguay | $46.0 \%$ | 1993 | 1,215 | Students |  |
| Poland | $57.8 \%$ | 1994 | 6,679 | Students | Static (1991) |
| Portugal | $49.4 \%$ | 1995 | 5,102 | Students | Static (1991) |
| Qatar | $73.9 \%$ | 1992 | 68 | Students |  |
| Romania | $52.7 \%$ | 1997 | 5,786 | Students |  |
| Russian Federation | $56.4 \%$ | 1995 | 77,510 | Students |  |
| Rwanda |  |  |  |  |  |
| Saudi Arabia | $74.0 \%$ | 1996 | 5,166 | Students | Increase (1991) |
| Senegal | $12.4 \%$ | 1992 | 22 | Students |  |
| Slovakia | $22.5 \%$ | 1997 | 194 | Students | Static (1993) |
| Slovenia | $37.3 \%$ | 1992 | 10 | 2 | Students |

Table 9: ISCED Level 6 (Cont.)

## References

[1] G. Aikhorin. Personal communication, 2001.
[2] M. Arteimi. Personal communication, 2002.
[3] R. Ayfer. Personal communication, 2002.
[4] M. Barinaga. Surprises across the cultural divide. Science, 263:1468-1472, 11 March 1994.
[5] N.A. Bhatti. Personal communication, 2001.
[6] C. Bjorkman, I. Christoff, F. Palm, and A. Vallin. Exploring the pipeline: towards an understanding of male dominated computing culture and its influence on women. ACM SIGCSE Bulletin, 30(2):64-69, June 1998.
[7] J. Brown, P. Andreae, R. Biddle, and E. Tempero. Women in introductory Computer Science: experience at Victoria University of Wellington. ACM SIGCSE Bulletin, 29(1):111-115, March 1997. (Proceedings of the 28th SIGCSE Technical Symposium).
[8] R.E. Bryant and M.J. Irwin. 1999-2000 CRA Taulbee Survey. Computing Research News, pages 5-11, March 2001. http://www.cra.org/CRN/issues/0102.pdf.
[9] I. Černá. Personal communication, 2001.
[10] K. Chanana. Treading the hallowed halls: Women in higher education in India. Economic and Political Weekly, pages 1012-1022, 18 March 2000.
[11] M.C. Clarke. Technological experience and technophobia in South African university students. South African Computer Journal, 25:12-17, August 2000.
[12] B.A. Collis and R.L. Williams. Cross-cultural comparison of gender differences in adolescents' attitudes toward computers and selected school subjects. Journal of Educational Research, 18(1):183-191, 1987.
[13] A. Craig. Women and Business Computing: where to from here? gates, 4(1):13-19, 1997.
[14] P. Crawford. Personal communication, 2002.
[15] C.K.M Crutzen. The influence of Feminist Theory on Informatics course design. In A. Adam, J. Emms, E. Green, and J. Owens, editors, Women, Work, and Computerization, Breaking Old Boundaries-Building New Forms, pages 59-75. Elsevier Science, 1994.
[16] P.J. Denning, D.G. Comer, D. Gries, M.C. Mulder, A. Tucker, A.J. Turner, and P.R. Young. Computing as a discipline. Communications of the ACM, 32(1):9-23, 1989.
[17] A. Durndell, D. Haag, D. Asenova, and H. Laithwaite. Computer self efficacy and gender: East and West Europe. In E. Balka and R.K. Smith, editors, Women, Work, and Computerization: Charting a Course to the Future, pages 78-85. Elsevier Science, 2000.
[18] A. Durndell and K. Thomson. Gender and computing: a decade of change. Computers and Education, 28(1):1-9, 1997.
[19] UNESCO Institute for Statistics. Publications, 2002. http://www. uis.unesco.org/en/pub/pub0.htm.
[20] Frauenförderung am Departement Informatik, ETH Zürich. Statistik der frauenanteile, 2001. http://www.inf.ethz.ch/frauen/einfuehrung/statistik.html.
[21] P. Gasaatura. Personal communication, 2001.
[22] Padmaja Gogula and Shashi M. Training of women in IT skills: a decade of progress at Andhra University, Visakhapatnam. In A. Adam and J. Owens, editors, Proceedings of the 5th IFIP Conference on Women, Work, and Computerization, Breaking Old Boundaries-Building New Forms, pages 488-500, UMIST, Manchester, July 1994. IFIP.
[23] A.M. Hoffman-Barthes, S. Nair, and D. Malpede. Scientific, technical and vocational education of girls in Africa: summary of 21 national reports, 1999. UNESCO working document, http://unesdoc.unesco.org/images/0011/001180/118078eo.pdf.
[24] IEEE-WIE Switzerland. Statistical data of the students who graduate at EPFL in 1998, 2000. http://www.ewh.ieee.org/r8/switzerland/WomenInEngineering/stat.htm.
[25] Instituto Nacional de Estadística, España. INEbase: Estadística de enseñanza universitaria, 1999. http://www.ine.es/inebase/cgi/um.
[26] Instituto Nacional de Estadística Geografía e Informática, Mexico. Sistema de Indicadores para el Seguimiento de la Situación de la Mujer en México: Educación, 1999. http://www.inegi. gob.mx.
[27] I. Janssen Reinen and T. Plomp. Information technology and gender equality: a contradiction in terminis. Computers and Education, 28(2):65-78, 1997.
[28] H. Kruppa and Zs. Lipták. Frauenförderung am Departement Informatik, ETH Zürich. Personal communication (Internet Research conducted in October 2000), 2002.
[29] Lim Gek Kheng. WIT: the Singaporean way. The Computer Bulletin, 2(1):18-20, 1990.
[30] Zs. Lipták. Personal communication, 2002.
[31] V. Makrakis. Cross-cultural gender differences in student self-efficacy: the impact of culture. In R. Aiken, editor, Information Processing '92, volume II, pages 233-238. Elsevier Science, 1992.
[32] M.C. Monard and M.C. Nicoletti. A perspective of Brazilian women in Computer Science academia. In A. Adam and J. Owens, editors, Proceedings of the 5th IFIP Conference on Women, Work, and Computerization, Breaking Old Boundaries—Building New Forms, pages 91-100, UMIST, Manchester, July 1994. IFIP.
[33] C. Mueller. Personal communication, 2001.
[34] C.C. Mukhopadhyay. The cultural context of gendered science: a theoretical model derived from studies in India. gates, 3(1):11-18, 1996.
[35] National Center for Education Statistics. Digest of Education Statistics 2000, 2001. US Department of Education, Washington, D.C. http://nces.ed.gov/pubs2001/digest.
[36] National Statistical Office Thailand. Gender Statistics, 2001. http://www.nso.go.th/gender/eedu.htm.
[37] National Student Selection and Placement Center. Higher education statistics 1996, 1997, 1998, 1999, 2000, 2001. Turkey.
[38] E. Newmarch, S. Taylor-Steele, and A. Cumpston. Women in IT - what are the barriers. In Network of Women in Further Education Conference, March 2000. http://www.deet.gov.au/iae/analysis/womeninit.htm.
[39] C. Ng Choon Sim and C. Yong. Information technology, gender and employment: a case study of the telecommunications industry of Malaysia. In S. Mitter and S. Rowbotham, editors, Women encounter technology: changing patterns of employment in the Third World. UNU/INTECH, 1995. http://www. unu.edu/unupress/unupbooks/uu37we/uu37we00.htm.
[40] NTNU. Jenter \& data, 2002. http://datajenter. ntnu. no/2002/.
[41] V. Oechtering and R. Behnke. Situations and advancement measures in Germany. Communications of the ACM, 38(1):75-82, January 1995.
[42] Office of Science and Technology. SET statistics 2001, 2001. http://www. set 4women.gov.uk/ost/setstats/index.htm.
[43] Peer Review Programme. Executive Summary: Reducing the Gender Digital Divide in Skills and Employment, Germany, 2000. http://peerreview.almp.org/en/GERMdec00.htm.
[44] S. Pilos. Educating young Europeans: similarities and differences between the EU member states and the PHARE countries, 2000. Eurostat. http://europa.eu.int./comm/eurostat.
[45] Republica de Bolivia: Instituto Nacional de Estadística. Estadisticas de educación - anuario estadístico - $2000,2000$. http://www.ine.gov.bo.
[46] C. Ronge. Personal communication, 2001.
[47] J. Sanders. Closing the computer gap in schools. In J.Z. Daniels and J.B. Kuhle, editors, Proceedings of the 4th GASAT Conference, Lansing, MI, 1987. National Sciences Foundation.
[48] L. Selby, K. Ryba, and A. Young. Women in computing: what does the data show? ACM SIGCSE Bulletin, 30(4):62a-67a, December 1998.
[49] Y. Shapiro and J. Jacobs. South African Graduate Statistics 1999: Profiles and Recent Trends. HSRC, Pretoria, 1999.
[50] L. Shashaani and A. Khalili. Gender and computers: similarities and differences in Iranian college students' attitudes towards computers. Computers and Education, 37:363-375, 2001.
[51] A. Shode. Personal communication, 2001.
[52] G. Sigurdardóttir. Women in the Icelandic information society. In Conference about Women and the Information Society, Reykjavík, Iceland, April 2000.
http://www.simnet.is/konur/erindi/engish_gudbjorg_erindi.htm.
[53] D.M. Silva. Information technology \& women in developing countries: a Brazilian perspective, 2000. Unpublished document.
[54] R. Sinnappan. Personal communication, 2001.
[55] Statistical Office of the Republic of Slovenia. Statistical Yearbook 2001, 2001. http://www.gov.si/zrs/leto01/kazalo01.htm.
[56] Statistics Norway. Current Education Statistics: Universities and Colleges, Key Figures 2000, 2001. http://www.ssb.no/english/subjects/04/utdanning_as_en/200103/au200103.pdf.
[57] Statistisches Bundesamt Deutschland. Studienanfaengerinnen und absolventinnen im fach informatik, 2001. Wiesbaden, Germany.
[58] J. Stříbrná. Personal communication, 2001.
[59] M. Suriya. Personal communication, 2002.
[60] Swedish Institute. Fact sheets on Sweden: Higher education in Sweden, 2001. http://www.si.se/docs/infosweden/engelska/fs83m.pdf.
[61] SWIFT. Simon Fraser University Fall 1997 headcount in engineering and science programs, 1998. http://taz.cs.ubc.ca/swift/survey_stats/scigende.html.
[62] SWIFT. Percentage of male to female undergraduates in Science at UBC, 2000. http://taz.cs.ubc.ca/swift/survey_stats/ubcdepSt.html.
[63] G.J. Teague and V.A. Clarke. Attracting women to tertiary computing courses: two programs directed at secondary level. ACM SIGCSE Bulletin, 25(1):208-212, March 1993. (Proceedings of the 24th SIGCSE Technical Symposium).
[64] L. Uden. Gender bias: the east-west paradox. In G. Lovegrove and B. Segal, editors, Women into Computing: selected papers, 1988-1990, pages 386-391. Springer-Verlag, 1991.
[65] UNESCO. International standard classification of education: ISCED 97, 1997. http://unesdoc.unesco.org/images/0011/001113/111387eo.pdf.
[66] UNESCO. Statistical Yearbook 1998. UNESCO Publishing and Bernan Press, 1998.
[67] UNESCO. Access of girls and women to scientific, technical and vocational education in Africa, 1999. http://www.chinaacc.edu.cn/wenyuan/unesco/05/.
[68] L. von Hellens and S. Nielsen. Australian women in IT. Communications of the ACM, 44(7):46-52, July 2001.
[69] M. Weil and L.D. Rosen. The psychological impact of technology from a global perspective: a study of technological sophistication and technophobia in university students from twenty-three countries. Computers in Human Behavior, 11(3):95133, 1995.

