	Applications	Conclusion

Towards a spatial stochastic process algebra

Vashti Galpin Laboratory for Foundations of Computer Science University of Edinburgh

31 July 2008

Vashti Galpin

Towards a spatial stochastic process algebra

Introduction		Applications	Conclusion

Introduction

- spatial concepts in a stochastic process algebra
- Iocation can affect time taken
- aims
 - generality and general results hence wide application
 - CTMCs and steady state
 - separation of concerns
 - performance evaluation
 - no unnecessary increase in state space
 - single discovery of state space
 - efficient experiments

Introduction		Applications	Conclusion

Introduction (cont.)

- examples of locations
 - nodes in networks
 - points in *n*-dimensional space
- applications networks, epidemiology
- related research
 - PEPA nets (Gilmore et al)
 - STOKLAIM (de Nicola *et al*)
 - biological models BioAmbients, attributed π -calculus
- work in progress
- general process algebra then applications and example

	Syntax	Applications	Conclusion
_			

Syntax

- \mathcal{L} set of locations
- $\blacktriangleright \ \mathcal{P}_{\!\mathcal{L}} = 2^{\mathcal{L}} \ \text{powerset}$
- ▶ let $L \in \mathcal{P}_{\mathcal{L}}$
- sequential components

$$S ::= (\alpha @L, r) . S | S + S | C_s @L$$

model components

$$P ::= P \bowtie_{M} P \mid P/M \mid C$$

Vashti Galpin

Syntax	Applications	Conclusion

Location functions

- process location function
 - $ploc(C_s@L) = L \cup ploc(S)$ where $C_s@L \stackrel{\text{def}}{=} S$
 - ▶ ploc(P) = ...
- action location function
 - $aloc((\alpha @L, r).S) = L \cup aloc(S)$
 - ► aloc(P) = ...
- Iocation function
 - $loc(P) = ploc(P) \cup aloc(P)$
- all static definitions
- current location function
 - needs a dynamic definition

	Semantics	Applications	Conclusion

Operational semantics

 \blacktriangleright relation for labels from $\mathcal{A}\times\mathcal{P}_{\!\mathcal{L}}\times\mathbb{R}^+$

► Prefix

$$\frac{1}{(\alpha @L, r).S} \xrightarrow{(\alpha @L', r)} S \qquad L' = apref((\alpha @L, r).S)$$
► Cooperation

$$\frac{P_1 \xrightarrow{(\alpha @L_1, r_1)} P'_1 \quad P_2 \xrightarrow{(\alpha @L_2, r_2)} P'_2}{P_1 \bowtie P_2 \xrightarrow{(\alpha @L, R)} P'_1 \bowtie P'_2} \quad \alpha \in M$$

$$L = async(P_1, P_2, L_1, L_2) \quad R = rsync(P_1, P_2, L_1, L_2, r_1, r_2)$$

other rules defined in the obvious manner
 Constant, Choice, Hiding, other two Cooperation rules

Operational semantics (cont.)

- parameterised by three functions
 - apref determines location in Prefix rule
 - async determines location in Cooperation rule
 - rsync determines rate in Cooperation rule
- PEPA rate function

$$RPEPA(P_1, P_2, L_1, L_2, r_1, r_2) = \frac{r_1}{r_\alpha(P_1)} \frac{r_2}{r_\alpha(P_2)} \min(r_\alpha(P_1), r_\alpha(P_2))$$

- can define apref and async for PEPA as well
- use of different functions to obtain different process algebras

	Semantics	Applications	Conclusion

. . .

Possible interpretations

 $|\operatorname{ploc}(C_s)| = 1$ $|\operatorname{ploc}(C_s)| > 1$

process at one location process is mobile *or* process at one of some possible locations

 $|\operatorname{aloc}(\mathcal{C}_s)| = 1$ $|\operatorname{aloc}(\mathcal{C}_s)| > 1$ all actions occur at one location interaction is mobile *or* actions occur at one of some possible locations

$$egin{array}{c} P & rac{(lpha @L,r)}{\longrightarrow} P', \ |L| = 1 \ P & rac{(lpha @L,r)}{\longrightarrow} P', \ |L| > 1 \end{array}$$

 synchronisation happens at one location
 synchronisation involves actions or processes at different locations

. . .

向

	Semantics	Applications	Conclusion

And that's not all

- beyond just adding locations, want to use them for performance evaluation
- aims
 - relate locations to each other
 - want interesting theoretical results
 - want to minimise time in analysis
- graph structure over locations
- ▶ weighted hypergraph: $G = (\mathcal{L}, E, w)$ with $E \subseteq \mathcal{P}_{\mathcal{L}}$ and $w : E \to \mathbb{R}$ or weighted directed graph
- weights modify rates on actions between locations
- weights assigned or calculated

		Semantics	Applications		Conclusion					
Theoretical results – aim										
 combine graph and known structures to obtain new results quickly 										
Ana	lysis F	PEPA model	Modified by G	Form of res	ult					
PEPA	model	Р	P_{G}							
	Ļ									
LM	ITS	${\mathcal M}$	\mathcal{M}_{G}	$\mathcal{M} \odot \mathcal{G} = \mathcal{N}$	Λ _G					
	Ļ									
СТ	MC	\mathcal{Q}	\mathcal{Q}_{G}	$\mathcal{Q} \boxdot \mathcal{G} = \mathcal{Q}$	\mathcal{G}					
	Ļ									
steady	/ state	Π	П _G	$\Pi \odot G = \Gamma$	l _G					

Vashti Galpin

		Applications	Conclusion

Application – plant epidemiology

- epidemiology with spatial aspects
- grapevine diseases in vineyards
- mealy bug insect vector for leaf roll disease
- two separate issues
 - delay before vector arrives at uninfected plant dependent on distance between plants, hence dependent on vineyard layout
 - delay before newly arrived vector infects plant
- three distinct patterns of infection
- build models to explain this

向

	Applications	Conclusion

Application – networking

- networking performance
- scenario
 - arbitrary topology
 - single packet traversal through network
 - processes can be colocated
- want to model different traffic situations
- choose functions to create process algebra
 - each sequential component must have single fixed location
 - communication must be pairwise and directional

	Applications	Conclusion

Application – networking (cont.)

functions

$$apref(S) = egin{cases} I & ext{ if } ploc(S) = \{l\} \ ot & ext{ otherwise} \end{cases}$$

$$async(P_1, P_2, L_1, L_2) = \begin{cases} (l_1, l_2) & \text{if } L_1 = \{l_1\}, L_2 = \{l_2\} \\ \bot & \text{otherwise} \end{cases}$$

.

$$rsync(P_1, P_2, L_1, L_2, r_1, r_2) = \begin{cases} \frac{r_1}{r_{\alpha}(P_1)} \frac{r_2}{r_{\alpha}(P_2)} \min(r_{\alpha}(P_1), r_{\alpha}(P_2)) \cdot w((l_1, l_2)) \\ & \text{if } L_1 = \{l_1\}, L_2 = \{l_2\}, (l_1, l_2) \in E \\ \bot & \text{otherwise} \end{cases}$$

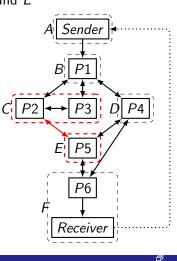
Vashti Galpin

			Applications	Example	Conclusion
Example	network C	$B \downarrow F$ $E \downarrow F$ $F \downarrow$ $F \downarrow$	23 D P4		
			eiver	•••••	
Vashti Galpin					
Toologia a substation	- shared to see a second set				

Towards a spatial stochastic process algebra

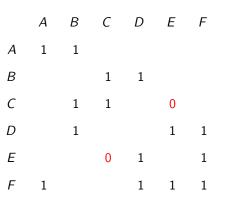
			Applications	Example	Conclusion
PEPA mo	del				
Sender	·@A	$\stackrel{\text{\tiny def}}{=}$ (prepare, ρ).S	ending@A		
Sending	@A	$\stackrel{def}{=}$ (cSto1, r ₁).(ad	ck, r _{ack}).Sender@	2A	
		$\stackrel{\stackrel{def}{=}}{\stackrel{(c6toR, r_6).Re}{\stackrel{def}{=}}} (consume, \gamma).$		ver@F	
		(c1to2, r).P2'@C (c2to1, r).P2@C			

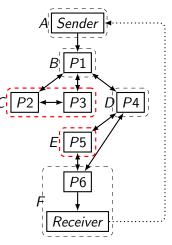
$$Network \stackrel{\text{def}}{=} (Sender@A \bowtie_{L_{S}} (P1@B \bowtie_{L_{1}} (P2@C \bowtie_{L_{2}} (P3@C \bowtie_{L_{3}}))))))) (P4@D \bowtie_{L_{4}} (P5@E \bowtie_{L_{5}} (P6@F \bowtie_{L_{R}} Receiver@F))))))))))$$


		Applications	Example	Conclusion
Graphs				

- ▶ rates: r = r₁ = r₆ = 10
- ▶ the weighted graph G has no effect on the rates in the model

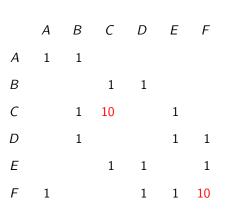
	Α	В	С	D	Ε	F	
A	1	1					
В			1	1			
С		1	1		1		
D		1			1	1	
Ε			1	1		1	
F	1			1	1	1	

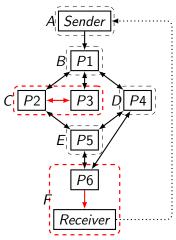

Introduction	Syntax	Semantics	Applications	Example	Conclusion
Graphs					
▶ (\tilde{b}_1 represents	heavy traffic b	etween C and	E	


	A	В	С	D	Ε	F
A	1	1				
В			1	1		
С		1	1		0.1	
D		1			1	1
Ε			0.1	1		1
F	1			1	1	1

Towards a spatial stochastic process algebra

Introdu		Syntax	Semantics	Applications	Example	Conclusion
Gra	phs					
	► G ₂ re	epresents no	o connectivit	y between <i>C</i> ar	nd <i>E</i>	

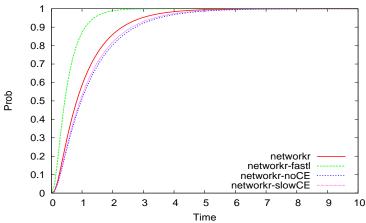




Towards a spatial stochastic process algebra

		Applications	Example	Conclusion
Graphs				

► G₃ represents high connectivity between colocated processes



Vashti Galpin

Towards a spatial stochastic process algebra

		Applications	Example	Conclusion
Analysis				

cumulative density function of passage time

Comparison of different network models

Vashti Galpin

Further work and conclusions

- further work
 - finalise general process algebra
 - more specific applications
 - theoretical results
 - semantic equivalences
- conclusions
 - first steps towards a very general stochastic process algebra with locations
 - most important aspect is that locations affect rates

	Applications	Conclusion

Thank you

This research was funded by the EPSRC SIGNAL Project

Vashti Galpin

Towards a spatial stochastic process algebra