
A format for semantic equivalence comparison

Vashti Galpin

Programme for Highly Dependable Systems
School of Computer Science, University of the Witwatersrand

Private Bag 3, Wits 2050, South Africa
Tel: +27 11 717 6184 Fax: +27 11 717 6199

vashti@cs.wits.ac.za

Abstract

This paper presents a new format for process algebras, the extended tyft/tyxt format
which generalises the tyft/tyxt format of Groote and Vaandrager. The format differs
from most previous formats in that the labels on transitions are treated as many-
sorted terms. Bisimulation is a congruence for all operators defined by extended
transition system specifications in this format.

When one extended transition system specification is summed with another, the
resulting bisimulation can either identify more terms (an abstracting extension up
to bisimulation) or fewer terms (a refining extension up to bisimulation) than the
original bisimulation on the individual system. The notions of abstracting extension
and refining extension are defined, and two theorems are presented giving conditions
required for achieving each type of extension. These results provide a way to compare
different semantic equivalences defined for different process algebras.

Finally, an application of this theory to semantic equivalence comparison is given
for a new result relating Castellani’s pomset equivalence and Krishnan’s multipro-
cessor equivalence.

Key words: process algebra, extended tyft/tyxt format, structured operational
semantics, structural operational semantics, comparison of semantic equivalences

1 Introduction

This paper focusses on the metatheory of process algebras; namely theory that
considers the general form of rules that make up the structural operational
semantics [38] that are used to define process algebras such as CCS [35]. A
description of the form that these rules can have is called a format, and a
collection of operators and rules in a specific format is called a transition
system specification.

Preprint submitted to Elsevier Science 22 September 2005

A number of formats have been defined and these focus on different aspects
of process algebras. Some of this research into formats considers the con-
gruence of a semantic equivalence such as bisimulation, with respect to the
operators defined in the format [18,28,8,39,11,12,21,30,9,20,33], while other re-
search studies negative hypotheses and/or predicates in rules [8,27,42,13,40].
Another area of interest is how to produce an equational axiom system from
rules in a given format [1,3,2,7,10,20]. The area most related to the research
presented here is the work on conservative extensions since it considers the
results of combining two transition system specifications [28,41,16,22,4].

As motivation for this research, consider the many extensions to CCS and
other process algebras which have been proposed to model different aspects of
concurrent computation. This proliferation indicates that the notion of pro-
cess algebra has wide application and is flexible; however, it is not immedi-
ately obvious how a process algebra and its semantic equivalences relate to
other process algebras and equivalences. It is important both theoretically and
practically to understand the relationships between process algebras and their
semantic equivalences.

Additionally, a significant aspect of recent process algebras is the introduction
of structured or non-atomic labels; labels that have structure or contain infor-
mation beyond what the action is. Even in CCS, basic actions are not totally
atomic or undifferentiated since complements are required for communication
to occur, and the distinguished action τ is required to present an internal
action or communication. In transition systems for process algebras that deal
with dependencies between actions, tags or markers appear in the labels (and
are stored in the process terms) to keep a record of these dependencies, and
these introduce structure in the labels. Examples of these are CCS with loca-
tions [14], CCS with local and global causes [31] and CCS with causalities [17].
Other process algebras such as multiprocessor CCS [32] and pomset CCS [15]
introduce structure by allowing compound labels. Labels also become non-
atomic when actions are split so that each label represents either the start of
an action or the end of an action – this approach has been taken in action
refinement [5,6], ST-bisimulation [29] and split-bisimulation semantics [26].

Hence, this paper is an investigation into how the extended tyft/tyxt format
can be used in comparison of semantic equivalences based on bisimulation
over process algebras whose behaviours are described by structural operational
semantics and expressed as labelled transition systems. This format extends
the tyft/tyxt format [28] in that it deals with complex label structure.

This research uses many-sorted signatures and algebras to extend the notion
of format. Most prior work in formats uses a single-sorted signature and cor-
responding term algebra for processes, and assumes a set of atomic (or unin-
terpreted) actions [8,12,18,28,27]. Moreover, the actions are treated schemati-

2

cally; a rule is a scheme that represents a number of rules, each with different
actions. This approach becomes unsatisfactory when dealing with more com-
plex labels, especially when the semantic equivalence does not require an exact
match on labels; for example, pomset bisimulation [15] and parameterised lo-
cation bisimulation [14]. In the extended tyft/tyxt format, both processes and
actions are dealt with syntactically. Process terms have a distinguished sort,
and there may be more than one sort for label terms. Allowing label terms
to be many-sorted provides a mechanism for comparison. The label terms ap-
pear on transitions and can also appear as arguments in process terms. For
example, for the prefix operator of CCS, there is essentially one operator for
each action. When expressing this in the extended tyft/tyxt format, there will
be a single prefix operator taking two arguments – an action and a process.
Additionally, using labels syntactically gives a full account of how the pass-
ing of dependency information is performed. The actual labels of the process
algebra are represented as elements in a Σ-algebra since the syntactic form
of the labels may make more distinctions than are required. Since there is a
unique homomorphism from the term algebra to any Σ-algebra which induces
a congruence on the elements of the term algebra, this congruence is then used
to equate labels that have the same semantics. Bisimulation is defined with
respect to this congruence. Moreover, it is possible to work in a more general
manner with a congruence over the labels without considering the specific Σ-
algebra, and all the results for the extended tyft/tyxt format are presented in
this way.

Since the aim of formats is to prove theorems about process algebras based on
structural operational semantics in a syntactic manner, the extended tyft/tyxt
format is a logical extension to the existing notion of format. Moreover, this
syntactic approach permits the comparison of semantic equivalences. When
one extended transition system specification is summed with another, it be-
comes possible using the extended tyft/tyxt format to give conditions under
which the bisimulation over the summed systems is either coarser or finer than
the bisimulation on the original system.

The main contributions of this paper are the introduction of the extended
tyft/tyxt format which deals with labels syntactically as opposed to schemat-
ically, the congruence result for this format, and the two extension theo-
rems which describe the conditions under which semantic equivalences such as
bisimulation may be refined or abstracted. This paper considers extending the
tyft/tyxt format. This format does not cover predicates or negative premises.
Predicates are discussed in Section 5.3 and the use of negative premises is an
issue for further work.

In Section 2, the extended tyft/tyxt format is developed and it is shown that
this format gives congruence, and how process algebra rules can be expressed
in this format. Section 3 introduces the extensions and the results for the

3

two types of extensions. In Section 4, the results are used to compare two
different bisimulations. Section 5 compares the extended tyft/tyxt format to
the tyft/tyxt format, and discusses related work. The last two sections look
at further work and conclusions respectively. The appendix gives the proof of
one of the main theorems. An earlier version of this paper appeared as [24].

2 A new format

2.1 Definitions

These universal algebra definitions covering many-sorted, signature, term, sub-
stitution, algebra, homomorphism and congruence, although standard, are pre-
sented here to fix notation for the remainder of the paper.

Definition 1 For any set S, an S-sorted set A is a family {As}s∈S of sets
indexed by S. Intersection, union, difference and subset are defined component-
wise. Let S ′ ⊆ S, then AS′ is the S ′-sorted subset of A.

Definition 2 A signature Σ is a pair (S, F) where S is a set of sorts and
F is a set of function symbols (operators) such that F is equipped with a
mapping, type : F → S∗× S. If type(f) = (ε, s) for some s ∈ S where ε is the
empty string, then f is a constant symbol. Write f : w → s for f ∈ F with
type(f) = (w, s), and f : s1 . . . sn → s if w = s1 . . . sn, f :→ s if w = ε.

Let V be an S-sorted set of variables disjoint from F . The set of terms over V
can be formed. Operators will be written in infix notation when convenient.
In the remainder of this subsection, Σ = (S, F) is a signature.

Definition 3 Let W be an S-sorted subset of V . For each s ∈ S, the set
T (Σ,W)s of Σ-terms of sort s is the least set containing

• every w ∈ Ws of sort s and every constant symbol f :→ s ∈ F ,
• every f(t1, . . . , tn) where f : s1 . . . sn → s is a function symbol in F with

range s and every ti (1 6 i 6 n) is a term of sort si in T (Σ,W)si
.

T (Σ,W) denotes {T (Σ,W)s}s∈S, the set of Σ-terms over W . T (Σ, ∅) denotes
the set of closed or ground terms, abbreviated T(Σ). T (Σ, V), abbreviated
T(Σ), denotes open terms.

Σ is sensible if it admits at least one ground term for each sort, i.e. for all
s ∈ S, T(Σ)s 6= ∅. The variables of sorts S ′ ⊆ S in a term t ∈ T(Σ), VarS′(t)
is defined in the standard manner, and VarS(t) is written Var(t).

4

A substitution σ is a mapping in V → T(Σ) which preserves sorts, i.e. σ|Vs :
Vs → T(Σ)s for each s ∈ S. A substitution σ is extended to a mapping σ :
T(Σ) → T(Σ) in the standard way.

Definition 4 A Σ-algebra consists of an S-sorted family of non-empty carrier
sets {As}s∈S, also denoted A; and a total function fA : As1 × . . .×Asn → As

for each f ∈ F such that f : s1 . . . sn → s.

Definition 5 Let A and B be two Σ-algebras. A Σ-homomorphism h : A → B
is a family of maps {hs : As → Bs}s∈S such that for all f : s1 . . . sn → s ∈ F
and a1 ∈ As1 , . . . , an ∈ Asn, hs(f

A(a1, . . . , an)) = fB(hs1(a1), . . . , hsn(an)).

Definition 6 Let A be a Σ-algebra. A Σ-congruence on A is an S-sorted
equivalence relation ≡ which is compatible with all function symbols, i.e. ≡ =
{≡s}s∈S, and for all s ∈ S, ≡s ⊆ As ×As is reflexive, symmetric and transi-
tive, and for any f : s1 . . . sn → s ∈ F and for all ai, bi ∈ Asi

for 1 6 i 6 n,
ai ≡si

bi (1 6 i 6 n) ⇒ fA(a1, . . . , an) ≡s f
A(b1, . . . , bn).

Both T(Σ) and T(Σ) form Σ-algebras and it can be shown that there is a
unique homomorphism denoted iA from T(Σ) to any Σ-algebra A. For each
Σ-algebra, there exists a congruence over T(Σ), defined as t ≡A t′ whenever
iA(t) = iA(t′) for t, t′ ∈ T(Σ).

The notation (s1, s2, . . . ; f1, f2, . . . ; g1, g2, . . .) will be used for a signature
where s1, s2, . . . ∈ S; f1, f2, . . . are the constant symbols in F , and g1, g2, . . .
are the remaining function symbols from F .

2.2 Extended transition system specifications

A specific kind of sorted set and signature is required to represent the terms
that appear in the rules of the format. Let P be a distinguished sort which is
understood to be the sort of processes.

Definition 7 A signature Σ = (S∪{P}, F) is suitable if S does not contain P
and is non-empty, and for any function symbol f ∈ F such that f : s1 . . . sn →
s, whenever s 6= P then for all 1 6 i 6 n, si 6= P.

Hence only process terms can be constructed from process terms. This is
reasonable because of the asymmetry in the way in which processes and labels
are treated; moreover, if there is a need for a label term to contain a process
term, it is possible to define a label term that would represent the process
term. An understanding of the expressive power of this approach is an issue
for further work.

5

For convenience, assume that functions with range sort P take the non-P argu-
ments first and then the arguments of sort P; for example, f : s1 . . . smP . . .P →
P with n > 0 arguments with sort P. S will be used to denote the label (non-
P) sorts. For process variables, x, y, . . . range over VP and for label variables,
z, zs, . . . range over Vs for s ∈ S. For open terms in general, t, t′, . . . range
over T(Σ). For open process terms, p, q, . . . range over T(Σ)P and for closed
process terms, u, v, . . . range over T(Σ)P. For open label terms, λ, η, . . . range
over T(Σ)S, and for closed label terms, α, β, µ, ν, . . . range over T(Σ)S.

Next, the notion of an extended transition system specification is defined. This
definition extends the prior definition [28] by allowing a richer structure for
the labels. For the rest of this section, Σ = (S ∪ {P}, F) indicates a sensible,
suitable signature. However, this will not hold when considering extensions in
Section 3 where the concepts suitable and sensible will be used separately.

Definition 8 An extended transition system specification (eTSS) is a pair
E = (Σ, R) and R a set of rules of the form

{pi
λi−→ p′i | i ∈ I}
p

λ−→ p′

where I is an index set, pi, p
′
i, p, p

′ ∈ T(Σ)P, and λi, λ ∈ T(Σ)S for i ∈ I.

If r is a rule in the format above, then the elements of {pi
λi−→ p′i | i ∈ I} are

the premises or hypotheses of r, and p
λ−→ p′ is the conclusion of r. A rule with

I = ∅ is an axiom and is written p
λ−→ p′. An expression of the form p

λ−→ p′

with λ ∈ T(Σ)S and p, p′ ∈ T(Σ) is a transition (labelled with λ); p is the
source, and p′ is the target of the transition. φ, ψ, χ, . . . are used to range over
transitions. The notions of closed, substitution and Var can be extended to
transitions and rules in the obvious way.

Definition 9 A proof of a transition ψ from E = (Σ, R) is a well-founded,
upwardly branching tree of which the nodes are labelled by transitions p

λ−→ p′

with λ ∈ T(Σ)S and p, p′ ∈ T(Σ)P, such that

• the root is labelled with ψ,
• if χ is the label of a node π and {χi | i ∈ I} is the set of labels of the

nodes directly above π, then there is a rule {φi|i∈I}
φ

in R and a substitution
σ : V → T(Σ) such that χ = σ(φ) and χi = σ(φi) for all i ∈ I.

If a proof ψ from E exists, ψ is provable from E, notation E ` ψ. A proof is
closed if it only contains closed transitions.

Lemma 10 Let λ ∈ T(Σ)S, u, u′ ∈ T(Σ)P such that E ` u λ−→u′. Then u
λ−→u′

is provable by a closed proof.

6

zA.x
act(zA,zK)
−−−−−→ x

x
zAct−−→ y

x+ x′
zAct−−→ y

x
zAct−−→ y

x′ + x
zAct−−→ y

x
zAct−−→ y

x | x′
zAct−−→ y | x′

x
zAct−−→ y

x′ | x
zAct−−→ x′ | y

x
zAct−−→ y x′

z′Act−−→ y′

x | x′
comb(zAct,z

′
Act)−−−−−−−−→ y | y′

Fig. 1. Rules for EMP

The following is a running example which will be used throughout this section.
It will be used in Section 2.6 to express a subset of multiprocessor CCS [32].
Note that instead of a schematic prefix operator a.x taking a single argument x
as used in tyft/tyxt format, a prefix operator with two arguments, z.x is used,
hence there is only one prefix operator. This illustrates how the schematic
approach differs from the syntactic.

Example 11 Let A be a set of actions and let K be a set of labels, both disjoint
from previously defined sets. A and K will also be used as sort names. Consider
the signature ΣMP = (A,K,Act,P; {a}a∈A, {k}k∈K, nil; .,+, |, act, comb) with

a :→ A ∀a ∈ A act : A,K → Act nil :→ P . : A,P → P

k :→ K ∀k ∈ K comb : Act,Act → Act + : P,P → P | : P,P → P

The rules RMP are given in Figure 1. Let EMP = (ΣMP, RMP). Clearly this is
a sensible and suitable signature. The transition a.nil + b.nil

act(b,k)−−−−→ nil can be
proved by constructing the appropriate proof tree.

Since this work relates to labelled transition systems, and it is clear that the
labels of the transition will be many-sorted, a suitably modified definition of
labelled transition system is required.

Definition 12 An S-sorted labelled transition system (LTS) is a labelled
transition system L = (States ,Actions ,−→) where Actions is an S-sorted set
of transition labels. Write s

a−→ s′ for (s, a, s′) ∈ −→ .

Definition 13 The S-sorted labelled transition system TS (E) specified by
the eTSS E is given by TS (E) = (T(Σ)P,T(Σ)S,−→) where −→ ⊆ T(Σ)P ×T(Σ)S

× T(Σ)P is defined by u
α−→u′ ⇐⇒ E ` u α−→u′.

Definition 14 Two eTSSs E and E ′ are transition equivalent if TS (E) =
TS (E ′).

The standard definition of bisimulation [34] is not useful since it would only
consider syntactically-equal labels. Assume that there is an S-sorted equiva-

7

lence that identifies terms that are to be considered the same.

Definition 15 Let L = (States ,Actions ,−→) be an S-sorted LTS, and let ≡
be an S-sorted equivalence relation on Actions. A strong bisimulation with
respect to an equivalence relation ≡ is a binary relation R ⊆ States × States
such that (s, t) ∈ R only if for all a ∈ Actions

(1) whenever s
a−→ s′, then there exists t′ ∈ States and b ∈ Actions such that

t
b−→ t′, a ≡ b and (s′, t′) ∈ R

(2) whenever t
a−→ t′, then there exists s′ ∈ States and b ∈ Actions such that

s
b−→ s′, a ≡ b and (s′, t′) ∈ R.

Two states, s and t are strongly bisimilar with respect to ≡, s ∼≡ t, if there
exists a strong bisimulation R with respect to ≡ such that (s, t) ∈ R. The
relation ∼≡ =

⋃{R | R is a strong bisimulation with respect to ≡ } is the
largest strong bisimulation with respect to ≡ and is an equivalence relation,
hence the name strong equivalence with respect to ≡.

This definition means that only transitions with labels of the same sort are
compared and this, as will be shown in the rest of the paper, is a powerful
mechanism for comparing process algebras and their semantic equivalences.
Note that for this definition, the equivalence is only required over label terms
T(Σ)S, hence the definition of the equivalence over process terms T(Σ)P is
irrelevant.

When expressing process algebras in the extended tyft/tyxt format, a Σ-
algebra will be used to define the semantics of the actual labels and this
will induce a congruence over the term algebra – this will equate the label
terms that are considered as the same. However, it is possible to consider the
congruence of bisimulation in a general manner, and without considering the
specific Σ-algebra used. The issue of Σ-algebras and induced congruences will
be discussed further in Section 2.6 which considers how process algebras can
be expressed in the extended tyft/tyxt format.

2.3 Extended tyft/tyxt format

The general definition of an eTSS is now made more specific to ensure de-
sirable properties, such as congruence. In the rest of this section, this work
follows much the same path as Groote and Vaandrager [28] in showing con-
gruence, although the definitions and results require more care because of the
new way of dealing with labels and additional conditions are required. The
format presented here differs from the tyft/tyxt format [28] in the fact that
the schematic labels on the transitions are replaced with label terms, and the
function in the source of the conclusion takes label terms as arguments as well

8

as process variables. Additionally, the introduction of label terms requires con-
ditions on the relationships between the variables that appear in these terms.
For a further discussion of the differences, see Section 5.1.

Informally, the relationship between the variables in this definition can be
described as follows: all the xj’s and yi’s are distinct. λ and p can contain any
variables; however, the λi’s must have distinct variables from each other and
from the pi’s and the ηk’s. Also the ηk’s must have distinct variables from each
other. Example 11 is in extended tyft/tyxt format.

Definition 16 A rule in R is in extended tyft format if it has the form

{pi
λi−→ yi | i ∈ I}

f(η1, . . . , ηm, x1, . . . , xn)
λ−→ p

with I an index set, f : s1 . . . smP . . .P → P ∈ F , xj (1 6 j 6 n) and yi

(i ∈ I) all different variables from VP, p ∈ T(Σ)P, λ ∈ T(Σ)S,

• ηk ∈ T(Σ)sk
such that VarS(ηk) ⊂ VS − ⋃

16l6m
l 6=k

VarS(ηl)
for 1 6 k 6 m,

• λi ∈ T(Σ)S for i ∈ I such that
VarS(λi) ⊂ VS − (

⋃
l∈I,l 6=iVarS(λl) ∪

⋃
16k6mVarS(ηk)) for all i ∈ I,

• pi ∈ T(Σ)P such that VarS(pi) ⊂ VS −
⋃

l∈I VarS(λl) for i ∈ I.

A rule in R is in extended tyxt format if it has the form

{pi
λi−→ yi | i ∈ I}
x

λ−→ p

with I an index set, x and yi (i ∈ I) all different variables from VP, p ∈ T(Σ)P,
λ ∈ T(Σ)S,

• λi ∈ T(Σ)S such that VarS(λi) ⊂ VS −
⋃

l∈I,l 6=iVarS(λl) for all i ∈ I,
• pi ∈ T(Σ)P such that VarS(pi) ⊂ VS −

⋃
l∈I VarS(λl) for i ∈ I.

E is in extended tyft/tyxt format (abbreviated extended tyft/tyxt) if every
rule in R is either in extended tyft format or extended tyxt format. A labelled
transition system L is extended tyft/tyxt specifiable if there exists an eTSS E
in extended tyft/tyxt format with L = TS (E).

2.4 Congruence

An important property for any format is that bisimulation is a congruence
with respect to the operators defined by rules of that format. Some additional

9

definitions are required before this can be shown for the extended tyft/tyxt for-
mat. After the main congruence result, counter-examples will be given to show
that the requirements cannot be further relaxed without losing congruence.

First, a technical condition is required to describe the type of congruence
over label terms that will allow the congruence result to be obtained. This
technical condition allows an appropriate substitution to be found, and hence
a matching transition to be obtained. If the format were simpler in the sense
that only variables could appear in the positions of the pi’s, λi’s and ηk’s
then any congruence could be used, but the approach taken here allows more
generality. In what follows, E = (Σ, R) indicates an eTSS in extended tyft/tyxt
format.

Definition 17 Let ≡ be an S-sorted congruence on T(Σ)S. ≡ is compatible
with η ∈ T(Σ)S if whenever σ(η) ≡ µ for µ ∈ T(Σ)S, there exists a substitution
σ′ such that µ = σ′(η) and σ(z) ≡ σ′(z) for all z ∈VarS(η).

≡ is compatible with a rule r ∈ R if it is compatible with any η ∈ T(Σ)S that
appears as the label on the transition of a premise of r or as an argument to
the function on the left hand side of the conclusion of r. ≡ is compatible with
E if ≡ is compatible with all rules in R.

Note that if η = z, then the required condition is always fulfilled. Furthermore,
note that the occurrence of repeated variables in η results in the only compat-
ible congruence being syntactic equivalence. Compatibility can be obtained by
imposing a few conditions on the functions of the Σ-algebra used to represent
the process algebra labels, and hence is a reasonable technical condition. For
further discussion of the compatibility requirement, see Section 2.5.

The following definition is required to ensure that there are no cycles of vari-
able references appearing in the premises, and hence to prove congruence. It
has been shown that for the original tyft/tyxt format that any rule can be
written in a well-founded form [21]. See the related work section for further
discussion on this.

Definition 18 Let E = (Σ, R) be an eTSS. Let U = {pi
λi−→ p′i | i ∈ I} be a

set of transitions of E. The dependency graph of U is a directed (unlabelled)
graph with

• Nodes:
⋃

i∈I VarP(pi
λi−→ p′i),

• Edges: {〈x, y〉 | x ∈ VarP(pi), y ∈ VarP(p′i) for some i ∈ I}.

A set of transitions is well-founded if any backward chain of edges in the
dependency graph of these transitions is finite. A rule is well-founded if the
set of its premises is so. Finally, an eTSS is well-founded if all of its rules
are well-founded.

10

Some additional results are required to work with eTSSs conveniently, and it is
necessary to prove that both compatibility and well-foundedness are preserved.
For the rest of this section, let ≡ be a congruence on T(Σ) compatible with
R.

Lemma 19 There is a well-founded eTSS E ′ = (Σ, R′) in extended tyft for-
mat which is transition equivalent to E = (Σ, R) such that ≡ is compatible
with R′.

Proof. Define R′ to consist of every extended tyft rule of R, as well as the
extended tyft rules rf (f ∈ F) created from each extended tyxt rule r ∈ R by
replacing x with f(z1, . . . , zm, x1, . . . , xn) where the variables do not appear in
r.

The rules in R′ are well-founded, since none of the premises have been changed.
≡ is compatible with R′ since only terms of the form f(z1, . . . , zm, x1, . . . , xn)
have been added. It can be shown that a closed proof of a transition from E
is a proof of that transition from E ′, and vice versa. 2

Definition 20 Let r ∈ R. A variable in VarP(r) is free if it does not occur
in the left hand side of the conclusion or in the right hand side of a premise.
A rule r is pure if it is well-founded and contains no free variables from VP.
E is pure if all its rules are pure.

Definition 21 Let r ∈ R. A variable in VarS(r) is label-free if it does not
occur in the label of a premise or in the left hand side of the conclusion. A rule
r is label-pure if it contains no label-free variables from VS. E is label-pure if
all its rules are label-pure.

Lemma 22 There is a pure, label-pure eTSS E ′ = (Σ, R′) in extended tyft
format which is transition equivalent to E = (Σ, R) such that ≡ is compatible
with R′.

Proof. From Lemma 19, E is in extended tyft format. Let R′ consist of
every pure and label-pure rule of R as well as extended tyft rules created from
each non-pure or non-label-pure rule in R where every possible substitution
of closed terms is applied to the free variables from V .

E ′ is well-founded, since for each rule only edges have been removed from
its dependency graph. ≡ is compatible with R′ since only free and label-free
variables have been modified. R′ is in extended tyft format since no left hand
side of any conclusion has been modified, and only closed terms have been
used in the substitutions. Every closed proof for a transition from E is also a
proof for the transition from E ′ and vice versa. 2

11

The eTSS in Example 11 is well-founded and pure. However, it is not label-
pure because of the axiom. Any congruence over the label terms is compatible
with the rules since all terms of interest are single variables.

Before the congruence result, it is interesting to consider the proof technique
which will be used for most major results in this paper, and by presenting it
here, the proofs will be shorter. This proof technique is based on the approach
taken in [28] but is more complex because of the use of label variables. Before
the technique is presented, the following result is required to partition the
variables which appear in a extended tyft rule. A similar result can be obtained
for a extended tyxt rule.

Lemma 23 Let r be a well-founded extended tyft rule of the form

{pi
λi−→ yi | i ∈ I}

f(η1, . . . , ηm, x1, . . . , xn)
λ−→ p

Let depth(x) for x ∈ VarP(r) be the length of the maximal backward chain
of edges in the dependency graph rooted at x. Then the variables of r can be
classified as follows

• X = {xi | 1 6 i 6 n}
• Y = {yi | i ∈ I} Yd = {y ∈ Y | depth(y) = d} for d > 0
• Yf = VarP(r)− (X ∪ Y)
• Z =

⋃
16k6m VarS(ηk)

• Z ′ =
⋃

i∈I VarS(λi) Z ′
d =

⋃
yi∈Yd

VarS(λi) for d > 0
• Z ′′ =

⋃
i∈I VarS(pi)− Z

• Zf = VarS(λ) ∪ VarS(p)− (Z ∪ Z ′ ∪ Z ′′).

where X, Y , Yf partition VarP(r) and Z, Z ′, Z ′′, Zf partition VarS(r). Addi-
tionally the sets Yd partition Y and the sets Z ′

d partition Z ′. If r is pure then
Yf = ∅. If r is label-pure then Zf = ∅ and Z ′′ = ∅.

Proof. Consider the dependency graph G of the premises of r. Because r is
in extended tyft format, each node in G has at most finitely many incoming
nodes, since each yi is distinct and each pi is a finite term. Hence G is a
finitely branching tree, since it can have no cycles. For each node x of G,
its subgraph is a finitely branching tree, since there are no cycles. If this
graph were infinite, then by Koenig’s Lemma, there would exist an infinite
backward chain, contradicting the well-foundedness of G. Hence this graph is
finite, and it is possible to define depth(x) ∈ N as the length of the maximal
backward chain of edges in the subgraph associated with x. Hence depth(x)
is well-defined and the sets Yd form a partition of Y . 2

To summarise, X contains the process variables that appear in the source

12

of the conclusion, Y the process variables that appear in the targets of the
premises and Yf all other process variables that appear in the rule (these are
the free variables of the rule). Z contains all label variables that appear in the
source of the conclusion, Z ′ all label variables which appear in the labels of the
transitions, Z ′′ all label variables which appear in the sources of the premises
but not in the source of the conclusion and Zf all other label variables that
appear in the rule. Z ′′ and Zf together contain all label-free variables. The
general proof technique used in this paper can be then described as follows:

• The aim is to prove that given a transition, a different transition with certain
properties exists (or alternatively the given transition has certain proper-
ties).

• Given a transition, there is a closed proof of this transition (and sometimes
it can be assumed that the rules are pure, label-pure extended tyft).

• Work by induction on the depth of the proof. First show that the required
transition can be found by using a different substitution on an axiom and
show that the required properties hold of it.

• Next show that the required transition can be found for transitions with
proofs involving more than an axiom.
· Assume appropriate transitions can be found for all transitions with shorter

proofs.
· Let r be the well-founded extended tyft rule which is the last used in the

proof together with σ a substitution.
· Use the well-foundedness property to classify the variables in r as in

Lemma 23. Perform induction on d to construct the appropriate substitu-
tion σ′ from σ for each premise in turn.

· Once σ′ is constructed for all variables in r, use the inductive hypothe-
sis (for the depth of the proof) on the premises of r, and then use the
properties of σ′ to argue that this is a proof of the required transition.

The following result states that two terms of sort P with subterms that are
related (either by the congruence if they have sort S or by bisimulation up to
the congruence if they have sort P) are bisimilar up to the congruence. Hence
it can be concluded that the bisimulation up to the congruence is a congruence
itself.

Theorem 24 Let Σ = (S ∪{P}, F) be a sensible, suitable signature, and E =
(Σ, R) be a well-founded extended transition system specification in extended
tyft/tyxt format. Let ≡ be a congruence on T(Σ) compatible with R. For
all f ∈ F such that f : s1 . . . smP . . .P → P, for all terms µk, νk ∈ T(Σ)S

(1 6 k 6 m), and for all terms uj, vj ∈ T(Σ)P (1 6 j 6 n),

µk ≡ νk (1 6 k 6 m) and uj ∼≡ vj (1 6 j 6 n) ⇒
f(µ1, . . . , µm, u1, . . . , un) ∼≡ f(ν1, . . . , νm, v1, . . . vn).

13

Proof. Let R be the least relation satisfying

• ∼≡ ⊆ R,
• for all f ∈ F such that f : s1 . . . smP . . .P → P, for all terms µk, νk ∈ T(Σ)S

and for all terms uj, vj ∈ T(Σ)P,
µk ≡ νk (1 6 k 6 m) and uj R vj (1 6 j 6 n) ⇒
f(µ1, . . . , µm, u1, . . . , un)R f(ν1, . . . , νm, v1, . . . vn).

It is enough to show R is a bisimulation since ∼≡ ⊆ R. Assume uR v. There
are two cases – the first is simple since u ∼≡ v. The second requires it to
be shown that whenever E ` f(µ1, . . . , µm, u1, . . . , un)

α−→u′, µk ≡ νk for all k
and uj R vj for all j then there is a v′ ∈ T(Σ)P and α′ ∈ T(Σ)S such that
E ` f(ν1, . . . , νm, v1, . . . , vn)

α′−→ v′, α ≡ α′ and u′ R v′.

By the lemmas, there is a proof T of f(µ1, . . . , µm, u1, . . . , un)
α−→u′ that con-

tains only closed transitions, and the rules in R are pure, label-pure and in
extended tyft format. Let r be the last rule used in T , with a substitution
σ. Assume r has the form given in Lemma 23. Then σ(ηk) = µk for all k,
σ(xj) = uj for all j, σ(p) = u′ and σ(λ) = α. The base case (r an axiom) for
the induction on the proof tree is straightforward since there are no variables
from premises. Assume that the proof of the transition involves more than an
axiom and that the required property holds for all transitions with shorter
proofs.

The variables in r can be classified as in Lemma 23. Yf , Zf and Z ′′ are empty.
Define a substitution σ′ that satisfies the following properties.

(1) σ′(xj) = vj for 1 6 j 6 n
(2) σ(y)R σ′(y) for y ∈ X ∪ Y
(3) E ` σ′(pi

λi−→ yi) for i ∈ I
(4) σ′(z) ≡ σ(z) for z ∈ Z ∪ Z ′.

To start, let σ′(xj) = vj for all j, σ′(y) = σ(y) for y ∈ VP−(X∪Y), σ′(z) = σ(z)
for z ∈ VS − (Z ∪ Z ′).

First consider Z. Since σ(ηk) = µk ≡ νk and ≡ is compatible with R, there is a
substitution σ′′ such that σ′′(ηk) = νk and for all z ∈ VarS(ηk), σ(z) ≡ σ′′(z).
Let σ′(z) = σ′′(z). This can be done for all ηk since there are no variables
shared between the terms.

The proof proceeds by induction on d. When σ′ is defined for y ∈ X ∪ Y0 ∪ . . . ∪ Yd

and z ∈ Z ∪ Z ′
0 ∪ . . . ∪ Z ′

d (d > 0), then β(d), γ(d) and δ(d) will hold.

• β(d) : σ(y)R σ′(y) for yi ∈ X ∪ Y0 ∪ . . . ∪ Yd

• γ(d) : E ` σ′(pi
λi−→ yi) for yi ∈ Y0 ∪ . . . ∪ Yd

• δ(d) : σ′(z) ≡ σ(z) for z ∈ Z ∪ Z ′
0 ∪ . . . ∪ Z ′

d.

14

First, show that β(0), δ(0) and γ(0) hold. Since σ(xj) = uj and σ′(xj) = vj,
σ(xj) R σ′(xj) for xj ∈ X. Next consider some yi ∈ Y0. and the transition
pi

λi−→ yi. The base case is a simpler version of the inductive step.

Let d > 0, and suppose that σ′ has been defined for all variables in X ∪ Y0 ∪
. . . Yd−1 and Z ∪ Z ′

0 ∪ . . . ∪ Z ′
d−1 such that β(d − 1), γ(d − 1) and δ(d − 1)

hold. Consider yi ∈ Yd and the transition pi
λi−→ yi. By the definition of Yd and

the fact that r is pure, VarP(pi) ⊆ X ∪ Y0 ∪ . . . ∪ Yd−1 so σ(y)R σ′(y) for y ∈
VarP(pi) by β(d− 1). Also since r is label-pure, VarS(pi) ⊆ Z so σ(z) ≡ σ′(z)
for all z ∈VarS(pi). The following fact is required.

Fact Let p ∈ T(Σ)P and let ρ, ρ′ be substitutions such that for all x ∈ VarP(t),
ρ(x)R ρ′(x) and for all z ∈ VarS(p), ρ(z) ≡ ρ′(z). Then ρ(p)R ρ′(p).

Hence by this fact σ(pi)R σ′(pi). There are two cases to consider

• σ(pi) ∼≡ σ′(pi). Since E ` σ(pi)
σ(λi)−−−→σ(yi), there are w ∈ T(Σ)P and αi ∈

T(Σ)S such that E ` σ′(pi)
αi−→w, σ(λi) ≡ αi and σ(yi)Rw. Define σ′(yi) =

w. Moreover, by the compatibility of ≡, suitable values of σ′(z) for z ∈
VarS(λi) can be found. (Since VarS(pi) ∩ VarS(λi) = ∅, this does not affect
values assigned to VarS(pi). Also since λi has distinct variables, there is no
effect on any other transition.)

• there is a function symbol h ∈ F such that h : s′1 . . . s
′
mP . . .P → P with

σ(pi) = h(µ′1, . . . , µ
′
m′ , w1, . . . , wn′) and σ′(pi) = h(ν ′1, . . . , ν

′
m′ , w′

1, . . . , w
′
n′)

where µ′k′ ≡ ν ′k′ and wi′Rw′
i′ . Now the induction hypothesis can be applied.

Since E ` h(µ′1, . . . , µ′m′ , w1, . . . , wn′)
σ(λi)−−−→σ(yi), there exist a w, and αi such

that E ` h(ν ′1, . . . , ν ′m′ , w′
1, . . . , w

′
n′)

αi−→w, σ(λi) ≡ αi, and σ(yi)R w. Again
define σ′(yi) = w. Moreover, by the compatibility of ≡, suitable values of
σ′(z) for z ∈ VarS(λi) can be found.

This can be done for all y ∈ Yd. From this it can be seen that β(d), γ(d) and
δ(d) hold for all d > 0. Hence the second and third properties hold, and the
fourth property holds for Z ∪ Z ′. The first property holds by definition.

E ` f(ν1, . . . , νm, v1, . . . , vn)
σ′(λ)−−−→σ′(p) since for all i ∈ I, E ` σ′(pi)

σ′(λi)−−−→σ′(yi).
σ′(λ) ≡ σ(λ) = α, since for all z ∈ VarS(λ), σ(z) ≡ σ′(z) and ≡ is a congru-
ence. u = σ(p)Rσ′(p), by the fact above since for all x ∈ VarP(p), σ(x)Rσ′(x)
and for all z ∈VarS(p), σ(z) ≡ σ′(z). 2

From this theorem, it can be seen that ∼≡ is a congruence with respect to
terms from T(Σ)P for all function symbols with sort P. This definition may
seem unusual since some arguments are related by ≡. But since the arguments
of sort P represent processes, whereas the other sorts represent actions or
information that is stored in process terms, this is not unreasonable. Consider
the location set prefix X :: p in Kiehn’s local/global cause bisimulation [31].

15

If there are two equivalent processes p and q, then it is reasonable for X1 :: p
and X2 :: p to be equivalent if X1 = X2. In [33], a similar effect is obtained by
using the idea of given sorts which are sorts with existing semantics.

2.4.1 Counter-examples

In this section, counter-examples will be given to show that the constraints on
the extended tyft/tyxt format cannot be relaxed for Theorem 24. Note that
the relationship between the variables from VP in a rule are the same as those
in the paper by Groote and Vaandrager [28] where counter-examples are given
to show the constraints on these variables are necessary. So here, the focus is
on the relationship between the variables from VS.

Example 25 Let Σ = (P, s, s′; nil, ok, {ga | a ∈ A}; g, k, f, ‖, h, h′) with

ok :→ s′ g : s→ s nil :→ P k : P → P ‖: P,P → P

ga :→ s ∀ a ∈ A f : s→ P h′ : s, s,P → P h : s,P → P

and the axiom f(zs)
zs−→ nil. This axiom can be seen as the BPA axiom a

a−→nil.
Let ≡ be the smallest congruence containing (ga, gb) and (g(gc), g(gd)).

In the following counter-examples, the eTSSs under consideration consist of
the signature and axiom given above as well as additional rules. Note that ≡
is not compatible with ga or gb.

Counter-example 26 (Repeated label variables appear across the la-
bels of premises) With the following rule which has non-distinct variables
in the labels of the premises, f(ga) ‖ f(ga)6∼≡f(ga) ‖ f(gb), although f(ga)
∼≡ f(gb).

x
zs−→ y x′

zs−→ y′

x ‖ x′ ok−→ nil
.

Counter-example 27 (Repeated label variables appear in the source

of the conclusion) With the axiom h′(zs, zs, x)
ok−→ nil where the variables in

the source of the conclusion are not distinct, h′(ga, ga, nil)6∼≡h
′(ga, gb, nil).

Counter-example 28 (Repeated label variables appear across the
source of the conclusion and the labels of premises) With the fol-
lowing rule where the same variable appears in the source of the conclusion
and in a label of a premise, h(ga, f(ga)) 6∼≡ h(ga, f(gb))

x
zs−→ y

h(zs, x)
ok−→ nil

.

16

Counter-example 29 (The congruence is not compatible with terms
in the rule) ≡ is not compatible with the the rule

x
ga−→ y

k(x)
ok−→ nil

because ga appears in the label of a premise (and ga is not compatible with ≡).
Assuming the congruence of bisimulation, it would be expected that k(f(ga)) ∼≡
k(f(gb)) because ga ≡ gb. However, it is not possible using this rule and the

given axiom to show that k(f(gb))
ok−→ nil to match the transition k(f(ga))

ok−→
nil. Hence without the compatibility condition, the congruence theorem does
not hold. A similar counter-example can be shown with the terms h(ga, nil)

and h(gb, nil), and the axiom h(ga, x)
ok−→ nil where a label term not compati-

ble with ≡ appears in the source of the conclusion.

To see that this does not only apply when constants appear in rules, consider
the following examples. ≡ is not also compatible with the rule

x
g(zs)−−−→ y

k(x)
zs−→ nil

because it is not compatible with g(zs) which appears in the premise. Compat-
ibility requires that if σ(g(zs)) = g(gc), there exists σ′ such that σ′(g(zs)) =
g(gd) and σ(zs) ≡ σ′(zs), since it is necessary to consider all terms µ ≡ g(gc).
A substitution σ′ can be found such that σ′(g(zs)) = g(gd), namely the sub-
stitution which maps zs to gd, however, it is not the case that σ(zs) ≡ σ′(zs)
since gc 6≡ gd. So although f(g(gc)) ∼≡ f(g(gd)), it is not possible to show
k(f(g(gc))) ∼≡ k(f(g(gd))) using this rule and the given axiom. ≡ is also
not compatible with the axiom h(g(zs), x)

zs−→ nil because g(zs) appears in
the source of the conclusion and by a similar argument, h(g(gc), nil) 6∼≡
h(g(gd), nil).

Finally in this section, the requirement that the variables that appear in the
source of a premise should be distinct from the variables that appear in the
labels of the premises is considered. With the proof technique used in The-
orem 24 which is based on well-foundedness, the ordering on premises may
make it impossible to find the right substitution. Hence the requirement that
variables in sources of premises should be distinct from those in labels of
premises is retained. It may be possible to find a unification style technique
such as that in [21]. However, even if the well-foundedness condition is not
required for congruence, it is still open as to whether a counter-example can
be found to show that sharing variables between source of premises and labels
of premises breaks congruence.

17

2.5 Compatibility requirement

As shown in Counter-example 29, this technical condition is required for the
congruence result, and as will be seen, is required for one of the extension
results. As shown in [25], if the following conditions are satisfied, compatibility
of equivalence with respect to a term is guaranteed. The result requires that the
term in question contains no repeated variables. This is not a serious limitation
as when there are repeated variables, the only compatible congruence is the
identity relation.

Proposition 30 Let Σ = (S, F) be a signature, and let A be a Σ-algebra. Let
λ ∈ T(Σ) be a term with no repeated variables, then ≡A is compatible with λ
if for all function symbols g that appear in λ with gA : As1 × . . .×Asn → As,

• Im(gA) ∩ Im(gA1) = ∅ for all gA1 : As′1
× . . .×As′m → As,

• gA is injective.

Proof. Let α ≡A σ(λ) for some α ∈ T(Σ) and a closed substitution σ. It is
necessary to find a substitution σ′ such that σ′(λ) = α and σ(z) ≡A σ

′(z) for
all z ∈ Var(λ). The proof will proceed by induction on the structure of λ. For
the base case, assume λ = z for z ∈ V and define σ′ as σ′(z′) = α if z′ = z,
and σ(z′) otherwise, then the conditions for compatibility are satisfied.

Next consider λ = g(λ1, . . . , λn) where g : s1 . . . sn → s. Hence iA(α) =
iA(σ(g(λ1, . . . , λn))) = gA(iA(σ(λ1)), . . . , iA(σ(λn))). gA(a1, . . . , an) = iA(α)
implies that α = g(µ1, . . . , µn) for some µ1, . . . , µn since Im(gA) ∩ Im(gA1) = ∅
for all gA1 : As′1

× . . . × As′m → As. Hence gA(iA(σ(λ1)), . . . , iA(σ(λn))) =
iA(g(µ1, . . . , µn)) = gA(iA(µ1), . . . , iA(µn)). Therefore iA(σ(λi)) = iA(µi) for
all 1 6 i 6 n (since gA is injective) and σ(λi) ≡A µi for all 1 6 i 6 n.

By the inductive hypothesis, there are substitutions σi such that for each
1 6 i 6 n, σi(λi) = µi, and σ(z) ≡A σi(z) for all z ∈ Var(λi). Construct σ′ by
defining σ′(z) = σi(z) if z ∈ Var(λi), and σ(z) otherwise. This is well-defined
since there are no repeated variables. Therefore σ′(λ) = σ′(g(λ1, . . . , λn)) =
g(σ′(λ1), . . . , σ

′(λn)) = g(σ1(λ1), . . . , σn(λn)) = g(µ1, . . . , µn) = α. Also for
z ∈ Var(λ), σ′(z) = σi(z) for a unique 1 6 i 6 n, and σi(z) ≡A σ(z), hence
σ′(z) ≡A σ(z). 2

Using this proposition, rules that are sufficient for compatibility meet the
following: whenever a function symbol appears in the label of a premise or in
the source of the conclusion, its corresponding function in the Σ-algebra must
be injective and have a suitably disjoint image.

18

Hence, function symbols that lead to unnecessary distinctions between label
terms when considering the underlying semantics of the labels, should not
appear in these positions in the rule. This is because these function symbols
are precisely the ones with which non-injective functions would be associated.
This is not a major limitation as in many process algebras these positions in
rules have single variables, and the more complex terms are likely to appear in
the label on the conclusion or in the target of the conclusion, positions which
are not affected by the definition of compatibility.

The condition that images of functions must be disjoint is also not a major
limitation for the same reason. It is also the case that often images are disjoint
because one function symbol deals with the initial construction of the label,
and a second function symbol with the same range combines labels in a way
that makes them distinct from the initial form of labels. An example is multi-
processor CCS [32] which is expressed in the extended tyft/tyxt format in the
next section. For these reasons, Proposition 30 gives a useful characterisation
of compatibility.

2.6 Expressing process algebras in extended tyft/tyxt format

As mentioned earlier, when expressing process algebras in this format, a Σ-
algebra A will give the semantics of the actual labels and this will induce a
congruence ≡A over the term algebra. For an example of the utility of this
approach, consider two label terms that are constructed by two applications of
an operation that is viewed as commutative, but where the applications have
occurred in different orders in each label term. In the process algebra, these
labels are considered identical because of the commutativity of the operation,
hence when considering bisimulation these labels would match. For this match
to occur when this process algebra is described in the extended tyft/tyxt for-
mat, a congruence is required over label terms to ensure that the matching in
bisimulation occurs. An appropriate Σ-algebra will define this congruence.

This can be expressed as a requirement that the transition system of the pro-
cess algebra is isomorphic to the transition system

(
T(Σ)P/≡,T(Σ)S/≡, T

)
where T = {S A−→S ′ | S, S ′ ∈ T(Σ)P/≡, A ∈ T(Σ)S/≡,∀s ∈ S, s′ ∈ S ′, a ∈
A, s

a−→ s′}.

The congruence over label terms can also incorporate other relationships be-
tween label terms. For example, in parameterised location bisimulation [14],
a relation is given over locations and this is used in the matching of labels
consisting of actions and location strings in bisimulation.

Before proceeding with the example, some general comments about express-
ing process algebras in the extended tyft/tyxt format are required. First, rule

19

schemas are introduced as a way in which to specify infinite sets of rules, to
describe constant processes with defining equations and to match on labels
within a rule, as for instance with the CCS communication rule. In the earlier
work involving formats, most authors have used schemas, although not explic-
itly. In this work, because of the need to give an account of how information
is passed from action terms to process terms, these concerns are dealt with in
a more explicit manner. Assume a set of schema variables V disjoint from any
other sets.

Definition 31 A rule schema has the form

{{pi
λi−→ p′i | i ∈ I}
p

λ−→ p′
| C1, . . . , Cn

}

where I is an index set, pi, p
′
i, p, p

′ ∈ T (Σ, V ∪ V)P, and λi, λ ∈ T (Σ, V ∪ V)S

for i ∈ I. C1, . . . , Cn are conditions on the schema variables involving equality
and inequality, whether terms are open or closed and the sorts of terms. A rule
schema represents the set of rules created by replacing each schema variable
by any closed term in T(Σ) in accordance with the conditions.

A rule schema is in extended tyft/tyxt format, if it obeys the conditions for
the extended tyft/tyxt format with the exception that any term which is not
required to be a variable is in T (Σ, V ∪ V).

Proposition 32 Let Σ = (S ∪ P, F) be a suitable signature. Given a rule
schema in extended tyft/tyxt format then the rules generated by the schema
are in extended tyft/tyxt format. Moreover, if the rule schema is well-founded
then all the rules generated are well-founded.

It is not possible to achieve a similar result for compatibility since a schema
label variable may be replaced by a term.

As examples of rule schemas consider the following. Here X, Y, . . . denote
schema variables of sort P, and Zs, . . . denote schema variables of sort s ∈ S.
Constants can be defined by the rule schema

{ X
z−→ y

Cn
z−→ y

| Cn
def
= X for X ∈ T(Σ)

}

where it is assumed that each constant is assigned a closed term. Matching
required by the communication rule cannot be defined by a single rule, since
the conditions for the format require that the variables in the labels of the
premises are disjoint. The two rule schemas define the same set of communi-

20

cation rules.

{ x
act(ZA)
−−−−→ y x′

act(Z′A)
−−−−→ y′

x | x τ−→ y | y′
| ZA = Z ′

A

} { x
act(ZA)
−−−−→ y x′

act(ZA)
−−−−→ y′

x | x τ−→ y | y′
}

In a different approach to matching for communication, transitions from a rule
of the form

x
zAct−−→ y x′

z′Act−−→ y′

x | x′
comb(zAct,z

′
Act)−−−−−−−−→ y | y′

can have the term comb(zAct, z
′
Act) mapped to τ if the arguments are comple-

mentary, or some distinguished value ⊥ when the arguments are not. Then in
the definition of bisimulation, transitions with labels equivalent to ⊥ are not
considered. This has the effect of moving side conditions such as those in the
CCS restriction rule, into the semantics of the label terms. A similar approach
is taken in [20].

CCS [34], CCS with locations [14], multiprocessor equivalence [32] and pomset
bisimulation [15] can be expressed in the extended tyft/tyxt format, and in each
of these cases the congruence theorem can be applied. For the last three, one
eTSS is used with different algebras to obtain the different process algebras
and semantic equivalences. For details of these see [23].

2.6.1 Multiprocessor CCS

Consider EMP where ΣMP has three additional constants added to the definition
given in Example 11: ⊥A :→ A, ⊥K :→ K and ⊥Act :→ Act and where RMP is
the same as in Example 11.

Next, consider a subset of multiprocessor CCS without a restriction operator
and communication between processes. Let A be a set of actions and P ::=
a.P | 0 | P + P | P |P for a ∈ A. Let On denote the set of n-tuples over
A∪{δ}, and let Allocate(a) = {O ∈ On | ∃i, O(i) = a,∀j 6= i, O(j) = δ}. Also
define the partial function +n on O ×O → O as O1 +n O2 = O where for all
1 6 i 6 n

O(i) =

O1(i) if O2(i) = δ

O2(i) if O1(i) = δ

The rules are given in Figure 2. An n multiprocessor bisimulation R is a binary
relation such that for any (p, q) ∈ R and O ∈ On, the following holds

(1) p
O−→ p′ implies there exists q′ such that q

O−→ q′ and (p′, q′) ∈ R,
(2) q

O−→ q′ implies there exists p′ such that p
O−→ p′ and (p′, q′) ∈ R.

21

a.p
O−→ p

∀O ∈ Allocate(a) p
O−→ p′

p+ q
O−→ p′

p
O−→ p′

q + p
O−→ p′

p
O−→ p′

p | q O−→ p′ | q
p

O−→ p′

q | p O−→ q | p′
p

O−→ p′ q
O′
−→ q′

p | q O+nO′
−−−−→ p′ | q′

Fig. 2. Rules for n multiprocessor CCS

aAn = a ∀a ∈ A kAn = num(k) ∀k ∈ K

⊥An
A =⊥A ⊥An

K = 0 ⊥An
Act = ⊥Act

actAn(ζ1, ζ2) =


(

ζ2−1︷ ︸︸ ︷
δ, . . . , δ, ζ1,

n−ζ2︷ ︸︸ ︷
δ, . . . , δ) if ζ1 ∈ A ∪ {τ} and ζ2 ∈ N+

where ζ1 is in the ζ2-th

position of the vector

⊥Act otherwise

combAn(ζ1, ζ2) =

ζ1 +n ζ2 if ζ1, ζ2 ∈ An − {⊥Act} and ζ1 +n ζ2 defined

⊥Act otherwise

Fig. 3. Functions for An

To express this process algebra in the format, a ΣMP-algebra is required. Con-
sider the algebra An given in Figure 3, where the carrier sets for A, K and Act
are A ∪ {⊥A}, N and An ∪ {⊥Act} respectively, where

An = (

n times︷ ︸︸ ︷
A ∪ {δ})× . . .× (A ∪ {δ} .

It is assumed for each a in A there is a corresponding a in A and also that
there is a total order on K with num : K → N. Additionally, let the partial
function (a1, . . . , an) +n (b1, . . . , bn) be defined as equal to (c1, . . . , cn) where
for all 1 6 i 6 n, ci = ai if bi = δ or ci = bi if ai = δ.

This ΣMP-algebra induces a congruence on T(ΣMP). Note that for the correct
definition of bisimulation, the only transitions of interest are those that are
not labelled with terms of sort Act which are equivalent to ⊥Act. However,
the notation ∼EMP

≡An
will still be used for this congruence. Hence, the labelled

transition system under consideration is (T(ΣMP)P,T(ΣMP)S, T) where T =
{p λ−→ p′ | λ ∈ T(ΣMP)Act, λ6∼EMP

≡An
⊥Act}.

Consider the processes a.nil | b.nil and b.nil | a.nil. For convenience, assume
that each element of K is subscripted in accordance with num, i.e. kAn

i = i.

22

Clearly for any n, a.nil | b.nil ∼EMP
≡An

b.nil | a.nil. Next consider n = 2, then
a.nil | b.nil

act(a,k1)−−−−−→ nil | b.nil, a.nil | b.nil
act(a,k2)−−−−−→ nil | b.nil, a.nil | b.nil

act(a,k3)−−−−−→ nil |
b.nil, a.nil | b.nil

act(a,k4)−−−−−→ nil | b.nil, etc. The first transition label is mapped by
iA2 to (a, δ), the second to (δ, a), but all the rest are mapped to ⊥Act.

Since EMP is in extended tyft/tyxt form, and ≡An is compatible with the rules,
bisimulation up to ≡An is a congruence for all operators in FMP. Hence it can
be concluded, for example, that c.(a.nil | b.nil) ∼EMP

≡An
c.(b.nil | a.nil).

3 Extensions and semantic equivalence comparison

This section considers extensions up to bisimulation, and investigates under
which conditions it is possible to achieve various relationships between the
original semantic equivalences and the semantic equivalences of the combined
eTSSs. There are two approaches to this and both are presented. These are
new results which are not extensions of existing results, and hence full counter-
examples for these results are given.

3.1 Sums of eTSSs and conservative extensions

The notion of the asymmetric sum of two eTSSs is required to define the notion
of an extension. The second summand does not necessarily involve a sensible
signature, and so the definition is asymmetric. Therefore this definition differs
from that of Groote and Vaandrager [28]. Since E0⊕>E1 is considered as an
extension of E0, there is an inherent lack of symmetry. For additional results on
sums of signatures, algebras and eTSSs, as well as the notion of sort-similarity,
see [25].

Definition 33 Let Σi = (Si ∪ {P}, Fi) for i = 0, 1 be two suitable signatures
such that f ∈ F0 ∩ F1 implies that type0(f) = type1(f). The sum of Σ0 and
Σ1, Σ0⊕Σ1 is the signature Σ0 ⊕ Σ1 = (S0 ∪ S1 ∪ {P}, F0 ∪ F1). When Σ0 and
Σ0⊕Σ1 are sensible, then Σ0⊕Σ1 is called asymmetric and denoted Σ0⊕>Σ1.

Definition 34 Let Ei = (Σi, Ri) for i = 0, 1 be two eTSSs with Σ0 ⊕ Σ1 de-
fined. The sum of E0 and E1, E0⊕E1, is the eTSS E0 ⊕ E1 = (Σ0 ⊕ Σ1, R0 ∪R1).
If Σ0 ⊕ Σ1 is asymmetric, then E0 ⊕ E1 is asymmetric and denoted E0⊕>E1.

In what follows, let Σi = (Si∪{P}, Fi) for i = 0, 1 be two signatures with Σ =
Σ0⊕>Σ1 defined, and let Ei = (Σi, Ri) for i = 0, 1 be two eTSSs in extended
tyft/tyxt format with E = E0⊕>E1 defined and let E = (Σ, R). Additionally,
let S = S0 ∪ S1. Let ≡i be congruences over T(Σi)Si

compatible with Ei for
i = 0, 1, and let ≡ be an congruence over T(Σ0⊕>Σ1)S compatible with E .

23

The following definition is standard and the implication E ` t0
α−→ t⇐ E0 ` t0

α−→ t
holds trivially because transitions can only be added (this would not be the
case if negative transitions were permitted).

Definition 35 E is a conservative extension of E0 if for all t0 ∈ T(Σ0)P,
α ∈ T(Σ0)S0, and t ∈ T(Σ)P, then E ` t0

α−→ t⇐⇒ E0 ` t0
α−→ t.

It is possible to achieve a conservative extension result for the extended
tyft/tyxt format. See [23] for the details of the results and a comparison with
Verhoef’s result for the panth format [41].

3.2 Extensions up to bisimulation

A notion of a conservative extension up to bisimulation has been defined by
Groote and Vaandrager [28]. The following is a modification of this definition
to take into account the more general definition of bisimulation.

Definition 36 E is a conservative extension of E0 up to bisimulation with
respect to ≡ if for all t0, u0 ∈ T(Σ0)P, t0∼E

≡u0 ⇐⇒ t0∼E0
≡ u0.

Clearly a conservative extension is a conservative extension up to bisimulation
with respect to an equivalence.

The next two definitions describe the relationships between semantic equiva-
lences, and are the basic definitions for the extension results. The proposition
follows immediately.

Definition 37 E is a refining extension of E0 up to bisimulation with respect
to ≡ if for all t0, u0 ∈ T(Σ0)P, t0∼E

≡u0 ⇒ t0∼E0
≡0
u0.

Definition 38 E is an abstracting extension of E0 up to bisimulation with
respect to ≡ if for all t0, u0 ∈ T(Σ0)P, t0∼E0

≡0
u0 ⇒ t0∼E

≡u0

Proposition 39 E is both a refining and an abstracting extension up to bisim-
ulation with respect to ≡ if and only if it is a conservative extension up to
bisimulation with respect to ≡.

In the following, conditions under which these types of extensions can be
achieved are presented. As this is fairly complex, a number of definitions to
capture these conditions will be given first, as well as a general lemma required
for the results about congruences and sums of eTSSs. Note that refining (ab-
stracting) extension will be used synonymously with refining (abstracting)
extension up to bisimulation in the remainder of this paper.

Definition 40 E0⊕>E1 is type-1 if

24

• there is no extended tyft rule in R1 containing a function symbol from F0

in the source of the conclusion that has a conclusion label with a sort from
S0, and

• there is no extended tyxt rule in R1 that has a conclusion label of a sort
from S0.

Definition 41 E0⊕>E1 is type-0 if it is type-1 and no extended tyft rule in
R1 contains a function symbol from F0.

Clearly, if E0⊕>E1 is type-0 then it is also type-1. The following lemma is
required before the main results of this section can be proved. This lemma
states that given a type-1 sum and a proof of a transition where the last rule
used came from R0 then the transition can be proved in E0.

Lemma 42 Let E0 and E1 be in extended tyft/tyxt format. Let E0 be pure and
label-pure, let E0⊕>E1 be type-1. Let E ` t0

α−→ t with t0 ∈ T(Σ0)P. If the last
rule used in the proof of E ` t0

α−→ t is an extended tyft/tyxt rule from R0 then
E0 ` t0

α−→ t.

Proof. Let T be a proof of t0
α−→ t from E with the last step of T involving an

extended tyft/tyxt rule from R0. To show that E0 ` t0
α−→ t, it will be demon-

strated that that T is also a proof of t0
α−→ t from E0 and that α ∈ T(Σ0)S0 and

t ∈ T(Σ0)P.

Let r be the last rule used in T . Suppose r is pure, label-pure extended tyft
(the case that r is pure, label-pure extended tyxt is proved in a similar fashion).
The case for r an axiom is a simpler version of the induction step. Assume
that the proof of the transition consists of more than an axiom and that for
all shorter proofs, it has been shown that the proof is a proof in E0.

Suppose that r has the form given in Lemma 23 and let σ be the substitution.
The variables in r can be classified as in Lemma 23 with that Yf , Zf and Z ′′

empty, and σ(f(η1, . . . , ηm, x1, . . . , xn)) = t0, σ(λ) = α and σ(p) = t.

With induction on d, it will be proven that σ(x) ∈ T(Σ0)P for all x ∈ X ∪ Y ,
and that σ(z) ∈ T(Σ0)S0 for all z ∈ Z ∪Z ′. Clearly this holds immediately for
X and Z, since σ(f(η1, . . . , ηm, x1, . . . , xn)) = t0 ∈ T(Σ0)P.

Let yi ∈ Yd for d > 0, then by the inductive hypothesis on d, for x ∈ X ∪ Y0 ∪
. . . ∪ Yd−1, σ(x) ∈ T(Σ0)P and for z ∈ Z ∪ Z ′

0 ∪ . . . ∪ Z ′
d−1, σ(z) ∈ T(Σ0)S0 .

Consider σ(pi)
σ(λi)−−−→σ(yi). Since r is pure and by the definition of Yd, VarP(pi) ⊆

X ∪ Y0 ∪ . . . ∪ Yd−1, and since r is label-pure, VarS(pi) ⊆ Z, therefore σ(pi) ∈
T(Σ0)P. The transition σ(pi)

σ(λi)−−−→σ(yi) must be generated by a proof whose
last step involves a rule from R0, because the sort of σ(λi) is from S0 since
r ∈ R0, and E0⊕>E1 is type-1. Hence, by the induction hypothesis on proofs,

25

σ(λi) ∈ T(Σ0)S0 , σ(yi) ∈ T(Σ0)P and E0 ` σ(pi)
σ(λi)−−−→σ(yi).

This is true for all d ∈ N, so σ(x) ∈ T(Σ0)P for all x ∈ X ∪ Y and σ(z) ∈
T(Σ0)S for all z ∈ Z∪Z ′. Since r is pure and label-pure, Var(p) ⊆ X∪Y ∪Z∪
Z ′, therefore t = σ(p) ∈ T(Σ0)P, and Var(λ) ⊆ Z ∪Z ′, so α = σ(λ) ∈ T(Σ0)S0

and E0 ` t0
α−→ t. 2

A way to combine congruences is required, and for one of the main results, it
is necessary to have a specific relation between the original congruences and
their sum. An additional lemma makes the proofs simpler.

Definition 43 The sum of ≡0 and ≡1 (≡0 ⊕ ≡1) is the smallest congruence
over T(Σ0 ⊕ Σ1) containing both ≡0 and ≡1.

Definition 44 The sum of congruences ≡0⊕≡1 is conservative with respect
to ≡i if (≡0 ⊕≡1)|T(Σi)Si

= ≡i|T(Σi)Si
.

Lemma 45 For t0, u0 ∈ T(Σ0)P

(1) t0∼E0
≡0
u0 ⇒ t0∼E0

≡0⊕≡1
u0,

(2) if ≡ is conservative with respect to ≡0 then t0∼E0
≡0⊕≡1

u0 ⇒ t0∼E0
≡0
u0.

Two theorems are now proved – one for refining extensions and one for ab-
stracting extensions. Both of these results rely on the fact that the congruence
respects sorts, and hence transitions with different sorts cannot be matched.

Theorem 46 Let E0 and E1 be in extended tyft/tyxt format. Let ≡0 ⊕≡1 be
conservative with respect to ≡0. If E0 is pure and label-pure, and E0⊕>E1 is
type-1, then E0⊕>E1 is a refining extension of E0.

Proof. Let t0, u0 ∈ T(Σ0) and let ≡ = ≡0 ⊕≡1. It is necessary to show
that t0∼E

≡u0 ⇒ t0∼E0
≡0
u0. Assume t0 6∼E0

≡0
u0. Hence (without loss of generality),

from t0 or some derivative of t0, there is a transition that cannot be matched
by a transition from u0 or by any transitions from a possible corresponding
derivative of u0. Since ≡ is conservative with respect to≡0, no more transitions
can be equated in E0 under ≡ than under ≡0, hence only the new transitions
generated under E need be considered. None of the new transitions can match
this transition. Consider the last rule used in the proof of the transition. One
of the following cases applies.

• The transition was generated by an extended tyft/tyxt rule from R0. Then
by Lemma 42, this transition is not a new transition.

• The transition was generated by an extended tyxt rule from R1. Then be-
cause E0⊕>E1 is type-1, the transition label has a sort not in S0 and hence
cannot be a matching transition.

• The transition was generated by an extended tyft rule from R1. Then be-

26

cause E0⊕>E1 is type-1 and since t0 ∈ T(Σ0), the transition label has a sort
not in S0 and hence cannot be a matching transition.

Since the transition cannot be matched by any new transitions, t0 6∼E
≡u0. 2

Stronger conditions are required to show a similar result for abstracting ex-
tensions.

Theorem 47 Let E0 and E1 be in extended tyft/tyxt format. Let ≡0 ⊕≡1 be
compatible with E0⊕>E1. If E0 is pure and label-pure, E1 is well-founded, and
E0⊕>E1 is type-0, then E0⊕>E1 is an abstracting extension of E0.

Proof. The details of this proof are included in Appendix A. It proceeds in
a similar fashion to Theorem 24, but with greater intricacy since the relation
that is to be shown a bisimulation is more complex. 2

Corollary 48 Let E0 and E1 be in extended tyft/tyxt format. Let ≡0 ⊕ ≡1

be conservative with respect to ≡0 and compatible with E0⊕>E1. If E0 is pure,
label-pure and well-founded, E1 is well-founded, and E0⊕>E1 is type-0, then
E0⊕>E1 is a conservative extension of E0.

Counter-examples to show that the conditions are necessary are given in Ap-
pendix B. For the refining extension results, counter-examples are given for all
conditions except some of the pureness and label-pureness conditions, and for
the abstracting extension results, counter-examples are given for all conditions
except an aspect of compatibility.

3.3 A different approach to extensions up to bisimulation

This section will describe how it is possible to change the label-pureness re-
quirement by giving additional requirements on Σ1. In the counter-examples,
a new constant with sort from S0 was introduced in Σ1 which allowed the
required result to be lost. It is possible then to impose restrictions on Σ1

disallowing such function symbols and hence remove the label-pureness re-
quirement in the results under discussion.

Definition 49 Σ1 is safe for S0 if no function symbol in F1−F0 has a range
with a sort from the set S0.

Note that if (S0 ∩ S1) 6= ∅ and Σ1 is safe for S0, then Σ1 may not be a
sensible signature since there may be no closed terms in T(Σ1)S1 for the sorts
in the intersection. This is why the notion of asymmetric sum is required. The
following technical lemma proved by induction on term structure, shows that
all closed terms in the sum with a sort from S0 are in T(Σ0)S0 .

27

Lemma 50 If Σ1 is safe for S0, then for all t ∈ T(Σ0⊕>Σ1)S −T(Σ0)S0, the
sort of t is in S1 − S0; namely for all s ∈ S0, t ∈ T(Σ0⊕>Σ1)s ⇒ t ∈ T(Σ0)s.

The lemma and the refining, abstracting and conservative extension up to
bisimulation results can all be rephrased in a similar way. It may appear that
it is possible in the next lemma to remove the condition that no extended tyxt
rule from R1 has a label in the conclusion with a sort from S0. This, however,
is not correct since terms from T(Σ1)S1 must be considered and this includes
variables. This could be fixed by insisting that (S0 ∩ S1) = ∅, but this is too
strong because then no sorts could be shared between the two eTSSs which
would reduce the applicability of the results.

Lemma 51 Let E0 and E1 be in extended tyft/tyxt format and let Σ1 be safe
for S0. Let E0 be pure, and let E0⊕>E1 be type-1. Let E ` t0

α−→ t with t0 ∈
T(Σ0)P. If the last rule used in the proof of E ` t0

α−→ t is an extended tyft/tyxt
rule from R0 then E0 ` t0

α−→ t.

Proof. The proof is similar to Lemma 42. However, instead of the argument
that no new terms are introduced because there are no label-free variables,
Lemma 50 is used to argue that the only terms that can be substituted into
the free label variables in rules from R0 are those from T(Σ0), since terms
with sorts from S0 are in T(Σ0)S0 . 2

Theorems 46 and 47 can also be rephrased. The proofs are almost identical to
before, but Lemma 51 is used instead of Lemma 42.

Theorem 52 Let E0 and E1 be in extended tyft/tyxt format and let Σ1 be
safe for S0. Let ≡0 ⊕≡1 be conservative with respect to ≡0. If E0 is pure, and
E0⊕>E1 is type-1, then E0⊕>E1 is a refining extension.

Theorem 53 Let E0 and E1 be in extended tyft/tyxt format and let Σ1 be
safe for S0. Let ≡0 ⊕ ≡1 be compatible with E0⊕>E1. If E0 is pure and well-
founded, E1 is well-founded and E0⊕>E1 is type-0, then E0⊕>E1 is an abstracting
extension.

Corollary 54 Let E0 and E1 be in extended tyft/tyxt format and let Σ1 be
safe for S0. Let ≡0 ⊕ ≡1 be conservative with respect to ≡1 and compatible
with E0⊕>E1. If E0 is pure and well-founded, E1 is well-founded, and E0⊕>E1

is type-0, then E0⊕>E1 is a conservative extension.

As will be seen in the next section, safety plays an important rôle in com-
paring semantic equivalences. All the counter-examples in Appendix B for
label-pureness are also counter-examples for safety, since they involve adding
new function symbols with a range sort of the first eTSS. All the other counter-
examples in Appendix B apply to the other conditions in the theorems since

28

a : p
a:NIL−−−→ p

p
u−→ p′

a : p
a:u−→ p′

p
u−→ p′

p+ q
u−→ p′

p
u−→ p′

q + p
u−→ p′

p
u−→ p′

p | q u−→ p′ | q
p

u−→ p′

q | p u−→ q | p′
p

u−→ p′ q
v−→ q′

p | q u|v−→ p′ | q′

Fig. 4. Rules for pomset CCS

all adhere to the safety condition.

4 Comparing two semantic equivalences

In this section, a comparison of the multiprocessor equivalence of Krishnan
[32] and the pomset bisimulation of Castellani [15] will be presented. An eTSS
to represent pomset CCS is required. This will be done by summing EMP

from Section 2.6.1 with a new eTSS. EMP together with the ΣMP-algebra An

which induces the congruence ≡An represent n multiprocessor CCS and n
multiprocessor equivalence. A new eTSS EMPExt is introduced together with
the congruence ≡Ap obtained from the ΣMPExt-algebra Apom and some axioms
on label terms. Then EMP⊕>EMPExt together with ≡An⊕≡Ap represent pomset
CCS and pomset equivalence. As an intermediate step, a second congruence
≡Apn obtained from the ΣMPExt-algebra Apomn and the same axioms, over
EMPExt is introduced, and the congruence ≡An ⊕ ≡Apn is considered over
EMP⊕>EMPExt. It will then be possible to apply the refining extension theorem.

4.1 Pomset CCS

First consider the definition of pomset CCS (restricted here to the prefix
operator, non-deterministic choice, parallel composition and the nil process).
Let A be a set of actions and consider the grammar P ::= a : P | NIL | P +P |
P |P with a ∈ A. General actions are defined by B ::= a : B | NIL | B|B with
a ∈ A. These actions are referred to as Act. There are two axioms over Act,
u|v = v|u and u|(v|w) = (u|v)|w which define an equivalence ≡. The rules are
given in Figure 4. A pomset bisimulation R is a binary relation such that for
any (p, q) ∈ R and u ∈ Act, the following holds

(1) p
u−→ p′ implies there exist q′, v such that q

v−→ q′, u ≡ v and (p′, q′) ∈ R,
(2) q

u−→ q′ implies there exist p′, v such that p
v−→ p′, u ≡ v and (p′, q′) ∈ R.

29

x
zAct−−→ y

pref(zA, x)
concat(zA,zAct)−−−−−−−−→ x

x
zActnew−−−→ y

pref(zA, x)
concat(zA,zActnew

)
−−−−−−−−−−→ x

x
zActnew−−−→ y

plus(x, x′)
zActnew−−−→ y

x
zActnew−−−→ y

plus(x′, x)
zActnew−−−→ y

x
zActnew−−−→ y

par(x, x′)
zActnew−−−→ par(y, x′)

x
zActnew−−−→ y

par(x′, x)
zActnew−−−→ par(x′, y)

x
zAct−−→ y x′

z′Act−−→ y′

par(x, x′)
combnew(zAct,z

′
Act)−−−−−−−−−−→ par(y, y′)

x
zActnew−−−→ y x′

z′Act−−→ y′

par(x, x′)
combnew(zActnew

,z′Act)−−−−−−−−−−−→ par(y, y′)

x
zAct−−→ y x′

z′Actnew−−−→ y′

par(x, x′)
combnew(zAct,z

′
Actnew

)
−−−−−−−−−−−→ par(y, y′)

x
zActnew−−−→ y x′

z′Actnew−−−→ y′

par(x, x′)
combnew(zActnew

,z′Actnew
)

−−−−−−−−−−−−−→ par(y, y′)

Fig. 5. Rules for MPExt

4.2 Expressing pomset CCS as a sum of eTSSs

Consider the signature ΣMPExt with (A,K,Act,Actnew,P; {a}a∈A, {k}k∈K, nil,⊥A,
⊥Act,⊥Actnew ,⊥K; .,+, |, act, comb, combnew, concat) with the types of {a}a∈A, {k}k∈K,
nil, ⊥A,⊥Act,⊥Actnew ,⊥K, .,+, |, act and comb as in ΣMP (Example 11 and Sec-
tion 2.6.1), and

concat : A,Act → Actnew combnew : Act,Act → Actnew

concat : A,Actnew → Actnew combnew : Act,Actnew → Actnew

combnew : Actnew,Act → Actnew

⊥Actnew :→ Actnew combnew : Actnew,Actnew → Actnew.

A new sort Actnew and two new operators concat and combnew have been
introduced. Also notice the overloading of concat and combnew. The rules
are given in Figure 5. Let these rules be denoted RMPExt, and the eTSS
EMPExt = (ΣMPExt, RMPExt).

Next define a ΣMPExt-algebra Apom to represent the actual process algebra
labels. Let C be defined as c ::= a | a : c | c|c for a ∈ A and C ′ be defined as

30

aApom = a ∀a ∈ A kApom = num(k) ∀k ∈ K

⊥Apom

A =⊥A ⊥Apom

K = 0 ⊥Apom

Act = ⊥Act ⊥Apom

Actnew
= ⊥Actnew

actApom(ζ1, ζ2) =

ζ1 if ζ1 ∈ A and ζ2 ∈ N+

⊥Act otherwise

combApom(ζ1, ζ2) =

ζ1|ζ2 if ζ1, ζ2 ∈ C ′

⊥Act otherwise

concatApom(ζ1, ζ2) =

ζ1 : ζ2 if ζ1 ∈ A, ζ2 ∈ C
⊥Actnew otherwise

combnew
Apom(ζ1, ζ2) =

ζ1|ζ2 if ζ1, ζ2 ∈ C
⊥Actnew otherwise

Fig. 6. Functions for Apom

c′ ::= a | c′|c′ for a ∈ A. Then A ⊂ C′ ⊂ C. Assume there is an congruence ≡C
on C ′ and C generated by the axioms c|c′ = c′|c and c|(c′|c′′) = (c|c′)|c′′. The
carrier sets for the sorts A, K, Act and Actnew are A ∪ {⊥A}, N, C ′ ∪ {⊥Act}
and C ∪ {⊥Actnew} respectively. The functions for Apom are given in Figure 6.

Define ≡Ap as follows: if α, β ∈ T(ΣMPExt)S, then

α ≡Ap β ⇐⇒


iApom(α) = iApom(β)

or

iApom(α) ≡C iApom(β).

Consider EMP⊕>EMPExt together with≡An⊕≡Ap . The signature ΣMP⊕>ΣMPExt

is the same as ΣMPExt given above, and the rules RMP ∪ RMPExt are the rules
given in Figures 1 and 5. It can be seen from the functions of Apom in Figure 6
how semantically equivalent labels are equated by ≡Ap and how this relates
to the original definition of the pomset process algebra.

4.3 A refining extension

The aim is to show that EMP⊕>EMPExt together with the congruence ≡An⊕≡Ap

provide a refining extension of EMP – this will show that pomset equiva-
lence is a subset of n multiprocessor equivalence. However, the refining ex-
tension theorem cannot be directly applied, since ≡An ⊕ ≡Ap is not conser-
vative with respect to ≡An . Conservativity requires that for α, β ∈ T(ΣMP)S,
α≡An ⊕≡Ap β ⇐⇒ α≡Ap β. Then act(a, k1)≡An ⊕≡Apact(a, k2) but act(a, k1)

31

6≡An
act(a, k2).

The solution is to work with a different ΣMPExt-algebra over the labels which
is conservative, and show that this algebra generates an congruence which
will result in the same semantic equivalence as is obtained by using ≡Ap . This
algebra will have a different carrier set for Act since it is only on this sort that
the summed congruence is not conservative. This carrier set contains pairs of
actions from C ′ and sequences of natural numbers. Let N and M be sequences
of positive natural numbers without repetition, and let N ∩M indicate the
intersection of sequences. Then let the partial function (a,N)+n (b,M) where
a, b ∈ C ′, be defined as equal to (a|b,NM) whenever N ∩M = ∅. Also define
a function acts : C ′ → N as acts(c|c′) = acts(c) + acts(c′) and acts(a) = 1.

The carrier sets for A, K and Actnew, and the functions for a, k, ⊥A, ⊥K, ⊥Act

and ⊥Actnew are the same as for Apom. The carrier set for Act is D ∪ {⊥Act}
where D is

n⋃
j>1

{(c′, a1 . . . aj)|c′ ∈ C ′, acts(c′) = j, a1, . . . , aj ∈ {1, . . . , j}, pairwise disjoint}.

The new functions are given in Figure 7. The congruence generated by the
axioms ≡C can be extended to D in the obvious manner.

Define ≡Apn as follows: if α, β ∈ T(ΣMPExt)S, then

α ≡Apn β ⇐⇒


iApomn(α) = iApomn(β)

or

iApomn(α) ≡C iApomn(β).

First, it will be shown that using the congruence ≡Apn it is possible to obtain a
refining extension to EMP, then it will be shown that this defines an congruence
∼≡Apn

identical to ∼≡Ap
. Note that since EMP is not label-pure (it is the ax-

iom which is not label-pure – see Figure 1), it is necessary to use Theorem 52.
Clearly ΣMPExt is safe for SMP since no function in FMPExt−FMP (the functions
concat and combnew) has a range with a sort from SMP. EMP and EMPExt are
both in extended tyft/tyxt format. EMP is pure, and EMP⊕>EMPExt is type-1
since there is no extended tyft rule in RMPExt containing a function symbol
from FMP with a conclusion label with a sort from SMP; in other words, all ex-
tended tyft rules with a function symbol from FMP have a conclusion transition
label with sort actnew.

It must also be shown that ≡An ⊕ ≡Apn is conservative with respect to ≡An

since this is a condition required by Theorem 52. Note that for all s ∈ {K,A},
α, β ∈ T(ΣMPExt)s, α≡An ⊕≡Apn β ⇐⇒ α≡An β. It is not necessary to con-
sider terms with sort Actnew since these only occur in T(ΣMPExt). Hence it

32

actApomn(ζ1, ζ2) =

(ζ1, ζ2) if ζ1 ∈ A and ζ2 6 n

⊥Act otherwise

combApomn(ζ1, ζ2) =


ζ1 +n ζ2 if ζ1, ζ2 ∈ D

and ζ1 +n ζ2 defined

⊥Act otherwise

concatApomn(ζ1, ζ2) =


ζ1 : ζ2,1 if ζ1 ∈ A, ζ2 ∈ D and

ζ2 = (ζ2,1, ζ2,2)

ζ1 : ζ2 if ζ1 ∈ A, ζ2 ∈ C
⊥Actnew otherwise

combnew
Apomn(ζ1, ζ2) =



ζ1,1|ζ2,1 if ζ1 ∈ D,

ζ2 ∈ D and

ζ1 = (ζ1,1, ζ1,2)

ζ2 = (ζ2,1, ζ2,2)

ζ1,1|ζ2 if ζ1 ∈ D, ζ2 ∈ C and

ζ1 = (ζ1,1, ζ1,2)

ζ1|ζ2,1 if ζ1 ∈ C, ζ2 ∈ D and

ζ2 = (ζ2,1, ζ2,2)

ζ1|ζ2 if ζ1, ζ2 ∈ C
⊥Actnew otherwise

Fig. 7. Functions for Apomn

is only necessary to consider terms with sort Act. The proof is omitted for
reasons of space, but is straightforward (see [23] for a full proof).

Hence it can be concluded that for t, u ∈ T(ΣMP)P, t∼EMP⊕>EMPExt
≡An⊕≡Apn

u =⇒
t∼EMP

≡An
u. In other words, on the process terms of T(ΣMPExt), the restricted

version of pomset equivalence is a subset of n multiprocessor equivalence. This
is a proper subset since for each n there exist processes which are identified
by n multiprocessor equivalence, but not by restricted pomset equivalence.

Counter-example 55 For arbitrary n, with
∑

for +, and
∏

for |,

n∏
k=1

ak.nil +
n∑

i=1

n∑
j=1
j 6=i

(
ai.aj.nil |

n∏
k=1
k 6=i
k 6=j

ak.nil
)

∼EMP
≡An−1

n∑
i=1

n∑
j=1
j 6=i

(
ai.aj.nil |

n∏
k=1
k 6=i
k 6=j

ak.nil
)

These processes are not equated by the restricted pomset equivalence since the

33

first process can perform a transition involving all possible actions, namely a
transition whose label is mapped by iApn to a1 | . . . | an, whereas the second
process does not have a transition that consists of all n actions.

Note that the abstracting extension theorem (Theorem 53) cannot be applied
since one condition is not met – the sum is not type-0, namely there are rules
in EMPExt with functions from FMP in the sources of the conclusions.

Note also that T(ΣMP)P = T(ΣMP⊕>ΣMPExt)P, and hence no additional pro-
cess terms have been introduced by the extension, only additional transitions.

Finally, it is necessary to show that ∼EMP⊕>EMPExt
≡An⊕≡Apn

and ∼EMP⊕>EMPExt
≡An⊕≡Ap

are the

same. This proof is straightforward, but tedious and can be found in [23].
Hence, it can be concluded that for t, u ∈ T(ΣMP)P t∼EMP⊕>EMPExt

≡An⊕≡Ap
u =⇒

t∼EMP
≡An

u. In other words, on the process terms of T(ΣMP), pomset equiva-
lence is a proper subset of n multiprocessor equivalence.

5 Related work

5.1 Comparison with tyft/tyxt format

As mentioned earlier, this work does not concern itself with negative premises
or predicates, so clearly it is not comparable with formats that involve nega-
tive premises and/or predicates. The tyft/tyxt format involves a single-sorted
algebra for the operators and an infinite set of labels which are used in the
rules in a schematic manner and are atomic. Tyft/tyxt rules have the following
forms:

{ti
ai−→ yi | i ∈ I}

f(x1, . . . , xn)
a−→ t

{ti
ai−→ yi | i ∈ I}
x

a−→ t

where all the variables are distinct, the ti’s and t are open terms from the
term algebra associated with the signature, and the ai’s and a are labels.
The labels are understood to be any labels, as long as repeated labels are
preserved. Proofs are constructed by finding substitutions for the variables.
The definition implicitly permits operators to be created from the elements of
the set of labels, such as prefix operators.

To translate from tyft/tyxt format to the extended tyft/tyxt format, the first
step is to start with a many-sorted signature consisting of the process sort
P and a label sort A, as well as operators which are not created from labels.
The next step is to make all labels, constants of sort A and then to modify all
operators created from elements of the label set to take an argument of the
label sort.

34

Finally, each rule needs to be modified. This is where schematic treatment of
actions has some advantages, for example in matching labels. First, consider
rules where no matching occurs in contravention of the rules for label variables
in the extended tyft/tyxt format. Here, it is simple to replace each different
label with a different variable of the sort A, so for example an axiom such as
a.x

a−→ x will become z.x
z−→ x. In the case of matching of actions in a way

which contravenes the conditions of label variables, there are two approaches
as discussed in Section 2.6.

Hence, it is possible to translate a transition system specification in tyft/tyxt
format into one in extended tyft/tyxt format.

The extended tyft/tyxt format has some advantages over the tyft/tyxt format.
First, it can be used to compare different semantic equivalences as shown in
Sections 3 and 4. For the tyft/tyxt format, it is possible to show that two
semantic equivalences are the same when summing transition system specifi-
cations by showing that the sum is a conservative extension; however, there
are no results for showing other kinds of relationships between semantic equiv-
alences.

Second, the extended tyft/tyxt format can be more convenient to express some
process algebras, as the following example shows. In CCS with locations [14],
the definition of bisimulation can be parameterised by a relation over the set
of location strings, hence the strings that are used in the transitions need only
match up to the relation. Assume that the relation is the identity relation
together with pairs (l1, l2) and (l2, l1) for some l1, l2 with l1 6= l2. Also assume
that a rule is introduced for the parallel operator involving communication
where communication can only take place if the actions occur at the same
locations, which is not an unreasonable restriction. This rule can be expressed
as

x
a−→
u
y x′

a−→
u
y′

x | x′ τ−→ y | y′

This may appear to be a tyft rule if the locations are treated in a schematic
manner. However, this rule results in an operator that does not preserve con-
gruence. To see this, consider the following rules

a.x
a−→
l
l :: x

∀l ∈ Loc
x

a−→
u
y

l :: x
a−→
lu
l :: y

and the new parallel communication rule given above. Then l1 :: a.nil ≈l

l2 :: a.nil but l1 :: a.nil | l1 :: a.nil 6≈l l2 :: a.nil | l1 :: a.nil, since the first term
can perform a τ action which the second cannot. This could be expressed using
the tyft/tyxt format, but this would require a different collection of rules for
each possible relation over the label set.

35

Third, relations over a label set are also introduced whenever the labels be-
come more complex and it becomes necessary to equate labels which have been
constructed in different ways, but which are to be viewed as semantically iden-
tical. It is clear that care must be taken in these cases, and using a syntactic
approach such as the extended tyft/tyxt format as opposed to the schematic
approach contributes to dealing explicitly with the possible complexities.

The extended tyft/tyxt format has the advantage that the theory deals explic-
itly with equating labels in the definition of bisimulation. This requirement
for the equation of labels can arise either as a result of definition of the bisim-
ulation for the original process algebra, or through the syntactic treatment
of labels. For the tyft/tyxt format, the definition of bisimulation is based on
an atomic set of labels and requires that matching transitions have identical
labels.

5.2 Other formats

Recently, a number of formats have been proposed that allow terms to appear
in transition labels [20,9,22,37,19]. Each of these will be discussed and briefly
compared to the extended tyft/tyxt format with the comparison focussing
on the main aspects of the extended tyft/tyxt format, namely the syntactic
requirements of the format, congruence results, and comparison of semantic
equivalences. Detailed comparisons are beyond the scope of this paper.

Ferrari and Montanari [20] propose a format for parameterised structured op-
erational semantics called Algebraic De Simone Format (AdS) which is an
extension of De Simone format. The focus of this research is showing con-
gruence, as well as the finite axiomatisation of parameterised bisimulation.
Two single-sorted signatures are used, one for processes and one for labels,
and a technique is used similar to the one used for extended tyft/tyxt format
for the interpretation of label terms. A notion of parameterised bisimulation
that permits matching on terms that are identified by an algebra as well as
ignoring uninteresting or incorrect transitions is proposed – this is similar to
the approach taken in this paper.

The main differences between AdS format and extended tyft/tyxt format are
that label terms are disjoint from process terms, and the number of label
variables which can appear in the term on the transition of the conclusion is
equal to the number of premises, which is a feature of the De Simone format.
Additionally, the binding occurrence of label variables occur in the label of
the transition of the conclusions, as opposed to the extended tyft/tyxt format
where binding occurrences of label variables occur in the source of the conclu-
sion and in the labels of the hypotheses. A second format is introduced called

36

AdSA (AdS-format with abstractions) where the label signature is modified
to be two-sorted, with the second sort having the same operators as the pro-
cess signature. This permits predicates over the structure of processes in the
rules. The evaluation of predicates are determined by the interpretation of la-
bel terms. These formats can be used to express process algebras that record
dependencies between actions with the use of tags.

It is possible to compare two semantic equivalences over the same transition
system specification using the AdS format by considering two different algebras
for the label terms, each of which gives rise to a semantic equivalence, together
with a homomorphism between these two algebras. The authors briefly pro-
pose that conservative extensions can be handled by using general algebraic
techniques, which will give a mapping from one transition system specification
system to another where a proof of a transition is mapped to a proof of its
translation. It is unclear whether this approach could be extended to refining
and abstracting extension results for the comparison of bisimulation over pro-
cess algebras with different syntax, as achieved here for the extended tyft/tyxt
format.

Bernstein [9] has introduced the promoted tyft/tyxt format which uses a single-
sorted signature. The focus of this research is a format for defining higher-
order languages, such as the π-calculus [36], and a congruence result for this
format. An important aspect of this format is that syntactic substitution and
free variable tests can be defined using the rules in the promoted tyft/tyxt as
opposed to being a part of the meta-theory. This format is not used to compare
equivalences defined for different process algebras.

In the promoted tyft/tyxt format, terms may appear on transitions, removing
the distinction between process and label. The conditions for variables are
very different to those of the extended tyft/tyxt format. In the conclusion,
the same variable may not appear both in the source and label. Neither may
the same variable appear in the label of the conclusion and the target of a
premise. Furthermore, there must be at most one function symbol in the label
of the conclusion (or a single variable), and at least one function symbol in the
labels of premises. Additionally the binding occurrences of the variables appear
either in the source of the conclusion or the label of the conclusion. This means
that it is possible to show a suitable transition exists whenever two terms are
equivalent. In the congruence result, this means that for a given transition,
it is possible to find a matching transition for any term that is equivalent to
the label term on the given transition. This differs from extended tyft/tyxt
where a more general condition is used in the congruence result, namely that
for a given transition it is possible to find a matching transition with a label
term equivalent to the label term on the given transition. Since the form of
the promoted tyft/tyxt format allows matching transitions to be found, it may
be possible to obtain an abstracting extension result. However, the technique

37

used in this paper to obtain a refining extension uses the fact that there are
multiple sorts, and this cannot be applied to the promoted tyft/tyxt format
since it is based on a single sort.

When expressing rules in promoted tyft/tyxt format, a prefix axiom of the
form a.x

a−→ x, requires that a must be a constant term, and hence this rule
is a schema for a collection of prefix axioms [9]. Similarly, the rules for action
prefix and location prefix from CCS with locations (see Section 5.1) need to
be expressed with constants – variables cannot be used because they could
be instantiated by terms representing processes as well as terms representing
actions and locations. Hence, one collection of constants is required to repre-
sent actions, together with a collection to represent locations and a collection
to represent pairs of actions and strings of locations. Hence it appears for
process algebras that record dependencies between actions by tags, such as
CCS with locations [14], it is not possible to use the presence of terms and
variables in labels provided by the promoted tyft/tyxt format to express these
languages, whereas this is straightforward in the extended tyft/tyxt format.
This is understandable since these process algebras were not the motivation
for the promoted tyft/tyxt format.

Fokkink and Verhoef [22] introduce a very general format to consider the no-
tion of conservative extension. The signature is many-sorted and terms can
appear on transitions. To deal with variable binding, formal variables, substi-
tution harnesses and formal rules are introduced. These are mapped to actual
rules by the use of substitutions that map from formal variables to open ac-
tual terms. The format has no restrictions on where variables can appear in a
rule since they are not concerned with congruence results. Additionally, they
introduce a more liberal form of the notion ‘pure and well-founded’, namely
source dependency. The focus is on conservative extensions without consider-
ing semantic equivalences, and hence there are no congruence results. It may
be possible to extend this approach to obtain results for conservative exten-
sions up to bisimulation as well as for refining and abstracting extensions, but
as these involve semantic equivalences, it would require further restrictions on
variables on rules to prove these results.

Mosses [37] has introduced the notion of modular structural operational se-
mantics (MSOS). The underlying labelled transition system has labels that
are arrows from a specific type of category, and labels on adjacent transitions
are required to be composable. Label transformers are used to extend the
labels of an MSOS without changing the semantics of the existing language
constructs, after which new rules for new constructs can be defined that op-
erate on the new components of the labels. An example is given of extending
the functional constructs of ML with imperative features and concurrent pro-
cesses. MSOS focusses on extending languages with constructs that introduce
information that is independent of that already present in the semantics, and

38

hence is not applicable to process algebras where new label information is
strongly related to the existing label information. For example, consider CCS
with locations [14], where the locations are strongly related to the actions –
they describe where the actions have occurred. Additionally, MSOS does not
deal with semantic equivalences and hence there are no congruence results.

Degano and Priami [19] consider proved transition systems where labels cap-
ture the actions that occurred as well as the proof that was used to obtain the
transition. This research does not define a format. A parametric bisimulation
is defined where bisimulation is parameterised by the function that extracts
the appropriate information from the proof of the deduction of the transition.
Different semantics and semantic equivalences can be compared via the func-
tions used to parameterise bisimulation. Proved transition systems can express
different semantics covering causality, mobility, location, time and stochastic
aspects with little modification to the operators of a process algebra. This
approach differs from the approach taken in this paper, in that the focus is
on constructing a tool to express systems based on a unique concrete model,
whereas the focus in this paper is a new format for the comparison of existing
process algebras via the notion of extension.

In summary, there are a number of different approaches to introducing more
complex label terms into formats. These approaches differ from the extended
tyft/tyxt format both in their general aims and in their details. Except for
the AdS format and proved transition systems, none of the other approaches
have been used to compare semantic equivalences, and the focus of these two
approaches has been on comparison via parameterised bisimulation. Addition-
ally, although some of the formats introduce more complex label terms, they
are less useful for expressing process algebras that use tags for recording the
dependencies between actions.

Two areas for further work relate to the the binding of variables and obtain-
ing extension results for other formats. The binding of label variables in both
the AdS and promoted tyft/tyxt format are very different from that in the
extended tyft/tyxt format where binding occurrences occur in the source of
the conclusion and in the labels of the hypotheses, and a fuller understand-
ing of the implications of these differences could give further insight into the
proof techniques that can be used for formats. Another question of interest is
whether abstracting and refining extension results could be proved for these
formats – some comments on this are given above.

39

5.3 Predicates

Baeten and Verhoef [8] have considered a congruence theorem for structured
operational semantics with predicates. They work with the notion of a term
deduction system which generalises transition system specifications, where in-
stead of relations over (pairs of) states and actions, they work with relation
symbols and predicate symbols. It appears that a similar approach could be
taken with extended transition system specifications. A brief description fol-
lows: let D = {D1, D2, . . .} be a set of predicate symbols disjoint from any
collections of variables and function symbols. Extend the notion of extended
tyft/tyxt rules so that predicate formulae can appear in the premises of a rule
in addition to the transitions, in the form {Dkpk | k ∈ K} with K an index
set, Dk ∈ D and pk ∈ T(Σ)P for k ∈ K such that the same rules apply to
the pk’s as to the pi’s in extended tyft/tyxt rules. Additionally, allow two new
types of rules: one where the conclusion can have the form Dx for D ∈ D and
x satisfying the same conditions as in extended tyxt rules, and the other where
the conclusion can have the form Df(η1, . . . , ηm, x1, . . . , xn) with D ∈ D and
η1, . . . , ηm and x1, . . . , xn satisfying the same conditions as in extended tyft
rules.

It appears that it is then possible to apply the same technique as used by
Baeten and Verhoef to obtain a congruence theorem. Their approach requires
that a term deduction system with predicates is transformed into one with
no predicates where the same terms are equated by bisimulation, after which
the standard congruence theorem can be used. The transformation involves
introducing new constants and relation symbols to replace the predicate sym-
bols and modifying the rules appropriately. This coding was first proposed by
Groote and Vaandrager [28].

A similar approach can be taken with the extended tyft/tyxt format, by in-
troducing new sorts and constants with these sorts, and then modifying the
rules by replacing occurrences of predicates with transitions that have the new
constants as labels and targets. Once this transformation has been defined, it
would be necessary to prove that the same terms (and no additional terms)
are equated by bisimulation, but it appears that this would follow similar lines
as the proof by Baeten and Verhoef, although it may have some more com-
plex details. After this has been shown, Theorem 24 can be applied to show
congruence.

In the case of the extension theorems (Theorems 46 and 47), it is an issue
for further work as to whether the transformation given above can be used to
show that these theorems apply to rules with predicates.

40

5.4 Well-foundedness

Fokkink and van Glabbeek [21] have shown that any transition system specifi-
cation in tyft/tyxt format can be expressed as a transition system specification
in tree format. A transition system specification is in tree format when it con-
sists of pure well-founded xyft rules (pure, well-founded rules with variables as
the source of premises). Hence the well-founded requirement can be dropped
for congruence for the tyft/tyxt format. The technique they use relies on a
different notion of proof and makes use of new results from unification theory.
It is not clear whether these results extend to the extended tyft/tyxt format.
However, it appears that an eTSS in extended xyft format (where each premise
source must be a variable) is transition equivalent to an eTSS in tree format,
so the focus of further work in this direction would be on showing whether an
eTSS in extended tyft/tyxt format is transition equivalent to one in extended
xyft format.

Note that well-foundedness is still required for extension results, since transi-
tions obtained from the sum of two transition system specifications in tyft/tyxt
format may differ from those obtained from the sum of equivalent transition
system specifications in tree format. This observation applies also to eTSSs in
extended tyft/tyxt format. This is because the transformation of a transition
system specification to tree format is based on replacing variables with closed
terms that are formed by the signature associated with that transition system
specification, and this ensures that the same transitions are generated as by
the original rules. When summing two transition system specifications, addi-
tional closed terms may be formed by the sum of the signatures, and hence
additional transitions could be obtained.

6 Conclusions and further work

There are a number of issues for further work, some of which lead automati-
cally from the fact that this is a new format, for example, negative premises,
weak bisimulation and axiomatisation. Some issues as yet not resolved include
well-foundedness, conditions on variables in sources and labels of premises for
congruence, and the conditions of pureness and label-pureness in the refining
extension theorem.

Additional areas of further research relate to allowing many-sorted processes
and a more applicable form of the abstracting extension result. In general,
transition equivalence is not preserved by sum of eTSSs, but it may be the case
that reasonable conditions can be found under which transition equivalence is
preserved, and this may lead to simpler proofs. Other areas for further work

41

are considering the more restricted forms of rules that occur in process algebras
that use dependencies, and investigating the expressive power of using label
terms to represent processes.

This paper has presented a novel manner in which to compare process algebra
semantic equivalences by using a format. The extended tyft/tyxt format devel-
oped here takes a many-sorted syntactic approach as opposed to a schematic
approach to transition labels and has desirable properties such as congruence.
New notions of extensions have been defined, and conditions have been given
under which the two types of extensions can be found. Additionally, a different
approach to these theorems has been shown. Finally, it has been shown that
these results are applicable to a number of process algebras.

Acknowledgements

Thanks are due to Julian Bradfield, Scott Hazelhurst, Mpho Matlala and
András Salamon and anonymous referees for their comments on this paper.

This research was supported in part by a Patrick and Margaret Flanagan
Scholarship.

A Proof of Theorem 47

Proof. Let t0, u0 ∈ T(Σ0) and let ≡ = ≡0 ⊕≡1. The aim is to show that
t0∼E0

≡0
u0 ⇒ t0∼E

≡u0. Let R ⊆ T(Σ)P ×T(Σ)P be the least relation satisfying

(1) ∼E
≡ ⊆ R,

(2) ∼E0
≡0
⊆ R (note that ∼E0

≡0
⊆ T(Σ0)P ×T(Σ0)P),

(3) for all f ∈ F such that f : s1 . . . smP . . .P → P, for all terms µk, νk ∈
T(Σ)S and for all terms uj, vj ∈ T(Σ)P

µk ≡ νk (1 6 k 6 m) and uj R vj (1 6 j 6 n) ⇒
f(µ1, . . . , µm, u1, . . . , un)R f(ν1, . . . , νm, v1, . . . vn).

It is enough to show R ⊆ ∼E
≡, hence it is necessary to show that R is a

bisimulation with respect to ≡ under E . Assume uR v. There are three cases:

(1) This is simple since u∼E
≡v.

(2) It must be shown that whenever E ` u
α−→u′ and u∼E0

≡0
v then there is a

v′ ∈ T(Σ)P such that E ` v α′−→ v′ with α′ ≡ α and u′ R v′. (∗)
(3) It must be shown that whenever E ` f(µ1, . . . , µm, u1, . . . , un)

α−→u′, µk ≡
νk for all k and uj R vj for all j then there is a v′ ∈ T(Σ)P such that

42

E ` f(ν1, . . . , νm, v1, . . . , vn))
α′−→ v′ with α′ ≡ α and u′ R v′. (∗∗)

These last two cases will be considered together and the proof will proceed by
induction on depth of proof.

For (∗∗), u∼E0
≡0
v with u, v ∈ T(Σ0). The transitions from u are either the

result of extended tyft/tyxt rules from R0, or extended tyxt rules from R1

(since E0⊕>E1 is type-0).

For extended tyft/tyxt rules from R0, Lemma 42 applies. Therefore, for any
transition u

α−→u′ then α ∈ T(Σ0)S0 and u′ ∈ T(Σ0)P. Moreover, for any transi-
tion of the form u

α−→u′ with α ∈ T(Σ0)S0 and u′ ∈ T(Σ0)P, since u∼E0
≡0
v there

exist α′ ∈ T(Σ0)S0 and v′ ∈ T(Σ0)P such that v
α′−→ v′ and u′∼E0

≡0
v′. Hence

u′ R v′, as required. For the case of a transition from u being generated by a
extended tyxt rule from R1, induction on the depth of proof of the transition
is necessary.

The following fact proved by induction on the structure of the term will be
used throughout this proof.

Fact Let p ∈ T(Σ)P and let ρ, ρ′ : V → T(Σ) be substitutions such that
for all x in VarP(t), ρ(x)R ρ′(x) and for all z in VarS(p), ρ(z) ≡ ρ′(z). Then
ρ(p)R ρ′(p).

From Lemma 10, there is a closed proof T of u
α−→u′. Let r be the last rule

used in proof T , in combination with a substitution σ. Assume first that the
proof consists of an axiom, then there are the following two cases.

• u∼E0
≡0
v, and r ∈ R1 has the form x

λ−→ p with σ(x) = u, σ(λ) = α and
σ(p) = u′. Let σ′(x) = v, σ′(z) = σ(z) for all z ∈ VarS(r), and σ′(y) = σ(y)
for all y ∈ VarP(p)−{x}. Then v

σ′(λ)−−−→σ′(p) with σ′(λ) ≡ α, and by the fact
above σ(p)R σ′(p) as required.

• Then f(µ1, . . . , µm, u1, . . . , un) and f(ν1, . . . , νm, v1, . . . vn) with µi ≡ νi for
all k and ui R vi for all i.
· r ∈ R0 ∪ R1 has the form x

λ−→ p. This is done in a similar fashion to the
case above.

· r ∈ R0 ∪ R1 has the form f(η1, . . . , ηm, x1, . . . , xn)
λ−→ p with σ(ηk) = µk

for all k, σ(xi) = ui for all i, σ(p) = u′ and σ(λ) = α. Let σ′(xi) = vi

for all i, σ′(z) = σ(z) for all z ∈VarS(r) − ⋃
16k6m ηk, and σ′(y) = σ(y)

for all y ∈VarP(r) − ⋃
16i6n xi. More care is required for ηk. Since for

a given k, σ(ηk) = µk ≡ νk and ≡ is compatible with R0 ∪ R1, there
is a substitution σ′′ such that σ′′(ηk) = νk and for all z ∈ VarS(ηk),
σ(z) ≡ σ′′(z). Hence define σ′(z) = σ′′(z). This can be done for all
1 6 k 6 m since there are no variables shared between the terms. Then
f(ν1, . . . , νm, v1, . . . , vn)

σ′(λ)−−−→σ′(p) with σ′(λ) ≡ α and by the fact above

43

σ(p)R σ′(p).

Next assume that the two statements (∗) and (∗∗) are true for proofs with n
or fewer steps. Only the details of the proof for the case of an extended tyft
rule from R0 for (∗∗) are given. The cases of an extended tyft rule from R1 for
(∗∗), an extended tyxt rule from R1∪R0 for (∗∗) and of an extended tyxt rule
from R1 for (∗) are proved in a similar manner. Note that when dealing with
rules from R0 ∪R1, they are treated as non-pure, non-label-pure rules, hence
the fact that rules from R0 are pure and label-pure is not used in this part of
the proof. The variables in r will be classified as in Lemma 23. Note that Yf ,
Zf and Z ′′ are not empty. The proof proceeds by induction on the depth of
the variables.

A substitution σ′ that satisfies the following properties on VP and VS will be
defined

(1) σ′(xi) = vi for 1 6 i 6 n
(2) σ(y)R σ′(y) for y ∈ X ∪ Y
(3) E ` σ′(pi

λi−→ yi) for i ∈ I
(4) σ′(z) ≡ σ(z) for z ∈ Z ∪ Z ′ ∪ Z ′′ ∪ Zf .

Substitution σ′ will be constructed in stepwise fashion. To begin, let σ′(xi) = vi

for all i, σ′(y) = σ(y) for y ∈ VP − (X ∪ ⋃
d>0 Yd), σ

′(z) = σ(z) for z ∈
VS−(Z∪⋃

d>0 Z
′
d). Hence (1), (2) and (4) hold for all these variables. When σ′

is defined on y ∈ X ∪ Yf ∪ Y0 ∪ . . . ∪ Yd and z ∈ Z ∪ Z ′′ ∪ Zf ∪ Z ′
0 ∪ . . . ∪ Z ′

d

(d > 0), then β(d), γ(d) and δ(d) will hold.

• β(d) : σ(y)R σ′(y) for yi ∈ X ∪ Yf ∪ Y0 ∪ . . . ∪ Yd

• γ(d) : E ` σ′(pi
λi−→ yi) for yi ∈ Y0 ∪ . . . ∪ Yd

• δ(d) : σ′(z) ≡ σ(z) for z ∈ Z ∪ Z ′′ ∪ Zf ∪ Z ′
0 ∪ . . . ∪ Z ′

d.

It is necessary to show that β(0), δ(0) and γ(0) hold. First note that for any
xi ∈ X, since σ(xi) = ui and σ′(xi) = vi, and ui R vi, σ(xi) R σ′(xi). Also
σ(y)R σ′(y) for y ∈ Yf since σ(y) = σ′(y).

Then consider Z. Since for a given k, σ(ηk) = µk ≡ νk, by compatibility a
suitable substitution can be found so that for all z ∈ VarS(ηk), σ(z) ≡ σ′(z).
The conditions β(0) and δ(0) hold on Yf and Zf respectively, by definition of
σ′. Next consider yi ∈ Y0 and the transition pi

λi−→ yi. This is a simpler version
of the inductive step and is omitted.

Now let d > 0, and suppose that σ′ has been defined for all variables in
X ∪ Yf ∪ Y0 ∪ . . . Yd−1 and Z ∪ Z ′′ ∪ Zf ∪ Z ′

0 ∪ . . . ∪ Z ′
d−1 such that β(d− 1),

γ(d− 1) and δ(d− 1) hold. Next define σ′ on Yd and Z ′
d such that β(d), γ(d)

and δ(d) hold.

44

Consider yi ∈ Yd and the transition pi
λi−→ yi. Since yi ∈ Yd, then by the defini-

tion of Yd, VarP(pi) ⊆ X ∪ Yf ∪ Y0 ∪ . . . ∪ Yd−1 so σ(y)Rσ′(y) for y ∈ VarP(pi)
by β(d − 1), and VarS(pi) ⊆ Z ∪ Z ′′ so σ(z) ≡ σ′(z) for z ∈ VarS(pi). Hence
by the fact above σ′(pi)R σ(pi). There are three cases to consider:

• σ(pi)∼E
≡σ

′(pi). Since E ` σ(pi)
σ(λi)−−−→σ(yi), there exist w ∈ T(Σ)P and αi ∈

T(Σ)S such that E ` σ′(pi)
αi−→w, σ(λi) ≡ αi and σ(yi)Rw. Define σ′(yi) = w.

Moreover, by the compatibility of ≡, suitable values of σ′(z) for z ∈ VarS(λi)
can be found. (Since VarS(pi)∩ VarS(λi) = ∅, this does not affect values
assigned to VarS(pi). Also since the λi has distinct variables, this does not
affect any other transition.)

• σ(pi)∼E0
≡0
σ′(pi). There are two cases depending on whether the last rule

of the proof of the transition is an extended tyft/tyxt rule from R0 or an
extended tyxt rule from R1:
· If σ(pi)

σ(λi)−−−→σ(yi) comes from a extended tyft/tyxt rule from R0 then by
Lemma 42, there exist w ∈ T(Σ0)P and αi ∈ T(Σ0)S0 such that E0 `
σ(pi)

αi−→w with αi ≡0 σ(λi) (hence αi ≡ σ(λi)) and σ(yi) R w. Define
σ′(yi) = w. By a similar compatibility argument, values can be found for
z ∈ VarS(λi).

· If σ(pi)
σ(λi)−−−→σ(yi) comes from a extended tyxt rule from R1, then the

induction hypothesis can be used, since it is proved by a shorter proof.
Since (∗) and (∗∗) hold, there exist w ∈ T(Σ)P such that E ` σ′(pi)

αi−→w
with σ(λi) ≡ αi and σ(yi)R w. Define σ′(yi) = w. A similar argument to
above defines σ′ for z ∈ VarS(λi).

• there is a function symbol h ∈ F such that h : s′1 . . . s
′
mP . . .P → P with

σ(pi) = h(µ′1, . . . , µ
′
m′ , w1, . . . , wn′) and σ′(pi) = h(ν ′1, . . . , ν

′
m′ , w′

1, . . . , w
′
n′)

where µ′k′ ≡ ν ′k′ and wi′Rw′
i′ . The induction hypothesis can be applied. Since

E ` h(µ′1, . . . , µ′m′ , w1, . . . , wn′)
σ(λi)−−−→σ(yi), there exist a w, and αi such that

E ` h(ν ′1, . . . , ν ′m′ , w′
1, . . . , w

′
n′)

αi−→w, σ(λi) ≡ αi, and σ(yi)Rw. Again define
σ′(yi) = w. Moreover, by the compatibility of ≡, suitable values of σ′(z) for
z ∈ VarS(λi) can be found.

Hence for any yi ∈ Yd, σ(yi)R σ′(yi), E ` σ′(pi
λi−→ yi) and σ(z) ≡ σ′(z) for all

z ∈ VarS(pi)∪VarS(λi). Therefore β(d), γ(d) and δ(d) hold for all d > 0, and
(2), (3) and (4) hold. (1) holds by definition.

E ` f(ν1, . . . , νm, v1, . . . , vn)
σ′(λ)−−−→σ′(p) since for all i ∈ I, E ` σ′(pi)

σ′(λi)−−−→σ′(yi).
σ′(λ) ≡ σ(λ) = α, since for all z ∈ VarS(λ), σ(z) ≡ σ′(z) and ≡ is a congru-
ence. u = σ(p)Rσ′(p), by the fact above since for all x ∈ VarP(p), σ(x)Rσ′(x)
and for all z ∈VarS(p), σ(z) ≡ σ′(z). 2

45

B Counter-examples for Theorems 46 and 47

Counter-examples are required to show that the conditions in the two main
results cannot be weakened, although as shown in Section 3.3, it is possible to
obtain similar results with different conditions.

In the following it will be shown that type-1, pureness, label-pureness and the
requirement that the sum of congruences be conservative are necessary con-
ditions for the refining extension result. In each counter-example, two closed
terms which are not equivalent are given, and by relaxing the conditions, it is
shown that the result is lost.

Counter-example 56 (The sum of congruences is not conservative)
Let Σ0 = (P, s, s′; g1, g2, g

′
1, n1, n2, n3; f1, f2, h, h

′) with g1 :→ s, g2 :→ s,
g′1 :→ s′, n1 :→ P, n2 :→ P, n3 :→ P, f1 : P → P, and f2 : P → P, h : s′ → P,
h′ : s′,P → P.

Consider E0 consisting of Σ0, f1(x)
g1−→ x and f2(x)

g2−→ x. Then f1(n1)6∼E0
Idf2(n1).

Consider summing this with E ′0 consisting of Σ0 together with ≡0, the smallest
congruence containing {g1, g2}. Then Id⊕ ≡0 is not conservative with respect

to Id, and f1(n1)∼
E0⊕>E ′0
Id⊕≡0

f2(n1).

Counter-example 57 (The sum is not type-1) Consider allowing a tyxt
rule which has a conclusion label sort from the first signature. Let E1 consist
of Σ0, as well as the rule f1(x)

g1−→ x. Then f1(n1)6∼E1
Idn1. However if the sum of

E1 and E ′1 is formed where E ′1 consists of Σ0 and x
g1−→n1, then f1(n1)∼

E1⊕>E ′1
Id n1.

Next, consider allowing a tyft rule with a conclusion function symbol and con-
clusion label sort from the first signature. Let E2 be Σ0 together with f1(x)

g1−→ x.
Clearly, f1(n1)6∼E2

Idf2(n1). However if E2 is summed with E ′2 consisting of Σ0

and f2(x)
g1−→ x, then f1(n1)∼

E2⊕>E ′2
Id f2(n1).

Counter-example 58 (Rules are not pure: a free variable appears in
the source of a premise) Consider Σ0 together with the rules below and
call this E3. The second rule is not pure. Clearly f1(n1)6∼E3

Idf2(n1). Summing
with the eTSS E ′3 consisting of Σ0 together with n4 :→ P, and n4

g′1−→n1 causes

f1(n1)∼
E3⊕>E ′3
Id f2(n1).

f1(x)
g1−→ x

x1
z′s−→ y

f2(x)
g1−→ y

Counter-example 59 (Rules are not label-pure: a label-free variable
appears in the conclusion) Consider Σ′ = (P, s; g, h, nil; f, f ′) with g :→ s,
h : s→ s, nil :→ P, f : P → P, and f ′ : P → P, and the eTSS E ′ consisting of

46

Σ′ and the axiom schema f(x)
Zs−→x and the axiom f ′(x)

h(zs)−−−→ x which is not
label-pure. The schema describes all rules that have a closed term from T(Σ0)s

in the place of Zs. Note that this is only a mechanism for describing these rules,

and must be expanded before summing. Then f(nil)
g−→ nil, f(nil)

h(g)−−→ nil,

f(nil)
h(h(g))−−−−→ nil . . . , and f ′(nil)

h(g)−−→ nil, f ′(nil)
h(h(g))−−−−→ nil Clearly

f(nil)6∼E0
Idf

′(nil).

Consider the signature Σ′′ = (P, s; g, g′, h, nil; f, f ′) with g :→ s, g′ :→ s,
h : s → s, nil :→ P, f : P → P, and f ′ : P → P. Assume ≡ is the smallest
congruence containing {(g, h(g′)), (h(g), h(h(g′))), (h(h(g)), h(h(h(g′)))), . . .}.
Let E ′′ = (Σ′′, ∅). Then ≡ = Id⊕≡ and is conservative with respect to Id.

Then f(nil)
g−→ nil, f(nil)

h(g)−−→ nil, f(nil)
h(h(g))−−−−→ nil . . . , and f ′(nil)

h(g)−−→
nil, f ′(nil)

h(h(g))−−−−→ nil, . . . , as well as f ′(nil)
h(g′)−−→ nil, f ′(nil)

h(h(g′))−−−−→ nil,
. . . . Now f ′(nil) can match the g transition with h(g′) under ≡, and f(nil)
can match the new h(h(. . . h(g′))) transitions with the equivalent h(. . . h(g))
transition under ≡E0⊕>E1. Hence f(nil)∼E ′⊕>E ′′

≡ f ′(nil).

A similar counter-example for the axiom schemas f(x)
g−→ k(Zs) and the axioms

f ′(x)
g−→ k(h(zs)) (which is not label-pure) and k(zs)

zs−→ nil can be shown.

It has not been shown that all pureness and label-pureness conditions are
required for the theorem. However, it can be shown easily that the condition
on free label variables in the source of a premise, and free variables in the
target of the conclusion are required for Lemma 42.

It will now be shown that pureness, label-pureness, type-0 sum and compati-
bility are necessary conditions for the abstracting extension result. Note that
the earlier comments about well-foundedness apply to this proof also.

Counter-example 60 (Rules are not pure) A rule is not pure either when
there is a free variable in the source of a premise or in the target of the con-
clusion. Consider Σ0 used in Counter-example 56 together with the rule below
which is not pure, and call this E4. Clearly n1∼E4

Idf1(n1). Summing with E ′4
consisting of Σ0 with n4 :→ P and n4

g1−→n1 causes n1 6∼
E4⊕>E ′4
Id f1(n1).

x1
zs−→ y

f1(x)
zs−→ y

Let E5 be the eTSS consisting of Σ5 = (P, s; g1, n1, n2) where g1 :→ s, n1 :→ P

and n2 :→ P, together with n1
g1−→ n1 and n2

g1−→ x. The second axiom is not
pure. Clearly n1∼E5

Idn2. Let E ′5 be the eTSS consisting of Σ5 with n3 :→ P.

Then n1 6∼
E5⊕>E ′5
Id n2.

47

Counter-example 61 (Rules are not label-pure) There are three aspects
to the label-pureness condition. Consider E6 consisting of Σ0, n1

g′1−→n3 and
n2

zs′−→n3 (which is not label-pure). It is clear that n1∼E6
Idn2. Consider E ′6 con-

sisting of Σ0 as well as the new constant g′2 :→ s′, then n1 6∼
E6⊕>E ′6
Id n2.

Next, consider the eTSS E7 consisting of Σ0, n1
g′1−→h(g′1), n2

g′1−→h(zs′) (which is
not label-pure), and h(zs′)

z′s−→n3. Clearly, n1∼E7
Idn2. Consider E ′7 consisting of

Σ0 as well as the new constant g′2 :→ s′, hence n1 6∼
E7⊕>E ′7
Id n2 since n2

g′1−→h(g′2)

and h(g′2)6∼
E7⊕>E ′7
Id h(g′1).

Finally consider the eTSS E8 consisting of Σ0 and the rules below, the second
of which is not label-pure. It can be shown that f1(n1)∼E8

Idf2(n1). Let E ′8 be
Σ0 together with the new constant g′2 :→ s′, then there is a new transition

h′(g′2, n1)
g1−→h(g′2), and hence f1(n1)6∼

E8⊕>E ′8
Id f2(n1), since f2(n1)

g1−→h(g′2) and

h(g′2)6∼
E8⊕>E ′8
Id h(g′1).

h′(zs′ , x)
g1−→ h(zs′)

h′(zs′ , x)
g1−→ y

f1(x)
g1−→ y

h′(g′1, x)
g1−→ y

f2(x)
g1−→ y h(zs′)

zs′−→ n1

.

Counter-example 62 (The sum is not type-0) Consider E9 consisting of
Σ0 and the rules below. It can be shown that f1(n1)∼E9

Idf2(n1). Let E ′9 be Σ0

together with x
g′1−→n1 The sum is not type-0 since this axiom has a label sort

from the first signature. Then a new transition f2(n1)
g′1−→n2 can be derived and

f1(n1)6∼
E9⊕>E ′9
Id f2(n1).

f1(x)
g1−→ x f2(x)

g1−→ x

f2(x)
zs′−→ y

f2(x)
zs′−→ n2

n2
g1−→n3

To see further why type-0 is needed, consider E10 consisting of Σ0 and f1(x)
g1−→

x and f2(x)
g1−→ x. Clearly f1(n1)∼E10

Id f2(n1). Also consider the eTSS E ′10 con-

sisting of Σ0, the new sort s′′, the new constant g′′ :→ s′′ and f2(x)
g′′−→ x.

Then E10⊕>E ′10 is type-1 but not type-0 and f1(n1)6∼
E10⊕>E ′10
Id f2(n1).

Counter-example 63 (Compatibility) Let Σ and ≡ be as in Counter-
example 25 with axiom f(zs)

zs−→ nil. Call this E11. Consider the eTSS E ′11
consisting of Σ, a new sort s1 and constant ok1 :→ s1 and the first rule below.
≡ is not compatible with this rule since ga ≡ gb and hence a suitable substitu-
tion cannot be found for the term on the premise. So although f(ga)∼E11

≡ f(ga),
f(ga)6∼E11⊕>E ′11

≡ f(gb). The second rule below can be used to show that equivalence
between the variables under the two substitutions is necessary.

x
ga−→ y

x
ok1−−→ y

x
g(zs)−−−→ y

x
ok1−−→ y

48

It is not clear whether there are counter-examples for compatibility with re-
spect to the label terms that appear in the source of the conclusion. However,
since this aspect of compatibility is used in the proof of the abstracting ex-
tension theorem and since compatibility is required for congruence, it is not
an unreasonable condition.

References

[1] L. Aceto. Deriving complete inference systems for a class of GSOS languages
generating regular behaviours. In B. Jonsson and J. Parrow, editors, CONCUR
’94, Lecture Notes in Computer Science 836, pages 449–464. Springer-Verlag,
Berlin, 1994.

[2] L. Aceto. GSOS and finite labelled transition systems. Theoretical Computer
Science, 131:181–195, 1994.

[3] L. Aceto, B. Bloom, and F. Vaandrager. Turning SOS rules into equations.
Information and Computation, 111:1–52, 1994.

[4] L. Aceto, W. Fokkink, and C. Verhoef. Conservative extension in structural
operational semantics. Bulletin of the European Association for Theoretical
Computer Science, 69:110–132, 1999.

[5] L. Aceto and M. Hennessy. Towards action refinement in process algebras.
Information and Computation, 103:204–269, 1993.

[6] L. Aceto and M. Hennessy. Adding action refinement to a finite process algebra.
Information and Computation, 115:179–247, 1994.

[7] L. Aceto and A. Ingólfsdóttir. CPO models for compact GSOS languages.
Information and Computation, 129:107–141, 1996.

[8] J.C.M. Baeten and C. Verhoef. A congruence theorem for structured operational
semantics with predicates. In E. Best, editor, CONCUR ’93, Lecture Notes in
Computer Science 715, pages 477–492. Springer-Verlag, Berlin, 1993.

[9] K.L. Bernstein. A congruence theorem for structured operational semantics of
higher-order languages. In LICS 98, pages 153–164. IEEE Computer Society
Press, New York, 1998.

[10] B. Bloom. Structured operational semantics for process algebras and equational
axiom systems. In E. Best, editor, CONCUR ’93, Lecture Notes in Computer
Science 715, pages 539–540. Springer-Verlag, Berlin, 1993.

[11] B. Bloom. Structural operational semantics for weak bisimulations. Theoretical
Computer Science, 146:25–68, 1995.

[12] B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can’t be traced. Journal of
the ACM, 42:232–268, 1995.

49

[13] R. Bol and J.F. Groote. The meaning of negative premises in transition system
specifications. Journal of the ACM, 43:863–914, 1996.

[14] G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn. A theory of processes
with localities. Formal Aspects of Computing, 6(2):165–200, 1994.

[15] I. Castellani. Bisimulations for concurrency. PhD thesis, Department of
Computer Science, University of Edinburgh, 1988. LFCS report ECS-LFCS-
88-51.

[16] P.D. D’Argenio and C. Verhoef. A general conservative extension theorem in
process algebras with inequalities. Theoretical Computer Science, 177:351–380,
1997.

[17] P. Darondeau and P. Degano. Causal trees. In G. Ausiello, M. Dezani-
Ciancaglini, and S. Ronchi Della Rocca, editors, ICALP 88, Lecture Notes in
Computer Science 372, pages 234–248. Springer-Verlag, Berlin, 1989.

[18] R. de Simone. Higher-level synchronising devices in Meije-SCCS. Theoretical
Computer Science, 37:245–267, 1985.

[19] P. Degano and C. Priami. Enhanced operational semantics: a tool for describing
and analyzing concurrent systems. ACM Computing Surveys, 33:135–176, 2001.

[20] G.L. Ferrari and U. Montanari. Parameterized structured operational
semantics. Fundamenta Informatica, 34:1–31, 1998.

[21] W. Fokkink and R. van Glabbeek. Ntyft/ntyxt rules reduce to ntree rules.
Information and Computation, 126:1–10, 1996.

[22] W. Fokkink and C. Verhoef. A conservative look at operational semantics with
variable binding. Information and Computation, 146:24–54, 1998.

[23] V.C. Galpin. Equivalence semantics for concurrency: comparison and
application. PhD thesis, Department of Computer Science, University of
Edinburgh, 1998. LFCS report ECS-LFCS-98-397.
http://www.dcs.ed.ac.uk/lfcsreps/.

[24] V.C. Galpin. Comparison of process algebra equivalences using formats. In
J. Wiedermann, P. van Emde Boas, and M. Nielsen, editors, ICALP ’99, Lecture
Notes in Computer Science 1644, pages 341–350. Springer-Verlag, Berlin, 1999.

[25] V.C. Galpin. Algebraic results for structured operational semantics. South
African Computer Journal, 26:13–21, November 2000.

[26] R. Gorrieri and C. Laneve. The limit of splitn-bisimulations for CCS agents. In
A. Tarlecki, editor, MFCS ’91, Lecture Notes in Computer Science 520, pages
170–180. Springer-Verlag, 1991.

[27] J.F. Groote. Transition systems specifications with negative premises.
Theoretical Computer Science, 118:263–299, 1993.

50

[28] J.F. Groote and F. Vaandrager. Structured operational semantics and
bisimulation as a congruence. Information and Computation, 100:202–260,
1992.

[29] M. Hennessy. A proof system for weak ST-bisimulation over a finite process
algebra. Technical Report 6/91, Computer Science, University of Sussex, 1991.

[30] D.J. Howe. Proving congruence of bisimulation in functional programming
languages. Information and Computation, 124:103–112, 1996.

[31] A. Kiehn. Comparing locality and causality based equivalences. Acta
Informatica, 31(8):697–718, 1994.

[32] P. Krishnan. Architectural CCS. Formal Aspects of Computing, 162:162–187,
1996.

[33] C.A. Middelburg. Variable binding operators in transition system specifications.
Journal of Logic and Algebraic Programming, 47(1):15–45, 2001.

[34] R. Milner. Communication and concurrency. Prentice Hall, Englewood Cliffs,
NJ, 1989.

[35] R. Milner. Operational and algebraic semantics of concurrent processes. In
J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume B,
pages 1201–1242. MIT Press, Cambridge, MA, 1994.

[36] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes I & II.
Information and Computation, 100:1–77, 1992.

[37] P.D. Mosses. Foundations of modular SOS. In M. Kuty lowski, L. Pacholski,
and T. Wierzbicki, editors, MFCS ’99, Lecture Notes in Computer Science 1672,
pages 70–80, Berlin, 1999. Springer-Verlag.

[38] G. Plotkin. A structural approach to operational semantics. Report DAIMI
FN-19, Computer Science Department, Aarhus University, 1988.

[39] R.J. van Glabbeek. Full abstraction in structural operational semantics. In
M. Nivat, C. Rattray, T. Rus, and G. Scollo, editors, AMAST ’93, Workshops
in Computing, pages 77–84. Springer-Verlag, Berlin, 1993.

[40] R.J. van Glabbeek. The meaning of negative premises in transition system
specifications II. In F. Meyer auf der Heide and B. Monien, editors, ICALP 96,
volume 1099 of Lecture Notes in Computer Science, pages 502–513. Springer-
Verlag, Berlin, 1996.

[41] C. Verhoef. A general conservative extension theorem in process algebra. IFIP
Transactions A, 56:149–168, 1994.

[42] C. Verhoef. A congruence theorem of structured operational semantics with
predicates and negative premises. Nordic Journal of Computing, 2:274–302,
1995.

51

