CADP

How restrictive is the current action decomposition property for compression bisimulation?

Vashti Galpin LFCS, University of Edinburgh

27 August 2009

Vashti Galpin

How restrictive is the current action decomposition property for compression bisimulation?

Bio-PASTA 2009

Bio-PEPA	Syntax and semantics	Compression bisimulation	CADP
Bio-PEPA			

 stochastic process algebra for modelling biological systems [Ciocchetta and Hillston 2008]

- stochastic process algebra for modelling biological systems [Ciocchetta and Hillston 2008]
- different analyses: ODEs, CTMCs, stochastic simulation

- - stochastic process algebra for modelling biological systems [Ciocchetta and Hillston 2008]
 - different analyses: ODEs, CTMCs, stochastic simulation
 - compression bisimulation [Galpin and Hillston 2009]

- stochastic process algebra for modelling biological systems [Ciocchetta and Hillston 2008]
- different analyses: ODEs, CTMCs, stochastic simulation
- compression bisimulation [Galpin and Hillston 2009]
 - based on different discretisations of same model

- stochastic process algebra for modelling biological systems [Ciocchetta and Hillston 2008]
- different analyses: ODEs, CTMCs, stochastic simulation
- compression bisimulation [Galpin and Hillston 2009]
 - based on different discretisations of same model
 - qualitative, actions only

- stochastic process algebra for modelling biological systems [Ciocchetta and Hillston 2008]
- different analyses: ODEs, CTMCs, stochastic simulation
- compression bisimulation [Galpin and Hillston 2009]
 - based on different discretisations of same model
 - qualitative, actions only
- various results for compression bisimulation

- stochastic process algebra for modelling biological systems [Ciocchetta and Hillston 2008]
- different analyses: ODEs, CTMCs, stochastic simulation
- compression bisimulation [Galpin and Hillston 2009]
 - based on different discretisations of same model
 - qualitative, actions only
- various results for compression bisimulation
- conditions for results
 - sufficiently large number of levels
 - current action decomposition property (CADP)

Vashti Galpin

- stochastic process algebra for modelling biological systems [Ciocchetta and Hillston 2008]
- different analyses: ODEs, CTMCs, stochastic simulation
- compression bisimulation [Galpin and Hillston 2009]
 - based on different discretisations of same model
 - qualitative, actions only
- various results for compression bisimulation
- conditions for results
 - sufficiently large number of levels
 - current action decomposition property (CADP)
- some success

Vashti Gal<u>pin</u>

sequential component, species

$$S ::= (\alpha, \kappa) \text{ op } S \mid S + S \quad \text{ op } \in \{\uparrow, \downarrow, \oplus, \ominus, \odot\}$$

Vashti Galpin

sequential component, species

Vashti Galpin

sequential component, species

• α action, reaction name, κ stoichiometric coefficient

sequential component, species

 $\blacktriangleright~\alpha$ action, reaction name, κ stoichiometric coefficient

• \uparrow product, \downarrow reactant

sequential component, species

 $S ::= (\alpha, \kappa) \text{ op } S \mid S + S \quad \text{ op } \in \{\uparrow, \downarrow, \oplus, \ominus, \odot\}$

 $\blacktriangleright~\alpha$ action, reaction name, κ stoichiometric coefficient

- \uparrow product, \downarrow reactant
- \oplus activator, \ominus inhibitor, \odot generic modifier

sequential component, species

 $S ::= (\alpha, \kappa) \text{ op } S \mid S + S \quad \text{op } \in \{\uparrow, \downarrow, \oplus, \ominus, \odot\}$

 $\blacktriangleright~\alpha$ action, reaction name, κ stoichiometric coefficient

- \uparrow product, \downarrow reactant
- \oplus activator, \ominus inhibitor, \odot generic modifier

sequential component, species

 $S ::= (\alpha, \kappa) \text{ op } S \mid S + S \quad \text{ op } \in \{\uparrow, \downarrow, \oplus, \ominus, \odot \}$

 $\blacktriangleright~\alpha$ action, reaction name, κ stoichiometric coefficient

- \uparrow product, \downarrow reactant
- \oplus activator, \ominus inhibitor, \odot generic modifier
- model component, system

$$P ::= S(x) | P \bowtie_L P$$

Vashti Galpin

sequential component, species

 $S ::= (\alpha, \kappa) \text{ op } S \mid S + S \quad \text{ op } \in \{\uparrow, \downarrow, \oplus, \ominus, \odot \}$

 $\blacktriangleright~\alpha$ action, reaction name, κ stoichiometric coefficient

- \uparrow product, \downarrow reactant
- \oplus activator, \ominus inhibitor, \odot generic modifier

model component, system

$$P ::= S(x) | P \bowtie_L P$$

Vashti Galpin

sequential component, species

 $S ::= (\alpha, \kappa) \text{ op } S \mid S + S \quad \text{ op } \in \{\uparrow, \downarrow, \oplus, \ominus, \odot \}$

 $\blacktriangleright~\alpha$ action, reaction name, κ stoichiometric coefficient

- \uparrow product, \downarrow reactant
- \oplus activator, \ominus inhibitor, \odot generic modifier

model component, system

$$P ::= S(x) | P \bowtie_L P$$

Vashti Galpin

sequential component, species

 $S ::= (\alpha, \kappa) \text{ op } S \mid S + S \quad \text{ op } \in \{\uparrow, \downarrow, \oplus, \ominus, \odot \}$

 $\blacktriangleright~\alpha$ action, reaction name, κ stoichiometric coefficient

- \uparrow product, \downarrow reactant
- \oplus activator, \ominus inhibitor, \odot generic modifier
- model component, system

 $P ::= S(x) \mid P \bowtie_{I} P$

basic syntax, excludes locations, transportation and events

Vashti Galpin

well-defined Bio-PEPA model component

Vashti Galpin

- well-defined Bio-PEPA model component
 - $C \stackrel{\text{def}}{=} (\alpha_1, \kappa_1) \operatorname{op}_1 C + \ldots + (\alpha_n, \kappa_n) \operatorname{op}_n C$ with all α_i 's distinct

Vashti Galpin

- well-defined Bio-PEPA model component
 - $C \stackrel{\text{def}}{=} (\alpha_1, \kappa_1) \operatorname{op}_1 C + \ldots + (\alpha_n, \kappa_n) \operatorname{op}_n C$ with all α_i 's distinct

Vashti Galpin

- well-defined Bio-PEPA model component
 - $C \stackrel{\text{def}}{=} (\alpha_1, \kappa_1) \operatorname{op}_1 C + \ldots + (\alpha_n, \kappa_n) \operatorname{op}_n C$ with all α_i 's distinct
 - ► $P \stackrel{def}{=} C_1$ (x_1) $\bowtie_{L_1} \ldots \bowtie_{L_{m-1}} C_m$ (x_m) with all C_i 's distinct

Vashti Galpin

- well-defined Bio-PEPA model component
 - $C \stackrel{\text{def}}{=} (\alpha_1, \kappa_1) \operatorname{op}_1 C + \ldots + (\alpha_n, \kappa_n) \operatorname{op}_n C$ with all α_i 's distinct
 - ► $P \stackrel{\text{def}}{=} C_1(x_1) \underset{L_1}{\bowtie} \ldots \underset{L_{m-1}}{\bowtie} C_m(x_m)$ with all C_i 's distinct

Vashti Galpin

- well-defined Bio-PEPA model component
 - $C \stackrel{\text{def}}{=} (\alpha_1, \kappa_1) \operatorname{op}_1 C + \ldots + (\alpha_n, \kappa_n) \operatorname{op}_n C$ with all α_i 's distinct
 - ► $P \stackrel{\text{def}}{=} C_1(x_1) \underset{L_1}{\bowtie} \ldots \underset{L_{m-1}}{\bowtie} C_m(x_m)$ with all C_i 's distinct
 - x_1, \ldots, x_m are population counts

Vashti Galpin

- well-defined Bio-PEPA model component
 - $C \stackrel{\text{def}}{=} (\alpha_1, \kappa_1) \operatorname{op}_1 C + \ldots + (\alpha_n, \kappa_n) \operatorname{op}_n C$ with all α_i 's distinct
 - ► $P \stackrel{\text{def}}{=} C_1$ (x_1) $\bowtie_{L_1} \dots \bowtie_{L_{m-1}} C_m$ (x_m) with all C_i 's distinct
 - x_1, \ldots, x_m are population counts
 - counts can be converted to levels

Vashti Galpin

Example: reaction with enzyme

$$\blacktriangleright S + E \stackrel{\longrightarrow}{\longleftarrow} SE \longrightarrow P + E$$

Vashti Galpin

Example: reaction with enzyme

$$\blacktriangleright S + E \stackrel{\longrightarrow}{\longleftarrow} SE \longrightarrow P + E$$

• $S(\ell_S) \bowtie E(\ell_E) \bowtie SE(\ell_{SE}) \bowtie P(\ell_P)$ where

Vashti Galpin

CADP

Example: reaction with enzyme

$$\triangleright S + E \stackrel{\longrightarrow}{\longleftarrow} SE \longrightarrow P + E$$

•
$$S(\ell_S) \bowtie E(\ell_E) \bowtie SE(\ell_{SE}) \bowtie P(\ell_P)$$
 where

$$\begin{split} S &\stackrel{\text{def}}{=} (\alpha, 1) \downarrow S + (\beta, 1) \uparrow S \\ E &\stackrel{\text{def}}{=} (\alpha, 1) \downarrow E + (\beta, 1) \uparrow E + (\gamma, 1) \uparrow E \\ SE &\stackrel{\text{def}}{=} (\alpha, 1) \uparrow SE + (\beta, 1) \downarrow SE + (\gamma, 1) \downarrow SE \\ P &\stackrel{\text{def}}{=} (\gamma, 1) \uparrow P \end{split}$$

Vashti Galpin

Example: reaction with enzyme

$$\blacktriangleright S + E \stackrel{\longrightarrow}{\longleftarrow} SE \longrightarrow P + E$$

• $S(\ell_S) \bowtie E(\ell_E) \bowtie SE(\ell_{SE}) \bowtie P(\ell_P)$ where

$$S \stackrel{\text{def}}{=} (\alpha, 1) \downarrow S + (\beta, 1) \uparrow S$$

$$E \stackrel{\text{def}}{=} (\alpha, 1) \downarrow E + (\beta, 1) \uparrow E + (\gamma, 1) \uparrow E$$

$$SE \stackrel{\text{def}}{=} (\alpha, 1) \uparrow SE + (\beta, 1) \downarrow SE + (\gamma, 1) \downarrow SE$$

$$P \stackrel{\text{def}}{=} (\gamma, 1) \uparrow P$$

Vashti Galpin

Example: reaction with enzyme

$$S + E \xrightarrow{G} SE \longrightarrow P + E$$

$$S(\ell_{S}) \bigotimes E(\ell_{E}) \bigotimes SE(\ell_{SE}) \bigotimes P(\ell_{P}) \text{ where}$$

$$S \stackrel{def}{=} (\alpha, 1) \downarrow S + (\beta, 1) \uparrow S$$

$$E \stackrel{def}{=} (\alpha, 1) \downarrow E + (\beta, 1) \uparrow E + (\gamma, 1) \uparrow E$$

$$SE \stackrel{def}{=} (\alpha, 1) \uparrow SE + (\beta, 1) \downarrow SE + (\gamma, 1) \downarrow SE$$

$$P \stackrel{def}{=} (\gamma, 1) \uparrow P$$

Vashti Galpin

How restrictive is the current action decomposition property for compression bisimulation?

Bio-PASTA 2009

CADP

Example: reaction with enzyme

$$\blacktriangleright S + E \stackrel{\longrightarrow}{\longleftarrow} SE \longrightarrow P + E$$

•
$$S(\ell_S) \bowtie E(\ell_E) \bowtie SE(\ell_{SE}) \bowtie P(\ell_P)$$
 where

$$S \stackrel{\text{def}}{=} (\alpha, 1) \downarrow S + (\beta, 1) \uparrow S$$

$$E \stackrel{\text{def}}{=} (\alpha, 1) \downarrow E + (\beta, 1) \uparrow E + (\gamma, 1) \uparrow E$$

$$SE \stackrel{\text{def}}{=} (\alpha, 1) \uparrow SE + (\beta, 1) \downarrow SE + (\gamma, 1) \downarrow SE$$

$$P \stackrel{\text{def}}{=} (\gamma, 1) \uparrow P$$

Vashti Galpin

Example: reaction with enzyme

$$S + E \xrightarrow{\longrightarrow} SE \longrightarrow P + E$$

$$S(\ell_S) \boxtimes E(\ell_E) \boxtimes SE(\ell_{SE}) \boxtimes P(\ell_P) \text{ where}$$

$$S \stackrel{def}{=} (\alpha, 1) \downarrow S + (\beta, 1) \uparrow S$$

$$E \stackrel{def}{=} (\alpha, 1) \downarrow E + (\beta, 1) \uparrow E + (\gamma, 1) \uparrow E$$

$$SE \stackrel{def}{=} (\alpha, 1) \uparrow SE + (\beta, 1) \downarrow SE + (\gamma, 1) \downarrow SE$$

$$P \stackrel{def}{=} (\gamma, 1) \uparrow P$$

$$S \stackrel{E}{\longrightarrow} P$$

$$Michaelis-Menten kinetics$$

Vashti Galpin

Example: reaction with enzyme

$$S + E \xrightarrow{\longrightarrow} SE \longrightarrow P + E$$

$$S(\ell_S) \bowtie E(\ell_E) \bowtie SE(\ell_{SE}) \bowtie P(\ell_P) \text{ where}$$

$$S \stackrel{\text{def}}{=} (\alpha, 1) \downarrow S + (\beta, 1) \uparrow S$$

$$E \stackrel{\text{def}}{=} (\alpha, 1) \downarrow E + (\beta, 1) \uparrow E + (\gamma, 1) \uparrow E$$

$$SE \stackrel{\text{def}}{=} (\alpha, 1) \uparrow SE + (\beta, 1) \downarrow SE + (\gamma, 1) \downarrow SE$$

$$P \stackrel{\text{def}}{=} (\gamma, 1) \uparrow P$$

$$S \stackrel{E}{\longrightarrow} P$$

$$Michaelis-Menten kinetics$$

$$S(\ell_S) \bowtie E(\ell_E) \bowtie P(\ell_P) \text{ where}$$

Vashti Galpin

How restrictive is the current action decomposition property for compression bisimulation?

Bio-PASTA 2009

CADP

Example: reaction with enzyme

Vashti Galpin

CADP

Example: reaction with enzyme

►
$$S + E \xrightarrow{\longrightarrow} SE \longrightarrow P + E$$

► $S(\ell_S) \Join E(\ell_E) \Join SE(\ell_{SE}) \Join P(\ell_P)$ where
 $S \stackrel{def}{=} (\alpha, 1) \downarrow S + (\beta, 1) \uparrow S$
 $E \stackrel{def}{=} (\alpha, 1) \downarrow E + (\beta, 1) \uparrow E + (\gamma, 1) \uparrow E$
 $SE \stackrel{def}{=} (\alpha, 1) \uparrow SE + (\beta, 1) \downarrow SE + (\gamma, 1) \downarrow SE$
 $P \stackrel{def}{=} (\gamma, 1) \uparrow P$
► $S \stackrel{E}{\longrightarrow} P$ Michaelis-Menten kinetics
 $F(\ell_S) \Join E(\ell_E) \Join P(\ell_P)$ where
 $S \stackrel{def}{=} (\delta, 1) \downarrow S E \stackrel{def}{=} (\delta, 1) \oplus E \quad P \stackrel{def}{=} (\delta, 1) \uparrow P$

Vashti Galpin

$$\blacktriangleright \mathcal{P} = \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, \textit{Comp}, P \rangle$$

Vashti Galpin

$$\blacktriangleright \mathcal{P} = \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, \textit{Comp}, P \rangle$$

V is the set of locations

Vashti Galpin

- $\blacktriangleright \mathcal{P} = \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, \textit{Comp}, P \rangle$
 - V is the set of locations
 - $\blacktriangleright~\mathcal{N}$ is the set of quantities describing each species

Vashti Galpin

- $\blacktriangleright \mathcal{P} = \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, \textit{Comp}, P \rangle$
 - V is the set of locations
 - $\blacktriangleright~\mathcal{N}$ is the set of quantities describing each species
 - \mathcal{K} is the set of parameters

- $\blacktriangleright \mathcal{P} = \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, \textit{Comp}, P \rangle$
 - V is the set of locations
 - $\blacktriangleright~\mathcal{N}$ is the set of quantities describing each species
 - \mathcal{K} is the set of parameters
 - \mathcal{F} is the set of functional rates

Vashti Galpin

- $\blacktriangleright \mathcal{P} = \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, \textit{Comp}, P \rangle$
 - V is the set of locations
 - $\blacktriangleright~\mathcal{N}$ is the set of quantities describing each species
 - \mathcal{K} is the set of parameters
 - \mathcal{F} is the set of functional rates
 - Comp is the set of well-defined sequential components/species

- $\blacktriangleright \mathcal{P} = \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, \textit{Comp}, \textit{P} \rangle$
 - $\blacktriangleright \ \mathcal{V}$ is the set of locations
 - $\blacktriangleright~\mathcal{N}$ is the set of quantities describing each species
 - \mathcal{K} is the set of parameters
 - \mathcal{F} is the set of functional rates
 - Comp is the set of well-defined sequential components/species
 - P is a well-defined model component

Vashti Galpin

• each species S has maximum population count M_S

Vashti Galpin

- each species S has maximum population count M_S
- each location V has a step size H_V

Vashti Galpin

- each species S has maximum population count M_S
- each location V has a step size H_V
- convert to finite number of levels

Vashti Galpin

- each species S has maximum population count M_S
- each location V has a step size H_V
- convert to finite number of levels
- $N_S = \lceil M_S / H_V \rceil$ for species S in location V

- each species S has maximum population count M_S
- each location V has a step size H_V
- convert to finite number of levels
- $N_S = \lceil M_S / H_V \rceil$ for species S in location V
- ▶ $0, 1, \ldots, N_S$ therefore $N_S + 1$ levels for species S

Results

Bio-PEPA system with levels

- each species S has maximum population count M_S
- each location V has a step size H_V
- convert to finite number of levels
- $N_S = \lceil M_S / H_V \rceil$ for species S in location V
- ▶ $0, 1, ..., N_S$ therefore $N_S + 1$ levels for species S
- model component with levels assuming only one location V

$$P \stackrel{\text{\tiny def}}{=} C_1(\lceil x_1/H_V \rceil) \bowtie_{\mathcal{L}_1} \cdots \bowtie_{\mathcal{L}_{m-1}} C_m(\lceil x_m/H_V \rceil)$$

Vashti Galpin

- each species S has maximum population count M_S
- each location V has a step size H_V
- convert to finite number of levels
- $N_S = \lceil M_S / H_V \rceil$ for species S in location V
- ▶ 0, 1, ..., N_S therefore $N_S + 1$ levels for species S
- model component with levels assuming only one location V

$$P \stackrel{\text{\tiny def}}{=} C_1([x_1/H_V]) \boxtimes_{\mathcal{L}_1} \dots \boxtimes_{\mathcal{L}_{m-1}} C_m([x_m/H_V])$$

Vashti Galpin

 \blacktriangleright operational semantics for capability relation \rightarrow_c

Vashti Galpin

- ▶ operational semantics for capability relation \rightarrow_c
- Prefix rules

 $((\alpha,\kappa)\downarrow S)(\ell) \xrightarrow{(\alpha,[S:\downarrow(\ell,\kappa)])} S(\ell-\kappa) \quad \kappa \leq \ell \leq N_S$ $((\alpha,\kappa)\uparrow S)(\ell) \xrightarrow{(\alpha,[S:\uparrow(\ell,\kappa)])} S(\ell+\kappa) \quad 0 \leq \ell \leq N_S - \kappa$ $((\alpha,\kappa)\oplus S)(\ell) \xrightarrow{(\alpha,[S:\oplus(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$ $((\alpha,\kappa)\ominus S)(\ell) \xrightarrow{(\alpha,[S: \,\ominus\,(\ell,\kappa)])} S(\ell)$ $0 < \ell \leq N_S$ $((\alpha, \kappa) \odot S)(\ell) \xrightarrow{(\alpha, [S: \odot(\ell, \kappa)])} S(\ell)$ $0 < \ell < N_S$

Vashti Galpin

- ▶ operational semantics for capability relation \rightarrow_c
- Prefix rules

 $((\alpha,\kappa) \downarrow S)(\ell) \xrightarrow{(\alpha,[S: \downarrow (\ell,\kappa)])} S(\ell-\kappa) \quad \kappa \leq \ell < N_{S}$ $((\alpha,\kappa)\uparrow S)(\ell) \xrightarrow{(\alpha,[S:\uparrow(\ell,\kappa)])} S(\ell+\kappa) \quad 0 \leq \ell \leq N_S - \kappa$ $((\alpha,\kappa)\oplus S)(\ell) \xrightarrow{(\alpha,[S:\oplus(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$ $((\alpha,\kappa)\ominus S)(\ell) \xrightarrow{(\alpha,[S: \,\ominus\,(\ell,\kappa)])} S(\ell)$ $0 < \ell \leq N_S$ $((\alpha, \kappa) \odot S)(\ell) \xrightarrow{(\alpha, [S: \odot(\ell, \kappa)])} S(\ell)$ $0 < \ell < N_S$

- ▶ operational semantics for capability relation \rightarrow_c
- Prefix rules

 $((\alpha,\kappa) \downarrow S)(\ell) \xrightarrow{(\alpha,[S: \downarrow (\ell,\kappa)])} S(\ell - \kappa) \quad \kappa \le \ell \le N_S$ $((\alpha,\kappa)\uparrow S)(\ell) \xrightarrow{(\alpha,[S:\uparrow(\ell,\kappa)])} S(\ell+\kappa) \quad 0 \leq \ell \leq N_S - \kappa$ $((\alpha,\kappa)\oplus S)(\ell) \xrightarrow{(\alpha,[S:\oplus(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$ $((\alpha,\kappa)\ominus S)(\ell) \xrightarrow{(\alpha,[S: \,\ominus\,(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$ $((\alpha, \kappa) \odot S)(\ell) \xrightarrow{(\alpha, [S: \odot(\ell, \kappa)])} S(\ell)$ $0 < \ell < N_S$

Vashti Galpin

- ▶ operational semantics for capability relation \rightarrow_c
- Prefix rules

 $((\alpha,\kappa)\downarrow S)(\ell) \xrightarrow{(\alpha,[S:\downarrow(\ell,\kappa)])} S(\ell-\kappa) \quad \kappa \leq \ell \leq N_S$ $((\alpha,\kappa) \uparrow S)(\ell) \xrightarrow{(\alpha,[S:\uparrow (\ell,\kappa)])} S(\ell+\kappa) \quad 0 \leq \ell \leq N_S - \kappa$ $((\alpha,\kappa)\oplus S)(\ell) \xrightarrow{(\alpha,[S:\oplus(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_s$ $((\alpha,\kappa)\ominus S)(\ell) \xrightarrow{(\alpha,[S: \,\ominus\, (\ell,\kappa)])} S(\ell)$ $0 < \ell \leq N_S$ $((\alpha, \kappa) \odot S)(\ell) \xrightarrow{(\alpha, [S: \odot(\ell, \kappa)])} S(\ell)$ $0 < \ell < N_S$

Vashti Galpin

- \blacktriangleright operational semantics for capability relation \rightarrow_c
- Prefix rules

 $((\alpha,\kappa)\downarrow S)(\ell) \xrightarrow{(\alpha,[S:\downarrow(\ell,\kappa)])} S(\ell-\kappa) \quad \kappa \leq \ell \leq N_S$ $((\alpha,\kappa)\uparrow S)(\ell) \xrightarrow{(\alpha,[S:\uparrow(\ell,\kappa)])} S(\ell+\kappa) \quad 0 \le \ell \le N_S - \kappa$ $((\alpha,\kappa)\oplus S)(\ell) \xrightarrow{(\alpha,[S:\oplus(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$ $((\alpha,\kappa)\ominus S)(\ell) \xrightarrow{(\alpha,[S: \,\ominus\,(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$ $((\alpha, \kappa) \odot S)(\ell) \xrightarrow{(\alpha, [S: \odot(\ell, \kappa)])} S(\ell)$ $0 < \ell < N_s$

Vashti Galpin

- ▶ operational semantics for capability relation \rightarrow_c
- Prefix rules

 $((\alpha,\kappa)\downarrow S)(\ell) \xrightarrow{(\alpha,[S:\downarrow(\ell,\kappa)])} S(\ell-\kappa) \quad \kappa \leq \ell \leq N_S$ $((\alpha,\kappa)\uparrow S)(\ell) \xrightarrow{(\alpha,[S:\uparrow(\ell,\kappa)])} S(\ell+\kappa) \quad 0 \leq \ell \leq N_S - \kappa$ $((\alpha,\kappa)\oplus S)(\ell) \xrightarrow{(\alpha,[S:\oplus(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$ $((\alpha,\kappa)\ominus S)(\ell) \xrightarrow{(\alpha,[S: \leftrightarrow (\ell,\kappa)])} S(\ell)$ $0 < \ell \leq N_S$ $((\alpha, \kappa) \odot S)(\ell) \xrightarrow{(\alpha, [S: \odot(\ell, \kappa)])} S(\ell)$ $0 < \ell < N_S$

Vashti Galpin

- \blacktriangleright operational semantics for capability relation \rightarrow_c
- Prefix rules

$$\begin{aligned} & ((\alpha,\kappa)\downarrow S)(\ell) \xrightarrow{(\alpha,[S:\downarrow(\ell,\kappa)])} {}_{c} S(\ell-\kappa) & \kappa \leq \ell \leq N_{S} \\ & ((\alpha,\kappa)\uparrow S)(\ell) \xrightarrow{(\alpha,[S:\uparrow(\ell,\kappa)])} {}_{c} S(\ell+\kappa) & 0 \leq \ell \leq N_{S} - \kappa \\ & ((\alpha,\kappa)\oplus S)(\ell) \xrightarrow{(\alpha,[S:\oplus(\ell,\kappa)])} {}_{c} S(\ell) & 0 < \ell \leq N_{S} \\ & ((\alpha,\kappa)\oplus S)(\ell) \xrightarrow{(\alpha,[S:\oplus(\ell,\kappa)])} {}_{c} S(\ell) & 0 \leq \ell \leq N_{S} \\ & ((\alpha,\kappa)\oplus S)(\ell) \xrightarrow{(\alpha,[S:\oplus(\ell,\kappa)])} {}_{c} S(\ell) & 0 \leq \ell \leq N_{S} \end{aligned}$$

Vashti Galpin

- ▶ operational semantics for capability relation \rightarrow_c
- Prefix rules

 $((\alpha,\kappa)\downarrow S)(\ell) \xrightarrow{(\alpha,[S:\downarrow(\ell,\kappa)])} S(\ell-\kappa) \quad \kappa \leq \ell \leq N_S$ $((\alpha,\kappa)\uparrow S)(\ell) \xrightarrow{(\alpha,[S:\uparrow(\ell,\kappa)])} S(\ell+\kappa) \quad 0 \leq \ell \leq N_S - \kappa$ $((\alpha,\kappa)\oplus S)(\ell) \xrightarrow{(\alpha,[S:\oplus(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$ $((\alpha, \kappa) \ominus S)(\ell) \xrightarrow{(\alpha, [S: \ominus(\ell, \kappa)])} S(\ell)$ $0 < \ell \leq N_S$ $((\alpha, \kappa) \odot S)(\ell) \xrightarrow{(\alpha, [S: \odot(\ell, \kappa)])} S(\ell)$ $0 < \ell < N_S$

Vashti Galpin

- ▶ operational semantics for capability relation \rightarrow_c
- Prefix rules

 $((\alpha,\kappa)\downarrow S)(\ell) \xrightarrow{(\alpha,[S:\downarrow(\ell,\kappa)])} S(\ell-\kappa) \quad \kappa \leq \ell \leq N_S$ $((\alpha,\kappa)\uparrow S)(\ell) \xrightarrow{(\alpha,[S:\uparrow(\ell,\kappa)])} S(\ell+\kappa) \quad 0 \leq \ell \leq N_S - \kappa$ $((\alpha,\kappa)\oplus S)(\ell) \xrightarrow{(\alpha,[S:\oplus(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$ $((\alpha,\kappa)\ominus S)(\ell) \xrightarrow{(\alpha,[S:\ominus(\ell,\kappa)])}_{c} S(\ell)$ $0 < \ell < N_S$ $((\alpha, \kappa) \odot S)(\ell) \xrightarrow{(\alpha, [S: \odot(\ell, \kappa)])} S(\ell)$ $0 < \ell < N_s$

Vashti Galpin

- ▶ operational semantics for capability relation \rightarrow_c
- Prefix rules

 $((\alpha,\kappa)\downarrow S)(\ell) \xrightarrow{(\alpha,[S:\downarrow(\ell,\kappa)])} S(\ell-\kappa) \quad \kappa \leq \ell \leq N_S$ $((\alpha,\kappa)\uparrow S)(\ell) \xrightarrow{(\alpha,[S:\uparrow(\ell,\kappa)])} S(\ell+\kappa) \quad 0 \leq \ell \leq N_S - \kappa$ $((\alpha,\kappa)\oplus S)(\ell) \xrightarrow{(\alpha,[S:\oplus(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$ $((\alpha,\kappa)\ominus S)(\ell) \xrightarrow{(\alpha,[S: \,\ominus\,(\ell,\kappa)])} S(\ell)$ $0 < \ell \leq N_S$ $((\alpha,\kappa) \odot S)(\ell) \xrightarrow{(\alpha,[S: \odot (\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$

Vashti Galpin

- ▶ operational semantics for capability relation \rightarrow_c
- Prefix rules

 $((\alpha,\kappa)\downarrow S)(\ell) \xrightarrow{(\alpha,[S:\downarrow(\ell,\kappa)])} S(\ell-\kappa) \quad \kappa \leq \ell \leq N_S$ $((\alpha,\kappa)\uparrow S)(\ell) \xrightarrow{(\alpha,[S:\uparrow(\ell,\kappa)])} S(\ell+\kappa) \quad 0 \leq \ell \leq N_S - \kappa$ $((\alpha,\kappa)\oplus S)(\ell) \xrightarrow{(\alpha,[S:\oplus(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_s$ $((\alpha,\kappa)\ominus S)(\ell) \xrightarrow{(\alpha,[S: \,\ominus\,(\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$ $((\alpha,\kappa) \odot S)(\ell) \xrightarrow{(\alpha,[S: \odot (\ell,\kappa)])} S(\ell)$ $0 < \ell < N_S$

Vashti Galpin

CADF

Bio-PEPA semantics (continued)

Constant

$$\frac{S(\ell) \xrightarrow{(\alpha,w)} c S'(\ell')}{C(\ell) \xrightarrow{(\alpha,w)} c S'(\ell')} \quad C \stackrel{def}{=} S$$

Vashti Galpin

► Constant $\frac{S(\ell) \xrightarrow{(\alpha,w)} c S'(\ell')}{C(\ell) \xrightarrow{(\alpha,w)} c S'(\ell')} \quad C \stackrel{\text{def}}{=} S$

Choice

$$\frac{S_1(\ell) \xrightarrow{(\alpha,w)}_c S'(\ell')}{(S_1 + S_2)(\ell) \xrightarrow{(\alpha,w)}_c S'(\ell')} \quad \frac{S_2(\ell) \xrightarrow{(\alpha,w)}_c S'(\ell')}{(S_1 + S_2)(\ell) \xrightarrow{(\alpha,w)}_c S'(\ell')}$$

Vashti Galpin

How restrictive is the current action decomposition property for compression bisimulation?

Bio-PASTA 2009

► Constant $\frac{S(\ell) \xrightarrow{(\alpha,w)} c S'(\ell')}{C(\ell) \xrightarrow{(\alpha,w)} c S'(\ell')} \quad C \stackrel{\text{\tiny def}}{=} S$

Choice

$$\frac{S_1(\ell) \xrightarrow{(\alpha,w)}_c S'(\ell')}{(S_1+S_2)(\ell) \xrightarrow{(\alpha,w)}_c S'(\ell')} \quad \frac{S_2(\ell) \xrightarrow{(\alpha,w)}_c S'(\ell')}{(S_1+S_2)(\ell) \xrightarrow{(\alpha,w)}_c S'(\ell')}$$

• Cooperation for $\alpha \notin L$

$$\frac{P \xrightarrow{(\alpha,w)}_{c} P'}{P \bowtie_{L} Q \xrightarrow{(\alpha,w)}_{c} P' \bowtie_{L} Q} \qquad \frac{Q \xrightarrow{(\alpha,w)}_{c} Q'}{P \bowtie_{L} Q \xrightarrow{(\alpha,w)}_{c} P \bowtie_{L} Q'}$$

Vashti Galpin

• Cooperation for
$$\alpha \in L$$

$$\frac{P \xrightarrow{(\alpha, V)}_{c} P' \quad Q \xrightarrow{(\alpha, U)}_{c} Q'}{P \bigotimes_{L} Q \xrightarrow{(\alpha, V :: U)}_{c} P' \bigotimes_{L} Q'} \quad \alpha \in L$$

Vashti Galpin

CADF

Bio-PEPA semantics (continued)

• Cooperation for
$$\alpha \in L$$

$$\frac{P \xrightarrow{(\alpha, \mathbf{V})}_{c} P' \quad Q \xrightarrow{(\alpha, \mathbf{U})}_{c} Q'}{P \bowtie_{L} Q \xrightarrow{(\alpha, \mathbf{V} :: \mathbf{U})}_{c} P' \bowtie_{L} Q'} \quad \alpha \in L$$

Vashti Galpin

• Cooperation for
$$\alpha \in L$$

$$\frac{P \xrightarrow{(\alpha, v)}_{c} P' \quad Q \xrightarrow{(\alpha, u)}_{c} Q'}{P \bigotimes_{L} Q \xrightarrow{(\alpha, v :: u)}_{c} P' \bigotimes_{L} Q'} \quad \alpha \in L$$

▶ operational semantics for stochastic relation \rightarrow_s

$$\frac{P \xrightarrow{(\alpha, V)} c P'}{(\alpha, \mathcal{K}, \mathcal{F}, \mathsf{Comp}, P)} \xrightarrow{(\alpha, f_{\alpha}(v, \mathcal{N}, \mathcal{K})/h)} s \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, \mathsf{Comp}, P' \rangle$$

Vashti Galpin

How restrictive is the current action decomposition property for compression bisimulation?

ð

Bio-PASTA 2009

• Cooperation for
$$\alpha \in L$$

$$\frac{P \xrightarrow{(\alpha, v)}_{c} P' \quad Q \xrightarrow{(\alpha, u)}_{c} Q'}{P \bigotimes_{L} Q \xrightarrow{(\alpha, v :: u)}_{c} P' \bigotimes_{L} Q'} \quad \alpha \in L$$

• operational semantics for stochastic relation \rightarrow_s

$$\frac{P \xrightarrow{(\alpha, \mathbf{v})}_{c} P'}{\langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, Comp, P \rangle} \xrightarrow{(\alpha, f_{\alpha}(\mathbf{v}, \mathcal{N}, \mathcal{K})/h)}_{s} \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, Comp, P' \rangle}$$

Vashti Galpin

How restrictive is the current action decomposition property for compression bisimulation?

ð

Results

Bio-PEPA semantics (continued)

• Cooperation for
$$\alpha \in L$$

$$\frac{P \xrightarrow{(\alpha, v)}_{c} P' \quad Q \xrightarrow{(\alpha, u)}_{c} Q'}{P \bigotimes_{L} Q \xrightarrow{(\alpha, v :: u)}_{c} P' \bigotimes_{L} Q'} \quad \alpha \in L$$

• operational semantics for stochastic relation \rightarrow_s

$$P \xrightarrow{(\alpha, V)} P'$$

 $\langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, \textit{Comp}, \mathsf{P} \rangle \xrightarrow{(\alpha, f_{\alpha}(v, \mathcal{N}, \mathcal{K})/h)} \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, \textit{Comp}, \mathsf{P}' \rangle$

• quantitative, only consider
$$\alpha$$

Vashti Galpin

Example: reaction with enzyme, max level 3

▶ state vector (S, E, SE, P) and $N_S = N_E = N_{SE} = N_P = 3$

Vashti Galpin

Example: reaction with enzyme, max level 3

▶ state vector (S, E, SE, P) and $N_S = N_E = N_{SE} = N_P = 3$

Vashti Galpin

Example: reaction with enzyme, max level 7

▶ state vector *S E SE P* and $N_S = N_E = N_{SE} = N_P = 7$

Vashti Galpin

Example: reaction with enzyme, max level 7

▶ state vector S E SE P and $N_S = N_E = N_{SE} = N_P = 7$

Vashti Galpin

modelling with levels leads to different discretisations

Vashti Galpin

- modelling with levels leads to different discretisations
- P^n discretisation with smallest maximum level n

- modelling with levels leads to different discretisations
- P^n discretisation with smallest maximum level n
- each discretisation P^n is an abstraction of the system P

- modelling with levels leads to different discretisations
- P^n discretisation with smallest maximum level n
- each discretisation P^n is an abstraction of the system P
- assume different abstractions have the same behaviour

- modelling with levels leads to different discretisations
- P^n discretisation with smallest maximum level n
- each discretisation P^n is an abstraction of the system P
- assume different abstractions have the same behaviour
- aim for a bisimulation-style equivalence

Vashti Galpin

- modelling with levels leads to different discretisations
- P^n discretisation with smallest maximum level n
- each discretisation P^n is an abstraction of the system P
- assume different abstractions have the same behaviour
- aim for a bisimulation-style equivalence
- bisimilarity, $P \sim Q$ if
 - 1. $P \xrightarrow{(\alpha,\nu)}{c} P'$, $Q \xrightarrow{(\alpha,\nu)}{c} Q'$ and $P' \sim Q'$ 2. $Q \xrightarrow{(\alpha,\nu)}{c} Q'$, $P \xrightarrow{(\alpha,\nu)}{c} P'$ and $P' \sim Q'$

Vashti Galpin

▶ $(P, Q) \in \mathcal{H}$ if they can perform the same actions

Vashti Galpin

- $(P, Q) \in \mathcal{H}$ if they can perform the same actions
- $\blacktriangleright~\mathcal{H}$ is an equivalence relation

Vashti Galpin

- ▶ $(P, Q) \in \mathcal{H}$ if they can perform the same actions
- $\blacktriangleright~\mathcal{H}$ is an equivalence relation

•
$$[P] \xrightarrow{\alpha} [Q] \text{ if } P \xrightarrow{(\alpha, v)} _{c} Q$$

Vashti Galpin

- ▶ $(P, Q) \in \mathcal{H}$ if they can perform the same actions
- \mathcal{H} is an equivalence relation

$$\blacktriangleright [P] \stackrel{\alpha}{\hookrightarrow} [Q] \text{ if } P \stackrel{(\alpha, v)}{\longrightarrow}_{c} Q$$

base equivalence on standard bisimilarity

- ▶ $(P, Q) \in \mathcal{H}$ if they can perform the same actions
- \mathcal{H} is an equivalence relation

$$\blacktriangleright [P] \stackrel{\alpha}{\hookrightarrow} [Q] \text{ if } P \stackrel{(\alpha, v)}{\longrightarrow}_{c} Q$$

- base equivalence on standard bisimilarity
- compression bisimilarity, $P \simeq Q$ if $[P] \sim [Q]$, namely if

1.
$$[P] \xrightarrow{\alpha} [P'], [Q] \xrightarrow{\alpha} [Q']' \text{ and } [P'] \sim [Q']$$

2. $[Q] \xrightarrow{\alpha} [Q'], [P] \xrightarrow{\alpha} [P']' \text{ and } [P'] \sim [Q']$

Vashti Galpin

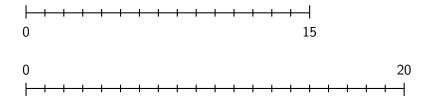
$$\blacktriangleright B \stackrel{\scriptscriptstyle def}{=} (\alpha,3) \downarrow B + (\beta,4) \uparrow B + (\gamma,1) \uparrow B$$

Vashti Galpin

CADP

Equivalence illustrated

$$\blacktriangleright B \stackrel{\text{\tiny def}}{=} (\alpha, 3) \downarrow B + (\beta, 4) \uparrow B + (\gamma, 1) \uparrow B$$

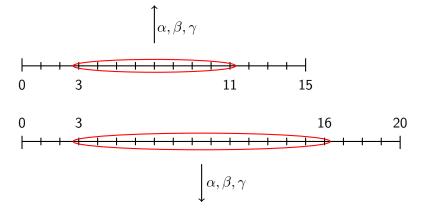


Vashti Galpin

CADP

Equivalence illustrated

$$\blacktriangleright B \stackrel{\text{\tiny def}}{=} (\alpha, 3) \downarrow B + (\beta, 4) \uparrow B + (\gamma, 1) \uparrow B$$

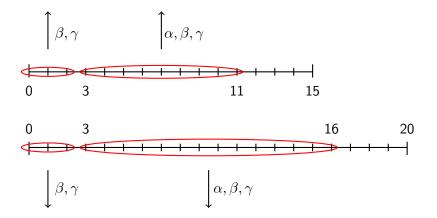


Vashti Galpin

How restrictive is the current action decomposition property for compression bisimulation?

ð

$$\blacktriangleright B \stackrel{\text{\tiny def}}{=} (\alpha, 3) \downarrow B + (\beta, 4) \uparrow B + (\gamma, 1) \uparrow B$$

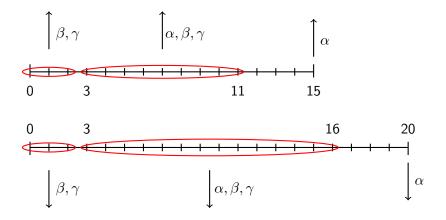


Vashti Galpin

How restrictive is the current action decomposition property for compression bisimulation?

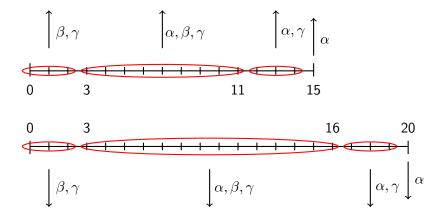
ð

$$\blacktriangleright B \stackrel{\text{\tiny def}}{=} (\alpha, 3) \downarrow B + (\beta, 4) \uparrow B + (\gamma, 1) \uparrow B$$



Vashti Galpin

$$\blacktriangleright B \stackrel{\text{\tiny def}}{=} (\alpha, 3) \downarrow B + (\beta, 4) \uparrow B + (\gamma, 1) \uparrow B$$

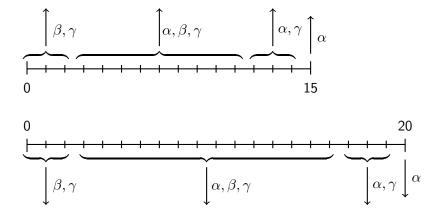


Vashti Galpin

CADP

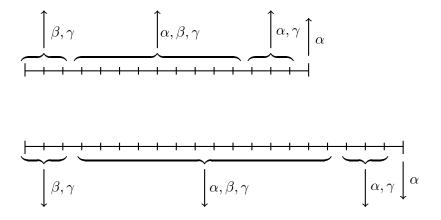
Equivalence illustrated

$$\blacktriangleright B \stackrel{\text{\tiny def}}{=} (\alpha, 3) \downarrow B + (\beta, 4) \uparrow B + (\gamma, 1) \uparrow B$$



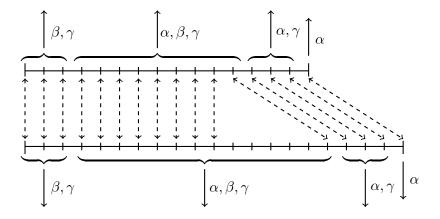
Vashti Galpin

$$\blacktriangleright B \stackrel{\text{\tiny def}}{=} (\alpha, 3) \downarrow B + (\beta, 4) \uparrow B + (\gamma, 1) \uparrow B$$



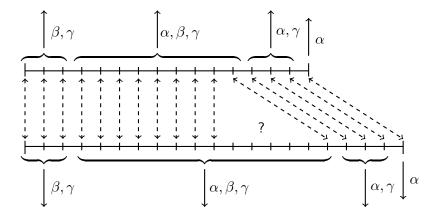
Vashti Galpin

$$\blacktriangleright B \stackrel{\text{\tiny def}}{=} (\alpha, 3) \downarrow B + (\beta, 4) \uparrow B + (\gamma, 1) \uparrow B$$



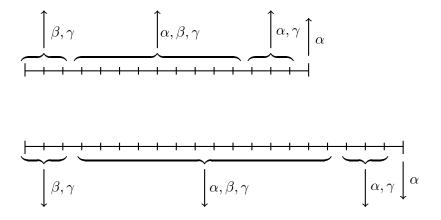
Vashti Galpin

$$\blacktriangleright B \stackrel{\text{\tiny def}}{=} (\alpha, 3) \downarrow B + (\beta, 4) \uparrow B + (\gamma, 1) \uparrow B$$



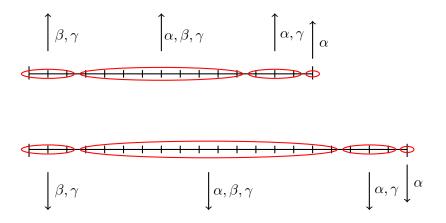
Vashti Galpin

$$\blacktriangleright B \stackrel{\text{\tiny def}}{=} (\alpha, 3) \downarrow B + (\beta, 4) \uparrow B + (\gamma, 1) \uparrow B$$



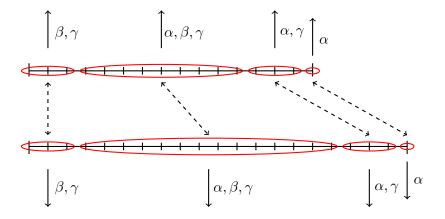
Vashti Galpin

$$\blacktriangleright B \stackrel{\text{\tiny def}}{=} (\alpha, 3) \downarrow B + (\beta, 4) \uparrow B + (\gamma, 1) \uparrow B$$



Vashti Galpin

$$\blacktriangleright B \stackrel{\text{\tiny def}}{=} (\alpha, 3) \downarrow B + (\beta, 4) \uparrow B + (\gamma, 1) \uparrow B$$



Vashti Galpin

Results

• maximum stoichiometry for reactant: k_{\downarrow}

- maximum stoichiometry for reactant: k_{\downarrow}
- maximum stoichiometry for product: k_{\uparrow}

DIO-PEPA	Syntax and semantics	Compression distinutation	Results	CADP
Results				
► ma	ximum stoichiometr	y for reactant: k_{\parallel}		

- maximum stoichiometry for product: k_{\uparrow}
- ► for a well-defined Bio-PEPA species, $C^n \simeq C^m$ if $n, m \ge k_{\downarrow} + \max\{k_{\downarrow}, k_{\uparrow}\} + k_{\uparrow}$

A

BIOT EL X	Syntax and semantics	compression bisimulation	Results	CADI
Results				
► m	aximum stoichiometry	y for reactant: k_{\downarrow}		

- maximum stoichiometry for product: k_{\uparrow}
- ► for a well-defined Bio-PEPA species, $C^n \simeq C^m$ if $n, m \ge k_{\downarrow} + \max\{k_{\downarrow}, k_{\uparrow}\} + k_{\uparrow}$
- CADP: current action decomposition property
 (P ⋈ Q, P' ⋈ Q') ∈ H then (P, P') ∈ H, (Q, Q') ∈ H

Results

	Syntax and semantics	Compression distinuation	Results	CADI
Resul	ts			
•	maximum stoichiometry	y for reactant: k_{\downarrow}		

- maximum stoichiometry for product: k_{\uparrow}
- ► for a well-defined Bio-PEPA species, $C^n \simeq C^m$ if $n, m \ge k_{\downarrow} + \max\{k_{\downarrow}, k_{\uparrow}\} + k_{\uparrow}$
- CADP: current action decomposition property
 (P ⋈ Q, P' ⋈ Q') ∈ H then (P, P') ∈ H, (Q, Q') ∈ H
- ▶ if $P_1 \simeq P_2$, $Q_1 \simeq Q_2$ and $P_1 \bowtie_L Q_1$ and $P_2 \bowtie_L Q_2$ have CADP then $P_1 \bowtie_L Q_1 \simeq P_2 \bowtie_L Q_2$

A

	Syntax and semantics	Compression distinuation	Results	CADI
Results				
► max	imum stoichiometry f	for reactant: k_{\downarrow}		

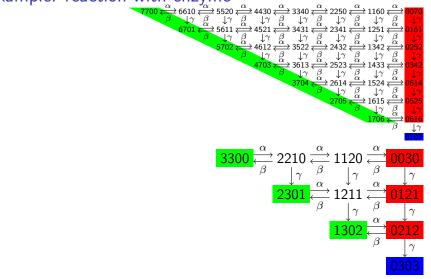
- maximum stoichiometry for product: k_{\uparrow}
- ► for a well-defined Bio-PEPA species, $C^n \simeq C^m$ if $n, m \ge k_{\downarrow} + \max\{k_{\downarrow}, k_{\uparrow}\} + k_{\uparrow}$
- CADP: current action decomposition property
 (P ⋈ Q, P' ⋈ Q') ∈ H then (P, P') ∈ H, (Q, Q') ∈ H
- ▶ if $P_1 \simeq P_2$, $Q_1 \simeq Q_2$ and $P_1 \bowtie_L Q_1$ and $P_2 \bowtie_L Q_2$ have CADP then $P_1 \bowtie_L Q_1 \simeq P_2 \bowtie_L Q_2$
- ▶ for a well-defined Bio-PEPA system, $P^n \simeq P^m$ if they have CADP and $n, m \ge k_{\downarrow} + \max\{k_{\downarrow}, k_{\uparrow}\} + k_{\uparrow}$

Vashti Galpin

A

Vashti Galpin

Example: reaction with enzyme



Bio-PASTA 2009

How restrictive is the current action decomposition property for compression bisimulation?

ð

Vashti Galpin

Example: reaction with enzyme $\begin{array}{c} \textbf{7700} \xleftarrow{\alpha}{\leftarrow} 6610 \xrightarrow{\ell \alpha}{\leftarrow} 5520 \xleftarrow{\alpha}{\leftarrow} 4430 \xleftarrow{\alpha}{\leftarrow} 3340 \xleftarrow{\alpha}{\leftarrow} 2250 \xleftarrow{\alpha}{\leftarrow} 1160 \xleftarrow{\alpha}{\leftarrow} 0070 \\ \hline \beta & \downarrow \gamma & & \downarrow \gamma$ $\begin{array}{c} \downarrow \gamma \\ 5611 \longleftrightarrow 4521 \longleftrightarrow 3431 \longleftrightarrow 2341 \rightleftharpoons 1251 \cr \downarrow \gamma \\ \downarrow \gamma \\ \downarrow \gamma \\ \bullet \gamma \\$ $\begin{array}{c} 1\gamma & \begin{array}{c} \alpha \\ \gamma & \begin{array}{c} \alpha \\ \alpha \end{array} \end{array} \xrightarrow{} \gamma & \begin{array}{c} \beta \\ \gamma \end{array} \xrightarrow{} \gamma & \begin{array}{c} \beta \\ \alpha \end{array} \xrightarrow{} \gamma & \begin{array}{c} \beta \\ \alpha \end{array} \xrightarrow{} \gamma & \begin{array}{c} \alpha \\ \beta \end{array} \xrightarrow{} \gamma & \begin{array}{c} \beta \\ \alpha \end{array} \xrightarrow{} \gamma & \begin{array}{c} \alpha \\ \alpha \end{array} \xrightarrow{} \gamma \end{array} \xrightarrow{} \gamma \xrightarrow{} \gamma \end{array} \xrightarrow{} \gamma \xrightarrow{} \gamma \xrightarrow{} \gamma \xrightarrow{} \gamma \end{array} \xrightarrow{} \gamma \xrightarrow{$ α α, β, γ $\tilde{\alpha}$ E_1 E_2 β, γ $2705 \stackrel{'\alpha}{\longleftrightarrow} 1615 \stackrel{'\alpha}{\longleftrightarrow}$ α α 1706 = 0L1 E3 $3300 \stackrel{\alpha}{\underset{\beta}{\leftarrow}} 2210 \stackrel{\alpha}{\underset{\gamma}{\leftarrow}} 1120 \stackrel{\alpha}{\underset{\gamma}{\leftarrow}} 1120 \stackrel{\alpha}{\underset{\gamma}{\leftarrow}}$ γ $2301 \stackrel{\alpha}{\longleftrightarrow} 1211 \stackrel{\alpha}{\longleftrightarrow}$ γ 1302

ð

Bio-PEPA	Syntax and semantics	Compression bisimulation	CADP
CADP			
► CA	DP: current action o	decomposition property	

$$(P' \bowtie_{L} Q', P'' \bowtie_{L} Q'') \in \mathcal{H} \text{ with } P' \bowtie_{L} Q', P'' \bowtie_{L} Q'' \in ds(P \bowtie_{L} Q)$$

 $\Rightarrow (P', P'') \in \mathcal{H} \text{ and } (Q', Q'') \in \mathcal{H}$

How restrictive is the current action decomposition property for compression bisimulation?

Bio-PEPA	Syntax and semantics	Compression bisimulation		CADP
CADP				
CADP: current action decomposition property				

$$(P' \bowtie_{L} Q', P'' \bowtie_{L} Q'') \in \mathcal{H} ext{ with } P' \bowtie_{L} Q', P'' \bowtie_{L} Q'' \in ds(P \bowtie_{L} Q)$$

 $\Rightarrow \quad (P', P'') \in \mathcal{H} ext{ and } (Q', Q'') \in \mathcal{H}$

want to understand what Bio-PEPA systems violate property

How restrictive is the current action decomposition property for compression bisimulation?

ð

Bio-PEPA	Syntax and semantics	Compression bisimulation	CADP
CADP			
► CAI	DP: current action	decomposition property	

$$(P' \bowtie_{L} Q', P'' \bowtie_{L} Q'') \in \mathcal{H} ext{ with } P' \bowtie_{L} Q', P'' \bowtie_{L} Q'' \in ds(P \bowtie_{L} Q)$$

 $\Rightarrow \quad (P', P'') \in \mathcal{H} ext{ and } (Q', Q'') \in \mathcal{H}$

- want to understand what Bio-PEPA systems violate property
- implications of restrictions

Bio-PEPA	Syntax and semantics	Compression bisimulation		CADP
CADP				
CAI	DP: current action o	lecomposition property	,	

$$\begin{array}{l} (P' \bowtie_{L} Q', P'' \bowtie_{L} Q'') \in \mathcal{H} \text{ with } P' \bowtie_{L} Q', P'' \bowtie_{L} Q'' \in ds(P \bowtie_{L} Q) \\ \\ \Rightarrow \quad (P', P'') \in \mathcal{H} \text{ and } (Q', Q'') \in \mathcal{H} \end{array}$$

- want to understand what Bio-PEPA systems violate property
- implications of restrictions
- case analysis of how it can be violated

ð

Bio-PEPA	Syntax and semantics	Compression bisimulation	CADP
CADP			
► CA	DP: current action o	decomposition property	

$$\begin{array}{l} (P' \bowtie_{L} Q', P'' \bowtie_{L} Q'') \in \mathcal{H} \text{ with } P' \bowtie_{L} Q', P'' \bowtie_{L} Q'' \in ds(P \bowtie_{L} Q) \\ \\ \Rightarrow \quad (P', P'') \in \mathcal{H} \text{ and } (Q', Q'') \in \mathcal{H} \end{array}$$

- want to understand what Bio-PEPA systems violate property
- implications of restrictions
- case analysis of how it can be violated
 - ignore non-violations

Bio-PEPA	Syntax and semantics	Compression bisimulation		CADP
CADP				
CAI	DP: current action o	decomposition property	,	

$$\begin{array}{l} (P' \bowtie_{L} Q', P'' \bowtie_{L} Q'') \in \mathcal{H} \text{ with } P' \bowtie_{L} Q', P'' \bowtie_{L} Q'' \in ds(P \bowtie_{L} Q) \\ \\ \Rightarrow \quad (P', P'') \in \mathcal{H} \text{ and } (Q', Q'') \in \mathcal{H} \end{array}$$

- want to understand what Bio-PEPA systems violate property
- implications of restrictions
- case analysis of how it can be violated
 - ignore non-violations
 - ignore contradictory cases

Vashti Galpin

ð

Bio-PEPA	Syntax and semantics	Compression bisimulation		CADP
CADP				
► CAI	DP: current action d	ecomposition property	1	

$$\begin{array}{l} (P' \bowtie_{L} Q', P'' \bowtie_{L} Q'') \in \mathcal{H} \text{ with } P' \bowtie_{L} Q', P'' \bowtie_{L} Q'' \in ds(P \bowtie_{L} Q) \\ \\ \Rightarrow \quad (P', P'') \in \mathcal{H} \text{ and } (Q', Q'') \in \mathcal{H} \end{array}$$

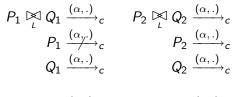
- want to understand what Bio-PEPA systems violate property
- implications of restrictions
- case analysis of how it can be violated
 - ignore non-violations
 - ignore contradictory cases
 - consider $\alpha \notin L$ and $\alpha \in L$

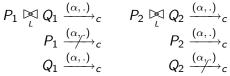
Results

CADP

Actions not in the cooperation set

we have two basic cases (excluding symmetry)





Vashti Galpin

• note that $P_1, P_2 \in ds(P)$

Vashti Galpin

How restrictive is the current action decomposition property for compression bisimulation?

ð

• note that
$$P_1, P_2 \in ds(P)$$

▶ hence if $P_2 \xrightarrow{(\alpha,.)} c$ then both α must appear in P and P_1

Vashti Galpin

• note that
$$P_1, P_2 \in ds(P)$$

- ▶ hence if $P_2 \xrightarrow{(\alpha,.)} c$ then both α must appear in P and P_1
- ▶ because well-defined and ⋈ static operator

Vashti Galpin

• note that
$$P_1, P_2 \in ds(P)$$

- ▶ hence if $P_2 \xrightarrow{(\alpha,.)} c$ then both α must appear in P and P_1
- ▶ because well-defined and ⋈ static operator
- the same is true for Q, Q_1 and Q_2

• note that
$$P_1, P_2 \in ds(P)$$

▶ hence if $P_2 \xrightarrow{(\alpha,.)} c$ then both α must appear in P and P_1

- ▶ because well-defined and ⋈ static operator
- the same is true for Q, Q_1 and Q_2
- α appears in both P and Q

• note that
$$P_1, P_2 \in ds(P)$$

- ▶ hence if $P_2 \xrightarrow{(\alpha,.)} c$ then both α must appear in P and P_1
- ▶ because well-defined and ⋈ static operator
- the same is true for Q, Q_1 and Q_2
- α appears in both *P* and *Q*
- a reaction name that appears in two different species should be synchronised on

• note that
$$P_1, P_2 \in ds(P)$$

- ▶ hence if $P_2 \xrightarrow{(\alpha,.)} c$ then both α must appear in P and P_1
- ▶ because well-defined and ⋈ static operator
- the same is true for Q, Q_1 and Q_2
- α appears in both *P* and *Q*
- a reaction name that appears in two different species should be synchronised on
- systems that violate CADP in this manner are not reasonable Bio-PEPA models

• note that
$$P_1, P_2 \in ds(P)$$

- ▶ hence if $P_2 \xrightarrow{(\alpha,.)} c$ then both α must appear in P and P_1
- because well-defined and static operator
- the same is true for Q, Q_1 and Q_2
- α appears in both *P* and *Q*
- a reaction name that appears in two different species should be synchronised on
- systems that violate CADP in this manner are not reasonable Bio-PEPA models
- therefore we can ignore them as unimportant

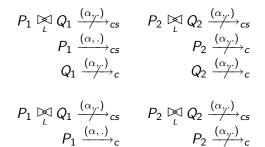
Vashti Galpin

A

 $O_2 \xrightarrow{(\alpha, .)}$

Actions in the cooperation set

again we have two basic cases (excluding symmetry)



Vashti Galpin

How restrictive is the current action decomposition property for compression bisimulation?

 $O_1 \xrightarrow{(\alpha, \cdot)}$

CADP

Example of CADP violation

consider two species

$$egin{array}{rcl} A & \stackrel{ ext{def}}{=} & (lpha,2) \downarrow A + (\delta,1) \downarrow A \ B & \stackrel{ ext{def}}{=} & (lpha,1) \uparrow B \end{array}$$

Vashti Galpin

Example of CADP violation

consider two species

$$\begin{array}{rcl} A & \stackrel{\scriptstyle def}{=} & (\alpha,2) \downarrow A + (\delta,1) \downarrow A \\ B & \stackrel{\scriptstyle def}{=} & (\alpha,1) \uparrow B \end{array}$$

consider

 $A(1) \bigotimes_{\alpha} B(N_B), A(2) \bigotimes_{\alpha} B(N_B) \in ds(A(N_A) \bigotimes_{\alpha} B(1))$

Vashti Galpin

CADP

Example of CADP violation

consider two species

$$\begin{array}{rcl} A & \stackrel{\scriptscriptstyle def}{=} & (\alpha,2) \downarrow A + (\delta,1) \downarrow A \\ B & \stackrel{\scriptscriptstyle def}{=} & (\alpha,1) \uparrow B \end{array}$$

consider

 $A(1) \Join_{\alpha} B(N_B), A(2) \Join_{\alpha} B(N_B) \in ds(A(N_A) \Join_{\alpha} B(1))$

 \blacktriangleright neither can perform α but both can perform δ

Vashti Galpin

CADP

Example of CADP violation

consider two species

$$\begin{array}{rcl} A & \stackrel{\scriptscriptstyle def}{=} & (\alpha,2) \downarrow A + (\delta,1) \downarrow A \\ B & \stackrel{\scriptscriptstyle def}{=} & (\alpha,1) \uparrow B \end{array}$$

consider

 $A(1) \Join_{\alpha} B(N_B), A(2) \Join_{\alpha} B(N_B) \in ds(A(N_A) \Join_{\alpha} B(1))$

 \blacktriangleright neither can perform α but both can perform δ

• A(2) can perform α

Vashti Galpin

Example of CADP violation

consider two species

$$\begin{array}{rcl} A & \stackrel{\scriptscriptstyle def}{=} & (\alpha,2) \downarrow A + (\delta,1) \downarrow A \\ B & \stackrel{\scriptscriptstyle def}{=} & (\alpha,1) \uparrow B \end{array}$$

consider

 $A(1) \Join_{\alpha} B(N_B), A(2) \Join_{\alpha} B(N_B) \in ds(A(N_A) \Join_{\alpha} B(1))$

- \blacktriangleright neither can perform α but both can perform δ
- A(2) can perform α
- A(1) cannot perform α

Vashti Galpin

CADP

Example of CADP violation

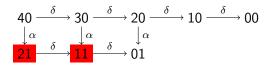
consider two species

$$egin{array}{rcl} A & \stackrel{ ext{def}}{=} & (lpha,2) \downarrow A + (\delta,1) \downarrow A \ B & \stackrel{ ext{def}}{=} & (lpha,1) \uparrow B \end{array}$$

consider

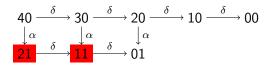
 $A(1) \Join_{\alpha} B(N_B), A(2) \Join_{\alpha} B(N_B) \in ds(A(N_A) \Join_{\alpha} B(1))$

- \blacktriangleright neither can perform α but both can perform δ
- A(2) can perform α
- A(1) cannot perform α
- ▶ what does the transition system look like when N_A = 4 and N_B = 1?

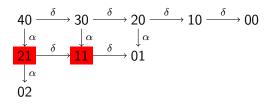


- $A(2) \bowtie B(1), A(1) \bowtie B(1)$ can do nothing
- A(2) can perform α , A(1) cannot perform α

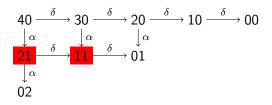
Vashti Galpin



- $A(2) \bowtie B(1), A(1) \bowtie B(1)$ can do nothing
- A(2) can perform α , A(1) cannot perform α
- Does this look different if $N_B = 2$



- $A(2) \bowtie B(1), A(1) \bowtie B(1)$ can do nothing
- A(2) can perform α , A(1) cannot perform α
- Does this look different if $N_B = 2$
- Yes!



- $A(2) \bowtie B(1), A(1) \bowtie B(1)$ can do nothing
- A(2) can perform α , A(1) cannot perform α
- Does this look different if $N_B = 2$
- Yes!
- $A(2) \underset{\alpha}{\bowtie} B(1), A(1) \underset{\alpha}{\bowtie} B(1)$ no longer have the same actions

fully expressible

Vashti Galpin

How restrictive is the current action decomposition property for compression bisimulation?

ð

fully expressible

 \blacktriangleright for a reaction $\alpha,$ the reaction can occur as long as there are reactants available

- fully expressible
 - \blacktriangleright for a reaction $\alpha,$ the reaction can occur as long as there are reactants available
 - in other words, reactions are not limited by artificial upper boundaries

- fully expressible
 - \blacktriangleright for a reaction $\alpha,$ the reaction can occur as long as there are reactants available
 - in other words, reactions are not limited by artificial upper boundaries
- reactions are constrained

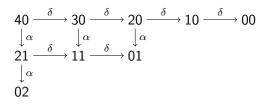
- fully expressible
 - \blacktriangleright for a reaction $\alpha,$ the reaction can occur as long as there are reactants available
 - in other words, reactions are not limited by artificial upper boundaries
- reactions are constrained
 - the ability of a reaction to occur is determined by the availability of reactants

- fully expressible
 - \blacktriangleright for a reaction $\alpha,$ the reaction can occur as long as there are reactants available
 - in other words, reactions are not limited by artificial upper boundaries
- reactions are constrained
 - the ability of a reaction to occur is determined by the availability of reactants
 - how should creation and degradation be treated?

- fully expressible
 - \blacktriangleright for a reaction $\alpha,$ the reaction can occur as long as there are reactants available
 - in other words, reactions are not limited by artificial upper boundaries
- reactions are constrained
 - the ability of a reaction to occur is determined by the availability of reactants
 - how should creation and degradation be treated?
- do constrained and/or full expressible systems have CADP?

CADP

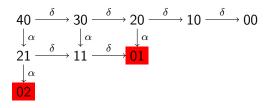
Example revisited



Vashti Galpin

CADP

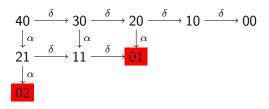
Example revisited



• what about $A(0) \bowtie B(2)$ and $A(0) \bowtie B(1)$

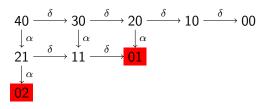
Vashti Galpin

Example revisited



- what about $A(0) \bowtie B(2)$ and $A(0) \bowtie B(1)$
- B(1) can perform α , B(2) cannot

Example revisited



- what about $A(0) \bowtie B(2)$ and $A(0) \bowtie B(1)$
- B(1) can perform α , B(2) cannot
- can δ be constrained?

▶ consider three species with $N_A = 4$, $N_B = N_C = 2$

$$egin{array}{rll} A & \stackrel{ ext{def}}{=} & (lpha,2) \downarrow A + (\delta,1) \downarrow A \ B & \stackrel{ ext{def}}{=} & (lpha,1) \uparrow B \end{array}$$

$$\mathcal{C} \stackrel{\scriptscriptstyle{def}}{=} (\delta,1) \uparrow \mathcal{C}$$

Vashti Galpin

▶ consider three species with $N_A = 4$, $N_B = N_C = 2$

$$\begin{array}{rcl} A & \stackrel{\text{\tiny def}}{=} & (\alpha, 2) \downarrow A + (\delta, 1) \downarrow A \\ B & \stackrel{\text{\tiny def}}{=} & (\alpha, 1) \uparrow B \end{array}$$

$$C \stackrel{\scriptscriptstyle def}{=} (\delta,1) \uparrow C$$

• model $(A(4) \Join_{\alpha} B(0)) \Join_{\delta} C(0)$

Vashti Galpin

▶ consider three species with $N_A = 4$, $N_B = N_C = 2$

$$A \stackrel{\text{\tiny def}}{=} (\alpha, 2) \downarrow A + (\delta, 1) \downarrow A$$

$$B \stackrel{def}{=} (\alpha, 1) \uparrow B$$

$$C \stackrel{\scriptscriptstyle def}{=} (\delta,1) \uparrow C$$

- model $(A(4) \bowtie_{\alpha} B(0)) \bowtie_{\delta} C(0)$
- ► $(A(0) \bowtie_{\alpha} B(2)) \bowtie_{\delta} C(0), (A(0) \bowtie_{\alpha} B(1)) \bowtie_{\delta} C(2)$ derivatives

CADP

Results

A more complex example

▶ consider three species with $N_A = 4$, $N_B = N_C = 2$

$$\begin{array}{ll} A & \stackrel{\text{def}}{=} & (\alpha,2) \downarrow A + (\delta,1) \downarrow A \\ B & \stackrel{\text{def}}{=} & (\alpha,1) \uparrow B \end{array}$$

$$\mathcal{C} \stackrel{\scriptscriptstyle{def}}{=} (\delta, 1) \uparrow \mathcal{C}$$

- model $(A(4) \bowtie_{\alpha} B(0)) \bowtie_{\delta} C(0)$
- $(A(0) \bowtie_{\alpha} B(2)) \bowtie_{\delta} C(0), (A(0) \bowtie_{\alpha} B(1)) \bowtie_{\delta} C(2)$ derivatives
- neither can perform any actions

Results

A more complex example

- consider three species with $N_A = 4$, $N_B = N_C = 2$
 - $A \stackrel{\text{\tiny def}}{=} (\alpha, 2) \downarrow A + (\delta, 1) \downarrow A$ $B \stackrel{def}{=} (\alpha, 1) \uparrow B$
 - $C \stackrel{def}{=} (\delta, 1) \uparrow C$
- model $(A(4) \boxtimes B(0)) \boxtimes C(0)$
- $(A(0) \boxtimes B(2)) \boxtimes C(0), (A(0) \boxtimes B(1)) \boxtimes C(2)$ derivatives
- neither can perform any actions
- \triangleright C(0) can perform an action, C(2) cannot

- ▶ consider three species with $N_A = 4$, $N_B = N_C = 2$
 - $\begin{array}{ll} A & \stackrel{\scriptscriptstyle def}{=} & (\alpha,2) \downarrow A + (\delta,1) \downarrow A \\ B & \stackrel{\scriptscriptstyle def}{=} & (\alpha,1) \uparrow B \end{array}$
 - $C \stackrel{\scriptscriptstyle def}{=} (\delta, 1) \uparrow C$
- model $(A(4) \bowtie_{\alpha} B(0)) \bowtie_{\delta} C(0)$
- ► $(A(0) \bowtie_{\alpha} B(2)) \bowtie_{\delta} C(0), (A(0) \bowtie_{\alpha} B(1)) \bowtie_{\delta} C(2)$ derivatives
- neither can perform any actions
- C(0) can perform an action, C(2) cannot
- back to the drawing board

Further work and conclusions

- further work
 - ongoing investigation
 - understanding the relationship between species levels
 - it is possible for two discretisations to be compression bisimilar without CADP?

Further work and conclusions

- further work
 - ongoing investigation
 - understanding the relationship between species levels
 - it is possible for two discretisations to be compression bisimilar without CADP?
- conclusions
 - some violations of CADP can be ignored
 - more research to be done into the case when $\alpha \in L$

Further work and conclusions

- further work
 - ongoing investigation
 - understanding the relationship between species levels
 - it is possible for two discretisations to be compression bisimilar without CADP?
- conclusions
 - some violations of CADP can be ignored
 - more research to be done into the case when $\alpha \in L$

Thank you

Vashti Galpin