Motivation	PEPA	Continuous Petri nets	Conclusions

Continuous approximation of PEPA models and Petri nets

Vashti Galpin Laboratory for Foundations of Computer Science School of Informatics University of Edinburgh

27 October 2008

Vashti Galpin, LFCS, University of Edinburgh

Continuous approximation of PEPA models and Petri nets

后

Motivation	PEPA	Continuous Petri nets	Conclusions

Outline

Motivation

PEPA

Continuous Petri nets

Transformations

Conclusions

Vashti Galpin, LFCS, University of Edinburgh

Continuous approximation of PEPA models and Petri nets

白

Motivation	PEPA	Continuous Petri nets	Conclusions

Motivation

large systems and state space explosion

Vashti Galpin, LFCS, University of Edinburgh

Continuous approximation of PEPA models and Petri nets

Motivation	PEPA	Continuous Petri nets	Conclusions
Martal			

Motivation

- large systems and state space explosion
 - use approximation to avoid

Motivation	PEPA	Continuous Petri nets	Conclusions
Motivation			

- large systems and state space explosion
 - use approximation to avoid
- ▶ PEPA, continuous approximation using ODEs [Hillston 2005]
 - many identical components
 - equations for $dN(D, \tau)/d\tau$

Motivation	PEPA	Continuous Petri nets	Conclusions
Motivation			

- large systems and state space explosion
 - use approximation to avoid
- PEPA, continuous approximation using ODEs [Hillston 2005]
 - many identical components
 - equations for $dN(D, \tau)/d\tau$
- ▶ timed continuous Petri nets [Alla & David, Recalde & Silva]
 - transitions have rates
 - markings take values from positive reals
 - large numbers of clients and servers
 - equations for $dm(p, \tau)/d\tau$

后

Motivation	PEPA	Continuous Petri nets	Conclusions
Motivation			

- large systems and state space explosion
 - use approximation to avoid
- PEPA, continuous approximation using ODEs [Hillston 2005]
 - many identical components
 - equations for $dN(D, \tau)/d\tau$
- ▶ timed continuous Petri nets [Alla & David, Recalde & Silva]
 - transitions have rates
 - markings take values from positive reals
 - large numbers of clients and servers
 - equations for $dm(p, \tau)/d\tau$
- how do these compare?

f,

Motivation	PEPA	Continuous Petri nets	Conclusions
Motivation			

- large systems and state space explosion
 - use approximation to avoid
- ▶ PEPA, continuous approximation using ODEs [Hillston 2005]
 - many identical components
 - equations for $dN(D, \tau)/d\tau$
- ▶ timed continuous Petri nets [Alla & David, Recalde & Silva]
 - transitions have rates
 - markings take values from positive reals
 - large numbers of clients and servers
 - equations for $dm(p,\tau)/d\tau$
- how do these compare?
- what are the server semantics of PEPA?

Motivation	PEPA	Continuous Petri nets	Conclusions
PEPA			

- Performance Evaluation Process Algebra [Hillston 1996]
 - stochastic, action durations from exponential distribution
 - syntax, structured operational semantics
 - continuous time Markov chain (CTMC) to describe dynamic behaviour

Motivation	PEPA	Continuous Petri nets	Conclusions
PEPA			

- Performance Evaluation Process Algebra [Hillston 1996]
 - stochastic, action durations from exponential distribution
 - syntax, structured operational semantics
 - continuous time Markov chain (CTMC) to describe dynamic behaviour
- restricted PEPA syntax

Motivation	PEPA	Continuous Petri nets	Transformations	Conclusions
PEPA				

- ▶ Performance Evaluation Process Algebra [Hillston 1996]
 - stochastic, action durations from exponential distribution
 - syntax, structured operational semantics
 - continuous time Markov chain (CTMC) to describe dynamic behaviour
- restricted PEPA syntax
 - ▶ sequential component $S ::= (\alpha, r) \cdot S \mid S + S \mid C_s$
 - sequential constant $C_s \stackrel{def}{=} S$

后

Motivation	PEPA	Continuous Petri nets	Conclusions
PEPA			

- ▶ Performance Evaluation Process Algebra [Hillston 1996]
 - stochastic, action durations from exponential distribution
 - syntax, structured operational semantics
 - continuous time Markov chain (CTMC) to describe dynamic behaviour
- restricted PEPA syntax
 - sequential component $S ::= (\alpha, r) \cdot S \mid S + S \mid C_s$
 - sequential constant $C_s \stackrel{def}{=} S$
 - parallel cooperation with multiway synchronisation

$$C_1[n_1] \bowtie_{L_1} C_2[n_2] \bowtie_{L_2} \dots \bowtie_{L_{m-1}} C_m[n_m]$$

• C_i 's do not synchronise, C_i 's and C_j 's must synchronise

f,

Motivation	PEPA	Continuous Petri nets	Conclusions
PEPA			

- ▶ Performance Evaluation Process Algebra [Hillston 1996]
 - stochastic, action durations from exponential distribution
 - syntax, structured operational semantics
 - continuous time Markov chain (CTMC) to describe dynamic behaviour
- restricted PEPA syntax
 - sequential component $S ::= (\alpha, r) \cdot S \mid S + S \mid C_s$
 - sequential constant $C_s \stackrel{def}{=} S$
 - parallel cooperation with multiway synchronisation

$$C_1[n_1] \bowtie_{L_1} C_2[n_2] \bowtie_{L_2} \dots \bowtie_{L_{m-1}} C_m[n_m]$$

- C_i 's do not synchronise, C_i 's and C_j 's must synchronise
- identical rates for shared activities

f,

many identical sequential components

Vashti Galpin, LFCS, University of Edinburgh

Continuous approximation of PEPA models and Petri nets

Motivation	PEPA	Continuous Petri nets	Conclusions
ODE sen	nantics of	PEPA	

- many identical sequential components
 - each sequential component may have a number of derivatives

$$A \stackrel{\text{\tiny def}}{=} (a_1, r_1).B + (a_2, r_2).C \quad B \stackrel{\text{\tiny def}}{=} (b, s).A \quad C \stackrel{\text{\tiny def}}{=} (c, t).A$$

- many identical sequential components
- each sequential component may have a number of derivatives

$$A \stackrel{\scriptscriptstyle def}{=} (a_1, r_1).B + (a_2, r_2).C \quad B \stackrel{\scriptscriptstyle def}{=} (b, s).A \quad C \stackrel{\scriptscriptstyle def}{=} (c, t).A$$

• express states in numerical vector form (n_1, \ldots, n_m)

- many identical sequential components
- each sequential component may have a number of derivatives

$$A \stackrel{\scriptscriptstyle def}{=} (a_1, r_1).B + (a_2, r_2).C \quad B \stackrel{\scriptscriptstyle def}{=} (b, s).A \quad C \stackrel{\scriptscriptstyle def}{=} (c, t).A$$

- express states in numerical vector form (n_1, \ldots, n_m)
- number of copies of each component/derivative

- many identical sequential components
- each sequential component may have a number of derivatives

$$A \stackrel{\text{\tiny def}}{=} (a_1, r_1).B + (a_2, r_2).C \quad B \stackrel{\text{\tiny def}}{=} (b, s).A \quad C \stackrel{\text{\tiny def}}{=} (c, t).A$$

- express states in numerical vector form (n_1, \ldots, n_m)
- number of copies of each component/derivative
- transitions update the vector

$$\begin{array}{ccc} A & \xrightarrow{(a_1,r_1)} & B \\ \left(\mathcal{N}(A), \mathcal{N}(B), \mathcal{N}(C) \right) & \xrightarrow{(a_1,r_1)} & \left(\mathcal{N}(A) - 1, \mathcal{N}(B) + 1, \mathcal{N}(C) \right) \end{array}$$

- continuous approximation of changes in numbers
- consider what actions lead to change in numbers

- continuous approximation of changes in numbers
- consider what actions lead to change in numbers

- continuous approximation of changes in numbers
- consider what actions lead to change in numbers

- continuous approximation of changes in numbers
- consider what actions lead to change in numbers

Vashti Galpin, LFCS, University of Edinburgh

Continuous approximation of PEPA models and Petri nets

- continuous approximation of changes in numbers
- consider what actions lead to change in numbers

Change in number of copies of component D

$$\frac{dN(D,\tau)}{d\tau} = \sum_{\substack{(\alpha,r) \\ \text{entry} \\ \text{activity}}} r \times \min\{N(C,\tau) \mid C \xrightarrow{(\alpha,r)}\}$$

$$- \sum_{\substack{(\alpha,r) \\ \text{exit} \\ \text{activity}}} r \times \min\{N(C,\tau) \mid C \xrightarrow{(\alpha,r)}\}$$

Vashti Galpin, LFCS, University of Edinburgh

Continuous approximation of PEPA models and Petri nets

Change in number of copies of component D

$$\frac{dN(D,\tau)}{d\tau} = \sum_{\substack{(\alpha,r) \\ \text{entry} \\ \text{activity}}} r \times \min\{N(C,\tau) \mid C \xrightarrow{(\alpha,r)}\}$$

$$- \sum_{\substack{(\alpha,r) \\ \text{exit} \\ \text{activity}}} r \times \min\{N(C,\tau) \mid C \xrightarrow{(\alpha,r)}\}$$

can express ODEs as activity graph and activity matrix

Continuous approximation of PEPA models and Petri nets

<u>ج</u>

Motivation	PEPA	Continuous Petri nets	Conclusions
Activity g	raph		

graph nodes are components and activities

Motivation	PEPA	Continuous Petri nets	Conclusions
	eve e la		
ACTIVITY	graph		

- graph nodes are components and activities
- edges are added

a

Motivation	PEPA	Continuous Petri nets	Conclusions
Activity	graph		

- graph nodes are components and activities
- edges are added
 - from a component to an exit activity for that component

Motivation	PEPA	Continuous Petri nets	Conclusions
Activity	graph		

- graph nodes are components and activities
- edges are added
 - from a component to an exit activity for that component
 - from an entry activity for a component to that component

Motivation	PEPA	Continuous Petri nets	Conclusions
Activity	graph		

- graph nodes are components and activities
- edges are added
 - from a component to an exit activity for that component
 - from an entry activity for a component to that component

▶ places *P*, transitions *T*, disjoint

Vashti Galpin, LFCS, University of Edinburgh

Continuous approximation of PEPA models and Petri nets

Motivation	PEPA	Continuous Petri nets	Conclusions

- places P, transitions T, disjoint
- ordinary Petri nets

 $Pre: P \times T \to \{0,1\} \qquad Post: P \times T \to \{0,1\}$

Motivation	PEPA	Continuous Petri nets	Conclusions

- ▶ places *P*, transitions *T*, disjoint
- ordinary Petri nets

$$Pre: P \times T \to \{0,1\} \qquad Post: P \times T \to \{0,1\}$$

presets and postsets

$$\begin{aligned} & \textit{Pre}(p,t) = 1 \quad \Leftrightarrow \quad p \in {}^{\bullet}t \quad t \in p^{\bullet} \\ & \textit{Post}(p,t) = 1 \quad \Leftrightarrow \quad p \in t^{\bullet} \quad t \in {}^{\bullet}p \end{aligned}$$

<u>ج</u>

Motivation	PEPA		Continuous Petri nets	Conclusions
<u> </u>		_		

- ▶ places *P*, transitions *T*, disjoint
- ordinary Petri nets

$$Pre: P \times T \to \{0,1\} \qquad Post: P \times T \to \{0,1\}$$

presets and postsets

$$\begin{aligned} & \textit{Pre}(p,t) = 1 \iff p \in {}^{\bullet}t \quad t \in p^{\bullet} \\ & \textit{Post}(p,t) = 1 \iff p \in t^{\bullet} \quad t \in {}^{\bullet}p \end{aligned}$$

• cost matrix C = Post - Pre

Motivation	PEPA	Continuous Petri nets	Conclusions
		D	

- ▶ places *P*, transitions *T*, disjoint
- ordinary Petri nets

$$Pre: P \times T \to \{0,1\} \qquad Post: P \times T \to \{0,1\}$$

presets and postsets

$$\begin{aligned} & \textit{Pre}(p,t) = 1 \iff p \in {}^{\bullet}t \quad t \in p^{\bullet} \\ & \textit{Post}(p,t) = 1 \iff p \in t^{\bullet} \quad t \in {}^{\bullet}p \end{aligned}$$

• cost matrix C = Post - Pre

• firing rates
$$\lambda : T \to (0,\infty)$$

Motivation	PEPA	Continuous Petri nets	Conclusions
_ .			
Dynamic	: behaviou	ir	

• marking $M: P \times Time \rightarrow [0, \infty)$
Motivation	PEPA	Continuous Petri nets	Conclusions
_			
Dynamic	behaviou	r	

- marking $M: P \times Time \rightarrow [0, \infty)$
- t is enabled at τ if places preceding t have nonzero marking

Motivation	PEPA	Continuous Petri nets	Conclusions
. .			
Dynamic	c behaviou	r	

- marking $M: P \times Time \rightarrow [0, \infty)$
- t is enabled at τ if places preceding t have nonzero marking
- enabling degree of t: minimum value of markings at places preceding t,

$$enab(t,\tau) = \min_{p \in {}^{\bullet}t} \big\{ m(p,\tau) \big\}$$

Motivation	PEPA	Continuous Petri nets	Conclusions
-			
Dynamic	: behaviou	r	

- marking $M: P \times Time \rightarrow [0, \infty)$
 - t is enabled at τ if places preceding t have nonzero marking
 - enabling degree of t: minimum value of markings at places preceding t,

$$enab(t,\tau) = \min_{p \in \bullet t} \{m(p,\tau)\}$$

- infinite server semantics
 - assume many clients and many servers
 - t fires $enab(t, \tau)$

Vashti Galpin, LFCS, University of Edinburgh

Continuous approximation of PEPA models and Petri nets

Change in marking at place *p*

Vashti Galpin, LFCS, University of Edinburgh

Continuous approximation of PEPA models and Petri nets

Change in marking at place p

fundamental equation for Petri nets

$$m(\cdot,\tau+\delta\tau)=m(\cdot,\tau)+C\cdot\sigma(\tau)$$

change in marking of place p

$$\frac{dm(p,\tau)}{d\tau} = \sum_{j=1}^{n} C(p,t_j) . \lambda(t_j) . \min_{p' \in \bullet t_j} \{m(p',\tau)\}$$
$$= \sum_{t \in \bullet p} \lambda(t) . \min_{p' \in \bullet t} \{m(p',\tau)\}$$
$$- \sum_{t \in p^{\bullet}} \lambda(t) . \min_{p' \in \bullet t} \{m(p',\tau)\}$$

Continuous approximation of PEPA models and Petri nets

PEPA model to continuous Petri net

- translate a PEPA model into a timed continuous Petri net
- example clients and servers

$$C \stackrel{\text{def}}{=} (serv_1, s_1).C' + (serv_2, s_2).C'$$

$$C' \stackrel{\text{def}}{=} (do, d).C$$

$$\begin{array}{rcl} S_1 & \stackrel{\scriptscriptstyle def}{=} & (serv_1, s_1).S_1' & S_2 & \stackrel{\scriptscriptstyle def}{=} & (serv_2, s_2).S_2' \\ S_1' & \stackrel{\scriptscriptstyle def}{=} & (reset_1, r_1).S_1 & S_2' & \stackrel{\scriptscriptstyle def}{=} & (reset_2, r_2).S_2 \end{array}$$

$$Sys \stackrel{def}{=} \left(C[100] \underset{\{serv_1, serv_2\}}{\boxtimes} \left(S_1[50] \parallel S_2[50] \right) \right)$$

Continuous approximation of PEPA models and Petri nets

句

Motivation	PEPA	Continuous Petri nets	Transformations	Conclusions
ODEs				

$$\frac{dN(C,\tau)}{d\tau} = +d.N(C',\tau) - s_1.\min(N(C,\tau),N(S_1,\tau)) - s_2.\min(N(C,\tau),N(S_2,\tau)) \frac{dN(C',\tau)}{d\tau} = -d.N(C',\tau) + s_1.\min(N(C,\tau),N(S_1,\tau)) + s_2.\min(N(C,\tau),N(S_2,\tau))$$

Motivation	PEPA	Continuous Petri nets	Transformations	Conclusions
005				
ODEs				

$$\frac{dN(C,\tau)}{d\tau} = +d.N(C',\tau) - s_1.\min(N(C,\tau),N(S_1,\tau)) -s_2.\min(N(C,\tau),N(S_2,\tau)) \frac{dN(C',\tau)}{d\tau} = -d.N(C',\tau) + s_1.\min(N(C,\tau),N(S_1,\tau)) +s_2.\min(N(C,\tau),N(S_2,\tau))$$

$$\frac{dN(S_i,\tau)}{d\tau} = r_i \cdot N(S_i') - s_i \cdot \min(N(C,\tau), N(S_i,\tau)) \quad i = 1, 2$$

$$\frac{dN(S_i',\tau)}{d\tau} = s_i \cdot \min(N(C,\tau), N(S_i,\tau)) - r_i \cdot N(S_i') \quad i = 1, 2$$

Vashti Galpin, LFCS, University of Edinburgh

Continuous approximation of PEPA models and Petri nets

Motivation	PEPA	Continuous Petri nets	Transformations	Conclusions

Activity graph

activities and components

Vashti Galpin, LFCS, University of Edinburgh

Continuous approximation of PEPA models and Petri nets

Motivation	PEPA	Continuous Petri nets	Transformations	Conclusions

Petri net

activities become transitions and components become places

Vashti Galpin, LFCS, University of Edinburgh

Continuous approximation of PEPA models and Petri nets

activities become transitions and components become places

Petri net (continued)

- activities become transitions and components become places
- rate of transition is rate of activity

Motivation	PEPA	Continuous Petri nets	Transformations	Conclusions
Petri net	(continue	ed)		

- Feth het (continued)
 - activities become transitions and components become places
 - rate of transition is rate of activity
 - $Post(p, t) = 1 \Leftrightarrow t \in {}^{\bullet}p \Leftrightarrow t$ is an entry activity of p

Motivation PEPA Continuous Petri nets Transformations Conclusions
Petri net (continued)

- > activities become transitions and components become places
- rate of transition is rate of activity
- $Post(p, t) = 1 \Leftrightarrow t \in {}^{\bullet}p \Leftrightarrow t$ is an entry activity of p
- $Pre(p, t) = 1 \Leftrightarrow t \in p^{\bullet} \Leftrightarrow t$ is an exit activity of p

Motivation PEPA Continuous Petri nets Transformations Conclusions
Petri net (continued)

- activities become transitions and components become places
- rate of transition is rate of activity
- $Post(p, t) = 1 \Leftrightarrow t \in {}^{\bullet}p \Leftrightarrow t$ is an entry activity of p
- $Pre(p, t) = 1 \Leftrightarrow t \in p^{\bullet} \Leftrightarrow t$ is an exit activity of p
- a marking value of x at p is the same as x copies of p

 $m(p,\tau) = N(p,\tau)$

Motivation PEPA Continuous Petri nets Transformations Conclusions
Petri net (continued)

- activities become transitions and components become places
- rate of transition is rate of activity
- $Post(p, t) = 1 \Leftrightarrow t \in {}^{\bullet}p \Leftrightarrow t$ is an entry activity of p
- $Pre(p, t) = 1 \Leftrightarrow t \in p^{\bullet} \Leftrightarrow t$ is an exit activity of p
- a marking value of x at p is the same as x copies of p

 $m(p,\tau)=N(p,\tau)$

• initial marking m(p,0) = N(p,0) for each p

$$\frac{dm(p,\tau)}{d\tau} = \sum_{t \in \bullet p} \lambda(t) \cdot \min_{p' \in \bullet t} \{m(p',\tau)\} - \sum_{t \in p^{\bullet}} \lambda(t) \cdot \min_{p' \in \bullet t} \{m(p',\tau)\}$$

$$\frac{dN(D,\tau)}{d\tau} = \sum_{\substack{(\alpha,r) \\ \text{entry} \\ \text{activity}}} r.\min\{N(C,\tau) \mid C \xrightarrow{(\alpha,r)} -\sum_{\substack{(\alpha,r) \\ \text{exit} \\ \text{activity}}} r.\min\{N(C,\tau) \mid C \xrightarrow{(\alpha,r)} \}$$

Vashti Galpin, LFCS, University of Edinburgh

Continuous approximation of PEPA models and Petri nets

$$\frac{dm(p,\tau)}{d\tau} = \sum_{t \in \bullet_p} \lambda(t) \cdot \min_{p' \in \bullet_t} \{m(p',\tau)\} - \sum_{t \in p^\bullet} \lambda(t) \cdot \min_{p' \in \bullet_t} \{m(p',\tau)\}$$

$$\frac{dN(D,\tau)}{d\tau} = \sum_{\substack{(\alpha,r) \\ \text{entry} \\ \text{activity}}} r.\min\{N(C,\tau) \mid C \xrightarrow{(\alpha,r)} -\sum_{\substack{(\alpha,r) \\ \text{exit} \\ \text{activity}}} r.\min\{N(C,\tau) \mid C \xrightarrow{(\alpha,r)} \}$$

Vashti Galpin, LFCS, University of Edinburgh

Continuous approximation of PEPA models and Petri nets

$$\frac{dm(p,\tau)}{d\tau} = \sum_{t \in \bullet_p} \lambda(t) \cdot \min_{p' \in \bullet_t} \{m(p',\tau)\} - \sum_{t \in p^\bullet} \lambda(t) \cdot \min_{p' \in \bullet_t} \{m(p',\tau)\}$$

$$\frac{dN(D,\tau)}{d\tau} = \sum_{\substack{(\alpha,r) \\ \text{entry} \\ \text{activity}}} r.\min\{N(C,\tau) \mid C \xrightarrow{(\alpha,r)} -\sum_{\substack{(\alpha,r) \\ \text{exit} \\ \text{activity}}} r.\min\{N(C,\tau) \mid C \xrightarrow{(\alpha,r)} \}$$

Vashti Galpin, LFCS, University of Edinburgh

Continuous approximation of PEPA models and Petri nets

$$\frac{dm(p,\tau)}{d\tau} = \sum_{t \in \bullet_p} \lambda(t) \cdot \min_{p' \in \bullet_t} \{m(p',\tau)\} - \sum_{t \in p^\bullet} \lambda(t) \cdot \min_{p' \in \bullet_t} \{m(p',\tau)\}$$

$$\frac{dN(D,\tau)}{d\tau} = \sum_{\substack{(\alpha,r) \\ \text{entry} \\ \text{activity}}} r.\min\{N(C,\tau) \mid C \xrightarrow{(\alpha,r)} -\sum_{\substack{(\alpha,r) \\ \text{exit} \\ \text{activity}}} r.\min\{N(C,\tau) \mid C \xrightarrow{(\alpha,r)} \}$$

$$\frac{dm(p,\tau)}{d\tau} = \sum_{t \in \bullet p} \lambda(t) \cdot \min_{p' \in \bullet t} \{m(p',\tau)\} - \sum_{t \in p^{\bullet}} \lambda(t) \cdot \min_{p' \in \bullet t} \{m(p',\tau)\}$$

$$\frac{dN(D,\tau)}{d\tau} = \sum_{\substack{(\alpha,r) \\ \text{entry} \\ \text{activity}}} r.\min\{N(C,\tau) \mid C \xrightarrow{(\alpha,r)} -\sum_{\substack{(\alpha,r) \\ \text{exit} \\ \text{exit}}} r.\min\{N(C,\tau) \mid C \xrightarrow{(\alpha,r)} \}$$

Vashti Galpin, LFCS, University of Edinburgh

Continuous approximation of PEPA models and Petri nets

$$\frac{dm(p,\tau)}{d\tau} = \sum_{t \in \bullet_p} \lambda(t) \cdot \min_{p' \in \bullet_t} \{m(p',\tau)\} - \sum_{t \in p^\bullet} \lambda(t) \cdot \min_{p' \in \bullet_t} \{m(p',\tau)\}$$

$$\frac{dN(D,\tau)}{d\tau} = \sum_{\substack{(\alpha,r) \\ \text{entry} \\ \text{activity}}} r.\min\{N(C,\tau) \mid C \xrightarrow{(\alpha,r)} -\sum_{\substack{(\alpha,r) \\ \text{exit} \\ \text{activity}}} r.\min\{N(C,\tau) \mid C \xrightarrow{(\alpha,r)} \}$$

$$\frac{dm(p,\tau)}{d\tau} = \sum_{t \in \bullet_p} \lambda(t) \cdot \min_{p' \in \bullet_t} \{m(p',\tau)\} - \sum_{t \in p^\bullet} \lambda(t) \cdot \min_{p' \in \bullet_t} \{m(p',\tau)\}$$

$$\frac{dN(D,\tau)}{d\tau} = \sum_{\substack{(\alpha,r) \\ \text{entry} \\ \text{activity}}} r.\min\{N(C,\tau) \mid C \xrightarrow{(\alpha,r)} -\sum_{\substack{(\alpha,r) \\ \text{exit} \\ \text{exit}}} r.\min\{N(C,\tau) \mid C \xrightarrow{(\alpha,r)} \}$$

both approaches give the same equations

transformation of *bounded* net to PEPA model

Vashti Galpin, LFCS, University of Edinburgh

Continuous approximation of PEPA models and Petri nets

- transformation of *bounded* net to PEPA model
- concept of implicit/complementary place: marking of p does not change enabling degree of any t

$$m(p,\tau) \ge \min_{p' \in \bullet t \setminus \{p\}} \{m(p',\tau)\} = enab(t,\tau)$$

- transformation of *bounded* net to PEPA model
- concept of implicit/complementary place: marking of p does not change enabling degree of any t

$$m(p,\tau) \geq \min_{p' \in {}^{\bullet}t \setminus \{p\}} \{m(p',\tau)\} = enab(t,\tau)$$

▶ addition of complementary places: for each p, add new \overline{p}

- transformation of *bounded* net to PEPA model
- concept of implicit/complementary place: marking of p does not change enabling degree of any t

$$m(p,\tau) \geq \min_{p' \in \bullet t \setminus \{p\}} \{m(p',\tau)\} = enab(t,\tau)$$

- ▶ addition of complementary places: for each p, add new \overline{p}
 - for every arc from p to any t, add an arc from t to \overline{p}
 - for every arc from t to any p, add an arc from \overline{p} to t

后

- transformation of *bounded* net to PEPA model
- concept of implicit/complementary place: marking of p does not change enabling degree of any t

$$m(p,\tau) \geq \min_{p' \in \bullet t \setminus \{p\}} \{m(p',\tau)\} = enab(t,\tau)$$

▶ addition of complementary places: for each p, add new \overline{p}

- for every arc from p to any t, add an arc from t to \overline{p}
- for every arc from t to any p, add an arc from \overline{p} to t
- $m(\overline{p},0) = b(p) m(p,0)$ where b(p) is bound for p

- transformation of *bounded* net to PEPA model
- concept of implicit/complementary place: marking of p does not change enabling degree of any t

$$m(p,\tau) \geq \min_{p' \in \bullet t \setminus \{p\}} \{m(p',\tau)\} = enab(t,\tau)$$

▶ addition of complementary places: for each p, add new \overline{p}

- for every arc from p to any t, add an arc from t to \overline{p}
- for every arc from t to any p, add an arc from \overline{p} to t
- $m(\overline{p},0) = b(p) m(p,0)$ where b(p) is bound for p
- ODEs remain unchanged by addition of complementary places

$$\min_{p'\in^{\bullet}t} \{m(p',\tau)\} = \min_{p'\in^{\bullet}t \cap P} \{m(p',\tau)\}$$

f,

Motivation	PEPA	Continuous Petri nets	Transformations	Conclusions
Complen	nentation			
► e×	ample			

Vashti Galpin, LFCS, University of Edinburgh

Continuous approximation of PEPA models and Petri nets

Motivation	PEPA	Continuous Petri nets	Transformations	Conclusions
Complem	entation			
► ex	ample			

- ▶ use algorithm by Hillston, Recalde, Ribaudo and Silva [2001]
- converts stochastic Petri net to PEPA model

- use algorithm by Hillston, Recalde, Ribaudo and Silva [2001]
- converts stochastic Petri net to PEPA model
 - convert each pair p and \overline{p} into a sequential component

$$C_{p} \stackrel{\text{\tiny def}}{=} \sum_{t \in p^{\bullet}} (t, \lambda(t)).C_{\overline{p}} \qquad C_{\overline{p}} \stackrel{\text{\tiny def}}{=} \sum_{t \in {}^{\bullet}p} (t, \lambda(t)).C_{p}$$

- use algorithm by Hillston, Recalde, Ribaudo and Silva [2001]
- converts stochastic Petri net to PEPA model
 - convert each pair p and \overline{p} into a sequential component

$$C_{p} \stackrel{\text{\tiny def}}{=} \sum_{t \in p^{\bullet}} (t, \lambda(t)). C_{\overline{p}} \qquad C_{\overline{p}} \stackrel{\text{\tiny def}}{=} \sum_{t \in {}^{\bullet}p} (t, \lambda(t)). C_{p}$$

for each p define model component

$$M_p \stackrel{\text{\tiny def}}{=} C_p || \dots || C_p || C_{\overline{p}} || \dots || C_{\overline{p}}$$

with m(p,0) copies of C_p and $m(\overline{p},0)$ copies of $C_{\overline{p}}$.

- use algorithm by Hillston, Recalde, Ribaudo and Silva [2001]
- converts stochastic Petri net to PEPA model
 - convert each pair p and \overline{p} into a sequential component

$$C_{p} \stackrel{\text{\tiny def}}{=} \sum_{t \in p^{\bullet}} (t, \lambda(t)). C_{\overline{p}} \qquad C_{\overline{p}} \stackrel{\text{\tiny def}}{=} \sum_{t \in {}^{\bullet}p} (t, \lambda(t)). C_{p}$$

for each p define model component

$$M_p \stackrel{\text{\tiny def}}{=} C_p || \dots || C_p || C_{\overline{p}} || \dots || C_{\overline{p}}$$

with m(p,0) copies of C_p and $m(\overline{p},0)$ copies of $C_{\overline{p}}$.

recursively build up synchronisation sets and system equation

Construction of PEPA model (cont.)

example

$$C_{p_1} \stackrel{def}{=} (prepare, p).C_{\overline{p}_1} \quad C_{\overline{p}_1} \stackrel{def}{=} (finish, f).C_{p_1}$$

Vashti Galpin, LFCS, University of Edinburgh
Construction of PEPA model (cont.)

example

$$\begin{array}{rcl} C_{p_1} & \stackrel{def}{=} & (prepare, p).C_{\overline{p}_1} & C_{\overline{p}_1} & \stackrel{def}{=} & (finish, f).C_{p_1} \\ C_{p_2} & \stackrel{def}{=} & (serve, s).C_{\overline{p}_2} & C_{\overline{p}_2} & \stackrel{def}{=} & (prepare, p).C_{p_2} \end{array}$$

Construction of PEPA model (cont.)

example

$$\begin{array}{rcl} C_{p_1} & \stackrel{def}{=} & (prepare, p).C_{\overline{p}_1} & C_{\overline{p}_1} & \stackrel{def}{=} & (finish, f).C_{p_1} \\ C_{p_2} & \stackrel{def}{=} & (serve, s).C_{\overline{p}_2} & C_{\overline{p}_2} & \stackrel{def}{=} & (prepare, p).C_{p_2} \\ C_{p_3} & \stackrel{def}{=} & (finish, f).C_{\overline{p}_3} & C_{\overline{p}_3} & \stackrel{def}{=} & (serve, s).C_{p_3} \\ C_{p_4} & \stackrel{def}{=} & (serve, s).C_{\overline{p}_4} & C_{\overline{p}_4} & \stackrel{def}{=} & (reset, r).C_{p_4} + (repair, e).C_{p_4} \\ C_{p_5} & \stackrel{def}{=} & (reset, r).C_{\overline{p}_5} + (fail, a).C_{\overline{p}_5} & C_{\overline{p}_5} & \stackrel{def}{=} & (serve, s).C_{p_5} \\ C_{p_6} & \stackrel{def}{=} & (repair, e).C_{\overline{p}_6} & C_{\overline{p}_6} & \stackrel{def}{=} & (fail, a).C_{p_6} \end{array}$$

Vashti Galpin, LFCS, University of Edinburgh

Continuous approximation of PEPA models and Petri nets

Construction of PEPA model (cont.)

example

$$\begin{array}{rcl} C_{p_1} & \stackrel{def}{=} & (prepare, p).C_{\overline{p}_1} & C_{\overline{p}_1} & \stackrel{def}{=} & (finish, f).C_{p_1} \\ C_{p_2} & \stackrel{def}{=} & (serve, s).C_{\overline{p}_2} & C_{\overline{p}_2} & \stackrel{def}{=} & (prepare, p).C_{p_2} \\ C_{p_3} & \stackrel{def}{=} & (finish, f).C_{\overline{p}_3} & C_{\overline{p}_3} & \stackrel{def}{=} & (serve, s).C_{p_3} \\ C_{p_4} & \stackrel{def}{=} & (serve, s).C_{\overline{p}_4} & C_{\overline{p}_4} & \stackrel{def}{=} & (reset, r).C_{p_4} + (repair, e).C_{p_4} \\ C_{p_5} & \stackrel{def}{=} & (reset, r).C_{\overline{p}_5} + (fail, a).C_{\overline{p}_5} & C_{\overline{p}_5} & \stackrel{def}{=} & (serve, s).C_{p_5} \\ C_{p_6} & \stackrel{def}{=} & (repair, e).C_{\overline{p}_6} & C_{\overline{p}_6} & \stackrel{def}{=} & (fail, a).C_{p_6} \end{array}$$

$$\mathcal{M} \stackrel{\text{def}}{=} C_{p_1}[200] \underset{\{\text{prepare, finish}\}}{\bowtie} C_{\overline{p}_2}[200] \underset{\{\text{serve}\}}{\bowtie} C_{\overline{p}_3}[200] \underset{\{\text{serve}\}}{\bowtie} \\ C_{p_4}[100] \underset{\{\text{serve, reset, repair}\}}{\bowtie} C_{\overline{p}_5}[100] \underset{\{\text{fail}\}}{\eqsim} C_{\overline{p}_6}[100]$$

Continuous approximation of PEPA models and Petri nets

Motivation	PEPA	Continuous Petri nets	Transformations	Conclusions

▶ view PEPA model as high/low concentration, C_p and $C_{\overline{p}}$

Motivation	PEPA	Continuous Petri nets	Transformations	Conclusions

- ▶ view PEPA model as high/low concentration, C_p and $C_{\overline{p}}$
- construct a high/low activity graph

句

Motivation	PEPA	Continuous Petri nets	Transformations	Conclusions

- ▶ view PEPA model as high/low concentration, C_p and $C_{\overline{p}}$
- construct a high/low activity graph
 - node for each component C_p
 - \blacktriangleright node for each activity α

Motivation	PEPA	Continuous Petri nets	Transformations	Conclusions

- ▶ view PEPA model as high/low concentration, C_p and $C_{\overline{p}}$
- construct a high/low activity graph
 - node for each component C_p
 - node for each activity α
 - edge from component to activity if exit activity
 - edge from activity to component if entry activity

Motivation	PEPA	Continuous Petri nets	Transformations	Conclusions

- ▶ view PEPA model as high/low concentration, C_p and $C_{\overline{p}}$
- construct a high/low activity graph
 - node for each component C_p
 - node for each activity α
 - edge from component to activity if exit activity
 - edge from activity to component if entry activity

extract ODEs

后

$$\frac{dN(C_{p},\tau)}{d\tau} = \sum_{\substack{(t,\lambda(t))\\ \text{entry}\\ \text{activity}}} \lambda(t) \cdot \min\{N(C_{p'},\tau) | C_{p'} \stackrel{(t,\lambda(t))}{\longrightarrow}\} - \sum_{\substack{(t,\lambda(t))\\ \text{exit}\\ \text{activity}}} \lambda(t) \cdot \min\{N(C_{p'},\tau) | C_{p'} \stackrel{(t,\lambda(t))}{\longrightarrow}\}$$

$$\frac{dm(p,\tau)}{d\tau} = \sum_{t \in \bullet_{p}} \lambda(t) \cdot \min_{p' \in \bullet_{t} \cap P} \{m(p',\tau)\} \qquad -\sum_{t \in p^{\bullet}} \lambda(t) \cdot \min_{p' \in \bullet_{t} \cap P} \{m(p',\tau)\}$$

Vashti Galpin, LFCS, University of Edinburgh

Continuous approximation of PEPA models and Petri nets

$$\frac{dN(C_{p},\tau)}{d\tau} = \sum_{\substack{(t,\lambda(t))\\ \text{entry}\\ \text{activity}}} \lambda(t) \cdot \min\{N(C_{p'},\tau) | C_{p'} \stackrel{(t,\lambda(t))}{\longrightarrow}\} - \sum_{\substack{(t,\lambda(t))\\ \text{exit}\\ \text{activity}}} \lambda(t) \cdot \min\{N(C_{p'},\tau) | C_{p'} \stackrel{(t,\lambda(t))}{\longrightarrow}\}$$

$$\frac{dm(p,\tau)}{d\tau} = \sum_{t \in \bullet_{p}} \lambda(t) \cdot \min_{p' \in \bullet_{t} \cap P} \{m(p',\tau)\} \qquad -\sum_{t \in p^{\bullet}} \lambda(t) \cdot \min_{p' \in \bullet_{t} \cap P} \{m(p',\tau)\}$$

Vashti Galpin, LFCS, University of Edinburgh

Continuous approximation of PEPA models and Petri nets

$$\frac{dN(C_{p},\tau)}{d\tau} = \sum_{\substack{(t,\lambda(t))\\ \text{entry}\\ \text{activity}}} \lambda(t) \cdot \min\{N(C_{p'},\tau) | C_{p'} \stackrel{(t,\lambda(t))}{\longrightarrow}\} - \sum_{\substack{(t,\lambda(t))\\ \text{exit}\\ \text{activity}}} \lambda(t) \cdot \min\{N(C_{p'},\tau) | C_{p'} \stackrel{(t,\lambda(t))}{\longrightarrow}\}$$

$$\frac{dm(p,\tau)}{d\tau} = \sum_{t \in \bullet_{p}} \lambda(t) \lim_{p' \in \bullet_{t} \cap P} \{m(p',\tau)\} \qquad -\sum_{t \in p^{\bullet}} \lambda(t) \lim_{p' \in \bullet_{t} \cap P} \{m(p',\tau)\}$$

Vashti Galpin, LFCS, University of Edinburgh

Continuous approximation of PEPA models and Petri nets

$$\frac{dN(C_{p},\tau)}{d\tau} = \sum_{\substack{(t,\lambda(t))\\ \text{entry}\\ \text{activity}}} \lambda(t) \cdot \min\{N(C_{p'},\tau) | C_{p'}^{(t,\lambda(t))} \} - \sum_{\substack{(t,\lambda(t))\\ \text{exit}\\ \text{activity}}} \lambda(t) \cdot \min\{N(C_{p'},\tau) | C_{p'}^{(t,\lambda(t))} \}$$

$$\frac{dm(p,\tau)}{d\tau} = \sum_{t \in \bullet_P} \lambda(t) \cdot \min_{p' \in \bullet_t \cap P} \{m(p',\tau)\} \qquad -\sum_{t \in P^{\bullet}} \lambda(t) \cdot \min_{p' \in \bullet_t \cap P} \{m(p',\tau)\}$$

Vashti Galpin, LFCS, University of Edinburgh

Continuous approximation of PEPA models and Petri nets

$$\frac{dN(C_{p},\tau)}{d\tau} = \sum_{\substack{(t,\lambda(t))\\ \text{entry}\\ \text{activity}}} \lambda(t) \cdot \min\{N(C_{p'},\tau) | C_{p'} \stackrel{(t,\lambda(t))}{\longrightarrow}\} - \sum_{\substack{(t,\lambda(t))\\ \text{exit}\\ \text{activity}}} \lambda(t) \cdot \min\{N(C_{p'},\tau) | C_{p'} \stackrel{(t,\lambda(t))}{\longrightarrow}\}$$

$$\frac{dm(p,\tau)}{d\tau} = \sum_{t \in \bullet_{p}} \lambda(t) \cdot \min_{p' \in \bullet_{t} \cap P} \{m(p',\tau)\} \qquad -\sum_{t \in p^{\bullet}} \lambda(t) \cdot \min_{p' \in \bullet_{t} \cap P} \{m(p',\tau)\}$$

Vashti Galpin, LFCS, University of Edinburgh

Continuous approximation of PEPA models and Petri nets

$$\frac{dN(C_{p},\tau)}{d\tau} = \sum_{\substack{(t,\lambda(t))\\ \text{entry}\\ \text{activity}}} \lambda(t) \cdot \min\{N(C_{p'},\tau) | C_{p'} \xrightarrow{(t,\lambda(t))} \} - \sum_{\substack{(t,\lambda(t))\\ \text{exit}\\ \text{activity}}} \lambda(t) \cdot \min\{N(C_{p'},\tau) | C_{p'} \xrightarrow{(t,\lambda(t))} \}$$

$$\frac{dm(p,\tau)}{d\tau} = \sum_{t \in \bullet_p} \lambda(t) \cdot \min_{p' \in \bullet_t \cap P} \{m(p',\tau)\} \qquad -\sum_{t \in P^\bullet} \lambda(t) \cdot \min_{p' \in \bullet_t \cap P} \{m(p',\tau)\}$$

$$\frac{dN(C_{p},\tau)}{d\tau} = \sum_{\substack{(t,\lambda(t))\\ \text{entry}\\ \text{activity}}} \lambda(t) \cdot \min\{N(C_{p'},\tau) | C_{p'} \stackrel{(t,\lambda(t))}{\longrightarrow}\} - \sum_{\substack{(t,\lambda(t))\\ \text{exit}\\ \text{activity}}} \lambda(t) \cdot \min\{N(C_{p'},\tau) | C_{p'} \stackrel{(t,\lambda(t))}{\longrightarrow}\}$$

$$\frac{dm(p,\tau)}{d\tau} = \sum_{t \in \bullet_{p}} \lambda(t) \cdot \min_{p' \in \bullet_{t} \cap P} \{m(p',\tau)\} \qquad -\sum_{t \in p^{\bullet}} \lambda(t) \cdot \min_{p' \in \bullet_{t} \cap P} \{m(p',\tau)\}$$

both approaches give the same equations

- further work
 - different approaches to finite server semantics
 - robustness of ODEs

a

- further work
 - different approaches to finite server semantics
 - robustness of ODEs
- PEPA \rightarrow timed continuous Petri nets

- further work
 - different approaches to finite server semantics
 - robustness of ODEs
- PEPA \rightarrow timed continuous Petri nets
 - ODEs are identical

- further work
 - different approaches to finite server semantics
 - robustness of ODEs
- PEPA \rightarrow timed continuous Petri nets
 - ODEs are identical
- bounded timed continuous Petri nets \rightarrow PEPA

- further work
 - different approaches to finite server semantics
 - robustness of ODEs
- PEPA \rightarrow timed continuous Petri nets
 - ODEs are identical
- bounded timed continuous Petri nets \rightarrow PEPA
 - ODEs are identical

- further work
 - different approaches to finite server semantics
 - robustness of ODEs
- PEPA \rightarrow timed continuous Petri nets
 - ODEs are identical
- bounded timed continuous Petri nets \rightarrow PEPA
 - ODEs are identical
- ODE semantics of PEPA has infinite server semantics