Process algebra and systems biology

Vashti Galpin Laboratory for Foundations of Computer Science School of Informatics University of Edinburgh

7 December 2007

(Thanks to Jane Hillston and Federica Ciocchetta)

3

Vashti Galpin, LFCS, University of Edinburgh

Motivation	Process algebra	PEPA	Current research	The future
Motivatio	on			

- process algebra
 - different model of computation, reactive system
 - more explicit model than differential equations
 - leads to multiple types of analysis

Vashti Galpin, LFCS, University of Edinburgh

Motivation	Process algebra	PEPA	Current research	The future
Motivation				

- process algebra
 - different model of computation, reactive system
 - more explicit model than differential equations
 - leads to multiple types of analysis
- usefulness
 - for systems biology
 - for computer science
 - for this seminar

Motivation	Process algebra	PEPA	Current research	The future
Motivation				

3

- process algebra
 - different model of computation, reactive system
 - more explicit model than differential equations
 - leads to multiple types of analysis
- usefulness
 - for systems biology
 - for computer science
 - for this seminar
- survey of existing research
 - what is a process algebra?
 - what has been done?
 - what can be done?

Motivation	Process algebra	PEPA	Current research	The future
-				

Process algebra

- reactive system
 - nonterminating, inherently parallel
 - communicates with environment or other systems
 - computes by reacting to stimuli

Motivation	Process algebra	PEPA	Current research	The future
_				

Process algebra

- reactive system
 - nonterminating, inherently parallel
 - communicates with environment or other systems
 - computes by reacting to stimuli
- process algebra or process calculus
 - small number of operators to describe processes, compositional
 - communication between processes by message passing
 - mathematical definition of semantics
 - equivalences equate similar processes
 - established techniques and tools

Motivation	Process algebra	PEPA	Current research	The future
_				

Process algebra

- reactive system
 - nonterminating, inherently parallel
 - communicates with environment or other systems
 - computes by reacting to stimuli
- process algebra or process calculus
 - small number of operators to describe processes, compositional
 - communication between processes by message passing
 - mathematical definition of semantics
 - equivalences equate similar processes
 - established techniques and tools
- three main approaches
 - Communicating Sequential Processes (Hoare, Brooke, Roscoe)

3

- Algebra of Communicating Processes (Baeten, Klop)
- Calculus of Communicating Systems (Milner)

- CSP, denotational semantics
 - processes mapped to mathematical objects, [P]
 - traces, failures, ready sets
 - equivalence of processes from equality over these objects $P \equiv Q$ if $\llbracket P \rrbracket = \llbracket Q \rrbracket$

- 문

- CSP, denotational semantics
 - processes mapped to mathematical objects, [P]
 - traces, failures, ready sets
 - equivalence of processes from equality over these objects $P \equiv Q$ if $\llbracket P \rrbracket = \llbracket Q \rrbracket$
- ACP, algebraic/axiomatic semantics
 - equations that describe processes with same behaviour $P \mid Q \equiv Q \mid P$
 - infer other equivalent processes from equations

- CCS, operational semantics
 - rules to describe behaviour of operators
 - process can perform actions, transitions to other processes
 - behavioural equivalences defined on labelled transition system
 - bisimulation

- CCS, operational semantics
 - rules to describe behaviour of operators
 - process can perform actions, transitions to other processes
 - behavioural equivalences defined on labelled transition system
 - bisimulation
- π-calculus
 - names, channels and data are not distinguished
 - can express mobility

- CCS, operational semantics
 - rules to describe behaviour of operators
 - process can perform actions, transitions to other processes
 - behavioural equivalences defined on labelled transition system
 - bisimulation
- π-calculus
 - names, channels and data are not distinguished
 - can express mobility
- stochastic process algebra
 - passing of time associated with transitions, random variable
 - describes dynamic behaviour and properties
 - ▶ PEPA, Performance Evaluation Process Algebra (Hillston)

イロト イポト イヨト イヨト

Motivation	Process algebra	PEPA	Current research	The future
PEPA				

CCS-based but uses CSP-type multi-way synchronisation

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

Vashti Galpin, LFCS, University of Edinburgh

Motivation	Process algebra	PEPA	Current research	The future
PEPA				
CCS-b	ased but uses CSP	-type multi-wa	ay synchronisation	

► syntax, PEPA model

$$\blacktriangleright P ::= (\alpha, r).P \mid P + P \mid P \bowtie_{L} P \mid P/L \mid C$$

Vashti Galpin, LFCS, University of Edinburgh

Motivation	Process algebra	PEPA	Current research	The future
PEPA				
CCS-I	pased but uses CSF	P-type multi-w	ay synchronisation	

► syntax, PEPA model

$$\blacktriangleright P ::= (\alpha, r).P \mid P + P \mid P \bowtie_{L} P \mid P/L \mid C$$

structured operational semantics, two example rules

$$\frac{1}{(\alpha, r).E \xrightarrow{(\alpha, r)} E} \qquad \frac{E \xrightarrow{(\alpha, r)} E' F \xrightarrow{(\alpha, r)} F'}{E \bigotimes_{L} F \xrightarrow{(\alpha, r)} E' \bigotimes_{L} F'} (\alpha \in L)$$

Vashti Galpin, LFCS, University of Edinburgh

Motivation	Process algebra	PEPA	Current research	The future
PEPA				
► CCS-Ł	based but uses CSP	-type multi-wa	ay synchronisation	

syntax, PEPA model

$$\blacktriangleright P ::= (\alpha, r).P | P + P | P \bowtie_{L} P | P/L | C$$

structured operational semantics, two example rules

$$\frac{1}{(\alpha, r).E \xrightarrow{(\alpha, r)} E} \qquad \frac{E \xrightarrow{(\alpha, r)} E' F \xrightarrow{(\alpha, r)} F'}{E \bigotimes_{L} F \xrightarrow{(\alpha, r)} E' \bigotimes_{L} F'} (\alpha \in L)$$

can infer transitions using rules, labelled transition system

 $\blacktriangleright ((\alpha, r).P_1 + (\beta, s).P_2) \bowtie_{\{\alpha\}} (\alpha, r).Q \xrightarrow{(\alpha, r)} P_1 \bowtie_{\{\alpha\}} Q$

$$\blacktriangleright ((\alpha, r).P_1 + (\beta, s).P_2) \underset{\{\alpha\}}{\bowtie} (\alpha, r).Q \xrightarrow{(\beta, s)} P_2 \underset{\{\alpha\}}{\bowtie} (\alpha, r).Q$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

general approach (Regev, Silverman, Shapiro)

Concurrency	Molecular	Metabolism	Signal
	biology		transduction
Concurrent	molecules	enzymes and	interacting
computational processes		metabolites	proteins
Synchronous	molecular	binding and	binding and
communication	interaction	catalysis	catalysis

Vashti Galpin, LFCS, University of Edinburgh

general approach (Regev, Silverman, Shapiro)

Concurrency	Molecular	Metabolism	Signal
	biology		transduction
Concurrent	molecules	enzymes and	interacting
computational processes		metabolites	proteins
Synchronous	molecular	binding and	binding and
communication	interaction	catalysis	catalysis

molecules as processes or populations as processes?

Vashti Galpin, LFCS, University of Edinburgh

general approach (Regev, Silverman, Shapiro)

Concurrency	Molecular	Metabolism	Signal
	biology		transduction
Concurrent	molecules	enzymes and	interacting
computational processes		metabolites	proteins
Synchronous	molecular	binding and	binding and
communication	interaction	catalysis	catalysis

- molecules as processes or populations as processes?
- stochastic model or deterministic model?

general approach (Regev, Silverman, Shapiro)

Concurrency	Molecular	Metabolism	Signal
	biology		transduction
Concurrent	molecules	enzymes and	interacting
computational processes		metabolites	proteins
Synchronous	molecular	binding and	binding and
communication	interaction	catalysis	catalysis

(日) (同) (三) (三)

3

- molecules as processes or populations as processes?
- stochastic model or deterministic model?
- aims of modelling
 - sufficiently faithful
 - type and tractability of analysis

- two modelling approaches
 - pathway-centric: each subpathway is a process
 - reagent-centric: each reagent is a process, species focus

Vashti Galpin, LFCS, University of Edinburgh

- two modelling approaches
 - pathway-centric: each subpathway is a process
 - reagent-centric: each reagent is a process, species focus
- analyses using PEPA model
 - interpret as continuous time Markov chain (CTMC)
 - translate to ordinary differential equations (ODEs)
 - generate a stochastic simulation with Gillespie's algorithm
 - model checking of properties using PRISM
 - find equivalent processes using a behavioural equivalence need to find suitable equivalence

- two modelling approaches
 - pathway-centric: each subpathway is a process
 - reagent-centric: each reagent is a process, species focus
- analyses using PEPA model
 - interpret as continuous time Markov chain (CTMC)
 - translate to ordinary differential equations (ODEs)
 - generate a stochastic simulation with Gillespie's algorithm
 - model checking of properties using PRISM
 - find equivalent processes using a behavioural equivalence need to find suitable equivalence
- modularity, composition, reasoning

- two modelling approaches
 - pathway-centric: each subpathway is a process
 - reagent-centric: each reagent is a process, species focus
- analyses using PEPA model
 - interpret as continuous time Markov chain (CTMC)
 - translate to ordinary differential equations (ODEs)
 - generate a stochastic simulation with Gillespie's algorithm
 - model checking of properties using PRISM
 - find equivalent processes using a behavioural equivalence need to find suitable equivalence

(日) (同) (三) (三)

3

- modularity, composition, reasoning
- refinement, abstraction, causality

Motivation	Process algebra	PEPA	Current research	The future
Example				

example, single substrate enzyme catalyzed reaction

$$E + S \xrightarrow[unbind]{bind} ES \xrightarrow[produce]{produce} E + P$$

Vashti Galpin, LFCS, University of Edinburgh

Motivation	Process algebra	PEPA	Current research	The future
Example				

example, single substrate enzyme catalyzed reaction

$$E + S \xrightarrow[unbind]{bind} ES \xrightarrow[produce]{produce} E + P$$

reagent-centric PEPA model

Vashti Galpin, LFCS, University of Edinburgh

Motivation	Process algebra	PEPA	Current research	The future
Example				

example, single substrate enzyme catalyzed reaction

$$E + S \xrightarrow[unbind]{bind} ES \xrightarrow[produce]{produce} E + P$$

- reagent-centric PEPA model
- high and low concentrations, discretized

▲□ → ▲ 三 → ▲ 三 →

= 990

$$\left(\left(S_h\underset{\{b,u\}}{\bowtie} E_h\right)\underset{\{b,u,p\}}{\bowtie} ES_\ell\right)\underset{\{p\}}{\bowtie} P_\ell$$

Vashti Galpin, LFCS, University of Edinburgh

Motivation	Process algebra	PEPA	Current research	The future

PEPA

biochemical signalling pathways

Vashti Galpin, LFCS, University of Edinburgh

Motivation	Process algebra	PEPA	Current research	The future
PEPA				

- biochemical signalling pathways
- model of the influence of RKIP on the ERK signalling pathway (Calder, Gillmore and Hillston)

Vashti Galpin, LFCS, University of Edinburgh

Motivation	Process algebra	PEPA	Current research	The future
PEPA				

- biochemical signalling pathways
- model of the influence of RKIP on the ERK signalling pathway (Calder, Gillmore and Hillston)
- model of MAP Kinase cascade (Calder, Duguid, Gilmore, Hillston)
 - original Schoeberl model based on ODEs, Matlab analysis
 - PEPA model created, extracted ODEs, matched results
 - stochastic simulation results differed from ODE results
 - step size for ODE analysis too large, peak missed

Motivation	Process algebra	PEPA	Current research	The future
PEPA				

- biochemical signalling pathways
- model of the influence of RKIP on the ERK signalling pathway (Calder, Gillmore and Hillston)
- model of MAP Kinase cascade (Calder, Duguid, Gilmore, Hillston)
 - original Schoeberl model based on ODEs, Matlab analysis
 - ▶ PEPA model created, extracted ODEs, matched results
 - stochastic simulation results differed from ODE results
 - step size for ODE analysis too large, peak missed
- new process algebra, Bio-PEPA (Ciocchetta, Hillston)
 - reagent-centric, includes stoichiometry
 - better modelling of reaction rates, general kinetic laws
 - new syntax, parameterised

Other process algebra approaches

- stochastic π-calculus (Regev, Shapiro, Silverman, Priami, Cardelli)
 - binary communication only, individual-based, mobility
 - analysis by stochastic simulation
 - models of metabolic pathways, gene transcription, signal transduction
 - cell cycle control in eukaryotes (Lecca, Priami)
 - lymphocyte-endothelial interactions in inflamed brain venules (Lecca, Priami, Laudanna, Constantin)
 - VIrtual CEII (VICE) (Chiarugi, Curti, Degano, Marangoni)

Other process algebra approaches

- stochastic π-calculus (Regev, Shapiro, Silverman, Priami, Cardelli)
 - binary communication only, individual-based, mobility
 - analysis by stochastic simulation
 - models of metabolic pathways, gene transcription, signal transduction
 - cell cycle control in eukaryotes (Lecca, Priami)
 - lymphocyte-endothelial interactions in inflamed brain venules (Lecca, Priami, Laudanna, Constantin)

(日) (同) (三) (三)

3

- VIrtual CEII (VICE) (Chiarugi, Curti, Degano, Marangoni)
- Brane Calculus (Cardelli, Danos, Pradalier)
 - deals with spatial aspects
 - models membranes explicitly
 - description of virus infection

Motivation	Process algebra	PEPA	Current research	The future

Other process algebra approaches (continued)

- beta binders (Priami, Quaglia)
 - beta boxes contain π -calculus terms
 - beta boxes have external sites for interaction with others
 - very detailed
 - affinity between sites can be defined
 - potential use in drug discovery

Motivation	Process algebra	PEPA	Current research	The future

Other process algebra approaches (continued)

- beta binders (Priami, Quaglia)
 - beta boxes contain π -calculus terms
 - beta boxes have external sites for interaction with others
 - very detailed
 - affinity between sites can be defined
 - potential use in drug discovery
- Bio-Ambients (Regev, Panina, Silverman, Cardelli, Shapiro)
 - based on ambient calculus, extension of π -calculus
 - movement, location, compartments
 - hypothalamic weight regulation system, multiple levels
 - simulation results give support for model

Motivation	Process algebra	PEPA	Current research	The future

Other process algebra approaches (continued)

- beta binders (Priami, Quaglia)
 - beta boxes contain π -calculus terms
 - beta boxes have external sites for interaction with others
 - very detailed
 - affinity between sites can be defined
 - potential use in drug discovery
- Bio-Ambients (Regev, Panina, Silverman, Cardelli, Shapiro)
 - based on ambient calculus, extension of π -calculus
 - movement, location, compartments
 - hypothalamic weight regulation system, multiple levels

▲□ → ▲ □ → ▲ □ →

∃ <\0<</p>

- simulation results give support for model
- κ-calculus (Danos, Laneve)

Motivation	Process algebra	PEPA	Current research	The future
The future				
proce	ss algebra as mo	delling techni	ique for systems biolo	ogy

- build formal models with explicit interaction and compositionality using simple but descriptive language
- many types of analysis from one syntactic description
- provide insights, generate hypotheses
- allow experimentation in silico
- multi-scale (concentrations vary), stiff (reaction rates vary)
- compositionality to model different levels
- techniques for insufficient data, abstraction
- provision of efficient software tools

Motivation	Process algebra	PEPA	Current research	The future		
The future						
process algebra as modelling technique for systems biology						

- build formal models with explicit interaction and compositionality using simple but descriptive language
- many types of analysis from one syntactic description
- provide insights, generate hypotheses
- allow experimentation in silico
- multi-scale (concentrations vary), stiff (reaction rates vary)
- compositionality to model different levels
- techniques for insufficient data, abstraction
- provision of efficient software tools
- gold standard: biological insights achieved through use of process algebra that are not possible through existing approaches

process algebra as model/metaphor for systems biology

Vashti Galpin, LFCS, University of Edinburgh

- process algebra as model/metaphor for systems biology
- Noble's ten principles of systems biology
 - 1. Biological functionality is multi-level
 - 2. Transmission of information is not one way
 - 3. DNA is not the sole transmitter of inheritance
 - 4. There is no privileged level of causality
 - 5. Gene ontology will fail without higher-level insight
 - 6. There is no genetic program
 - 7. There are no programs at any other level
 - 8. There are no programs in the brain
 - 9. The self is not an object
 - 10. There are many more to be discovered

- process algebra as model/metaphor for systems biology
- Noble's ten principles of systems biology
 - 1. Biological functionality is multi-level
 - 2. Transmission of information is not one way
 - 3. DNA is not the sole transmitter of inheritance
 - 4. There is no privileged level of causality
 - 5. Gene ontology will fail without higher-level insight

A (1) > A (1) > A

- 6. There is no genetic program
- 7. There are no programs at any other level
- 8. There are no programs in the brain
- 9. The self is not an object
- 10. There are many more to be discovered

- process algebra as model/metaphor for systems biology
- Noble's ten principles of systems biology
 - 1. Biological functionality is multi-level
 - 2. Transmission of information is not one way
 - 3. DNA is not the sole transmitter of inheritance
 - 4. There is no privileged level of causality
 - 5. Gene ontology will fail without higher-level insight
 - 6. There is no genetic program
 - 7. There are no programs at any other level
 - 8. There are no programs in the brain
 - 9. The self is not an object
 - 10. There are many more to be discovered
- reactive system computing is a more general model than program-as-a-function computing

イロト イ団ト イヨト イヨト