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Abstract

This paper introduces spatial notions to the stochastic process algebra
PEPA. This is motivated by both computer networks and epidemiology
where location of actions or processes with respect to other parts of a
system may affect the time taken by an event. A very general stochastic
process algebra with locations is defined. Locations are introduced to both
actions and processes, and are provided with a weighted graph structure.

1 Introduction

Stochastic process algebras have been developed as a tool for modelling com-
puter systems in terms of performance [1, 2, 3]. Models described using stochas-
tic process algebra can be analysed by the use of continuous time Markov chains
(CTMCs). Spatial aspects and locations are relevant to the quantitative mod-
elling of systems because systems can be physically distributed in space, and
this distribution can affect the length of time required an activity to occur. To
date, there has been some work on spatial aspects, notably PEPA nets [4], a
Petri net influenced model where tokens are PEPA components that can move
places, and StoKlaim [5] which locates processes at nodes in a network. Spatial
models have also been developed within a biological framework [6, 7].

This paper considers spatial concepts within PEPA by introducing of named
locations to process terms. The aim is to be as general as possible, unlike most
previous approaches that are tailored for specific applications. This general
approach facilitates the development of a spatial stochastic process algebra with
a theory and with analyses which can then be made more concrete for a specific
purpose. The general results will then carry through to the more concrete
process algebra as will the general analyses. The general process algebra is a
long term goal, and this paper is a starting point towards that goal.

Locations will be associated with processes and also with actions. This will
give a rich variety of terms and behaviour in the most abstract case of the
operational semantics, and the operational semantics can be instantiated with
specific functions that will capture more specific roles of locations. Locations
will be related to each other by a structure over locations which will provide
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additional information about what communication is possible between locations,
and how likely it is to occur or how much it may be retarded or accelerated.

Using locations is useful from a modelling point of view because it can sep-
arate of concerns. In networks there is the actual physical infrastructure with
certain parameters of operation together with the logical links that connect com-
puters [8]. In epidemiology of plants, both the temporal and spatial behaviours
are of interest [9]. There is the distance between plants as well as the probability
of infection once the infectious agent reaches the plant to be considered.

Another reason for having a separate location structure is that it may be
possible to only discover the state space once, and then to modify the CTMC
by the information given in the location structure after which the steady state
probabilities can be solved for. The process algebra will also be designed so that
annotation of the process algebra terms is kept to a minimum. This will ensure
that introducing locations does not lead to additional state space explosion.

2 Additions of locations to PEPA

Let L be a set of locations, and let PL = 2L be the powerset of L. There is a
weighted hypergraph structure on locations G = (L, E, w) with E ⊆ PL1 and
w : E → R a weighting function.

There is no particular interpretation imposed on locations or the functions
defined over them. These locations may or may not have structure. For ex-
ample, they could be nodes in a directed graph representing computers in a
network or locations in n-dimensional space. The graph edges could represent
simple network connectivity, or a tree structure representing nesting of loca-
tions. Additionally, the function w could be obtained from their structure. For
example, if locations are points in two-dimensional space then in the case of an
edge between a pair of locations, w could be obtained from a distance function
that maps the two points to a scalar value.

The syntax for components is a two level syntax of sequential components
and model components based on PEPA

S ::= (α@L, r).S | S + S | Cs@L P ::= P BC
M

P | P/M | C.

with L ∈ PL. The class of models with locations L is denoted CL. Let α denote
α@∅ and α@l denote α@{l}, and similarly S denotes S@∅ and S@l denotes
S@{l}. This syntax permits the association of a set of locations with an action
and with a sequential process. This permits unconstrained processes such as
A@L1

def= (α@L2, r).A@L3 + (β@L3).B@L4 with L1, . . . , L4 all different.
The operational semantics are given in Table 1. The labels of the transition

system come from A × PL × R+. These are parameterised by three functions.
The first, apref takes a sequential component which possibly contains location
information, and returns a location set. Here the aim is to resolve the location
set associated with the action by considering the location set in the prefix term
as well as other information that may be included in the component term.
The second, async maps PL × PL to PL, and determines the location set of a
synchronisation. The last, rsync takes two rates, two model components, two

1In some cases, especially in the case of sets of size 2 which may represent edges in a
directed graph, ordering will be important and will be assumed when necessary.



Prefix Constant

(α@L, r).S
(α@L′,r)−−−−−−→ S

L′ = apref ((α@L, r).S)
P

(α@L,r)−−−−−→ P ′

A
(α@L,r)−−−−−→ P ′

A
def= P

Choice

P1
(α@L,r)−−−−−→ P ′

1

P1 + P2
(α@L,r)−−−−−→ P ′

1

P2
(α@L,r)−−−−−→ P ′

2

P1 + P2
(α@L,r)−−−−−→ P ′

2

Hiding

P
(α@L,r)−−−−−→ P ′

P/M
(α@L,r)−−−−−→ P ′/M

α 6∈ M
P

(α@L,r)−−−−−→ P ′

P/M
(τ@L,r)−−−−−→ P ′/M

α ∈ M

Cooperation

P1
(α@L,r)−−−−−→ P ′

1

P1 BC
M

P2
(α@L,r)−−−−−→ P ′

1
BC
M

P2

α 6∈ M
P2

(α@L,r)−−−−−→ P ′
2

P1 BC
M

P2
(α@L,r)−−−−−→ P1 BC

M
P ′

2

α 6∈ M

P1
(α@L1,r1)−−−−−−−→ P ′

1 P2
(α@L2,r2)−−−−−−−→ P ′

2

P1 BC
M

P2
(α@L,R)−−−−−−→ P ′

1
BC
M

P ′
2

α ∈ M
L = async(L1, L2)
R = rsync(r1, r2, P1, P2, L1, L2)

Table 1: Operational semantics of PEPA with locations

location sets and returns a rate for the synchronisation of two components. All
three functions can return ⊥ which means that a transition is not possible.

Note that in the original PEPA definition the rate of a synchronisation is
determined by the rates in the premises and the components involved (since the
apparent rate of the action must be calculated with respect to each component)
hence all that is being added to this is the location sets. The standard PEPA
rate can written as

RPEPA(r1, r2, P1, P2, L1, L2) =
r1

rα(P1)
r2

rα(P2)
min(rα(P1), rα(P2)).

Since it may be necessary to work with the locations that are found in com-
ponents, location identifying functions are defined. The set of locations of a
component P is loc(P ) = aloc(P )∪ ploc(P ) where ploc(P ), the process location
function, extracts a location set from terms of the form Cs@L in the obvious
manner and aloc(P ), the action location function, extracts a location set from
terms of the form (α@L, r).S in the obvious manner.

3 A more concrete process algebra

The process algebra in Section 2 is too abstract since there are many different
functions that can be used to instantiate it. In this section, a more concrete
process algebra that is suitable for modelling networks is developed.



PEPA model P PG

↓
LMTS M MG M} G = MG

↓
CTMC Q QG Q � G = QG

↓
steady state Π ΠG Π � G = ΠG

Table 2: Structure of results

For the level of abstraction at which networks will be modelled here, com-
munication between processes in the network is viewed as directional and only
involves two processes at a time. Communication involves passing a packet
from one process to another. It is assumed that processes are static (not mo-
bile) and hence they have one fixed location (a singleton set) that does not
change over time. More than one process can have the same location. Since
processes have a single fixed location, the restriction to pairwise synchronisation
implies that communication can take place between at most two locations. This
means that the hypergraph over locations is just a directed graph and hence
pairs are assumed instead of sets and location sets are drawn from L ∪ (L × L).
The required functions are as follows.

apref (S) =

{
l if ploc(S) = {l}
⊥ otherwise

async(L1, L2) =

{
(l1, l2) if L1 = {l1}, L2 = {l2}
⊥ otherwise

rsync(r1, r2, P1, P2, L1, L2)

=


r1

rα(P1)
r2

rα(P2)
min(rα(P1), rα(P2))� w((l1, l2))

if L1 = {l1}, L2 = {l2}, (l1, l2) ∈ E

⊥ otherwise

Note that the rate obtained by rsync for synchronisation involves the oper-
ator � and the weight of the edge involved. This operator can be instantiated
with an appropriate function such as multiplication when modelling a specific
scenario. The edge (l, l) can be viewed as always present, and either not affect
the rate between two colocated processes or alternatively the weighting on this
edge could represent faster communication between colocated processes.

The operational semantics with these functions give rise to a labelled multi-
transition system with activities containing locations as labels and components
as states. As in PEPA this is translated to a CTMC. If a steady state is required
for this CTMC, it is necessary to ensure that the weightings do not remove edges
that would prevent this.



4 Results and analysis

The type of theoretical results that will be beneficial to facilitating analysis are
given in Table 2. The first column represents the stages in the analysis of a
PEPA model using CTMCs. The second column contains the results without
the use of locations at each stage of analysis and the third column contains
the results with locations. The goal is to achieve theorems, as given the last
column, that allow us to express the results with locations as a combination
of the location graph together with the results for the model without location.
Hence it is necessary to discover the appropriate function for the operators },
� and � if they exist. The benefits of this are that the state space needs only
to be discovered once and then it will be possible to experiment with different
location graphs in an efficient manner. This is ongoing research.
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