

Modelling network performance with a spatial stochastic process algebra

Vashti Galpin Laboratory for Foundations of Computer Science University of Edinburgh

26 May 2009

Vashti Galpin

Modelling network performance with a spatial stochastic process algebra

model network performance

- model network performance
- spatial concepts in a stochastic process algebra

- model network performance
- spatial concepts in a stochastic process algebra
- Iocation can affect time taken

- model network performance
- spatial concepts in a stochastic process algebra
- Iocation can affect time taken
- analysis using continuous time Markov chains (CTMCs)

- model network performance
- spatial concepts in a stochastic process algebra
- Iocation can affect time taken
- analysis using continuous time Markov chains (CTMCs)
- no unnecessary increase in state space

- model network performance
- spatial concepts in a stochastic process algebra
- Iocation can affect time taken
- analysis using continuous time Markov chains (CTMCs)
- no unnecessary increase in state space
- related research

- model network performance
- spatial concepts in a stochastic process algebra
- Iocation can affect time taken
- analysis using continuous time Markov chains (CTMCs)
- no unnecessary increase in state space
- related research
 - PEPA nets (Gilmore *et al*)

- model network performance
- spatial concepts in a stochastic process algebra
- Iocation can affect time taken
- analysis using continuous time Markov chains (CTMCs)
- no unnecessary increase in state space
- related research
 - PEPA nets (Gilmore *et al*)
 - STOKLAIM (de Nicola *et al*)

- model network performance
- spatial concepts in a stochastic process algebra
- Iocation can affect time taken
- analysis using continuous time Markov chains (CTMCs)
- no unnecessary increase in state space
- related research
 - PEPA nets (Gilmore *et al*)
 - STOKLAIM (de Nicola et al)
 - ▶ biological models BioAmbients, attributed *π*-calculus

Introduction	Motivation	Locations		Measuring performance	Conclusion

Outline

Introduction

Motivation

Locations

Syntax

Semantics

Measuring performance

Conclusion

we want to model the performance of a network

- ▶ we want to model the performance of a network
- we know how to do this with stochastic process algebra

- we want to model the performance of a network
- we know how to do this with stochastic process algebra
- PEPA [Hillston 1996]

- we want to model the performance of a network
- we know how to do this with stochastic process algebra
- PEPA [Hillston 1996]
 - compact syntax, rules of behaviour

$$\frac{P \xrightarrow{(\alpha,r)} P'}{P + Q \xrightarrow{(\alpha,r)} P'}$$

- we want to model the performance of a network
- we know how to do this with stochastic process algebra
- PEPA [Hillston 1996]
 - compact syntax, rules of behaviour

$$\frac{P \xrightarrow{(\alpha,r)} P'}{P + Q \xrightarrow{(\alpha,r)} P'}$$

• transitions labelled with $(\alpha, r) \in \mathcal{A} \times \mathbb{R}^+$

- we want to model the performance of a network
- we know how to do this with stochastic process algebra
- PEPA [Hillston 1996]
 - compact syntax, rules of behaviour

$$\frac{P \xrightarrow{(\alpha,r)} P'}{P + Q \xrightarrow{(\alpha,r)} P'}$$

- ▶ transitions labelled with $(\alpha, r) \in \mathcal{A} \times \mathbb{R}^+$
- interpret as continuous time Markov chain

Modelling network performance with a spatial stochastic process algebra

- we want to model the performance of a network
- we know how to do this with stochastic process algebra
- PEPA [Hillston 1996]
 - compact syntax, rules of behaviour

$$\frac{P \xrightarrow{(\alpha,r)} P'}{P + Q \xrightarrow{(\alpha,r)} P'}$$

- ▶ transitions labelled with $(\alpha, r) \in \mathcal{A} \times \mathbb{R}^+$
- interpret as continuous time Markov chain
- analyses to understand performance

- we want to model the performance of a network
- we know how to do this with stochastic process algebra
- PEPA [Hillston 1996]
 - compact syntax, rules of behaviour

$$\frac{P \xrightarrow{(\alpha,r)} P'}{P + Q \xrightarrow{(\alpha,r)} P'}$$

- ▶ transitions labelled with $(\alpha, r) \in \mathcal{A} \times \mathbb{R}^+$
- interpret as continuous time Markov chain
- analyses to understand performance
- new ingredient: general notion of location

\blacktriangleright ${\cal L}$ locations

location names, cities

- *L* locations
 - location names, cities
 - points in *n*-dimensional space

- \mathcal{L} locations
 - location names, cities
 - points in *n*-dimensional space
- collections of locations

- *L* locations
 - location names, cities
 - points in *n*-dimensional space
- collections of locations
 - $\mathcal{P}_{\mathcal{L}} = 2^{\mathcal{L}}$, powerset

- *L* locations
 - location names, cities
 - points in *n*-dimensional space
- collections of locations
 - $\mathcal{P}_{\mathcal{L}} = 2^{\mathcal{L}}$, powerset
 - $\mathcal{P}_{\mathcal{L}} = P \cup (P \times P)$, singletons and ordered pairs

- *L* locations
 - location names, cities
 - points in *n*-dimensional space
- collections of locations
 - $\mathcal{P}_{\mathcal{L}} = 2^{\mathcal{L}}$, powerset
 - $\mathcal{P}_{\mathcal{L}} = P \cup (P \times P)$, singletons and ordered pairs
- ▶ structure over locations, weighted graph $G = (\mathcal{L}, E, w)$

- *L* locations
 - location names, cities
 - points in *n*-dimensional space
- collections of locations
 - $\mathcal{P}_{\mathcal{L}} = 2^{\mathcal{L}}$, powerset
 - $\mathcal{P}_{\mathcal{L}} = P \cup (P \times P)$, singletons and ordered pairs
- ▶ structure over locations, weighted graph $G = (\mathcal{L}, E, w)$
 - undirected hypergraph or directed graph

- \mathcal{L} locations
 - location names, cities
 - points in *n*-dimensional space
- collections of locations
 - $\mathcal{P}_{\mathcal{L}} = 2^{\mathcal{L}}$, powerset
 - $\mathcal{P}_{\mathcal{L}} = P \cup (P \times P)$, singletons and ordered pairs
- ▶ structure over locations, weighted graph $G = (\mathcal{L}, E, w)$
 - undirected hypergraph or directed graph

•
$$E \subseteq \mathcal{P}_{\mathcal{L}}$$

- \mathcal{L} locations
 - location names, cities
 - points in *n*-dimensional space
- collections of locations
 - $\mathcal{P}_{\mathcal{L}} = 2^{\mathcal{L}}$, powerset
 - $\mathcal{P}_{\mathcal{L}} = P \cup (P \times P)$, singletons and ordered pairs
- ▶ structure over locations, weighted graph $G = (\mathcal{L}, E, w)$
 - undirected hypergraph or directed graph
 - $E \subseteq \mathcal{P}_{\mathcal{L}}$
 - $w: E \to \mathbb{R}$

- \mathcal{L} locations
 - location names, cities
 - points in *n*-dimensional space
- collections of locations
 - $\mathcal{P}_{\mathcal{L}} = 2^{\mathcal{L}}$, powerset
 - $\mathcal{P}_{\mathcal{L}} = P \cup (P \times P)$, singletons and ordered pairs
- ▶ structure over locations, weighted graph $G = (\mathcal{L}, E, w)$
 - undirected hypergraph or directed graph
 - $E \subseteq \mathcal{P}_{\mathcal{L}}$
 - $w: E \to \mathbb{R}$
 - weights modify rates on actions between locations

\blacktriangleright ${\cal L}$ locations, ${\cal P}_{{\cal L}}$ collection of locations

	Motivation	Locations	Syntax	Measuring performance	Conclusion
Syntax					
Jyntax					

- \blacktriangleright ${\cal L}$ locations, ${\cal P}_{{\cal L}}$ collection of locations
- $\blacktriangleright \ L \in \mathcal{P}_{\mathcal{L}} \quad \alpha \in \mathcal{A} \quad M \subseteq \mathcal{A} \quad r > 0$

- 5
 - \blacktriangleright ${\cal L}$ locations, ${\cal P}_{\!{\cal L}}$ collection of locations
 - $\blacktriangleright \ L \in \mathcal{P}_{\mathcal{L}} \quad \alpha \in \mathcal{A} \quad M \subseteq \mathcal{A} \quad r > 0$
 - sequential components

$$S ::= (\alpha @L, r) \cdot S \mid S + S \mid C_s @L$$

- \mathcal{L} locations, $\mathcal{P}_{\mathcal{L}}$ collection of locations
- $\blacktriangleright \ L \in \mathcal{P}_{\mathcal{L}} \quad \alpha \in \mathcal{A} \quad M \subseteq \mathcal{A} \quad r > 0$
- sequential components

$$S ::= (\alpha @L, r) . S | S + S | C_s @L$$

sequential constant definition

$$C_s @L \stackrel{def}{=} S$$

Syntax

- \mathcal{L} locations, $\mathcal{P}_{\mathcal{L}}$ collection of locations
- $\blacktriangleright \ L \in \mathcal{P}_{\mathcal{L}} \quad \alpha \in \mathcal{A} \quad M \subseteq \mathcal{A} \quad r > 0$
- sequential components

$$S ::= (\alpha @L, r) . S | S + S | C_s @L$$

sequential constant definition

$$C_s @L \stackrel{\text{\tiny def}}{=} S$$

model components

$$P ::= P \bigotimes_{M} P \mid P/M \mid C$$

Vashti Galpin

Syntax

- \mathcal{L} locations, $\mathcal{P}_{\mathcal{L}}$ collection of locations
- $\blacktriangleright \ L \in \mathcal{P}_{\mathcal{L}} \quad \alpha \in \mathcal{A} \quad M \subseteq \mathcal{A} \quad r > 0$
- sequential components

$$S ::= (\alpha @L, r) . S | S + S | C_s @L$$

sequential constant definition

$$C_s @L \stackrel{\text{\tiny def}}{=} S$$

model components

$$P ::= P \bigotimes_{M} P \mid P/M \mid C$$

model constant definition

$$C \stackrel{{}_{def}}{=} P$$

Parameterised operational semantics

 \blacktriangleright transitions labelled with $\mathcal{A}\times\mathcal{P}_{\!\mathcal{L}}\times\mathbb{R}^+$

Parameterised operational semantics

- \blacktriangleright transitions labelled with $\mathcal{A}\times\mathcal{P}_{\!\mathcal{L}}\times\mathbb{R}^+$
- Prefix

$$\frac{1}{(\alpha @L, r).S \xrightarrow{(\alpha @L', r)} S} \quad L' = apref((\alpha @L, r).S)$$

Parameterised operational semantics

- \blacktriangleright transitions labelled with $\mathcal{A}\times\mathcal{P}_{\!\mathcal{L}}\times\mathbb{R}^+$
- Prefix

$$\frac{1}{(\alpha @L, r).S \xrightarrow{(\alpha @L', r)} S} \quad L' = apref((\alpha @L, r).S)$$

► Cooperation
$$\frac{P_1 \xrightarrow{(\alpha \otimes L_1, r_1)} P'_1 \quad P_2 \xrightarrow{(\alpha \otimes L_2, r_2)} P'_2}{P_1 \bigotimes_M P_2 \xrightarrow{(\alpha \otimes L, R)} P'_1 \bigotimes_M P'_2} \quad \alpha \in M$$

 $L = async(P_1, P_2, L_1, L_2)$ $R = rsync(P_1, P_2, L_1, L_2, r_1, r_2)$

Vashti Galpin

Parameterised operational semantics

- ▶ transitions labelled with $\mathcal{A} \times \mathcal{P}_{\mathcal{L}} \times \mathbb{R}^+$
- Prefix

$$\frac{1}{(\alpha @L, r).S \xrightarrow{(\alpha @L', r)} S} \quad L' = apref((\alpha @L, r).S)$$

► Cooperation
$$\frac{P_1 \xrightarrow{(\alpha @ L_1, r_1)} P'_1 P_2 \xrightarrow{(\alpha @ L_2, r_2)} P'_2}{P_1 \bigotimes_{M} P_2 \xrightarrow{(\alpha @ L, R)} P'_1 \bigotimes_{M} P'_2} \quad \alpha \in M$$

 $L = async(P_1, P_2, L_1, L_2)$ $R = rsync(P_1, P_2, L_1, L_2, r_1, r_2)$

parameterised by three functions

Modelling network performance with a spatial stochastic process algebra

Parameterised operational semantics

- \blacktriangleright transitions labelled with $\mathcal{A}\times\mathcal{P}_{\!\mathcal{L}}\times\mathbb{R}^+$
- Prefix

$$\frac{1}{(\alpha @L, r).S \xrightarrow{(\alpha @L', r)} S} \quad L' = apref((\alpha @L, r).S)$$

► Cooperation
$$\frac{P_1 \xrightarrow{(\alpha@L_1,r_1)} P'_1 P_2 \xrightarrow{(\alpha@L_2,r_2)} P'_2}{P_1 \bigotimes_M P_2 \xrightarrow{(\alpha@L,R)} P'_1 \bigotimes_M P'_2} \quad \alpha \in M$$

 $L = async(P_1, P_2, L_1, L_2) \quad R = rsync(P_1, P_2, L_1, L_2, r_1, r_2)$

- parameterised by three functions
- other rules defined in the obvious manner

Vashti Galpin

Modelling network performance with a spatial stochastic process algebra

instantiation of functions gives concrete process algebra

- instantiation of functions gives concrete process algebra
- determines what transitions are possible

- instantiation of functions gives concrete process algebra
- determines what transitions are possible
- different choices for $\mathcal{P}_{\mathcal{L}}$ give different semantics

- instantiation of functions gives concrete process algebra
- determines what transitions are possible
- different choices for $\mathcal{P}_{\mathcal{L}}$ give different semantics
 - locations associated with processes and/or actions

- instantiation of functions gives concrete process algebra
- determines what transitions are possible
- different choices for $\mathcal{P}_{\mathcal{L}}$ give different semantics
 - locations associated with processes and/or actions
 - singleton locations versus multiple locations

Parameterised operational semantics (cont.)

- instantiation of functions gives concrete process algebra
- determines what transitions are possible
- different choices for $\mathcal{P}_{\mathcal{L}}$ give different semantics
 - locations associated with processes and/or actions
 - singleton locations versus multiple locations
- Ionger terms aims

Parameterised operational semantics (cont.)

- instantiation of functions gives concrete process algebra
- determines what transitions are possible
- different choices for $\mathcal{P}_{\mathcal{L}}$ give different semantics
 - locations associated with processes and/or actions
 - singleton locations versus multiple locations
- Ionger terms aims
 - prove results for parametric process algebra

Parameterised operational semantics (cont.)

- instantiation of functions gives concrete process algebra
- determines what transitions are possible
- different choices for $\mathcal{P}_{\mathcal{L}}$ give different semantics
 - locations associated with processes and/or actions
 - singleton locations versus multiple locations
- Ionger terms aims
 - prove results for parametric process algebra
 - then apply to concrete process algebra

networking performance

- networking performance
- scenario

- networking performance
- scenario
 - arbitrary topology

- networking performance
- scenario
 - arbitrary topology
 - single packet traversal through network

- networking performance
- scenario
 - arbitrary topology
 - single packet traversal through network
 - processes can be colocated

- networking performance
- scenario
 - arbitrary topology
 - single packet traversal through network
 - processes can be colocated
- want to model different topologies and traffic

- networking performance
- scenario
 - arbitrary topology
 - single packet traversal through network
 - processes can be colocated
- want to model different topologies and traffic
- choose functions to create process algebra

- networking performance
- scenario
 - arbitrary topology
 - single packet traversal through network
 - processes can be colocated
- want to model different topologies and traffic
- choose functions to create process algebra
 - each sequential component must have single fixed location

- networking performance
- scenario
 - arbitrary topology
 - single packet traversal through network
 - processes can be colocated
- want to model different topologies and traffic
- choose functions to create process algebra
 - each sequential component must have single fixed location
 - communication must be pairwise and directional

Functions for concrete process algebra

functions

Functions for concrete process algebra

functions

$$apref(S) = egin{cases} \ell & ext{ if } ploc(S) = \{\ell\} \ ot & ext{ otherwise } \end{cases}$$

Functions for concrete process algebra

functions

$$apref(S) = \begin{cases} \ell & \text{if } ploc(S) = \{\ell\} \\ \bot & \text{otherwise} \end{cases}$$
$$async(P_1, P_2, L_1, L_2) = \begin{cases} (\ell_1, \ell_2) & \text{if } L_1 = \{\ell_1\}, L_2 = \{\ell_2\}, (\ell_1, \ell_2) \in E \\ \bot & \text{otherwise} \end{cases}$$

Vashti Galpin

Functions for concrete process algebra

functions

$$apref(S) = egin{cases} \ell & ext{ if } ploc(S) = \{\ell\} \ ot & ext{ otherwise } \end{cases}$$

$$async(P_1, P_2, L_1, L_2) = \begin{cases} (\ell_1, \ell_2) & \text{if } L_1 = \{\ell_1\}, L_2 = \{\ell_2\}, (\ell_1, \ell_2) \in E \\ \bot & \text{otherwise} \end{cases}$$

$$rsync(P_{1}, P_{2}, L_{1}, L_{2}, r_{1}, r_{2}) = \begin{cases} \frac{r_{1}}{r_{\alpha}(P_{1})} \frac{r_{2}}{r_{\alpha}(P_{2})} \min(r_{\alpha}(P_{1}), r_{\alpha}(P_{2})) \cdot w((\ell_{1}, \ell_{2})) \\ & \text{if } L_{1} = \{\ell_{1}\}, L_{2} = \{\ell_{2}\}, (\ell_{1}, \ell_{2}) \in E \\ \bot & \text{otherwise} \end{cases}$$

Vashti Galpin

Modelling network performance with a spatial stochastic process algebra

Introduction	Motivation	Locations	Syntax	Semantics	Measuring performance	Conclusion
PEPA n	nodel					
	der@A ≝ ling@A ≝			ling@A ck, r _{ack}).Se	ender@A	
				ceiving@F ck, r _{ack}).Re		

$$\begin{array}{ll} P_i @\ell_i & \stackrel{\text{def}}{=} & (c_{Si}, \top). Q_i @\ell_i + \sum_{j=1, j \neq i}^6 (c_{ji}, r). Q_i @\ell_i \\ Q_i @\ell_i & \stackrel{\text{def}}{=} & (c_{iR}, \top). P_i @\ell_i + \sum_{j=1, j \neq i}^6 (c_{ij}, r). P_i @\ell_i \end{array}$$

 $Network \stackrel{\text{def}}{=} (Sender@A \Join (P1@B \Join (P2@C \Join (P3@C \Join (P4@D \Join (P5@E \Join (P6@F \Join Receiver@F))))))))$

Vashti Galpin

Motivation	Locations		Measuring performance	Conclusion

Graphs

• rates:
$$r = r_R = r_S = 10$$

Vashti Galpin

	Motivation	Locations		Measuring performance	Conclusion
Graphs					

• rates:
$$r = r_R = r_S = 10$$

► the weighted graph G describes the topology

Vashti Galpin

Modelling network performance with a spatial stochastic process algebra

	Motivation	Locations		Measuring performance	Conclusion
Graphs					

• G_1 represents heavy traffic between C and E

Vashti Galpin

Modelling network performance with a spatial stochastic process algebra

	Motivation	Locations		Measuring performance	Conclusion
Graphs					

► G₂ represents no connectivity between C and E

Vashti Galpin

Modelling network performance with a spatial stochastic process algebra

	Motivation	Locations		Measuring performance	Conclusion
Graphs					
Graphs					

► G₃ represents high connectivity between colocated processes

Vashti Galpin

Modelling network performance with a spatial stochastic process algebra

cumulative density function of passage time

Comparison of different network models

Vashti Galpin

Modelling network performance with a spatial stochastic process algebra

► further work

- further work
 - other specific applications

- further work
 - other specific applications
 - theoretical results

- further work
 - other specific applications
 - theoretical results
 - semantic equivalences

- further work
 - other specific applications
 - theoretical results
 - semantic equivalences
 - translation into PEPA

- further work
 - other specific applications
 - theoretical results
 - semantic equivalences
 - translation into PEPA
 - results from graph theory

- further work
 - other specific applications
 - theoretical results
 - semantic equivalences
 - translation into PEPA
 - results from graph theory
- conclusions

- further work
 - other specific applications
 - theoretical results
 - semantic equivalences
 - translation into PEPA
 - results from graph theory
- conclusions
 - presentation of a very general stochastic process algebra with locations

- further work
 - other specific applications
 - theoretical results
 - semantic equivalences
 - translation into PEPA
 - results from graph theory
- conclusions
 - presentation of a very general stochastic process algebra with locations
 - use for modelling network performance in a general way

Motivation	Locations		Measuring performance	Conclusion

Thank you

This research was funded by the EPSRC SIGNAL Project

Vashti Galpin