Continuous approximation of PEPA models and Petri nets

Vashti Galpin
Laboratory for Foundations of Computer Science
School of Informatics
University of Edinburgh

27 October 2008
Outline

Motivation

PEPA

Continuous Petri nets

Transformations

Conclusions
Motivation

- large systems and state space explosion
Motivation

- large systems and state space explosion
 - use approximation to avoid
Motivation

- large systems and state space explosion
 - use approximation to avoid
- PEPA, continuous approximation using ODEs [Hillston 2005]
 - many identical components
 - equations for $dN(D, \tau)/d\tau$
Motivation

- large systems and state space explosion
 - use approximation to avoid
- PEPA, continuous approximation using ODEs [Hillston 2005]
 - many identical components
 - equations for $dN(D, \tau)/d\tau$
- timed continuous Petri nets [Alla & David, Recalde & Silva]
 - transitions have rates
 - markings take values from positive reals
 - large numbers of clients and servers
 - equations for $dm(p, \tau)/d\tau$
Motivation

- large systems and state space explosion
 - use approximation to avoid
- PEPA, continuous approximation using ODEs [Hillston 2005]
 - many identical components
 - equations for $dN(D, \tau)/d\tau$
- timed continuous Petri nets [Alla & David, Recalde & Silva]
 - transitions have rates
 - markings take values from positive reals
 - large numbers of clients and servers
 - equations for $dm(p, \tau)/d\tau$
- how do these compare?
Motivation

- large systems and state space explosion
 - use approximation to avoid
- PEPA, continuous approximation using ODEs [Hillston 2005]
 - many identical components
 - equations for $dN(D, \tau)/d\tau$
- timed continuous Petri nets [Alla & David, Recalde & Silva]
 - transitions have rates
 - markings take values from positive reals
 - large numbers of clients and servers
 - equations for $dm(p, \tau)/d\tau$
- how do these compare?
- what are the server semantics of PEPA?
PEPA

- Performance Evaluation Process Algebra [Hillston 1996]
 - stochastic, action durations from exponential distribution
 - syntax, structured operational semantics
 - continuous time Markov chain (CTMC) to describe dynamic behaviour
PEPA

- **Performance Evaluation Process Algebra** [Hillston 1996]
 - stochastic, action durations from exponential distribution
 - syntax, structured operational semantics
 - continuous time Markov chain (CTMC) to describe dynamic behaviour

- restricted PEPA syntax
Motivation

PEPA

Continuous Petri nets

Transformations

Conclusions

PEPA

- Performance Evaluation Process Algebra [Hillston 1996]
 - stochastic, action durations from exponential distribution
 - syntax, structured operational semantics
 - continuous time Markov chain (CTMC) to describe dynamic behaviour
- restricted PEPA syntax
 - sequential component $S ::= (\alpha, r).S | S + S | C_s$
 - sequential constant $C_s \overset{\text{def}}{=} S$
Motivation

PEPA

Continuous Petri nets

Transformations

Conclusions

PEPA

- Performance Evaluation Process Algebra [Hillston 1996]
 - stochastic, action durations from exponential distribution
 - syntax, structured operational semantics
 - continuous time Markov chain (CTMC) to describe dynamic behaviour

- restricted PEPA syntax
 - sequential component \(S ::= (\alpha, r).S \mid S + S \mid C_s \)
 - sequential constant \(C_s \triangleq S \)
 - parallel cooperation with multiway synchronisation

\[
C_1[n_1] \overset{l_1}{\parallel} C_2[n_2] \overset{l_2}{\parallel} \ldots \overset{l_{m-1}}{\parallel} C_m[n_m]
\]

- \(C_i \)'s do not synchronise, \(C_i \)'s and \(C_j \)'s must synchronise
PEPA

- Performance Evaluation Process Algebra [Hillston 1996]
 - stochastic, action durations from exponential distribution
 - syntax, structured operational semantics
 - continuous time Markov chain (CTMC) to describe dynamic behaviour

- restricted PEPA syntax
 - sequential component $S ::= (\alpha, r).S \mid S + S \mid C_s$
 - sequential constant $C_s \overset{\text{def}}{=} S$
 - parallel cooperation with multiway synchronisation

 $$C_1[n_1] \Join_{l_1} C_2[n_2] \Join_{l_2} \ldots \Join_{l_{m-1}} C_m[n_m]$$
 - C_i’s do not synchronise, C_i’s and C_j’s must synchronise
 - identical rates for shared activities
ODE semantics of PEPA

- many identical sequential components
ODE semantics of PEPA

- many identical sequential components
- each sequential component may have a number of derivatives

\[A \overset{\text{def}}{=} (a_1, r_1).B + (a_2, r_2).C \quad B \overset{\text{def}}{=} (b, s).A \quad C \overset{\text{def}}{=} (c, t).A \]
ODE semantics of PEPA

- many identical sequential components
- each sequential component may have a number of derivatives

\[A \overset{\text{def}}{=} (a_1, r_1).B + (a_2, r_2).C \quad B \overset{\text{def}}{=} (b, s).A \quad C \overset{\text{def}}{=} (c, t).A \]

- express states in numerical vector form \((n_1, \ldots, n_m)\)
ODE semantics of PEPA

- many identical sequential components
- each sequential component may have a number of derivatives

\[
A \overset{\text{def}}{=} (a_1, r_1).B + (a_2, r_2).C \quad B \overset{\text{def}}{=} (b, s).A \quad C \overset{\text{def}}{=} (c, t).A
\]

- express states in numerical vector form \((n_1, \ldots, n_m)\)
- number of copies of each component/derivative
ODE semantics of PEPA

- many identical sequential components
- each sequential component may have a number of derivatives

\[
A \overset{\text{def}}{=} (a_1, r_1) \cdot B + (a_2, r_2) \cdot C \quad B \overset{\text{def}}{=} (b, s) \cdot A \quad C \overset{\text{def}}{=} (c, t) \cdot A
\]

- express states in numerical vector form \((n_1, \ldots, n_m)\)
- number of copies of each component/derivative
- transitions update the vector

\[
\begin{align*}
A \xrightarrow{(a_1, r_1)} B \\
(N(A), N(B), N(C)) \xrightarrow{(a_1, r_1)} (N(A) - 1, N(B) + 1, N(C))
\end{align*}
\]
ODE semantics of PEPA (continued)

- continuous approximation of changes in numbers
- consider what actions lead to change in numbers

\[
\begin{align*}
C_1 & \xrightarrow{(\alpha,s)} D_1 & \xleftarrow{(\alpha,s)} E_1 \\
C_2 & \xrightarrow{D_1} & \xleftarrow{E_2}
\end{align*}
\]
ODE semantics of PEPA (continued)

- continuous approximation of changes in numbers
- consider what actions lead to change in numbers

\[
\begin{align*}
\text{entry activity} \\
C_1 & \xrightarrow{(\alpha,s)} D_1 & (\alpha,s) & \xrightarrow{} E_1 \\
C_2 & \xrightarrow{} D_1 & \xrightarrow{} E_2
\end{align*}
\]
ODE semantics of PEPA (continued)

- continuous approximation of changes in numbers
- consider what actions lead to change in numbers

\[\text{entry activity} \]

\[
\begin{align*}
C_1 &\xrightarrow{(\alpha,s)} D_1 & (\alpha,s) &\xrightarrow{} E_1 \\
C_2 &\xrightarrow{} D_1 & (\alpha,s) &\xrightarrow{\quad} E_2 \\
C_3 &\xrightarrow{(\alpha,s)} D_2
\end{align*}
\]
ODE semantics of PEPA (continued)

- continuous approximation of changes in numbers
- consider what actions lead to change in numbers

\[C_1 \xrightarrow{(\alpha,s)} D_1 \xleftarrow{(\alpha,s)} C_2 \]
\[C_3 \rightarrow D_2 \rightarrow E_2 \xrightarrow{(\alpha,s)} E_1 \]

entry activity \hspace{1cm} *exit activity*

Vashti Galpin, LFCS, University of Edinburgh

Continuous approximation of PEPA models and Petri nets

ESM 2008
ODE semantics of PEPA (continued)

- continuous approximation of changes in numbers
- consider what actions lead to change in numbers

![Diagram of PEPA activity](image)

- **entry activity**
 - C_1 to D_1 with (α, s)
 - C_2 to D_1 with (α, s)
 - C_3 to D_2 with (α, s)

- **exit activity**
 - D_1 to E_1 with (α, s)
 - D_1 to E_2
 - D_2 to E_3 with (α, s)
 - D_3 to E_3 with (α, s)
Change in number of copies of component D

\[
\frac{dN(D, \tau)}{d\tau} = \sum_{(\alpha, r) \text{ entry activity}} r \times \min\{N(C, \tau) \mid C \xrightarrow{\alpha,r} \} - \sum_{(\alpha, r) \text{ exit activity}} r \times \min\{N(C, \tau) \mid C \xrightarrow{\alpha,r} \}
\]
Change in number of copies of component D

\[
\frac{dN(D, \tau)}{d\tau} = \sum_{(\alpha, r)} \text{activity} \times \min\{N(C, \tau) \mid C \xrightarrow{\alpha,r} \}
\]

\[
- \sum_{(\alpha, r)} \text{activity} \times \min\{N(C, \tau) \mid C \xrightarrow{\alpha,r} \}
\]

- can express ODEs as activity graph and activity matrix
Activity graph

- graph nodes are components and activities
Activity graph

- graph nodes are components and activities
- edges are added
Activity graph

- graph nodes are components and activities
- edges are added
 - from a component to an exit activity for that component
Activity graph

- graph nodes are components and activities
- edges are added
 - from a component to an exit activity for that component
 - from an entry activity for a component to that component
Activity graph

- graph nodes are components and activities

- edges are added
 - from a component to an exit activity for that component
 - from an entry activity for a component to that component

- $C \xrightarrow{(\alpha, r)} C'$

Motivation PEPA Continuous Petri nets Transformations Conclusions

Vashti Galpin, LFCS, University of Edinburgh
Continuous approximation of PEPA models and Petri nets ESM 2008
Timed continuous Petri nets

- places P, transitions T, disjoint
Timed continuous Petri nets

- places P, transitions T, disjoint
- ordinary Petri nets

\[
Pre : P \times T \rightarrow \{0, 1\} \quad Post : P \times T \rightarrow \{0, 1\}
\]
Timed continuous Petri nets

- places P, transitions T, disjoint
- ordinary Petri nets

$$Pre : P \times T \rightarrow \{0, 1\} \quad Post : P \times T \rightarrow \{0, 1\}$$

- presets and postsets

$$Pre(p, t) = 1 \iff p \in \cdot t \quad t \in p^*$$
$$Post(p, t) = 1 \iff p \in t^* \quad t \in \cdot p$$
Timed continuous Petri nets

- places P, transitions T, disjoint
- ordinary Petri nets

\[Pre : P \times T \rightarrow \{0, 1\} \quad Post : P \times T \rightarrow \{0, 1\} \]

- presets and postsets

\[Pre(p, t) = 1 \iff p \in ^*t \quad t \in p^* \]
\[Post(p, t) = 1 \iff p \in t^* \quad t \in ^*p \]

- cost matrix $C = Post - Pre$
Timed continuous Petri nets

- places P, transitions T, disjoint

- ordinary Petri nets

\[Pre : P \times T \rightarrow \{0, 1\} \quad Post : P \times T \rightarrow \{0, 1\} \]

- presets and postsets

\[
Pre(p, t) = 1 \iff p \in t^* \quad t \in p^* \\
Post(p, t) = 1 \iff p \in t^* \quad t \in t^*
\]

- cost matrix $C = Post - Pre$

- firing rates $\lambda : T \rightarrow (0, \infty)$
Dynamic behaviour

- marking $M : P \times Time \rightarrow [0, \infty)$
Dynamic behaviour

- marking \(M : P \times Time \rightarrow [0, \infty) \)

- \(t \) is enabled at \(\tau \) if places preceding \(t \) have nonzero marking
Dynamic behaviour

- marking $M : P \times Time \rightarrow [0, \infty)$
- t is enabled at τ if places preceding t have nonzero marking
- enabling degree of t: minimum value of markings at places preceding t,

$$enab(t, \tau) = \min_{p \in \bullet t} \{m(p, \tau)\}$$
Dynamic behaviour

- marking \(M : P \times Time \rightarrow [0, \infty) \)
- \(t \) is enabled at \(\tau \) if places preceding \(t \) have nonzero marking
- enabling degree of \(t \): minimum value of markings at places preceding \(t \),
 \[
 \text{enab}(t, \tau) = \min_{p \in \bullet t} \{ m(p, \tau) \}
 \]
- infinite server semantics
 - assume many clients and many servers
 - \(t \) fires \(\text{enab}(t, \tau) \)
Change in marking at place \(p \)
Change in marking at place p

- fundamental equation for Petri nets

$$m(\cdot, \tau + \delta \tau) = m(\cdot, \tau) + C \cdot \sigma(\tau)$$

- change in marking of place p

$$\frac{dm(p, \tau)}{d\tau} = \sum_{j=1}^{n} C(p, t_j) \cdot \lambda(t_j) \cdot \min_{p' \in t_j} \{ m(p', \tau) \}$$

$$= \sum_{t \in p} \lambda(t) \cdot \min_{p' \in t} \{ m(p', \tau) \}$$

$$- \sum_{t \in p} \lambda(t) \cdot \min_{p' \in t} \{ m(p', \tau) \}$$
PEPA model to continuous Petri net

- translate a PEPA model into a timed continuous Petri net
- example – clients and servers

\[
\begin{align*}
C \ &\overset{\text{def}}{=} \ (\text{serv}_1, s_1).C' + (\text{serv}_2, s_2).C' \\
C' \ &\overset{\text{def}}{=} \ (\text{do}, d).C \\
S_1 \ &\overset{\text{def}}{=} \ (\text{serv}_1, s_1).S'_1 \\
S'_1 \ &\overset{\text{def}}{=} \ (\text{reset}_1, r_1).S_1 \\
S_2 \ &\overset{\text{def}}{=} \ (\text{serv}_2, s_2).S'_2 \\
S'_2 \ &\overset{\text{def}}{=} \ (\text{reset}_2, r_2).S_2 \\
\text{Sys} \ &\overset{\text{def}}{=} \ (C[100] \ \text{\&} \ \{\text{serv}_1, \text{serv}_2\}) \ (S_1[50] \ || \ S_2[50])
\end{align*}
\]
Continuous approximation of PEPA models and Petri nets

ODEs

\[
\frac{d N(C, \tau)}{d \tau} = \begin{cases}
+ d \cdot N(C', \tau) & - s_1 \cdot \min(N(C, \tau), N(S_1, \tau)) \\
& - s_2 \cdot \min(N(C, \tau), N(S_2, \tau))
\end{cases}
\]

\[
\frac{d N(C', \tau)}{d \tau} = \begin{cases}
- d \cdot N(C', \tau) & + s_1 \cdot \min(N(C, \tau), N(S_1, \tau)) \\
& + s_2 \cdot \min(N(C, \tau), N(S_2, \tau))
\end{cases}
\]

Conclusions
ODEs

\[
\frac{dN(C, \tau)}{d\tau} = +d \cdot N(C', \tau) - s_1 \cdot \min(N(C, \tau), N(S_1, \tau)) \\
\quad - s_2 \cdot \min(N(C, \tau), N(S_2, \tau))
\]

\[
\frac{dN(C', \tau)}{d\tau} = -d \cdot N(C', \tau) + s_1 \cdot \min(N(C, \tau), N(S_1, \tau)) \\
\quad + s_2 \cdot \min(N(C, \tau), N(S_2, \tau))
\]

\[
\frac{dN(S_i, \tau)}{d\tau} = r_i \cdot N(S'_i) - s_i \cdot \min(N(C, \tau), N(S_i, \tau)) \quad i = 1, 2
\]

\[
\frac{dN(S'_i, \tau)}{d\tau} = s_i \cdot \min(N(C, \tau), N(S_i, \tau)) - r_i \cdot N(S'_i) \quad i = 1, 2
\]
Activity graph

- activities and components

- reset$_1$
 - S_1
 - serv$_1$
 - S_1'
 - C
 - do
 - C'
 - serv$_2$
 - S_2
 - reset$_2$
 - S_2'
Petri net

- activities become transitions and components become places
Petri net (continued)

- activities become transitions and components become places
Petri net (continued)

- activities become transitions and components become places
- rate of transition is rate of activity
Petri net (continued)

- activities become transitions and components become places
- rate of transition is rate of activity
- \(\text{Post}(p, t) = 1 \iff t \in \bullet p \iff t \text{ is an entry activity of } p \)
Petri net (continued)

- activities become transitions and components become places
- rate of transition is rate of activity
- \(\text{Post}(p, t) = 1 \iff t \in \bullet p \iff t \) is an entry activity of \(p \)
- \(\text{Pre}(p, t) = 1 \iff t \in p^\bullet \iff t \) is an exit activity of \(p \)
Petri net (continued)

- activities become transitions and components become places
- rate of transition is rate of activity
- $Post(p, t) = 1 \Leftrightarrow t \in \bullet p \Leftrightarrow t$ is an entry activity of p
- $Pre(p, t) = 1 \Leftrightarrow t \in p^\bullet \Leftrightarrow t$ is an exit activity of p
- a marking value of x at p is the same as x copies of p

$$m(p, \tau) = N(p, \tau)$$
Petri net (continued)

- activities become transitions and components become places
- rate of transition is rate of activity
- $Post(p, t) = 1 \iff t \in \bullet p \iff t$ is an entry activity of p
- $Pre(p, t) = 1 \iff t \in p^\bullet \iff t$ is an exit activity of p
- a marking value of x at p is the same as x copies of p
 \[m(p, \tau) = N(p, \tau) \]
- initial marking $m(p, 0) = N(p, 0)$ for each p
Comparison of ODEs

\[
\frac{dm(p, \tau)}{d\tau} = \sum_{t \in \bullet p} \lambda(t) \cdot \min_{p' \in \bullet t} \{ m(p', \tau) \} - \sum_{t \in p'} \lambda(t) \cdot \min_{p' \in \bullet t} \{ m(p', \tau) \}
\]

\[
\frac{dN(D, \tau)}{d\tau} = \sum_{(\alpha, r)} r \cdot \min \{ N(C, \tau) \mid C \xrightarrow{(\alpha, r)} \} - \sum_{(\alpha, r)} r \cdot \min \{ N(C, \tau) \mid C \xrightarrow{(\alpha, r)} \}
\]
Comparison of ODEs

\[
\frac{dm(p, \tau)}{d\tau} = \sum_{t \in \bullet p} \lambda(t) \cdot \min_{p' \in \bullet t} \{m(p', \tau)\} - \sum_{t \in p^\bullet} \lambda(t) \cdot \min_{p' \in \bullet t} \{m(p', \tau)\}
\]

\[
\frac{dN(D, \tau)}{d\tau} = \sum_{(\alpha, r) \text{ entry activity}} r \cdot \min\{N(C, \tau) \mid C \xrightarrow{\alpha,r} \} - \sum_{(\alpha, r) \text{ exit activity}} r \cdot \min\{N(C, \tau) \mid C \xrightarrow{\alpha,r} \}
\]
Comparison of ODEs

\[
\frac{dm(p, \tau)}{d\tau} = \sum_{t \in \bullet p} \lambda(t) \cdot \min_{p' \in \bullet t} \{ m(p', \tau) \} - \sum_{p' \in \bullet t} \min_{p' \in \bullet t} \{ m(p', \tau) \}
\]

\[
\frac{dN(D, \tau)}{d\tau} = \sum_{(\alpha, r)} r \cdot \min \{ N(C, \tau) \mid C \xrightarrow{(\alpha, r)} \} - \sum_{(\alpha, r)} r \cdot \min \{ N(C, \tau) \mid C \xrightarrow{(\alpha, r)} \}
\]
Comparison of ODEs

\[
\frac{dm(p, \tau)}{d\tau} = \sum_{t \in \bullet p} \lambda(t) \cdot \min_{p' \in \bullet t} \{m(p', \tau)\} - \sum_{t \in p'} \lambda(t) \cdot \min_{p' \in \bullet t} \{m(p', \tau)\}
\]

\[
\frac{dN(D, \tau)}{d\tau} = \sum\{r \cdot \min\{N(C, \tau) \mid C \xrightarrow{\alpha,r} \}\} - \sum\{r \cdot \min\{N(C, \tau) \mid C \xrightarrow{\alpha,r} \}\}
\]
Comparison of ODEs

\[
\frac{dm(p, \tau)}{d\tau} = \sum_{t \in \cdot p} \lambda(t) \cdot \min_{p' \in \cdot t} \{m(p', \tau)\} - \sum_{t \in p^\bullet} \lambda(t) \cdot \min_{p' \in \cdot t} \{m(p', \tau)\}
\]

\[
\frac{dN(D, \tau)}{d\tau} = \sum_{(\alpha, r) \text{ entry activity}} r \cdot \min \{N(C, \tau) \mid C \xrightarrow{(\alpha, r)} \} - \sum_{(\alpha, r) \text{ exit activity}} r \cdot \min \{N(C, \tau) \mid C \xrightarrow{(\alpha, r)} \}
\]
Comparison of ODEs

\[
\frac{dm(p, \tau)}{d\tau} = \sum_{t \in \bullet p} \lambda(t) \cdot \min_{p' \in \bullet t} \{ m(p', \tau) \} - \sum_{t \in p} \lambda(t) \cdot \min_{p' \in \bullet t} \{ m(p', \tau) \}
\]

\[
\frac{dN(D, \tau)}{d\tau} = \sum_{(\alpha, r)} r \cdot \min\{ N(C, \tau) \mid C \overset{(\alpha, r)}{\rightarrow} \} - \sum_{(\alpha, r)} r \cdot \min\{ N(C, \tau) \mid C \overset{(\alpha, r)}{\rightarrow} \}
\]
Comparison of ODEs

\[
\frac{dm(p, \tau)}{d\tau} = \sum_{t \in \bullet p} \lambda(t) \cdot \min_{p' \in \bullet t} \{m(p', \tau)\} - \sum_{t \in p'} \lambda(t) \cdot \min_{p' \in \bullet t} \{m(p', \tau)\}
\]

\[
\frac{dN(D, \tau)}{d\tau} = \sum (\alpha, r) \min \{N(C, \tau) \mid C \xrightarrow{(\alpha, r)} \} - \sum (\alpha, r) \min \{N(C, \tau) \mid C \xrightarrow{(\alpha, r)} \}
\]

▶ both approaches give the same equations
Continuous Petri net to PEPA model

- transformation of *bounded* net to PEPA model
Continuous Petri net to PEPA model

- transformation of *bounded* net to PEPA model
- concept of implicit/complementary place: marking of p does not change enabling degree of any t

\[
m(p, τ) \geq \min_{p' \in \cdot t \setminus \{p\}} \{m(p', τ)\} = enab(t, τ)
\]
Continuous Petri net to PEPA model

- transformation of *bounded* net to PEPA model

- concept of implicit/complementary place: marking of p does not change enabling degree of any t

 $$m(p, \tau) \geq \min_{p' \in \cdot t \setminus \{p\}} \{m(p', \tau)\} = enab(t, \tau)$$

- addition of complementary places: for each p, add new \bar{p}

Vashti Galpin, LFCS, University of Edinburgh
Continuous approximation of PEPA models and Petri nets
ESM 2008
Continuous Petri net to PEPA model

▶ transformation of *bounded* net to PEPA model

▶ concept of implicit/complementary place: marking of \(p \) does not change enabling degree of any \(t \)

\[
m(p, \tau) \geq \min_{p' \in \bullet t \setminus \{p\}} \{m(p', \tau)\} = \text{enab}(t, \tau)
\]

▶ addition of complementary places: for each \(p \), add new \(\bar{p} \)
 ▶ for every arc from \(p \) to any \(t \), add an arc from \(t \) to \(\bar{p} \)
 ▶ for every arc from \(t \) to any \(p \), add an arc from \(\bar{p} \) to \(t \)
Continuous Petri net to PEPA model

- transformation of *bounded* net to PEPA model

- concept of implicit/complementary place: marking of p does not change enabling degree of any t

$$m(p, \tau) \geq \min_{p' \in \cdot t \setminus \{p\}} \{m(p', \tau)\} = enab(t, \tau)$$

- addition of complementary places: for each p, add new \overline{p}
 - for every arc from p to any t, add an arc from t to \overline{p}
 - for every arc from t to any p, add an arc from \overline{p} to t
 - $m(\overline{p}, 0) = b(p) - m(p, 0)$ where $b(p)$ is bound for p
Continuous Petri net to PEPA model

- transformation of *bounded* net to PEPA model
- concept of implicit/complementary place: marking of p does not change enabling degree of any t

\[m(p, \tau) \geq \min_{p' \in \cdot t\setminus \{p\}} \{ m(p', \tau) \} = \text{enab}(t, \tau) \]

- addition of complementary places: for each p, add new \overline{p}
 - for every arc from p to any t, add an arc from t to \overline{p}
 - for every arc from t to any p, add an arc from \overline{p} to t
 - $m(\overline{p}, 0) = b(p) - m(p, 0)$ where $b(p)$ is bound for p

- ODEs remain unchanged by addition of complementary places

\[\min_{p' \in \cdot t} \{ m(p', \tau) \} = \min_{p' \in \cdot t \cap P} \{ m(p', \tau) \} \]
Complementation

- example

![Complementation Diagram]

Vashti Galpin, LFCS, University of Edinburgh
Continuous approximation of PEPA models and Petri nets
ESM 2008
Complementation

▶ example
Construction of PEPA model

- use algorithm by Hillston, Recalde, Ribaudo and Silva [2001]
- converts stochastic Petri net to PEPA model
Construction of PEPA model

- use algorithm by Hillston, Recalde, Ribaudo and Silva [2001]
- converts stochastic Petri net to PEPA model
 - convert each pair p and \overline{p} into a sequential component
 \[
 C_p \equiv \sum_{t \in p} (t, \lambda(t)).C_{\overline{p}} \quad C_{\overline{p}} \equiv \sum_{t \in \overline{p}} (t, \lambda(t)).C_p
 \]
Construction of PEPA model

- use algorithm by Hillston, Recalde, Ribaudo and Silva [2001]
- converts stochastic Petri net to PEPA model
 - convert each pair p and \overline{p} into a sequential component
 \[C_p \overset{\text{def}}{=} \sum_{t \in p^\bullet} (t, \lambda(t)).C_{\overline{p}} \]
 \[C_{\overline{p}} \overset{\text{def}}{=} \sum_{t \in \bullet \cdot p} (t, \lambda(t)).C_p \]
 - for each p define model component
 \[M_p \overset{\text{def}}{=} C_p \ || \ . \ || C_p \ || C_{\overline{p}} \ || \ . \ || C_{\overline{p}} \]
 with $m(p, 0)$ copies of C_p and $m(\overline{p}, 0)$ copies of $C_{\overline{p}}$.
Construction of PEPA model

- use algorithm by Hillston, Recalde, Ribaudo and Silva [2001]
- converts stochastic Petri net to PEPA model
 - convert each pair p and \overline{p} into a sequential component

\[
C_p \overset{\text{def}}{=} \sum_{t \in p^\bullet} (t, \lambda(t)).C_{\overline{p}} \quad C_{\overline{p}} \overset{\text{def}}{=} \sum_{t \in \overline{p}^\bullet} (t, \lambda(t)).C_p
\]

- for each p define model component

\[
M_p \overset{\text{def}}{=} C_p \parallel \ldots \parallel C_p \parallel C_{\overline{p}} \parallel \ldots \parallel C_{\overline{p}}
\]

with $m(p, 0)$ copies of C_p and $m(\overline{p}, 0)$ copies of $C_{\overline{p}}$.
- recursively build up synchronisation sets and system equation
Construction of PEPA model (cont.)

example

\[C_{p_1} \overset{\text{def}}{=} (\text{prepare}, p).C_{\overline{p}_1} \quad C_{\overline{p}_1} \overset{\text{def}}{=} (\text{finish}, f).C_{p_1} \]
Construction of PEPA model (cont.)

Example

\[
\begin{align*}
C_{p_1} & \overset{\text{def}}{=} (\text{prepare}, p).C_{\overline{p}_1} & C_{\overline{p}_1} & \overset{\text{def}}{=} (\text{finish}, f).C_{p_1} \\
C_{p_2} & \overset{\text{def}}{=} (\text{serve}, s).C_{\overline{p}_2} & C_{\overline{p}_2} & \overset{\text{def}}{=} (\text{prepare}, p).C_{p_2}
\end{align*}
\]
Construction of PEPA model (cont.)

▶ example

\[C_{p_1} \overset{\text{def}}{=} (\text{prepare}, p).C_{p_1} \quad C_{p_1} \overset{\text{def}}{=} (\text{finish}, f).C_{p_1} \]
\[C_{p_2} \overset{\text{def}}{=} (\text{serve}, s).C_{p_2} \quad C_{p_2} \overset{\text{def}}{=} (\text{prepare}, p).C_{p_2} \]
\[C_{p_3} \overset{\text{def}}{=} (\text{finish}, f).C_{p_3} \quad C_{p_3} \overset{\text{def}}{=} (\text{serve}, s).C_{p_3} \]
\[C_{p_4} \overset{\text{def}}{=} (\text{serve}, s).C_{p_4} \quad C_{p_4} \overset{\text{def}}{=} (\text{reset}, r).C_{p_4} + (\text{repair}, e).C_{p_4} \]
\[C_{p_5} \overset{\text{def}}{=} (\text{reset}, r).C_{p_5} + (\text{fail}, a).C_{p_5} \quad C_{p_5} \overset{\text{def}}{=} (\text{serve}, s).C_{p_5} \]
\[C_{p_6} \overset{\text{def}}{=} (\text{repair}, e).C_{p_6} \quad C_{p_6} \overset{\text{def}}{=} (\text{fail}, a).C_{p_6} \]
Construction of PEPA model (cont.)

example

\[
\begin{align*}
C_{p1} & \overset{\text{def}}{=} (\text{prepare}, p).C_{\bar{p}1} & C_{\bar{p}1} & \overset{\text{def}}{=} (\text{finish}, f).C_{p1} \\
C_{p2} & \overset{\text{def}}{=} (\text{serve}, s).C_{\bar{p}2} & C_{\bar{p}2} & \overset{\text{def}}{=} (\text{prepare}, p).C_{p2} \\
C_{p3} & \overset{\text{def}}{=} (\text{finish}, f).C_{\bar{p}3} & C_{\bar{p}3} & \overset{\text{def}}{=} (\text{serve}, s).C_{p3} \\
C_{p4} & \overset{\text{def}}{=} (\text{serve}, s).C_{\bar{p}4} & C_{\bar{p}4} & \overset{\text{def}}{=} (\text{reset}, r).C_{p4} + (\text{repair}, e).C_{p4} \\
C_{p5} & \overset{\text{def}}{=} (\text{reset}, r).C_{\bar{p}5} + (\text{fail}, a).C_{\bar{p}5} & C_{\bar{p}5} & \overset{\text{def}}{=} (\text{serve}, s).C_{p5} \\
C_{p6} & \overset{\text{def}}{=} (\text{repair}, e).C_{\bar{p}6} & C_{\bar{p}6} & \overset{\text{def}}{=} (\text{fail}, a).C_{p6}
\end{align*}
\]

\[
\mathcal{M} \overset{\text{def}}{=} C_{p1}[200] \{\text{prepare, finish}\} C_{\bar{p}2}[200] \{\text{serve}\} C_{\bar{p}3}[200] \{\text{serve}\} C_{p4}[100] \{\text{serve, reset, repair}\} C_{\bar{p}5}[100] \{\text{fail}\} C_{\bar{p}6}[100]
\]
ODE extraction

- view PEPA model as high/low concentration, C_p and $C_{\bar{p}}$
ODE extraction

- view PEPA model as high/low concentration, C_p and $C_{\overline{p}}$
- construct a high/low activity graph
ODE extraction

- view PEPA model as high/low concentration, C_p and $C_{\overline{p}}$

- construct a high/low activity graph
 - node for each component C_p
 - node for each activity α
ODE extraction

- view PEPA model as high/low concentration, C_p and $C_{\overline{p}}$

- construct a high/low activity graph
 - node for each component C_p
 - node for each activity α
 - edge from component to activity if exit activity
 - edge from activity to component if entry activity
ODE extraction

- view PEPA model as high/low concentration, C_p and $C_{\overline{p}}$
- construct a high/low activity graph
 - node for each component C_p
 - node for each activity α
 - edge from component to activity if exit activity
 - edge from activity to component if entry activity
- extract ODEs
Comparison of ODEs

\[
\frac{dN(C_p, \tau)}{d\tau} = \sum_{(t, \lambda(t))} \lambda(t) \cdot \min\{N(C_{p'}, \tau)|C_{p'}(t, \lambda(t))\} - \sum_{(t, \lambda(t))} \lambda(t) \cdot \min\{N(C_{p'}, \tau)|C_{p'}(t, \lambda(t))\}
\]

\[
\frac{dm(p, \tau)}{d\tau} = \sum_{t \in \bullet p} \lambda(t) \cdot \min_{p' \in \bullet t \cap P} \{m(p', \tau)\} - \sum_{t \in \bullet p} \lambda(t) \cdot \min_{p' \in \bullet t \cap P} \{m(p', \tau)\}
\]
Comparison of ODEs

\[
\frac{dN(C_p, \tau)}{d\tau} = \sum_{(t, \lambda(t))} \lambda(t) \cdot \min\{N(C_{p'}, \tau) | C_{p'}(t, \lambda(t)) \} - \sum_{(t, \lambda(t))} \lambda(t) \cdot \min\{N(C_{p'}, \tau) | C_{p'}(t, \lambda(t)) \}
\]

\[
\frac{dm(p, \tau)}{d\tau} = \sum_{t \in \cdot p} \lambda(t) \cdot \min_{p' \in \cdot t \cap P} \{m(p', \tau)\} - \sum_{t \in \cdot p} \lambda(t) \cdot \min_{p' \in \cdot t \cap P} \{m(p', \tau)\}
\]
Comparison of ODEs

\[
\frac{dN(C_p, \tau)}{d\tau} = \sum \lambda(t). \min \{N(C_{p'}, \tau) | C_{p'} \xrightarrow{(t, \lambda(t))} \} - \sum \lambda(t). \min \{N(C_{p'}, \tau) | C_{p'} \xrightarrow{(t, \lambda(t))} \}
\]

\[
\frac{dm(p, \tau)}{d\tau} = \sum_{t \in \bullet p} \lambda(t). \min_{p' \in \bullet t \cap P} \{m(p', \tau)\} - \sum_{t \in \bullet p} \lambda(t). \min_{p' \in \bullet t \cap P} \{m(p', \tau)\}
\]
Comparison of ODEs

\[
\frac{dN(C_p, \tau)}{d\tau} = \sum_{(t, \lambda(t))} \lambda(t). \min\{N(C_{p'}, \tau) | C_{p'}(t, \lambda(t))\} - \sum_{(t, \lambda(t))} \lambda(t). \min\{N(C_{p'}, \tau) | C_{p'}(t, \lambda(t))\}
\]

- entry activity
- exit activity

\[
\frac{dm(p, \tau)}{d\tau} = \sum_{t \in \cdot p} \lambda(t). \min_{p' \in \cdot t \cap P} \{m(p', \tau)\} - \sum_{t \in \cdot p} \lambda(t). \min_{p' \in \cdot t \cap P} \{m(p', \tau)\}
\]
Comparison of ODEs

\[
\frac{dN(C_p, \tau)}{d\tau} = \sum_{(t, \lambda(t))} \lambda(t). \min\{N(C_{p'}, \tau)|C_{p'}(t, \lambda(t))\} - \sum_{(t, \lambda(t))} \lambda(t). \min\{N(C_{p'}, \tau)|C_{p'}(t, \lambda(t))\}
\]

\[
\frac{dm(p, \tau)}{d\tau} = \sum_{t \in \bullet p} \lambda(t). \min_{p' \in t \cap P} \{m(p', \tau)\} - \sum_{t \in \bullet p} \lambda(t). \min_{p' \in t \cap P} \{m(p', \tau)\}
\]
Comparison of ODEs

\[
\frac{dN(C_p, \tau)}{d\tau} = \sum_{(t, \lambda(t))} \lambda(t) \cdot \min \{ N(C_{p'}, \tau) \mid C_{p'} \xrightarrow{(t, \lambda(t))} \} - \sum_{(t, \lambda(t))} \lambda(t) \cdot \min \{ N(C_{p'}, \tau) \mid C_{p'} \xrightarrow{(t, \lambda(t))} \}
\]

\[
\frac{dm(p, \tau)}{d\tau} = \sum_{t \in \bullet p} \lambda(t) \cdot \min_{p' \in t \cap P} \{ m(p', \tau) \} - \sum_{t \in \bullet p} \lambda(t) \cdot \min_{p' \in t \cap P} \{ m(p', \tau) \}
\]
Comparison of ODEs

\[\frac{dN(C_p, \tau)}{d\tau} = \sum_{(t, \lambda(t))} \lambda(t) \cdot \min \{ N(C_{p'}, \tau) | C_{p'} \xrightarrow{(t, \lambda(t))} \} - \sum_{(t, \lambda(t))} \lambda(t) \cdot \min \{ N(C_{p'}, \tau) | C_{p'} \xrightarrow{(t, \lambda(t))} \} \]

entry activity

exit activity

\[\frac{dm(p, \tau)}{d\tau} = \sum_{t \in \cdot p} \lambda(t) \cdot \min_{p' \in \cdot t \cap P} \{ m(p', \tau) \} - \sum_{t \in \cdot p} \lambda(t) \cdot \min_{p' \in \cdot t \cap P} \{ m(p', \tau) \} \]

▶ both approaches give the same equations
Further work and conclusions

- further work
 - different approaches to finite server semantics
 - robustness of ODEs
Further work and conclusions

▶ further work
 ▶ different approaches to finite server semantics
 ▶ robustness of ODEs

▶ PEPA \rightarrow timed continuous Petri nets
Further work and conclusions

- **further work**
 - different approaches to finite server semantics
 - robustness of ODEs

- PEPA \rightarrow timed continuous Petri nets
 - ODEs are identical
Further work and conclusions

- further work
 - different approaches to finite server semantics
 - robustness of ODEs

- PEPA \rightarrow timed continuous Petri nets
 - ODEs are identical
- bounded timed continuous Petri nets \rightarrow PEPA
Further work and conclusions

- further work
 - different approaches to finite server semantics
 - robustness of ODEs

- PEPA \rightarrow timed continuous Petri nets
 - ODEs are identical

- bounded timed continuous Petri nets \rightarrow PEPA
 - ODEs are identical
Further work and conclusions

- further work
 - different approaches to finite server semantics
 - robustness of ODEs

- PEPA → timed continuous Petri nets
 - ODEs are identical

- bounded timed continuous Petri nets → PEPA
 - ODEs are identical

- ODE semantics of PEPA has infinite server semantics