Vashti Galpin
Laboratory for Foundations of Computer Science
University of Edinburgh

Joint work with Jane Hillston (University of Edinburgh) and Luca Bortolussi (University of Trieste)

30 April 2008

troduction HYPE syn

Introduction

HYPE syntax

Operational semantics

Hybrid semantics

Equivalences

Conclusions

hybrid systems

Introduction

- hybrid systems
 - discrete behaviour

Introduction

- hybrid systems
 - discrete behaviour
 - continuous behaviour, expressed as ODEs

Introduction

- hybrid systems
 - discrete behaviour
 - continuous behaviour, expressed as ODEs
- hybrid automata
 - well known
 - graphical rather than textual
 - not very compositional

- hybrid systems
 - discrete behaviour
 - continuous behaviour, expressed as ODEs
- hybrid automata
 - well known
 - graphical rather than textual
 - not very compositional
- process algebras for hybrid systems
 - compositional language
 - semantic equivalences

other process algebras

- other process algebras
 - ACP^{srt}_{hs} Bergstra and Middelburg
 - ► HyPA Cuijpers and Reniers
 - lacktriangle hybrid χ van Beek *et al*
 - lacktriangledown ϕ -calculus Rounds and Song

- other process algebras
 - ► ACP_{bs} Bergstra and Middelburg
 - HyPA Cuijpers and Reniers
 - ▶ hybrid χ van Beek *et al*
 - $ightharpoonup \phi$ -calculus Rounds and Song
- comparison

- other process algebras
 - ► *ACP*^{srt}_{hs} Bergstra and Middelburg
 - ► HyPA Cuijpers and Reniers
 - hybrid χ van Beek *et al*
 - lacktriangledown ϕ -calculus Rounds and Song
- comparison
 - differences: syntax, semantics, discontinuous behaviour, flow-determinism, theoretical results, tools – Khadim

Introduction (cont.)

Introduction

- other process algebras
 - ► ACP_{bs} Bergstra and Middelburg
 - HyPA Cuippers and Reniers
 - ▶ hybrid \(\chi\) van Beek et al
 - $ightharpoonup \phi$ -calculus Rounds and Song
- comparison
 - differences: syntax, semantics, discontinuous behaviour, flow-determinism, theoretical results, tools – Khadim
 - similarity: require full understanding of dynamic behaviour of subcomponents, ODEs appear in syntax

PE syntax Operational semantics Hybrid semantics Equivalences

Introduction (cont.)

Introduction

- other process algebras
 - ► ACP^{srt} Bergstra and Middelburg
 - ► HyPA Cuijpers and Reniers
 - hybrid χ van Beek *et al*
 - lacktriangledown ϕ -calculus Rounds and Song
- comparison
 - differences: syntax, semantics, discontinuous behaviour, flow-determinism, theoretical results, tools – Khadim
 - similarity: require full understanding of dynamic behaviour of subcomponents, ODEs appear in syntax
- ► HYPE
 - more fine-grained approach, individual additive flows
 - influence of continuous semantics of PEPA

Heater example

Introduction

▶ three adjacent rooms

Heater example

Introduction

- three adjacent rooms
- fan heaters can be placed in each room
 - full effect on room
 - reduced effect on adjacent room
 - no effect on non-adjacent room

- three adjacent rooms
- fan heaters can be placed in each room
 - ▶ full effect on room
 - reduced effect on adjacent room
 - no effect on non-adjacent room
- ▶ heaters can be switched on and off, max of 25°C

- three adjacent rooms
- fan heaters can be placed in each room
 - ▶ full effect on room
 - reduced effect on adjacent room
 - no effect on non-adjacent room
- heaters can be switched on and off, max of 25°C
- ▶ how does the temperature in Room B change if there is one heater in Room A and one in Room C?

two types of actions

- two types of actions
- events: instantaneous, discrete changes

$$\underline{a}\in\mathcal{E}$$

- two types of actions
- events: instantaneous, discrete changes

$$\underline{\mathsf{a}} \in \mathcal{E}$$

activities: influences on continuous aspect of system, flows

$$\alpha \in \mathcal{A}$$
 $\alpha(\vec{X}) = (\iota, r, I(\vec{X}))$

- two types of actions
- events: instantaneous, discrete changes

$$\underline{\mathsf{a}} \in \mathcal{E}$$

▶ activities: influences on continuous aspect of system, flows

$$\alpha \in \mathcal{A}$$
 $\alpha(\vec{X}) = (\iota, r, I(\vec{X}))$

▶ influence name $\iota \in IN$

- two types of actions
- events: instantaneous, discrete changes

$$\underline{\mathsf{a}} \in \mathcal{E}$$

▶ activities: influences on continuous aspect of system, flows

$$\alpha \in \mathcal{A}$$
 $\alpha(\vec{X}) = (\iota, r, I(\vec{X}))$

- ▶ influence name $\iota \in IN$
- ▶ rate $r \in \mathbb{R}$

- two types of actions
- events: instantaneous, discrete changes

$$\underline{\mathsf{a}} \in \mathcal{E}$$

▶ activities: influences on continuous aspect of system, flows

$$\alpha \in \mathcal{A}$$
 $\alpha(\vec{X}) = (\iota, r, I(\vec{X}))$

- ▶ influence name $\iota \in IN$
- ▶ rate $r \in \mathbb{R}$
- influence type $I(\vec{X})$ with $[I(\vec{X})] = f(\vec{X})$

- two types of actions
- events: instantaneous, discrete changes

$$\underline{\mathsf{a}} \in \mathcal{E}$$

▶ activities: influences on continuous aspect of system, flows

$$\alpha \in \mathcal{A}$$
 $\alpha(\vec{X}) = (\iota, r, I(\vec{X}))$

- ▶ influence name $\iota \in IN$
- ▶ rate $r \in \mathbb{R}$
- influence type $I(\vec{X})$ with $[I(\vec{X})] = f(\vec{X})$
- ightharpoonup parameterised by formal variables \vec{X}

▶ subcomponents:
$$S := \underline{a} : \alpha . C_s \mid S + S$$
 $\underline{a} \in \mathcal{E}, \alpha \in \mathcal{A}$

- ▶ subcomponents: $S ::= \underline{a} : \alpha . C_s \mid S + S$ $\underline{a} \in \mathcal{E}, \alpha \in \mathcal{A}$
 - subcomponent names: $C_s(\vec{X}) \stackrel{def}{=} S$

- ▶ subcomponents: $S ::= \underline{\mathbf{a}} : \alpha.C_s \mid S + S$ $\underline{\mathbf{a}} \in \mathcal{E}, \alpha \in \mathcal{A}$
 - subcomponent names: $C_s(\vec{X}) \stackrel{\text{def}}{=} S$
- ▶ components: $P ::= C(\vec{X}) \mid P \bowtie_L P$ $L \subseteq \mathcal{E}$

- ▶ subcomponents: $S ::= \underline{\mathbf{a}} : \alpha.C_s \mid S + S$ $\underline{\mathbf{a}} \in \mathcal{E}, \alpha \in \mathcal{A}$
 - subcomponent names: $C_s(\vec{X}) \stackrel{\text{def}}{=} S$
- ▶ components: $P ::= C(\vec{X}) \mid P \bowtie_{L} P$ $L \subseteq \mathcal{E}$
 - component names: $C(\vec{X}) \stackrel{\text{def}}{=} P$ or subcomponent name

- ▶ subcomponents: $S ::= \underline{a} : \alpha . C_s \mid S + S$ $\underline{a} \in \mathcal{E}, \alpha \in \mathcal{A}$
 - ▶ subcomponent names: $C_s(\vec{X}) \stackrel{\text{def}}{=} S$
- ▶ components: $P ::= C(\vec{X}) \mid P \bowtie_{L} P$ $L \subseteq \mathcal{E}$
 - ightharpoonup component names: $C(\vec{X}) \stackrel{\text{def}}{=} P$ or subcomponent name
- ▶ uncontrolled system: $\Sigma ::= C(\vec{V}) \mid \Sigma \bowtie_{L} \Sigma$ $L \subseteq \mathcal{E}$

- ▶ subcomponents: $S ::= \underline{a} : \alpha . C_s \mid S + S$ $\underline{a} \in \mathcal{E}, \alpha \in \mathcal{A}$
 - subcomponent names: $C_s(\vec{X}) \stackrel{\text{def}}{=} S$
- ▶ components: $P ::= C(\vec{X}) \mid P \bowtie_L P$ $L \subseteq \mathcal{E}$
 - component names: $C(\vec{X}) \stackrel{\text{def}}{=} P$ or subcomponent name
- ▶ uncontrolled system: $\Sigma ::= C(\vec{V}) \mid \Sigma \bowtie_{L} \Sigma$ $L \subseteq \mathcal{E}$
- ► controller: $M := \underline{a}.M \mid 0 \mid M + M$ $\underline{a} \in \mathcal{E}$ $Con := M \mid Con \bowtie Con$ $L \subseteq \mathcal{E}$

- ▶ subcomponents: $S ::= a : \alpha . C_s \mid S + S$ $a \in \mathcal{E}, \alpha \in \mathcal{A}$
 - subcomponent names: $C_s(\vec{X}) \stackrel{def}{=} S$
- ▶ components: $P ::= C(\vec{X}) \mid P \bowtie P$ $L \subseteq \mathcal{E}$
 - component names: $C(\vec{X}) \stackrel{def}{=} P$ or subcomponent name
- uncontrolled system: $\Sigma := C(\vec{V}) \mid \Sigma \bowtie \Sigma$
- ▶ controller: $M := a.M \mid 0 \mid M + M$ $a \in \mathcal{E}$ $Con ::= M \mid Con \bowtie Con \qquad L \subseteq \mathcal{E}$
- ▶ controlled system: $ConSys := \Sigma \bowtie \underline{init}.Con$ $L \subseteq \mathcal{E}$

► HYPE model: (ConSys, V, X, IN, IT, \mathcal{E} , A, ec, iv, EC, ID)

- $\blacktriangleright \ \, \mathsf{HYPE} \ \, \mathsf{model:} \quad (\mathit{ConSys}, \mathcal{V}, \mathcal{X}, \mathit{IN}, \mathit{IT}, \mathcal{E}, \mathcal{A}, \mathrm{ec}, \mathrm{iv}, \mathit{EC}, \mathit{ID})$
 - ► *IN* influence names, *IT* influence types

- ► HYPE model: (ConSys, V, X, IN, IT, E, A, ec, iv, EC, ID)
 - ► *IN* influence names, *IT* influence types
 - $lackbox{ } \mathrm{ec}: \mathcal{E}
 ightarrow \mathit{EC},$ association of events with event conditions
 - ► *EC*, event conditions, (activation condition, reset)

- ► HYPE model: $(ConSys, V, X, IN, IT, \mathcal{E}, A, ec, iv, EC, ID)$
 - ► *IN* influence names, *IT* influence types
 - $lackbox{ } \operatorname{ec}: \mathcal{E}
 ightarrow \mathit{EC}$, association of events with event conditions
 - EC, event conditions, (activation condition, reset)
 - $\,\blacktriangleright\,\, \mathrm{iv}: \emph{IN} \to \mathcal{V},$ association of influence names with variables

- ▶ HYPE model: $(ConSys, V, X, IN, IT, \mathcal{E}, A, ec, iv, EC, ID)$
 - ► *IN* influence names, *IT* influence types
 - $lackbox{ } \operatorname{ec}: \mathcal{E}
 ightarrow \mathit{EC}$, association of events with event conditions
 - EC, event conditions, (activation condition, reset)
 - $\,\blacktriangleright\,\, \mathrm{iv}: \emph{IN} \to \mathcal{V},$ association of influence names with variables
 - ► *ID* influence descriptions, $[I(\vec{X})] = f(\vec{X})$,

- ► HYPE model: (ConSys, \mathcal{V} , \mathcal{X} , IN, IT, \mathcal{E} , \mathcal{A} , ec, iv, EC, ID)
 - ► IN influence names, IT influence types
 - $ec: \mathcal{E} \to EC$, association of events with event conditions
 - EC, event conditions, (activation condition, reset)
 - iv : $IN \rightarrow V$, association of influence names with variables
 - ▶ *ID* influence descriptions, $[I(\vec{X})] = f(\vec{X})$,
- well-defined HYPE model

- \blacktriangleright HYPE model: (ConSys, \mathcal{V} , \mathcal{X} , IN, IT, \mathcal{E} , \mathcal{A} , ec, iv, EC, ID)
 - ▶ *IN* influence names, *IT* influence types
 - $ec: \mathcal{E} \to EC$, association of events with event conditions
 - EC, event conditions, (activation condition, reset)
 - iv : $IN \rightarrow V$, association of influence names with variables
 - ▶ *ID* influence descriptions, $[I(\vec{X})] = f(\vec{X})$,
- well-defined HYPE model
 - subcomponents:

$$\mathcal{C}_s(\vec{X}) \stackrel{\text{def}}{=} \underline{\mathbf{a}}_1 : \alpha_1.\mathcal{C}_s(\vec{X}) + \ldots + \underline{\mathbf{a}}_n : \alpha_n.\mathcal{C}_s(\vec{X}) \quad \underline{\mathbf{a}}_i \neq \underline{\mathbf{a}}_j$$

- \blacktriangleright HYPE model: (ConSys, \mathcal{V} , \mathcal{X} , IN, IT, \mathcal{E} , \mathcal{A} , ec, iv, EC, ID)
 - ▶ *IN* influence names, *IT* influence types
 - $ec: \mathcal{E} \to EC$, association of events with event conditions
 - EC, event conditions, (activation condition, reset)
 - iv : $IN \rightarrow V$, association of influence names with variables
 - ▶ *ID* influence descriptions, $[I(\vec{X})] = f(\vec{X})$,
- well-defined HYPE model
 - subcomponents:

$$C_s(\vec{X}) \stackrel{\text{def}}{=} \underline{a}_1 : \alpha_1 \cdot C_s(\vec{X}) + \ldots + \underline{a}_n : \alpha_n \cdot C_s(\vec{X}) \quad \underline{a}_i \neq \underline{a}_j$$

- $\underline{\text{init}}$: $(\iota, _, _)$ appears exactly once
- ightharpoonup a: $(\iota, _, _)$ appears at most once

- \blacktriangleright HYPE model: (ConSys, \mathcal{V} , \mathcal{X} , IN, IT, \mathcal{E} , \mathcal{A} , ec, iv, EC, ID)
 - ► IN influence names, IT influence types
 - $ec: \mathcal{E} \to EC$, association of events with event conditions
 - EC, event conditions, (activation condition, reset)
 - iv : $IN \rightarrow V$, association of influence names with variables
 - ▶ *ID* influence descriptions, $[I(\vec{X})] = f(\vec{X})$,
- well-defined HYPE model
 - subcomponents:

$$C_s(\vec{X}) \stackrel{\text{def}}{=} \underline{a}_1 : \alpha_1.C_s(\vec{X}) + \ldots + \underline{a}_n : \alpha_n.C_s(\vec{X}) \quad \underline{a}_i \neq \underline{a}_j$$

- $\underline{\text{init}}$: $(\iota, _, _)$ appears exactly once
- ightharpoonup <u>a</u>: $(\iota, _, _)$ appears at most once
- synchronisation on shared events

- ▶ room: $Room_x(T) \stackrel{\text{def}}{=} \underline{init} : (t_{0,x}, -1, linear(T)) . Room_x(T)$
 - $t_{0,x}$ represents influence of cooling on Room x

- ▶ room: $Room_x(T) \stackrel{\text{def}}{=} \underline{init} : (t_{0,x}, -1, linear(T)) . Room_x(T)$
 - $ightharpoonup t_{0,x}$ represents influence of cooling on Room x
- ▶ fan i in Room x affecting Room y:
 - $ightharpoonup t_{i,y}$ represents influence of fan i on Room y

- ▶ room: $Room_x(T) \stackrel{\text{def}}{=} init: (t_{0,x}, -1, linear(T)). Room_x(T)$
 - $ightharpoonup t_{0 \times}$ represents influence of cooling on Room x
- fan i in Room x affecting Room y:
 - $ightharpoonup t_{i,v}$ represents influence of fan i on Room y

$$Fan_{i,x,y} \stackrel{\text{def}}{=} \underbrace{init}: (t_{i,y}, 0, const).Fan_{i,x,y} + \underbrace{off}_{i}: (t_{i,y}, 0, const).Fan_{i,x,y} + \underbrace{on}_{i}: (t_{i,y}, r_{i}, const_{\psi(x,y)}).Fan_{i,x,y}$$

where

$$\psi(x,y) = \begin{cases} in & \text{if } x = y \\ adj & \text{if } x \text{ and } y \text{ are adjacent} \\ far & \text{otherwise} \end{cases}$$

uncontrolled system:

$$Sys \stackrel{\text{def}}{=} (Fan_{1,A,B} \underset{\text{{init}}}{\bowtie} Fan_{2,C,B}) \underset{\text{{init}}}{\bowtie} Room_B(T_B)$$

uncontrolled system:

$$Sys \stackrel{\text{def}}{=} (Fan_{1,A,B} \bowtie_{\underbrace{\text{\{init\}}}} Fan_{2,C,B}) \bowtie_{\underbrace{\text{\{init\}}}} Room_B(T_B)$$

controller:

$$Con \stackrel{\text{def}}{=} Con_1 \bowtie Con_2 \qquad Con_i \stackrel{\text{def}}{=} on_i.off_i.Con_i$$

uncontrolled system:

$$Sys \stackrel{\text{def}}{=} (Fan_{1,A,B} \bowtie_{\frac{\{\text{init}\}}{}} Fan_{2,C,B}) \bowtie_{\frac{\{\text{init}\}}{}} Room_B(T_B)$$

controller:

$$Con \stackrel{def}{=} Con_1 \bowtie Con_2 \qquad Con_i \stackrel{def}{=} on_i off_i . Con_i$$

controlled system:

$$MF \stackrel{\text{def}}{=} Sys \bowtie_{M} \underline{\text{init}}.Con \qquad M = \{\underline{\text{init}},\underline{\text{on}}_1,\underline{\text{off}}_1,\underline{\text{on}}_2,\underline{\text{off}}_2\}$$

uncontrolled system:

$$Sys \stackrel{\text{def}}{=} (Fan_{1,A,B} \bowtie_{\frac{\{\text{init}\}}{}} Fan_{2,C,B}) \bowtie_{\frac{\{\text{init}\}}{}} Room_B(T_B)$$

controller:

$$Con \stackrel{def}{=} Con_1 \bowtie Con_i \stackrel{def}{=} on_i.off_i.Con_i$$

controlled system:

$$MF \stackrel{\text{def}}{=} Sys \bowtie_{M} \underline{\text{init}}.Con \qquad M = \{\underline{\text{init}},\underline{\text{on}}_{1},\underline{\text{off}}_{1},\underline{\text{on}}_{2},\underline{\text{off}}_{2}\}$$

► MF is well-defined

$$\begin{aligned} & \text{\it (MF, \{T_B\}, \{T\}, IN, IT, \mathcal{E}, \mathcal{A}, ec, iv, EC, ID)} \\ & IN & = \{t_{0,B}, t_{1,B}, t_{2,B}\} \\ & IT & = \{const, const_{in}, const_{adj}, const_{far}, linear(T)\} \\ & \mathcal{E} & = \{\underline{init}, \underline{on}_1, \underline{off}_1, \underline{on}_2, \underline{off}_2\} \end{aligned}$$

 $(MF, \{T_B\}, \{T\}, IN, IT, \mathcal{E}, \mathcal{A}, \text{ec, iv, } EC, ID)$ $IN = \{t_{0,B}, t_{1,B}, t_{2,B}\}$ $IT = \{const, const_{in}, const_{adj}, const_{far}, linear(T)\}$ $\mathcal{E} = \{\underline{init}, \underline{on}_1, \underline{off}_1, \underline{on}_2, \underline{off}_2\}$ $ec(\underline{init}) = (true, (T'_B = T_0))$ $ec(\underline{on}_i) = (\bot, (T'_B = T_B))$ $ec(\underline{off}_i) = ((T_B = 25), (T'_B = T_B))$

 \blacktriangleright (MF, { T_B }, {T}, IN, IT, \mathcal{E} , \mathcal{A} , ec, iv, EC, ID) $IN = \{t_{0,B}, t_{1,B}, t_{2,B}\}$ $IT = \{const, const_{in}, const_{adj}, const_{far}, linear(T)\}$ $\mathcal{E} = \{ \text{init}, \text{on}_1, \text{off}_1, \text{on}_2, \text{off}_2 \}$ $ec(\underline{init}) = (true, (T'_B = T_0))$ $\operatorname{ec}(\operatorname{on}_i) = (\bot, (T_B' = T_B))$ $ec(off_i) = ((T_B = 25), (T_P' = T_R))$ $iv(t_{i,B}) = T_B$

 \blacktriangleright (MF, { T_B }, {T}, IN, IT, \mathcal{E} , \mathcal{A} , ec, iv, EC, ID) $IN = \{t_{0.B}, t_{1.B}, t_{2.B}\}$ $IT = \{const, const_{in}, const_{adj}, const_{far}, linear(T)\}$ $\mathcal{E} = \{ \text{init}, \text{on}_1, \text{off}_1, \text{on}_2, \text{off}_2 \}$ $ec(\underline{init}) = (true, (T'_B = T_0))$ $ec(on_i) = (\perp, (T'_B = T_B))$ $ec(off_i) = ((T_B = 25), (T_P' = T_R))$ $iv(t_{i,B}) = T_B$

▶ state: $\sigma: IN \to (\mathbb{R} \times IT)$

- ▶ state: $\sigma: IN \to (\mathbb{R} \times IT)$
- configuration: $\langle ConSys, \sigma \rangle$

- ▶ state: $\sigma: IN \to (\mathbb{R} \times IT)$
- ▶ configuration: $\langle ConSys, \sigma \rangle$
- ▶ labelled transition system: $(\mathcal{F}, \mathcal{E}, \rightarrow \subseteq \mathcal{F} \times \mathcal{E} \times \mathcal{F})$

- ▶ state: $\sigma: IN \to (\mathbb{R} \times IT)$
- ightharpoonup configuration: $\langle ConSys, \sigma \rangle$
- ▶ labelled transition system: $(\mathcal{F}, \mathcal{E}, \rightarrow \subseteq \mathcal{F} \times \mathcal{E} \times \mathcal{F})$
- updating function: $\sigma[\iota \mapsto (r, I)]$

$$\sigma[\iota \mapsto (r, I)](x) = \begin{cases} (r, I) & \text{if } x = \iota \\ \sigma(x) & \text{otherwise} \end{cases}$$

- ▶ state: $\sigma: IN \to (\mathbb{R} \times IT)$
- ightharpoonup configuration: $\langle ConSys, \sigma \rangle$
- ▶ labelled transition system: $(\mathcal{F}, \mathcal{E}, \rightarrow \subseteq \mathcal{F} \times \mathcal{E} \times \mathcal{F})$
- updating function: $\sigma[\iota \mapsto (r, I)]$

$$\sigma[\iota \mapsto (r, I)](x) = \begin{cases} (r, I) & \text{if } x = \iota \\ \sigma(x) & \text{otherwise} \end{cases}$$

change identifying function: $\Gamma: \mathcal{S} \times \mathcal{S} \times \mathcal{S} \to \mathcal{S}$

$$(\Gamma(\sigma, \tau, \tau'))(\iota) = \begin{cases} \tau(\iota) & \text{if } \sigma(\iota) = \tau'(\iota) \\ \tau'(\iota) & \text{if } \sigma(\iota) = \tau(\iota) \\ \text{undefined} & \text{otherwise} \end{cases}$$

Prefix with influence:

$$\frac{}{\left\langle \underline{\mathtt{a}} : (\iota, r, I) . E, \sigma \right\rangle \xrightarrow{\underline{\mathtt{a}}} \left\langle E, \sigma[\iota \mapsto (r, I)] \right\rangle}$$

Prefix without influence:

$$\overline{\left\langle \underline{\mathtt{a}}.\mathsf{E},\sigma\right\rangle \overset{\underline{\mathtt{a}}}{\longrightarrow} \left\langle \mathsf{E},\sigma\right\rangle}$$

Choice:

$$\frac{\left\langle E,\sigma\right\rangle \stackrel{\underline{a}}{\longrightarrow} \left\langle E',\sigma'\right\rangle}{\left\langle E+F,\sigma\right\rangle \stackrel{\underline{a}}{\longrightarrow} \left\langle E',\sigma'\right\rangle} \qquad \frac{\left\langle F,\sigma\right\rangle \stackrel{\underline{a}}{\longrightarrow} \left\langle F',\sigma'\right\rangle}{\left\langle E+F,\sigma\right\rangle \stackrel{\underline{a}}{\longrightarrow} \left\langle F',\sigma'\right\rangle}$$

Constant:

$$\frac{\langle E, \sigma \rangle \xrightarrow{\underline{a}} \langle E', \sigma' \rangle}{\langle A, \sigma \rangle \xrightarrow{\underline{a}} \langle E', \sigma' \rangle} (A \stackrel{\text{def}}{=} E)$$

Prefix with influence:

$$\frac{}{\left\langle \underline{\mathtt{a}} : (\iota, r, I) . E, \sigma \right\rangle \xrightarrow{\underline{\mathtt{a}}} \left\langle E, \sigma[\iota \mapsto (r, I)] \right\rangle}$$

Prefix without influence:

$$\overline{\left\langle \underline{\mathtt{a}}.E,\sigma\right\rangle \overset{\underline{\mathtt{a}}}{\longrightarrow} \left\langle E,\sigma\right\rangle}$$

Choice:

$$\frac{\left\langle E,\sigma\right\rangle \stackrel{\underline{\underline{a}}}{\longrightarrow} \left\langle E',\sigma'\right\rangle}{\left\langle E+F,\sigma\right\rangle \stackrel{\underline{\underline{a}}}{\longrightarrow} \left\langle E',\sigma'\right\rangle} \qquad \frac{\left\langle F,\sigma\right\rangle \stackrel{\underline{\underline{a}}}{\longrightarrow} \left\langle F',\sigma'\right\rangle}{\left\langle E+F,\sigma\right\rangle \stackrel{\underline{\underline{a}}}{\longrightarrow} \left\langle F',\sigma'\right\rangle}$$

Constant.

$$\frac{\left\langle E,\sigma\right\rangle \stackrel{\underline{a}}{\longrightarrow} \left\langle E',\sigma'\right\rangle}{\left\langle A,\sigma\right\rangle \stackrel{\underline{a}}{\longrightarrow} \left\langle E',\sigma'\right\rangle} (A\stackrel{\text{\tiny def}}{=} E)$$

Parallel without
$$\frac{\langle E, \sigma \rangle \xrightarrow{\underline{a}} \langle E', \sigma' \rangle}{\langle E \bowtie F, \sigma \rangle \xrightarrow{\underline{a}} \langle E' \bowtie F, \sigma' \rangle} \qquad \underline{\underline{a}} \not\in M$$

$$\frac{\left\langle F,\sigma\right\rangle \stackrel{\underline{a}}{\longrightarrow} \left\langle F',\sigma'\right\rangle}{\left\langle E \bowtie_{M} F,\sigma\right\rangle \stackrel{\underline{a}}{\longrightarrow} \left\langle E \bowtie_{M} F',\sigma'\right\rangle} \qquad \underline{a} \not\in M$$

Parallel with
$$\frac{\langle E, \sigma \rangle \xrightarrow{\underline{a}} \langle E', \tau \rangle \quad \langle F, \sigma \rangle \xrightarrow{\underline{a}} \langle F', \tau' \rangle}{\langle E \bowtie_{M} F, \sigma \rangle \xrightarrow{\underline{a}} \langle E' \bowtie_{M} F', \Gamma(\sigma, \tau, \tau') \rangle}$$

 $\underline{\mathbf{a}} \in M, \Gamma$ defined

Parallel without synchronisation:

$$\frac{\left\langle E,\sigma\right\rangle \stackrel{\underline{a}}{\longrightarrow} \left\langle E',\sigma'\right\rangle}{\left\langle E \bowtie F,\sigma\right\rangle \stackrel{\underline{a}}{\longrightarrow} \left\langle E' \bowtie F,\sigma'\right\rangle} \qquad \underline{a} \not\in M$$

$$\frac{\langle F, \sigma \rangle \xrightarrow{\underline{a}} \langle F', \sigma' \rangle}{\langle E \bowtie_{M} F, \sigma \rangle \xrightarrow{\underline{a}} \langle E \bowtie_{M} F', \sigma' \rangle} \qquad \underline{a} \not\in M$$

Parallel with synchronisation:

$$\frac{\langle E, \sigma \rangle \xrightarrow{\underline{a}} \langle E', \tau \rangle \quad \langle F, \sigma \rangle \xrightarrow{\underline{a}} \langle F', \tau' \rangle}{\langle E \bowtie_{M} F, \sigma \rangle \xrightarrow{\underline{a}} \langle E' \bowtie_{M} F', \Gamma(\sigma, \tau, \tau') \rangle}$$

 $a \in M, \Gamma$ defined

$$\frac{\langle F_{1,A,B}, \tau \rangle \xrightarrow{\text{init}} \langle F_{1,A,B}, \tau_1 \rangle \qquad \langle F_{2,C,B}, \tau \rangle \xrightarrow{\text{init}} \langle F_{2,C,B}, \tau_2 \rangle}{\langle F_{1,A,B} \underset{\text{init}}{\bowtie} F_{2,C,B}, \tau \rangle \xrightarrow{\text{init}} \langle F_{1,A,B} \underset{\text{init}}{\bowtie} F_{2,C,B}, \tau_3 \rangle}$$

$$\tau = \{t_{0,B} \mapsto *, t_{1,B} \mapsto *, t_{2,B} \mapsto *\}$$

$$\tau_{1} = \tau[t_{1,B} \mapsto (0,c)] = \{t_{0,B} \mapsto *, t_{1,B} \mapsto (0,c), t_{2,B} \mapsto *\}$$

$$\tau_{2} = \tau[t_{2,B} \mapsto (0,c)] = \{t_{0,B} \mapsto *, t_{1,B} \mapsto *, t_{2,B} \mapsto (0,c)\}$$

$$\tau_{3} = \Gamma(\tau, \tau_{1}, \tau_{2}) = \{t_{0,B} \mapsto *, t_{1,B} \mapsto (0,c), t_{2,B} \mapsto (0,c)\}$$

$$\frac{\langle F_{1,A,B}, \tau \rangle \xrightarrow{\underline{\text{init}}} \langle F_{1,A,B}, \tau_1 \rangle \qquad \langle F_{2,C,B}, \tau \rangle \xrightarrow{\underline{\text{init}}} \langle F_{2,C,B}, \tau_2 \rangle}{\langle F_{1,A,B} \underset{\underline{\text{init}}}{\boxtimes} F_{2,C,B}, \tau \rangle \xrightarrow{\underline{\text{init}}} \langle F_{1,A,B} \underset{\underline{\text{init}}}{\boxtimes} F_{2,C,B}, \tau_3 \rangle}$$

$$\tau = \{t_{0,B} \mapsto *, t_{1,B} \mapsto *, t_{2,B} \mapsto *\}$$

$$\tau_{1} = \tau[t_{1,B} \mapsto (0,c)] = \{t_{0,B} \mapsto *, t_{1,B} \mapsto (0,c), t_{2,B} \mapsto *\}$$

$$\tau_{2} = \tau[t_{2,B} \mapsto (0,c)] = \{t_{0,B} \mapsto *, t_{1,B} \mapsto *, t_{2,B} \mapsto (0,c)\}$$

$$\tau_{3} = \Gamma(\tau, \tau_{1}, \tau_{2}) = \{t_{0,B} \mapsto *, t_{1,B} \mapsto (0,c), t_{2,B} \mapsto (0,c)\}$$

$$\frac{\langle F_{1,A,B}, \tau \rangle \xrightarrow{\underline{\text{init}}} \langle F_{1,A,B}, \underline{\tau_1} \rangle \qquad \langle F_{2,C,B}, \tau \rangle \xrightarrow{\underline{\text{init}}} \langle F_{2,C,B}, \underline{\tau_2} \rangle}{\langle F_{1,A,B} \underset{\underline{\text{init}}}{\boxtimes} F_{2,C,B}, \tau \rangle \xrightarrow{\underline{\text{init}}} \langle F_{1,A,B} \underset{\underline{\text{init}}}{\boxtimes} F_{2,C,B}, \underline{\tau_3} \rangle}$$

$$\tau = \{t_{0,B} \mapsto *, t_{1,B} \mapsto *, t_{2,B} \mapsto *\}$$

$$\tau_{1} = \tau[t_{1,B} \mapsto (0,c)] = \{t_{0,B} \mapsto *, t_{1,B} \mapsto (0,c), t_{2,B} \mapsto *\}$$

$$\tau_{2} = \tau[t_{2,B} \mapsto (0,c)] = \{t_{0,B} \mapsto *, t_{1,B} \mapsto *, t_{2,B} \mapsto (0,c)\}$$

$$\tau_{3} = \Gamma(\tau, \tau_{1}, \tau_{2}) = \{t_{0,B} \mapsto *, t_{1,B} \mapsto (0,c), t_{2,B} \mapsto (0,c)\}$$

$$\frac{\langle F_{1,A,B}, \tau \rangle \xrightarrow{\underline{\text{init}}} \langle F_{1,A,B}, \tau_1 \rangle \qquad \langle F_{2,C,B}, \tau \rangle \xrightarrow{\underline{\text{init}}} \langle F_{2,C,B}, \tau_2 \rangle}{\langle F_{1,A,B} \underset{\underline{\text{init}}}{\boxtimes} F_{2,C,B}, \tau \rangle \xrightarrow{\underline{\text{init}}} \langle F_{1,A,B} \underset{\underline{\text{init}}}{\boxtimes} F_{2,C,B}, \tau_3 \rangle}$$

$$\tau = \{t_{0,B} \mapsto *, t_{1,B} \mapsto *, t_{2,B} \mapsto *\}$$

$$\tau_{1} = \tau[t_{1,B} \mapsto (0,c)] = \{t_{0,B} \mapsto *, t_{1,B} \mapsto (0,c), t_{2,B} \mapsto *\}$$

$$\tau_{2} = \tau[t_{2,B} \mapsto (0,c)] = \{t_{0,B} \mapsto *, t_{1,B} \mapsto *, t_{2,B} \mapsto (0,c)\}$$

$$\tau_{3} = \Gamma(\tau, \tau_{1}, \tau_{2}) = \{t_{0,B} \mapsto *, t_{1,B} \mapsto (0,c), t_{2,B} \mapsto (0,c)\}$$

$$\frac{\langle F_{1,A,B}, \tau \rangle \xrightarrow{\text{init}} \langle F_{1,A,B}, \tau_1 \rangle \qquad \langle F_{2,C,B}, \tau \rangle \xrightarrow{\text{init}} \langle F_{2,C,B}, \tau_2 \rangle}{\langle F_{1,A,B} \underset{\text{init}}{\bowtie} F_{2,C,B}, \tau \rangle \xrightarrow{\text{init}} \langle F_{1,A,B} \underset{\text{init}}{\bowtie} F_{2,C,B}, \tau_3 \rangle}$$

$$\tau = \{t_{0,B} \mapsto *, t_{1,B} \mapsto *, t_{2,B} \mapsto *\}$$

$$\tau_{1} = \tau[t_{1,B} \mapsto (0,c)] = \{t_{0,B} \mapsto *, t_{1,B} \mapsto (0,c), t_{2,B} \mapsto *\}$$

$$\tau_{2} = \tau[t_{2,B} \mapsto (0,c)] = \{t_{0,B} \mapsto *, t_{1,B} \mapsto *, t_{2,B} \mapsto (0,c)\}$$

$$\tau_{3} = \Gamma(\tau, \tau_{1}, \tau_{2}) = \{t_{0,B} \mapsto *, t_{1,B} \mapsto (0,c), t_{2,B} \mapsto (0,c)\}$$

$$\frac{\langle F_{1,A,B}, \tau \rangle \xrightarrow{\text{init}} \langle F_{1,A,B}, \tau_1 \rangle \qquad \langle F_{2,C,B}, \tau \rangle \xrightarrow{\text{init}} \langle F_{2,C,B}, \tau_2 \rangle}{\langle F_{1,A,B} \underset{\text{init}}{\bowtie} F_{2,C,B}, \tau \rangle \xrightarrow{\text{init}} \langle F_{1,A,B} \underset{\text{init}}{\bowtie} F_{2,C,B}, \tau_3 \rangle}$$

$$\tau = \{t_{0,B} \mapsto *, t_{1,B} \mapsto *, t_{2,B} \mapsto *\}$$

$$\tau_{1} = \tau[t_{1,B} \mapsto (0,c)] = \{t_{0,B} \mapsto *, t_{1,B} \mapsto (0,c), t_{2,B} \mapsto *\}$$

$$\tau_{2} = \tau[t_{2,B} \mapsto (0,c)] = \{t_{0,B} \mapsto *, t_{1,B} \mapsto *, t_{2,B} \mapsto (0,c)\}$$

$$\tau_{3} = \Gamma(\tau, \tau_{1}, \tau_{2}) = \{t_{0,B} \mapsto *, t_{1,B} \mapsto (0,c), t_{2,B} \mapsto (0,c)\}$$

$$\frac{\langle F_{1,A,B}, \tau \rangle \xrightarrow{\text{init}} \langle F_{1,A,B}, \tau_1 \rangle \qquad \langle F_{2,C,B}, \tau \rangle \xrightarrow{\text{init}} \langle F_{2,C,B}, \tau_2 \rangle}{\langle F_{1,A,B} \underset{\text{init}}{\bowtie} F_{2,C,B}, \tau \rangle \xrightarrow{\text{init}} \langle F_{1,A,B} \underset{\text{init}}{\bowtie} F_{2,C,B}, \tau_3 \rangle}$$

$$\tau = \{t_{0,B} \mapsto *, t_{1,B} \mapsto *, t_{2,B} \mapsto *\}$$

$$\tau_{1} = \tau[t_{1,B} \mapsto (0,c)] = \{t_{0,B} \mapsto *, t_{1,B} \mapsto (0,c), t_{2,B} \mapsto *\}$$

$$\tau_{2} = \tau[t_{2,B} \mapsto (0,c)] = \{t_{0,B} \mapsto *, t_{1,B} \mapsto *, t_{2,B} \mapsto (0,c)\}$$

$$\tau_{3} = \Gamma(\tau, \tau_{1}, \tau_{2}) = \{t_{0,B} \mapsto *, t_{1,B} \mapsto (0,c), t_{2,B} \mapsto (0,c)\}$$

labelled transition system

labelled transition system

▶ for *MF*, there are four states

$$\sigma_{0} = \{t_{0,B} \mapsto (-1, \operatorname{linear}(T_{B})), t_{1,B} \mapsto (0, \operatorname{const}), \\ t_{2,B} \mapsto (0, \operatorname{const})\}$$

$$\sigma_{1} = \{t_{0,B} \mapsto (-1, \operatorname{linear}(T_{B})), t_{1,B} \mapsto (r_{1}, \operatorname{const}_{\operatorname{adj}}), \\ t_{2,B} \mapsto (0, \operatorname{const})\}$$

$$\sigma_{2} = \{t_{0,B} \mapsto (-1, \operatorname{linear}(T_{B})), t_{1,B} \mapsto (0, \operatorname{const}), \\ t_{2,B} \mapsto (r_{2}, \operatorname{const}_{\operatorname{adj}})\}$$

$$\sigma_{3} = \{t_{0,B} \mapsto (-1, \operatorname{linear}(T_{B})), t_{1,B} \mapsto (r_{1}, \operatorname{const}_{\operatorname{adj}}), \\ t_{2,B} \mapsto (r_{2}, \operatorname{const}_{\operatorname{adj}})\}$$

Hybrid semantics

 \blacktriangleright extract ODEs from each state σ in the lts of *CS*

$$\mathit{CS}_\sigma = \left\{ \mathsf{ODE} \; \mathsf{for} \; \mathsf{variable} \; V \; \middle| \; V \in \mathcal{V} \right\} \; \; \mathsf{where} \;$$

$$\frac{dV}{dt} = \sum \{r[I(\vec{W})] \mid \text{iv}(\iota) = V \text{ and } \sigma(\iota) = (r, I(\vec{W}))\}$$

Hybrid semantics

 \blacktriangleright extract ODEs from each state σ in the lts of *CS*

$$\mathit{CS}_\sigma = \left\{ \mathsf{ODE} \; \mathsf{for} \; \mathsf{variable} \; V \; \middle| \; V \in \mathcal{V} \right\} \; \; \mathsf{where} \;$$

$$\frac{dV}{dt} = \sum \{r[I(\vec{W})] \mid \text{iv}(\iota) = V \text{ and } \sigma(\iota) = (r, I(\vec{W}))\}$$

for any influence name associated with V

Hybrid semantics

 \blacktriangleright extract ODEs from each state σ in the lts of *CS*

$$extit{CS}_{\sigma} = \left\{ ext{ODE for variable } V \;\;\middle|\; V \in \mathcal{V}
ight\} \;\; ext{where}$$

$$\frac{dV}{dt} = \sum \{r[I(\vec{W})] \mid \text{iv}(\iota) = V \text{ and } \sigma(\iota) = (r, I(\vec{W}))\}$$

- for any influence name associated with V
- ightharpoonup determine from σ its rate and influence type

Hybrid semantics

 \blacktriangleright extract ODEs from each state σ in the lts of *CS*

$$extit{CS}_{\sigma} = \Big\{ ext{ODE for variable } V \; \Big| \; V \in \mathcal{V} \Big\} \; \; ext{where}$$

$$\frac{dV}{dt} = \sum \{r[I(\vec{W})] \mid \text{iv}(\iota) = V \text{ and } \sigma(\iota) = (r, I(\vec{W}))\}$$

- for any influence name associated with V
- determine from σ its rate and influence type
- multiply its rate and influence function together

Hybrid semantics

extract ODEs from each state σ in the lts of *CS*

$$extit{CS}_{\sigma} = \Big\{ ext{ODE for variable } V \; \Big| \; V \in \mathcal{V} \Big\} \; \; ext{where}$$

$$\frac{dV}{dt} = \sum \{r[I(\vec{W})] \mid \text{iv}(\iota) = V \text{ and } \sigma(\iota) = (r, I(\vec{W}))\}$$

- for any influence name associated with V
- determine from σ its rate and influence type
- multiply its rate and influence function together
- sum these over all associated influence names

> state σ_0 occurs when both fans are off

$$MF_{\sigma_0} = \left\{ \frac{dT_B}{dt} = -T_B \right\}$$

> state σ_0 occurs when both fans are off

$$MF_{\sigma_0} = \left\{ \frac{dT_B}{dt} = -T_B \right\}$$

▶ state σ_1 occurs when fan 1 is on

$$MF_{\sigma_1} = \left\{ \frac{dT_B}{dt} = -T_B + 0.5r_1 \right\}$$

 \triangleright state σ_0 occurs when both fans are off

$$MF_{\sigma_0} = \left\{ \frac{dT_B}{dt} = -T_B \right\}$$

▶ state σ_1 occurs when fan 1 is on

$$MF_{\sigma_1} = \left\{ \frac{dT_B}{dt} = -T_B + 0.5r_1 \right\}$$

state σ_2 occurs when fan 2 is on

$$MF_{\sigma_2} = \left\{ \frac{dT_B}{dt} = -T_B + 0.5r_2 \right\}$$

 \triangleright state σ_0 occurs when both fans are off

$$MF_{\sigma_0} = \left\{ \frac{dT_B}{dt} = -T_B \right\}$$

▶ state σ_1 occurs when fan 1 is on

$$MF_{\sigma_1} = \left\{ \frac{dT_B}{dt} = -T_B + 0.5r_1 \right\}$$

 \triangleright state σ_2 occurs when fan 2 is on

$$MF_{\sigma_2} = \left\{ \frac{dT_B}{dt} = -T_B + 0.5r_2 \right\}$$

 \triangleright state σ_3 occurs when both fans are on

$$MF_{\sigma_3} = \left\{ \frac{dT_B}{dt} = -T_B + 0.5(r_1 + r_2) \right\}$$

Heater example in ACP_{hs}

system with temperature limit

Start
$$\stackrel{\text{def}}{=} (T_B = {}^{\bullet}T_B) \quad \psi \equiv (T_B = 25)$$

Start $\stackrel{\text{def}}{=} (T_B = T_0) \wedge \text{Off} 12$
Off $12 \stackrel{\text{def}}{=} (\dot{T}_B = -T_B) \cap \sigma_{\text{rel}}^* (\theta \sqcap (on_1 \cdot \text{On} 1 + on_2 \cdot \text{On} 2))$
On $12 \stackrel{\text{def}}{=} (T_B \le 25 \wedge \dot{T}_B = -T_B + 0.5r_1)$
 $12 \cap \sigma_{\text{rel}}^* (\theta \sqcap (on_2 \cdot \text{On} 12) + (\psi : \rightarrow (\theta \sqcap off_1 \cdot \text{Off} 12)))$
On $12 \stackrel{\text{def}}{=} (T_B \le 25 \wedge \dot{T}_B = -T_B + 0.5r_2)$
 $12 \cap \sigma_{\text{rel}}^* (\theta \sqcap on_1 \cdot \text{On} 12) + (\psi : \rightarrow (\theta \sqcap off_2 \cdot \text{Off} 12)))$
On $12 \stackrel{\text{def}}{=} (T_B \le 25 \wedge \dot{T}_B = -T_B + 0.5(r_1 + r_2))$
 $12 \cap \sigma_{\text{rel}}^* (\psi : \rightarrow (\theta \sqcap off_1 \cdot \text{On} 2 + off_2 \cdot \text{On} 1)))$

Heater example in ACP_{hs}

system with temperature limit

Start
$$\stackrel{\text{def}}{=} (T_B = {}^{\bullet}T_B) \quad \psi \equiv (T_B = 25)$$

Start $\stackrel{\text{def}}{=} (T_B = T_0) \wedge \mathbf{Off}12$
Off12 $\stackrel{\text{def}}{=} (\dot{T}_B = -T_B) \wedge \sigma_{\text{rel}}^* (\theta \sqcap (on_1 \cdot \text{On}1 + on_2 \cdot \text{On}2))$
On1 $\stackrel{\text{def}}{=} (T_B \le 25 \wedge \dot{T}_B = -T_B + 0.5r_1)$
 $\wedge \sigma_{\text{rel}}^* ((\theta \sqcap on_2 \cdot \text{On}12) + (\psi : \rightarrow (\theta \sqcap off_1 \cdot \text{Off}12)))$
On2 $\stackrel{\text{def}}{=} (T_B \le 25 \wedge \dot{T}_B = -T_B + 0.5r_2)$
 $\wedge \sigma_{\text{rel}}^* ((\theta \sqcap on_1 \cdot \text{On}12) + (\psi : \rightarrow (\theta \sqcap off_2 \cdot \text{Off}12)))$
On12 $\stackrel{\text{def}}{=} (T_B \le 25 \wedge \dot{T}_B = -T_B + 0.5(r_1 + r_2))$
 $\wedge \sigma_{\text{rel}}^* (\psi : \rightarrow (\theta \sqcap (off_1 \cdot \text{On}2 + off_2 \cdot \text{On}1)))$

 $ightharpoonup (V, E, \mathbf{X}, \mathcal{E}, flow, init, inv, event, jump, reset, urgent)$

- \triangleright (V, E, X, \mathcal{E} , flow, init, inv, event, jump, reset, urgent)
- ▶ **X** = { $X_1, ..., X_n$ }, \dot{X}_j , X'_i

- \triangleright (V, E, X, \mathcal{E} , flow, init, inv, event, jump, reset, urgent)
- $ightharpoonup X = \{X_1, \ldots, X_n\}, \dot{X}_j, X'_i$
- ightharpoonup control graph: G = (V, E)

- \triangleright (V, E, X, \mathcal{E} , flow, init, inv, event, jump, reset, urgent)
- $ightharpoonup X = \{X_1, \ldots, X_n\}, \dot{X}_j, X'_i$
- ightharpoonup control graph: G = (V, E)
- ▶ (control) modes: $v \in V$

- \triangleright (V, E, X, E, flow, init, inv, event, jump, reset, urgent)
- $ightharpoonup X = \{X_1, \ldots, X_n\}, \dot{X}_i, X'_i$
- \triangleright control graph: G = (V, E)
- \blacktriangleright (control) modes: $v \in V$
 - associated ODEs: $\dot{\mathbf{X}} = flow(v)$
 - initial conditions: init(v)
 - ▶ invariants: inv(v)

- \triangleright (V, E, X, \mathcal{E} , flow, init, inv, event, jump, reset, urgent)
- $ightharpoonup X = \{X_1, \dots, X_n\}, \dot{X}_i, X_i'$
- \triangleright control graph: G = (V, E)
- \blacktriangleright (control) modes: $v \in V$
 - associated ODEs: X = flow(v)
 - initial conditions: init(v)
 - invariants: inv(v)
- \blacktriangleright (control) switches: $e \in E$

- \triangleright (V, E, X, \mathcal{E} , flow, init, inv, event, jump, reset, urgent)
- $ightharpoonup X = \{X_1, \ldots, X_n\}, \dot{X}_j, X'_i$
- \triangleright control graph: G = (V, E)
- \blacktriangleright (control) modes: $v \in V$
 - associated ODEs: X = flow(v)
 - initial conditions: init(v)
 - invariants: inv(v)
- \blacktriangleright (control) switches: $e \in E$
 - events: $event(e) \in \mathcal{E}$

- \triangleright (V, E, X, E, flow, init, inv, event, jump, reset, urgent)
- $ightharpoonup X = \{X_1, \dots, X_n\}, \dot{X}_i, X_i'$
- \triangleright control graph: G = (V, E)
- \blacktriangleright (control) modes: $v \in V$
 - associated ODEs: X = flow(v)
 - initial conditions: init(v)
 - invariants: inv(v)
- \blacktriangleright (control) switches: $e \in E$
 - events: $event(e) \in \mathcal{E}$
 - predicate on X: jump(e)
 - ▶ predicate on $X \cup X'$: reset(e)

- \triangleright (V, E, X, E, flow, init, inv, event, jump, reset, urgent)
- $ightharpoonup X = \{X_1, \dots, X_n\}, \dot{X}_i, X_i'$
- \triangleright control graph: G = (V, E)
- \blacktriangleright (control) modes: $v \in V$
 - associated ODEs: X = flow(v)
 - initial conditions: init(v)
 - invariants: inv(v)
- \blacktriangleright (control) switches: $e \in E$
 - events: $event(e) \in \mathcal{E}$
 - predicate on X: jump(e)
 - ▶ predicate on $X \cup X'$: reset(e)
 - boolean: urgent(e)

▶ modes *V*: set of reachable configurations

- ▶ modes *V*: set of reachable configurations
- edges E: transitions between configurations

- ▶ modes *V*: set of reachable configurations
- edges E: transitions between configurations
- \triangleright variables **X**: variables \mathcal{V}

- ▶ modes *V*: set of reachable configurations
- edges E: transitions between configurations
- variables X: variables V
- ightharpoonup if $v_i = \langle P_i, \sigma_i \rangle$ then

$$flow(v_j)[X_i] = \sum \{r[I(\vec{W})] \mid iv(\iota) = X_i \text{ and } \sigma_j(\iota) = (r, I(\vec{W}))\}$$

- ▶ modes *V*: set of reachable configurations
- edges E: transitions between configurations
- variables X: variables V
- ▶ if $v_i = \langle P_i, \sigma_i \rangle$ then $flow(v_i)[X_i] = \sum \{r[I(\vec{W})] \mid iv(\iota) = X_i \text{ and } \sigma_i(\iota) = (r, I(\vec{W}))\}$
- ightharpoonup inv(v) = true

- ▶ modes *V*: set of reachable configurations
- edges E: transitions between configurations
- variables X: variables V
- ▶ if $v_i = \langle P_i, \sigma_i \rangle$ then $flow(v_i)[X_i] = \sum \{r[I(\vec{W})] \mid iv(\iota) = X_i \text{ and } \sigma_i(\iota) = (r, I(\vec{W}))\}$
- ightharpoonup inv(v) = true
- ▶ let e be an edge associated with \underline{a} and let $ec(\underline{a}) = (act_a, res_a)$

- modes V: set of reachable configurations
- edges E: transitions between configurations
- ightharpoonup variables $m m{X}$: variables $m m{\mathcal{V}}$
- if $v_j = \langle P_j, \sigma_j \rangle$ then $flow(v_j)[X_i] = \sum \{r[I(\vec{W})] \mid iv(\iota) = X_i \text{ and } \sigma_j(\iota) = (r, I(\vec{W}))\}$
- ightharpoonup inv(v) = true
- ▶ let e be an edge associated with \underline{a} and let $ec(\underline{a}) = (act_{\underline{a}}, res_{\underline{a}})$
 - $event(e) = \underline{a}$ and $reset(e) = res_{\underline{a}}$
 - if $act_{\underline{a}} \neq \bot$ then $jump(e) = act_{\underline{a}}$ and urgent(e) = true else jump(e) = true and urgent(e) = false

- ▶ modes *V*: set of reachable configurations
- edges E: transitions between configurations
- variables X: variables V
- ▶ if $v_i = \langle P_i, \sigma_i \rangle$ then $flow(v_i)[X_i] = \sum \{r[I(\vec{W})] \mid iv(\iota) = X_i \text{ and } \sigma_i(\iota) = (r, I(\vec{W}))\}$
- \triangleright inv(v) = true
- let e be an edge associated with a and let $ec(a) = (act_a, res_a)$
 - event(e) = a and reset(e) = res_a
 - if $act_a \neq \bot$ then $jump(e) = act_a$ and urgent(e) = trueelse iump(e) = true and urgent(e) = false
- $init(v) = \begin{cases} res_{\underline{init}} & \text{if } v = \langle P, \sigma \rangle \text{ with primes removed} \\ false & otherwise \end{cases}$

translation from HYPE system to hybrid automaton

translation from HYPE system to hybrid automaton

Equivalence semantics

- ▶ system bisimulation: relation B if for all $(P, Q) \in B$ whenever
 - 1. $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle$, there exists $\langle Q', \sigma' \rangle$ with $\langle Q, \sigma \rangle \xrightarrow{\underline{a}} \langle Q', \sigma' \rangle$ and $(P', Q') \in B$.
 - 2. $\langle Q, \sigma \rangle \xrightarrow{\underline{a}} \langle Q', \sigma' \rangle$, there exists $\langle P', \sigma' \rangle$ with $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle$ and $(P', Q') \in B$.

Equivalence semantics

- ▶ system bisimulation: relation B if for all $(P, Q) \in B$ whenever
 - 1. $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle$, there exists $\langle Q', \sigma' \rangle$ with $\langle Q, \sigma \rangle \xrightarrow{\underline{a}} \langle Q', \sigma' \rangle$ and $(P', Q') \in B$.
 - 2. $\langle Q, \sigma \rangle \xrightarrow{\underline{a}} \langle Q', \sigma' \rangle$, there exists $\langle P', \sigma' \rangle$ with $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle$ and $(P', Q') \in B$.
- \triangleright system bisimilar: $P \sim_s Q$ if in a system bisimulation

Equivalences

Equivalence semantics

- ▶ system bisimulation: relation B if for all $(P, Q) \in B$ whenever
 - 1. $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle$, there exists $\langle Q', \sigma' \rangle$ with $\langle Q, \sigma \rangle \xrightarrow{\underline{a}} \langle Q', \sigma' \rangle$ and $(P', Q') \in B$.
 - 2. $\langle Q, \sigma \rangle \xrightarrow{\underline{a}} \langle Q', \sigma' \rangle$, there exists $\langle P', \sigma' \rangle$ with $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle$ and $(P', Q') \in B$.
- \triangleright system bisimilar: $P \sim_s Q$ if in a system bisimulation
- Theorem 1: \sim_s is a congruence for all operators

Equivalence semantics

- ▶ system bisimulation: relation B if for all $(P,Q) \in B$ whenever
 - 1. $\langle P, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle P', \sigma' \rangle$, there exists $\langle Q', \sigma' \rangle$ with $\langle Q, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle Q', \sigma' \rangle$ and $(P', Q') \in B$.
 - 2. $\langle Q, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle Q', \sigma' \rangle$, there exists $\langle P', \sigma' \rangle$ with $\langle P, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle P', \sigma' \rangle$ and $(P', Q') \in B$.
- **>** system bisimilar: $P \sim_s Q$ if in a system bisimulation
- ▶ Theorem 1: \sim_s is a congruence for all operators
- ▶ Theorem 2: if Σ_1 and Σ_2 have the same prefixes then $\Sigma_1 \bowtie_{L} \underline{\text{init}}.Con \sim_s \Sigma_2 \bowtie_{L} \underline{\text{init}}.Con$, assuming well-defined systems

Equivalence semantics

- ▶ system bisimulation: relation B if for all $(P, Q) \in B$ whenever
 - 1. $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle$, there exists $\langle Q', \sigma' \rangle$ with $\langle Q, \sigma \rangle \xrightarrow{\underline{a}} \langle Q', \sigma' \rangle$ and $(P', Q') \in B$.
 - 2. $\langle Q, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle Q', \sigma' \rangle$, there exists $\langle P', \sigma' \rangle$ with $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle$ and $(P', Q') \in B$.
- \triangleright system bisimilar: $P \sim_s Q$ if in a system bisimulation
- Theorem 1: \sim_s is a congruence for all operators
- ▶ Theorem 2: if Σ_1 and Σ_2 have the same prefixes then $\Sigma_1 \bowtie \underline{\text{init.}} Con \sim_s \Sigma_2 \bowtie \underline{\text{init.}} Con$, assuming well-defined systems
- ▶ Theorem 3: if $P \sim_s Q$ then $P_{\sigma} = Q_{\sigma}$ for all σ , assuming well-defined systems

Consider two fans in Room C and none in Room A

$$\begin{array}{lll} \textit{Sys'} & \stackrel{\textit{def}}{=} & (\textit{Fan}_{1,\textit{C},\textit{B}} \underset{\{\text{init}\}}{\bowtie} \textit{Fan}_{2,\textit{C},\textit{B}}) \underset{\{\text{init}\}}{\bowtie} \textit{Room}_{\textit{B}}(\textit{T}_{\textit{B}}) \\ \textit{MF'} & \stackrel{\textit{def}}{=} & \textit{Sys'} \underset{\textit{M}}{\bowtie} \underline{\text{init}}.\textit{Con} & \textit{M} = \{\underline{\text{init}},\underline{\text{on}}_{1},\underline{\text{off}}_{1},\underline{\text{on}}_{2},\underline{\text{off}}_{2}\} \end{array}$$

Consider two fans in Room C and none in Room A

$$\begin{array}{lll} \textit{Sys'} & \stackrel{\textit{def}}{=} & (\textit{Fan}_{1,\textbf{C},B} \underset{\{\text{init}\}}{\bowtie} \textit{Fan}_{2,\textbf{C},B}) \underset{\{\text{init}\}}{\bowtie} \textit{Room}_B(T_B) \\ \\ \textit{MF'} & \stackrel{\textit{def}}{=} & \textit{Sys'} \underset{\textit{M}}{\bowtie} \underline{\text{init}}.\textit{Con} & \textit{M} = \{\underline{\text{init}},\underline{\text{on}}_1,\underline{\text{off}}_1,\underline{\text{on}}_2,\underline{\text{off}}_2\} \end{array}$$

Consider two fans in Room C and none in Room A

$$\begin{array}{lll} \textit{Sys'} & \stackrel{\textit{def}}{=} & (\textit{Fan}_{1,C,B} \underset{\{init\}}{\bowtie} \textit{Fan}_{2,C,B}) \underset{\{init\}}{\bowtie} \textit{Room}_{B}(T_B) \\ \\ \textit{MF'} & \stackrel{\textit{def}}{=} & \textit{Sys'} \underset{\textit{M}}{\bowtie} \underline{init}.\textit{Con} & \textit{M} = \{\underline{init},\underline{on}_1,\underline{off}_1,\underline{on}_2,\underline{off}_2\} \end{array}$$

Sys and Sys' have the same prefixes

$$\bigcup_{i=1,2} \{ \underline{\text{init}} : (t_{i,y}, 0, const), \underline{\text{on}}_i : (t_{i,y}, r_i, const_{adj}), \underline{\text{off}}_i : (t_{i,y}, 0, const) \}$$

$$\cup \{ \underline{\text{init}} : (t_{0,x}, -1, linear(T)) \}$$

Heater example (cont.)

Consider two fans in Room C and none in Room A

$$\begin{array}{lll} \textit{Sys'} & \stackrel{\textit{def}}{=} & (\textit{Fan}_{1,C,B} \underset{\{\text{init}\}}{\bowtie} \textit{Fan}_{2,C,B}) \underset{\{\text{init}\}}{\bowtie} \textit{Room}_B(T_B) \\ \textit{MF'} & \stackrel{\textit{def}}{=} & \textit{Sys'} \underset{\textit{M}}{\bowtie} \underline{\text{init}}.\textit{Con} & \textit{M} = \{\underline{\text{init}},\underline{\text{on}}_1,\underline{\text{off}}_1,\underline{\text{on}}_2,\underline{\text{off}}_2\} \end{array}$$

Sys and Sys' have the same prefixes

$$\bigcup_{i=1,2} \{ \underline{\mathsf{init}} : (t_{i,y}, 0, \mathsf{const}), \underline{\mathsf{on}}_i : (t_{i,y}, r_i, \mathsf{const}_{\mathsf{adj}}), \underline{\mathsf{off}}_i : (t_{i,y}, 0, \mathsf{const}) \}$$

$$\cup \{ \mathsf{init} : (t_{0,x}, -1, \mathit{linear}(T)) \}$$

b by Theorem 2. $MF \sim_{\varsigma} MF'$

Heater example (cont.)

Consider two fans in Room C and none in Room A

$$Sys' \stackrel{\text{def}}{=} (Fan_{1,C,B} \bowtie_{\{\text{init}\}} Fan_{2,C,B}) \bowtie_{\{\text{init}\}} Room_B(T_B)$$

$$MF' \stackrel{\text{def}}{=} Sys' \bowtie_{M} \underline{\text{init}}.Con \qquad M = \{\underline{\text{init}},\underline{\text{on}}_1,\underline{\text{off}}_1,\underline{\text{on}}_2,\underline{\text{off}}_2\}$$

Sys and Sys' have the same prefixes

$$\bigcup_{i=1,2} \{ \underline{\mathsf{init}} : (t_{i,y}, 0, \mathsf{const}), \underline{\mathsf{on}}_i : (t_{i,y}, r_i, \mathsf{const}_{\mathsf{adj}}), \underline{\mathsf{off}}_i : (t_{i,y}, 0, \mathsf{const}) \}$$

$$\cup \{ \mathsf{init} : (t_{0,x}, -1, \mathit{linear}(T)) \}$$

- **b** by Theorem 2. $MF \sim_{\epsilon} MF'$
- ▶ by Theorem 3, MF and MF' have the same ODEs

Bisimulations for ACP_{bc}

- bisimulation: relation B if for all $(\langle P, \sigma \rangle, \langle Q, \sigma \rangle) \in B$ whenever
 - 1. $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle$, there exists $\langle Q', \sigma' \rangle$ with $\langle Q, \sigma \rangle \xrightarrow{\underline{a}} \langle Q', \sigma' \rangle$ and $(\langle P', \sigma' \rangle, \langle Q', \sigma' \rangle) \in B$.
 - 2. $\langle Q, \sigma \rangle \xrightarrow{\underline{a}} \langle Q', \sigma' \rangle$, there exists $\langle P', \sigma' \rangle$ with $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle$ and $(\langle P', \sigma' \rangle, \langle Q', \sigma' \rangle) \in B$.

ð

Bisimulations for ACP_{bc}

- bisimulation: relation B if for all $(\langle P, \sigma \rangle, \langle Q, \sigma \rangle) \in B$ whenever
 - 1. $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle$, there exists $\langle Q', \sigma' \rangle$ with $\langle Q, \sigma \rangle \xrightarrow{\underline{a}} \langle Q', \sigma' \rangle$ and $(\langle P', \sigma' \rangle, \langle Q', \sigma' \rangle) \in B$.
 - 2. $\langle Q, \sigma \rangle \xrightarrow{\underline{a}} \langle Q', \sigma' \rangle$, there exists $\langle P', \sigma' \rangle$ with $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle$ and $(\langle P', \sigma' \rangle, \langle Q', \sigma' \rangle) \in B$.
- bisimilar: $\langle P, \sigma \rangle \cong \langle Q, \sigma \rangle$ if in a bisimulation

Bisimulations for ACP_{bc}

- bisimulation: relation B if for all $(\langle P, \sigma \rangle, \langle Q, \sigma \rangle) \in B$ whenever
 - 1. $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle$, there exists $\langle Q', \sigma' \rangle$ with $\langle Q, \sigma \rangle \xrightarrow{\underline{a}} \langle Q', \sigma' \rangle$ and $(\langle P', \sigma' \rangle, \langle Q', \sigma' \rangle) \in B$.
 - 2. $\langle Q, \sigma \rangle \xrightarrow{\underline{a}} \langle Q', \sigma' \rangle$, there exists $\langle P', \sigma' \rangle$ with $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle$ and $(\langle P', \sigma' \rangle, \langle Q', \sigma' \rangle) \in B$.
- bisimilar: $\langle P, \sigma \rangle \cong \langle Q, \sigma \rangle$ if in a bisimulation
- bisimilar: $P \cong Q$ if $\langle P, \sigma \rangle \cong \langle Q, \sigma \rangle$ for all σ

Bisimulations for ACP_{hs}^{srt}

- ▶ bisimulation: relation B if for all $(\langle P, \sigma \rangle, \langle Q, \sigma \rangle) \in B$ whenever
 - 1. $\langle P, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle P', \sigma' \rangle$, there exists $\langle Q', \sigma' \rangle$ with $\langle Q, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle Q', \sigma' \rangle$ and $(\langle P', \sigma' \rangle, \langle Q', \sigma' \rangle) \in B$.
 - 2. $\langle Q, \sigma \rangle \xrightarrow{\underline{a}} \langle Q', \sigma' \rangle$, there exists $\langle P', \sigma' \rangle$ with $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle$ and $(\langle P', \sigma' \rangle, \langle Q', \sigma' \rangle) \in B$.
- ▶ bisimilar: $\langle P, \sigma \rangle \cong \langle Q, \sigma \rangle$ if in a bisimulation
- ▶ bisimilar: $P \cong Q$ if $\langle P, \sigma \rangle \cong \langle Q, \sigma \rangle$ for all σ
- not a congruence for parallel operator of ACP_{hs}^{srt}

Bisimulations for ACP_{bc}^{srt} (cont.)

- ▶ ic-bisimulation: relation B if for all $(P, Q) \in B$ whenever
 - 1. $\langle P, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle P', \sigma' \rangle$, there exists $\langle Q', \sigma' \rangle$ with $\langle Q, \sigma \rangle \xrightarrow{\underline{a}} \langle Q', \sigma' \rangle$ and $(P', Q') \in B$.
 - 2. $\langle Q, \sigma \rangle \xrightarrow{\underline{a}} \langle Q', \sigma' \rangle$, there exists $\langle P', \sigma' \rangle$ with $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle$ and $(P', Q') \in B$.

Bisimulations for ACP_{hs}^{srt} (cont.)

- ▶ ic-bisimulation: relation B if for all $(P, Q) \in B$ whenever
 - 1. $\langle P, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle P', \sigma' \rangle$, there exists $\langle Q', \sigma' \rangle$ with $\langle Q, \sigma \rangle \xrightarrow{\underline{a}} \langle Q', \sigma' \rangle$ and $(P', Q') \in B$.
 - 2. $\langle Q, \sigma \rangle \xrightarrow{\underline{a}} \langle Q', \sigma' \rangle$, there exists $\langle P', \sigma' \rangle$ with $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle$ and $(P', Q') \in B$.
- ightharpoonup ic-bisimilar: $P \cong Q$ if in a bisimulation

Bisimulations for ACP_{hs}^{srt} (cont.)

- ▶ ic-bisimulation: relation B if for all $(P, Q) \in B$ whenever
 - 1. $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle$, there exists $\langle Q', \sigma' \rangle$ with $\langle Q, \sigma \rangle \xrightarrow{\underline{a}} \langle Q', \sigma' \rangle$ and $(P', Q') \in B$.
 - 2. $\langle Q, \sigma \rangle \xrightarrow{\underline{a}} \langle Q', \sigma' \rangle$, there exists $\langle P', \sigma' \rangle$ with $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle$ and $(P', Q') \in B$.
- \triangleright ic-bisimilar: $P \cong Q$ if in a bisimulation
- congruence for all ACP_{bc} operators

Bisimulations for ACP_{bc}^{srt} (cont.)

- ▶ ic-bisimulation: relation B if for all $(P, Q) \in B$ whenever
 - 1. $\langle P, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle P', \sigma' \rangle$, there exists $\langle Q', \sigma' \rangle$ with $\langle Q, \sigma \rangle \xrightarrow{\underline{a}} \langle Q', \sigma' \rangle$ and $(P', Q') \in B$.
 - 2. $\langle Q, \sigma \rangle \xrightarrow{\underline{a}} \langle Q', \sigma' \rangle$, there exists $\langle P', \sigma' \rangle$ with $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle$ and $(P', Q') \in B$.
- \triangleright ic-bisimilar: $P \cong Q$ if in a bisimulation
- congruence for all ACP_{hs} operators
- identical definition to system bisimulation

Bisimulations for ACP_{hs}^{srt} (cont.)

- ▶ ic-bisimulation: relation B if for all $(P, Q) \in B$ whenever
 - 1. $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle$, there exists $\langle Q', \sigma' \rangle$ with $\langle Q, \sigma \rangle \xrightarrow{\underline{a}} \langle Q', \sigma' \rangle$ and $\langle P', Q' \rangle \in B$.
 - 2. $\langle Q, \sigma \rangle \xrightarrow{\underline{a}} \langle Q', \sigma' \rangle$, there exists $\langle P', \sigma' \rangle$ with $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle$ and $(P', Q') \in B$.
- ▶ ic-bisimilar: $P \cong Q$ if in a bisimulation
- congruence for all ACP^{srt} operators
- identical definition to system bisimulation
- ► Theorem 4: for well-defined HYPE models $P \sim_s Q \Leftrightarrow P \stackrel{\hookrightarrow}{=} Q \Leftrightarrow P \stackrel{\hookrightarrow}{=} Q$

Bisimulations for ACP_{hs}^{srt} (cont.)

- ▶ ic-bisimulation: relation B if for all $(P,Q) \in B$ whenever
 - 1. $\langle P, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle P', \sigma' \rangle$, there exists $\langle Q', \sigma' \rangle$ with $\langle Q, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle Q', \sigma' \rangle$ and $(P', Q') \in B$.
 - 2. $\langle Q, \sigma \rangle \xrightarrow{\underline{a}} \langle Q', \sigma' \rangle$, there exists $\langle P', \sigma' \rangle$ with $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle$ and $(P', Q') \in B$.
- ▶ ic-bisimilar: $P \cong Q$ if in a bisimulation
- congruence for all ACP^{srt} operators
- identical definition to system bisimulation
- ► Theorem 4: for well-defined HYPE models $P \sim_c Q \Leftrightarrow P \stackrel{\hookrightarrow}{=} Q \Leftrightarrow P \stackrel{\hookrightarrow}{=} Q$

- ▶ let ≡ be an equivalence over states
- \triangleright system bisimulation with respect to \equiv : relation B if for all $(P,Q) \in B$ whenever
 - 1. $\langle P, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle P', \sigma' \rangle$, there exists $\langle Q', \tau' \rangle$ with $\langle Q, \tau \rangle \xrightarrow{\underline{a}} \langle Q', \tau' \rangle, \ \sigma' \equiv \tau' \ \text{and} \ (P', Q') \in B.$
 - 2. $\langle Q, \tau \rangle \xrightarrow{\underline{a}} \langle Q', \tau' \rangle$, there exists $\langle P', \sigma' \rangle$ with $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle, \ \sigma' \equiv \tau' \ \text{and} \ (P', Q') \in B.$
 - $\sigma = \tau$

- ▶ let ≡ be an equivalence over states
- \triangleright system bisimulation with respect to \equiv : relation B if for all $(P,Q) \in B$ whenever
 - 1. $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle$, there exists $\langle Q', \tau' \rangle$ with $\langle Q, \tau \rangle \xrightarrow{\underline{a}} \langle Q', \tau' \rangle, \ \sigma' \equiv \tau' \ \text{and} \ (P', Q') \in B.$
 - 2. $\langle Q, \tau \rangle \xrightarrow{\underline{a}} \langle Q', \tau' \rangle$, there exists $\langle P', \sigma' \rangle$ with $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle, \ \sigma' \equiv \tau' \ \text{and} \ (P', Q') \in B.$
 - $\sigma = \tau$

- ▶ let ≡ be an equivalence over states
- \triangleright system bisimulation with respect to \equiv : relation B if for all $(P,Q) \in B$ whenever
 - 1. $\langle P, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle P', \sigma' \rangle$, there exists $\langle Q', \tau' \rangle$ with $\langle Q, \tau \rangle \xrightarrow{\underline{a}} \langle Q', \tau' \rangle, \ \sigma' \equiv \tau' \ \text{and} \ (P', Q') \in B.$
 - 2. $\langle Q, \tau \rangle \xrightarrow{\underline{a}} \langle Q', \tau' \rangle$, there exists $\langle P', \sigma' \rangle$ with $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle, \ \sigma' \equiv \tau' \ \text{and} \ (P', Q') \in B.$
 - 3. $\sigma \equiv \tau$
- ▶ system bisimilar with respect to $\equiv: P \sim_{\epsilon}^{\equiv} Q$ if in a system bisimulation with respect to \equiv

- ▶ let ≡ be an equivalence over states
- \triangleright system bisimulation with respect to \equiv : relation B if for all $(P,Q) \in B$ whenever
 - 1. $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle$, there exists $\langle Q', \tau' \rangle$ with $\langle Q, \tau \rangle \xrightarrow{\underline{a}} \langle Q', \tau' \rangle, \ \sigma' \equiv \tau' \ \text{and} \ (P', Q') \in B.$
 - 2. $\langle Q, \tau \rangle \xrightarrow{\underline{a}} \langle Q', \tau' \rangle$, there exists $\langle P', \sigma' \rangle$ with $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle, \ \sigma' \equiv \tau' \ \text{and} \ (P', Q') \in B.$
 - 3. $\sigma \equiv \tau$
- ▶ system bisimilar with respect to $\equiv: P \sim_{\epsilon}^{\equiv} Q$ if in a system bisimulation with respect to \equiv
- ▶ system bisimulation is ~=

More general bisimulation (cont.)

▶ ≡ preserves updating if

$$\sigma \equiv \tau \Rightarrow \sigma[\iota \mapsto (r, I)] \equiv \tau[\iota \mapsto (r, I)]$$

More general bisimulation (cont.)

▶ ≡ preserves updating if

$$\sigma \equiv \tau \Rightarrow \sigma[\iota \mapsto (r, I)] \equiv \tau[\iota \mapsto (r, I)]$$

Theorem 5: if \equiv preserves updating then \sim_s^{\equiv} is a congruence for all operators

Equivalences

More general bisimulation (cont.)

▶ ≡ preserves updating if

$$\sigma \equiv \tau \Rightarrow \sigma[\iota \mapsto (r, I)] \equiv \tau[\iota \mapsto (r, I)]$$

- ▶ Theorem 5: if \equiv preserves updating then \sim_s^{\equiv} is a congruence for all operators
- what are interesting equivalences over states?

$$P \sim_s^{\equiv} Q \quad \stackrel{?}{\Rightarrow} \quad P_{\sigma} = Q_{\sigma}$$

More general bisimulation (cont.)

 $ightharpoonup \sigma_1 \doteq \sigma_2$ if $add(\sigma_1, V, f(\vec{X})) = add(\sigma_2, V, f(\vec{X}))$ for all $V, f(\vec{X})$ where $add(\sigma, V, f(\vec{X})) =$ $\sum \{r \mid \mathrm{iv}(\iota) = V, \sigma(\iota) = (r, I(\vec{X})), f(\vec{X}) = [I(\vec{X})]\}$

- $P \sim_{\epsilon}^{\stackrel{.}{=}} Q \Rightarrow P_{\sigma} = Q_{\sigma}$
- solutions
 - redefine add to preserve updates
 - require iv to be injective
 - consider individual equivalences

► HYPE

Conclusions

Conclusions and further work

- HYPE
 - process algebra for hybrid systems

- ► HYPE
 - process algebra for hybrid systems
 - describe flows, fine-grained modelling technique

- ► HYPE
 - process algebra for hybrid systems
 - describe flows, fine-grained modelling technique
 - operational semantics provide ODEs

- HYPE
 - process algebra for hybrid systems
 - describe flows, fine-grained modelling technique
 - operational semantics provide ODEs
 - map to hybrid automata

- ► HYPE
 - process algebra for hybrid systems
 - describe flows, fine-grained modelling technique
 - operational semantics provide ODEs
 - map to hybrid automata
 - system bisimulation

► HYPE

- process algebra for hybrid systems
- describe flows, fine-grained modelling technique
- operational semantics provide ODEs
- map to hybrid automata
- system bisimulation
- relationship between bisimulation and ODEs

HYPF

- process algebra for hybrid systems
- describe flows, fine-grained modelling technique
- operational semantics provide ODEs
- map to hybrid automata
- system bisimulation
- relationship between bisimulation and ODEs
- other bisimulations, more general equivalence

- ► HYPE
 - process algebra for hybrid systems
 - describe flows, fine-grained modelling technique
 - operational semantics provide ODEs
 - map to hybrid automata
 - system bisimulation
 - relationship between bisimulation and ODEs
 - other bisimulations, more general equivalence
- modelling: dual-tank system, bottling line, Repressilator

- HYPF
 - process algebra for hybrid systems
 - describe flows, fine-grained modelling technique
 - operational semantics provide ODEs
 - map to hybrid automata
 - system bisimulation
 - relationship between bisimulation and ODEs
 - other bisimulations, more general equivalence
- modelling: dual-tank system, bottling line, Repressilator
- further work

- HYPF
 - process algebra for hybrid systems
 - describe flows, fine-grained modelling technique
 - operational semantics provide ODEs
 - map to hybrid automata
 - system bisimulation
 - relationship between bisimulation and ODEs
 - other bisimulations, more general equivalence
- modelling: dual-tank system, bottling line, Repressilator
- further work
 - branching time versus linear time equivalences

- HYPE
 - process algebra for hybrid systems
 - describe flows, fine-grained modelling technique
 - operational semantics provide ODEs
 - map to hybrid automata
 - system bisimulation
 - relationship between bisimulation and ODEs
 - other bisimulations, more general equivalence
- modelling: dual-tank system, bottling line, Repressilator
- further work
 - branching time versus linear time equivalences
 - usefulness of equivalences

Conclusions

HYPE syntax Operational semantics Hybrid semantics Equivalences Conclusions

Conclusions and further work

- HYPE
 - process algebra for hybrid systems
 - describe flows, fine-grained modelling technique
 - operational semantics provide ODEs
 - map to hybrid automata
 - system bisimulation
 - relationship between bisimulation and ODEs
 - other bisimulations, more general equivalence
- modelling: dual-tank system, bottling line, Repressilator
- further work
 - branching time versus linear time equivalences
 - usefulness of equivalences
 - more modelling, systems biology

Thank you