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Abstract

The behaviour of PEPA models with large numbers of components can
be approximated in a continuous fashion by a set of coupled ordinary
differential equations (ODEs). Timed continuous Petri nets can be used
to approximate behaviour via ODEs in a scenario of many servers. These
two formalisms are compared, a translation from a PEPA model to a Petri
net is given, and it is shown that the ODEs obtained in each case are the
same. Different server semantics for Petri nets are also considered.

1 Introduction

The continuous approximation technique for PEPA [1] provides coupled ordi-
nary differential equations (ODEs) which describe changes in behaviour over
time [2]. This paper compares this approach with timed continuous Petri nets
[3, 4] and the associated ODEs. In both cases, the continuous approximation
deals with the problem of state space explosion. For PEPA, the state space is
the labelled multi-transition system obtained from the structured operational
semantics and in (discrete) bounded stochastic Petri nets, it is the reachability
graph which describes the possible markings of a Petri net. For both PEPA
and stochastic Petri nets, if the rates of activities/transitions are exponentially
distributed, then the transition system/reachability graph is the basis for a con-
tinuous time Markov chain (CTMC) that represents the behaviour with respect
to time of the system [5]. The continuous approximations avoid the calculation
of the state spaces, and the resultant ODEs are amenable to analysis [2].

The comparison of these two continuous approximations will deepen our
understanding of them and whether they are interchangeable or not. If they are
similar then techniques for the one may be applied to the other.

Another aspect of timed-based Petri nets is whether infinite server semantics
or finite server semantics (multiple server or single server) are used [3]. In infinite
server semantics as many firings of a transition as are enabled can take place.
In finite server semantics, there is an upper bound on how many simultaneous
firings can occur. As part of the comparison, the type of server semantics used
by PEPA will be identified. In what follows, infinite server semantics will be
assumed as it is the more general case [3], and finite server semantics will be
discussed later.
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In the next section, continuous Petri nets are introduced, after which a
section follows on the ODE semantics of PEPA. The fourth section of the paper
provides the comparison, followed by a discussion of server semantics and the
final section covers conclusions and further work.

2 Continuous Petri nets

The definitions in this section are based on those in [3, 5]. Let R+ = {x | x > 0}.

Definition 1 A (timed) continuous Petri net is a pair 〈N, m0〉 where N =
(P, T,Pre,Post) with P the set of places, T the set of transitions with P ∩ T = ∅,
and Pre : P × T → R+ and Post : P × T → R+ are the pre and post incidence
matrices respectively which give the arc weights between places and transitions.
A net is ordinary if the maximum value over all arc weights is 1. The token
flow matrix is C = Post− Pre. Additionally

•t = {p | Pre(p, t) = 1} t• = {p | Post(p, t) = 1}
•p = {t | Post(p, t) = 1} p• = {t | Pre(p, t) = 1}.

A marking associates values with places at a specific point in time, and is defined
as a function m : P × R+ → R+. The initial marking is m0 = m(·, 0). The
function λ : T → R+ associates with each transition a firing rate.

The main feature of continuous Petri nets is that markings are no longer
restricted to integer values only. The focus here is on ordinary nets. Hence,
whenever p ∈ •t, then Pre(p, t) = 1 and vice versa. This simplifies a number of
definitions. However, for completeness, they are written in full and simplified
if necessary. Infinite server semantics are assumed. Note that the definition of
a timed continuous Petri net given above is very similar to that of a stochastic
Petri net except for the real values for markings.

Definition 2 A transition t is enabled at time τ if for all p ∈ •t, m(p, τ) > 0
and t has enabling degree

enab(t, τ) = min
p∈•t

{
m(p, τ)
Pre(p, t)

}

An enabled transition can fire an amount of α with 0 < α ≤ enab(t, τ). After
this firing the new marking will be m(·, τ ′) = m(·, τ) + αC(·, t).

Mahulea et al [3] state that the continuous approximation under infinite
server semantics is appropriate when there are many clients and many servers.
Then it is possible to take a deterministic continuous approximation of the
discrete case by assuming that the firing delays can be approximated by their
mean values [6].

The fundamental equation which defines how markings change over time is
defined as follows for continuous Petri nets [3].

m(·, τ + δτ) = m(·, τ) + C(·, t) · σ(τ)
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Differentiating this equation with respect to time results in

dm(·, τ)
dτ

= C · f(·, τ)

where the flow f(·, τ) = σ′(τ) is the derivative of the firing sequence and is
defined for transition t as

f(t, τ) = λ(t) ·min
p∈•t

{
m(p, τ)
Pre(p, t)

}
= λ(t) ·min

p∈•t

{
m(p, τ)

}

where λ(t) is the firing rate [3]. Since the net is ordinary the equation can be
simplified. The change in the marking of a single place p can be expressed as
follows. Let n be the number of transitions. Then

dm(p, τ)
dτ

=
n∑

j=1

C(p, tj).f(tj , τ)

=
n∑

j=1

Post(p, tj).f(tj , τ)−
n∑

j=1

Pre(p, tj).f(tj , τ))

=
∑
t∈•p

f(t, τ)−
∑

t∈p•
f(t, τ)

=
∑
t∈•p

λ(t) · min
p′∈•t

{m(p′, τ)} −
∑
t∈p•

λ(t) · min
p′∈•t

{m(p′, τ)}.

3 PEPA and ODE semantics

The definitions in this section are based on those in [2]. Consider the standard
syntax for PEPA

P ::= P BC
L

P | P/L | C S ::= (α, r).S | S + S | Cs

where C names a component, Cs names a sequential component, α is an action,
r is a rate, and together they form an activity, and L is a set of actions. Also
consider the standard operational semantics of PEPA [1]. This syntax limits
PEPA components so that the resulting CTMC is ergodic [2]. In this paper, the
following subset of PEPA will be considered.

• Identical components cannot synchronise on actions, ie. L must be empty
when identical components are put in parallel.

• When an activity is shared, the rates must be identical, and no passive
rates are allowed.

• All shared actions of non-identical components must synchronise.
• Hiding is not used.

The numerical vector form can be used to obtain the vector state space which is
smaller than the labelled multi-transition system when there are many identical
components [2].

Definition 3 For an arbitrary PEPA model M with n component types Ci for
i = 1, . . . n each with Ni distinct derivatives, the numerical vector form of M ,
V (M) is a vector with N =

∑n
i=1 Ni entries. Each entry vij records how many

instances of the jth local derivative of component type Ci are present in the
current state.
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The vector state space gives an aggregated model and can be used in the usual
way to obtain a CTMC. The numerical vector form can also be used as the
basis of a continuous approximation in the case of large numbers of identical
components using the following differential equation for N(Cij

, τ) = vij
the

number of derivatives of type Cij
at time τ [2].

dN(Cij
, τ)

dτ
=

∑

(α,r)∈En(Cij
)

r × min
C∈Ex(α,r)

{N(C, τ)} −
∑

(α,r)∈Ex(Cij
)

r × min
C∈Ex(α,r)

{N(C, τ)}

where

Ex(D) = {(α, r) | D
(α,r)
−−−→} Ex(α, r) = {D | D

(α,r)
−−−→}

En(D) = {(α, r) | ∃D′, D′ (α,r)
−−−→ D}.

Hence Ex(D) captures those activities that decrease the number of D’s (exit
activities), En(D) captures those activities that increase the number of D’s (en-
try activities) and Ex(α, r) describes those derivatives that can perform (α, r)
activities. Therefore the change in the number of a derivative D is expressed
in terms of the number of decreases and increases at the given rate where the
changes are bounded by the minimum number of derivatives available to perform
the activity.

Extracting the specific ODEs for a given model can be automated based on
an activity graph and an activity matrix [2].

Definition 4 An activity graph is a bipartite graph (N,A). The nodes are parti-
tioned into Nt, the activities, and Np, the derivatives. A ⊆ (Nt×Np)∪(Np×Nt),
where a = (nt, np) ∈ A if nt is an entry activity of derivative np, and a =
(np, nt) ∈ A if nt is an exit activity of np.

Definition 5 For a model with Nt activities and Np derivatives, the activity
matrix Ma is an Np ×Nt matrix and entries are defined as follows.

Ma(pi, tj) =





+1 if tj ∈ En(pi)
−1 if tj ∈ Ex(pi)
0 otherwise.

4 Expressing a PEPA model as a continuous
Petri net

Working with the restricted subset of PEPA given above, it is possible to
convert this to a timed continuous Petri net. First, construct the activity
graph. This is can be viewed as a net of the form (Np, Nt,Mpre,Mpost) where

Mpre(pi, tj) =

{
+1 if tj ∈ Ex(pi)
0 otherwise

Mpost(pi, tj) =

{
+1 if tj ∈ En(pi)
0 otherwise.

The activity matrix Ma is then Mpost − Mpre which is just the token flow
matrix. The initial marking is determined by the numbers of each component;
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m(p, 0) = N(p, 0). Additionally, λ(t) = r where t = (α, r) ∈ Nt. Therefore we
have constructed a continuous Petri net (which we could also view as a bounded
stochastic Petri net) from a PEPA model, and the activity graph and the Petri
net are isomorphic.

Moreover, for each distinct type of derivative in the model, we have a place
in the Petri net and the tokens in that place represent the number of copies of
the derivative in the model. The vector state space that can be obtained from
the PEPA model is isomorphic to the reachability graph of the continuous Petri
net if we were to view it as a discrete Petri net, since the behaviour of both the
PEPA model and the net is the same. If an activity reduces by one the count
of a particular derivative and increases by one the count of another derivative
in the PEPA model, then in the Petri net, the transition that is that activity
will fire and remove one token from the place that is that particular derivative
and add a token to the place that is the other derivative. Similarly the token
changes associated with a firing of a transition can be expressed as changes in
the number of derivatives in the PEPA model. Hence, m(p, τ) = N(p, τ).

However, the focus here is continuous approximations. In Section 2, we gave
the ODEs based on markings and in Section 3, the ODEs for the continuous ap-
proximation for a PEPA model. We are interested in whether these are the same
considering the construction of a continuous Petri net given above. Consider
the ODE from Section 3 for the place p.

dN(p, τ)
dt

=
∑

t∈En(p)

r × min
p′∈Ex(t)

{N(p′, τ)} −
∑

t∈Ex(p)

r × min
p′∈Ex(t)

{N(p′, τ)}

=
∑
t∈•p

λ(t)× min
p′∈•t

{m(p′, τ)} −
∑
t∈p•

λ(t)× min
p′∈•t

{m(p′, τ)}

=
dm(p, τ)

dτ
.

The equation holds since t ∈ En(p) is equivalent to t ∈ •p, t ∈ Ex(p) is
equivalent to t ∈ p• and p′ ∈ Ex(t) is equivalent to p′ ∈ •t.

Hence the ODEs generated by a PEPA model are the same as those for the
associated continuous Petri net under infinite server semantics.

5 Server semantics

As mentioned previously, there are two types of server semantics, finite and
infinite. In the above, we have shown that the ODEs are the same for infinite
server semantics. Infinite server semantics is the more general case and, in
the discrete case, finite server semantics can be obtained by assuming infinite
server semantics for all transitions and then modifying the net. This requires
the addition of a place with k tokens with arcs to and from the transition which
is to be bounded [3]. A similar approach could be taken in PEPA. When a
particular activity is to be limited, a new component can be added of the form
B

def= (α, r).B with k copies where (α, r) is the activity to be limited.
However, Silva and Recalde [6] argue that in the continuous case, infinite

and finite server semantics are about two different relaxations of the model,
many servers and many clients for infinite, and few servers and many clients for
finite server semantics and are therefore different. In finite server semantics, a
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transition has a maximal firing speed at which it can perform representing k
times the speed of a single server [3] and a different expression is required for
the flow of a transition. This is given by Mahulea et al [3] as

f(t, τ) =





λ(t) if ∀p ∈ •t,m(p) > 0

min
{

λ(t), min
p∈•t∧m(p)=0

{ ∑

t′∈•p

f(t′, τ)Post(p, t′)
Pre(p, t)

}}

and somewhat differently by Alla and David for their constant speed continuous
Petri nets [4]. It is not immediate as to whether the expressions are the same.
This is an area for further work.

6 Conclusions and further work

In this paper, we have shown how to construct a ordinary timed continuous
Petri net from a PEPA model (using a subset of the language). Moreover
we have shown that when approximated continuously, the behaviour of both
can be characterised by the same ODEs. Furthermore we have shown that
this continuous approximation using PEPA has infinite server semantics, which
means that as many activities can happen simultaneously as are able to happen.

Previous research has provided PEPA with stochastic Petri net semantics
[7] working at the syntactic level of a PEPA model. This approach differs from
the approach taken here where the activity graph is considered directly.

A question raised by this work is whether it is possible to take a ordinary
timed continuous Petri net and construct a PEPA model from it, and whether
the ODEs would be the same. Previous work by Hillston et al [5] demonstrates
how a bounded stochastic Petri net can be transformed to a PEPA model. This
involves adding complementary places, and each place and its complement can
be viewed as a state machine and hence can be modelled as PEPA sequential
components. A similar approach could be applied here, but it seems likely that
the the PEPA model will be larger than the Petri net, and the similarities in
terms of ODEs will not be immediate.

Both the PEPA approximation and the continuous Petri net approach are
suitable for when there are large numbers of identical components. An inter-
esting question is to how robust this approach is when component numbers
decrease, and this is an area of ongoing research.
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