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stochastic process algebra PEPA, models with large numbers of identi-
cal components can be approximated in a continuous fashion by a set of
coupled ordinary differential equations (ODEs). Similarly, timed contin-
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1 Introduction

When modelling large systems such as one providing Web services to many
clients, state space explosion imposes restrictions on the size of system that can be
analysed. An approximation approach can mitigate the state space explosion prob-
lem by making it unnecessary to construct the state space. Ordinary differential
equations (ODEs) extracted from the stochastic process algebra model of the Web
services system were analysed in less than a tenth of a second of compute time even
though there were 3N states for N clients (Gilmore and Tribastone 2006).
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The continuous approximation technique for the stochastic process algebra PEPA
(Hillston 1996) provides coupled ODEs which model changes in behaviour over
time (Hillston 2005). This paper compares this approach with timed continuous
Petri nets (CPNs) (Mahulea et al. 2006, David and Alla 2005) and the associated
ODEs. In both cases, the continuous approximation deals with the problem of state
space explosion. For PEPA, the state space is the labelled multi-transition sys-
tem obtained from the structured operational semantics and in (discrete) bounded
stochastic Petri nets (Ajmone Marsan et al. 1995), it is the reachability graph
which describes the possible markings of a Petri net. For both PEPA and stochas-
tic Petri nets, if the rates of activities/transitions are exponentially distributed,
then the transition system/reachability graph is the basis for a continuous time
Markov chain (CTMC) that represents the behaviour of the system over time (Hill-
ston et al. 2001). The continuous approximations avoid the derivation of the state
space and the models become amenable to analysis (Hillston 2005).

In timed-based Petri nets, nets have either infinite server semantics or finite
server semantics (multiple or single) (Mahulea et al. 2006). In infinite server se-
mantics as many simultaneous firings of a transition as are enabled can take place.
In finite server semantics, there is an finite bound on this number. These represent
two different approaches to coordinating the interactions of components. The two
semantics will be compared.

In this paper, a translation from PEPA models to CPNs and vice versa will
be presented and it will be shown that the ODEs for each approach are the same.
Additionally, it will be shown that the continuous semantics for PEPA are infinite
server semantics. These results allow the use of techniques and theory of one
approach to be applied to the other, and offer a choice between two formalisms to
represent systems, either graphical or textual.

This research is novel. PEPA and stochastic Petri nets have been compared
(Hillston et al. 2001, Ribaudo 1995) but the continuous approximations have not.
Furthermore no investigation has been conducted as to whether the continuous
approximation for PEPA has finite or infinite server semantics.

In the next section, CPNs are introduced, after which a section follows on the
ODE semantics of PEPA. The fourth and fifth sections of the paper provide the
translations, followed by a discussion of server semantics. The final section covers
conclusions and further work.

Figure 1 A CPN with initial marking
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2 Continuous Petri nets

This section presents existing definitions (Mahulea et al. 2006, Hillston et al.
2001). Let R+ = {x | x > 0}.

Definition 1 A (timed) (CPN) is a pair 〈N,m0〉 where N = (P, T, Pre, Post, λ)
with P as the set of places, T is the set of transitions with P ∩ T = ∅, and Pre : P×
T → R+ and Post : P×T → R+ are the pre and post incidence matrices respectively
which give the arc weights between places and transitions. A net is ordinary if all arc
weights have value 0 or 1. The token flow matrix is C = Post− Pre. Additionally
for t ∈ T , •t = {p | Pre(p, t) > 0}, t• = {p | Post(p, t) > 0}, and for p ∈ P ,
•p = {t | Post(p, t) > 0}, p• = {t | Pre(p, t) > 0}. The function λ : T → R+

associates with each transition a firing rate. A marking associates values with
places at a specific point in time, and is defined as a function m : P × R+ → R+.
The initial marking is m0 = m(·, 0).

CPNs are drawn in the standard manner using circles for places and rectangles
for transitions as illustrated in Figure 1 which describes a system with 200 clients
and 100 unreliable servers that fail and then are repaired. The clients prepare work,
obtain a service from a server and then finish the work, before starting on the next
job.

The distinguishing feature of CPNs is that markings are not restricted to in-
teger values. In this paper ordinary nets are used. Hence, whenever p ∈ •t then
Pre(p, t) = 1 and whenever p ∈ t• then Post(p, t) = 1. Results can be generalised
since a net with arc weights greater than one can be converted to an ordinary Petri
net (David and Alla 2005). Infinite server semantics are assumed as they are the
more general case (Mahulea et al. 2006).

Definition 2 A transition t is enabled at time τ if for all p ∈ •t, m(p, τ) > 0 and
t has enabling degree

enab(t, τ) = min
p∈•t

{
m(p, τ)
Pre(p, t)

}
An enabled transition can fire an amount of α with 0 < α ≤ enab(t, τ). After this
firing the new marking will be m(·, τ ′) = m(·, τ) + αC(·, t).

Mahulea et al. (2006) noted that the continuous approximation under infinite
server semantics is appropriate for many clients and many servers. A deterministic
continuous approximation of the discrete case can be done by assuming that the
firing delays can be approximated by their mean values (Silva and Recalde 2005).
This applies to mono-T-semiflow reducible nets which includes the class of equal
conflict nets (Mahulea et al. 2006).

The fundamental equation which defines how markings change over time is
defined as m(·, τ) = m0 + Cσ(τ) where σ(τ) is the firing vector (Mahulea et al.
2006). Differentiating this equation with respect to time gives

dm(·, τ)
dτ

= Cf(·, τ)
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with

f(t, τ) = λ(t). min
p∈•t

{
m(p, τ)
Pre(p, t)

}
= λ(t). min

p∈•t

{
m(p, τ)

}
where the flow f(·, τ) = σ′(τ) is the derivative (in the mathematical sense) of the
firing sequence (Mahulea et al. 2006). The change in the marking of a single place
p can be expressed as follows. Let n be the number of transitions. Then

dm(p, τ)
dτ

=
n∑

j=1

Post(p, tj).f(tj , τ)−
n∑

j=1

Pre(p, tj).f(tj , τ))

=
∑
t∈•p

f(t, τ)−
∑
t∈p•

f(t, τ)

=
∑
t∈•p

λ(t). min
p′∈•t

{m(p′, τ)} −
∑
t∈p•

λ(t). min
p′∈•t

{m(p′, τ)}.

3 PEPA and ODE semantics

Consider the standard syntax for PEPA (Hillston 2005) with Hiding omitted:
P ::= P BC

L
P | C and S ::= (α, r).S | S + S | Cs where C names a model or

sequential component, Cs names a sequential component, α is an action, r is a
rate, and together they form an activity, and L is a set of actions. Also consider
the standard operational semantics of PEPA given in Figure 2 (Hillston 1996) with
the following operators.

Prefix: (α, r).P can be understood as the process that can perform the action
α with a delay from the exponential distribution determined by r and which then
behaves as P .

Choice: P1 +P2 represents the choice between behaving as either P1 or P2. The
process that completes first will proceed and the other will be discarded.

Figure 2 PEPA structured operational semantics

Prefix Choice Constant

(α, r).E
(α,r)→ E

E
(α,r)→ E′

E + F
(α,r)→ E′

F
(α,r)→ F ′

E + F
(α,r)→ F ′

E
(α,r)→ E′

A
(α,r)→ E′

(A def= E)

Cooperation
E

(α,r)→ E′

E BC
L

F
(α,r)→ E′ BC

L
F

(α 6∈ L)
F

(α,r)→ F ′

E BC
L

F
(α,r)→ E BC

L
F ′

(α 6∈ L)

E
(α,r1)→ E′ F

(α,r2)→ F ′

E BC
L

F
(α,R)→ E′ BC

L
F ′

(α ∈ L) where R =
r1

rα(E)
r2

rα(F )
min(rα(E), rα(F ))
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Cooperation: P1 BC
L

P2 can act as P1 independently of P2 (and vice versa) for
any actions not in L. For actions in L, P1 and P2 can only proceed when they both
can perform the action and the rate is determined by the slower of the two. P1||P2

is used for P1 BC
∅

P2, and P [n] for n copies of P in parallel without cooperation.

Constant: C
def= P defines the constant C which has the same behaviour as P .

The following subset of PEPA will be considered, as this is the subset for which
the ODE semantics are defined (Hillston 2005). It only allows communication
between components that are not identical.

1. All shared actions of non-identical components must synchronise.
2. Identical components cannot synchronise on actions.
3. Rates must be identical for a shared activity, and no passive rates are allowed.

Definition 3 ((Hillston 2005)) For an arbitrary PEPA model M with n compo-
nent types Ci for i = 1, . . . n each with Ni distinct derivatives (successor states of
components), the numerical vector form of M , V (M) is a vector with N =

∑n
i=1 Ni

entries. Each vij
records how many instances of the jth local derivative of compo-

nent type Ci are present in the current state.

The numerical vector form can be used to obtain the vector state space which
is smaller than the labelled multi-transition system when there are many identical
components (Hillston 2005). The vector state space gives an aggregated model
and can generate a CTMC. The numerical vector form is used for the continuous
approximation in the case of large numbers of identical components using the fol-
lowing differential equation for N(Cij , τ) = vij the number of derivatives of type
Cij at time τ (Hillston 2005).

dN(Cij , τ)
dτ

=
∑

(α,r)∈En(Cij
)

r × min
C∈Ex(α,r)

{N(C, τ)}

−
∑

(α,r)∈Ex(Cij
)

r × min
C∈Ex(α,r)

{N(C, τ)}

for the following definitions, Ex(D) = {(α, r) | D(α,r)→ }, Ex(α, r) = {D | D(α,r)→ } and
En(D) = {(α, r) | ∃D′, D′(α,r)→ D}. Hence Ex(D) captures those activities that de-
crease the number of D’s (exit activities), En(D) captures those activities that
increase the number of D’s (entry activities) and Ex(α, r) describes those deriva-
tives that can perform (α, r) activities. Therefore the change in the number of a
derivative D is expressed in terms of the number of decreases and increases at the
given rate where the changes are bounded by the minimum number of derivatives
available to perform the activity. Extracting the specific ODEs for a given model
can be automated based on an activity graph or an activity matrix (Hillston 2005).

Definition 4 An activity graph is a bipartite graph (N,A). The nodes are parti-
tioned into Nt, the activities, and Np, the derivatives. A ⊆ (Nt ×Np)∪ (Np ×Nt),
where a = (nt, np) ∈ A if nt is an entry activity of derivative np, and a = (np, nt) ∈
A if nt is an exit activity of np. The activity matrix Ma is an Np ×Nt matrix and
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entries are defined as follows.

Ma(pi, tj) =


+1 if tj ∈ En(pi)
−1 if tj ∈ Ex(pi)
0 otherwise.

The example in Figure 3 consists of two different types of servers, possibly offering
the same service, but at different rates, plus clients who do not mind which server
they use. The servers provide the service then reset, and a client interacts with a
server and then does something before interacting with a server again. The activity
matrix is given in Figure 5 together with the ODEs for this model. The activity
graph for this system is given in Figure 4.

4 From a PEPA model to a CPN

Working with the subset of PEPA specified previously, it is possible to convert
this to a timed CPN. First, construct the activity graph. This is a net of the form
(Np, Nt,Mpre,Mpost) where

Mpre(pi, tj) =

{
+1 if tj ∈ Ex(pi)
0 otherwise

Mpost(pi, tj) =

{
+1 if tj ∈ En(pi)
0 otherwise.

The activity matrix Ma is then Mpost−Mpre which is the token flow matrix. The
initial marking is determined by the numbers of each component; m(p, 0) = N(p, 0).
Additionally, λ(t) = r where t = (α, r) ∈ Nt. Hence a CPN can be constructed
from a PEPA model, and the activity graph and the CPN are isomorphic.

Moreover, for each distinct type of derivative in the model, there is a place in
the Petri net and the tokens in that place represent the number of copies of the
derivative in the model. The vector state space obtained from the PEPA model
is isomorphic to the reachability graph of the CPN if it were viewed as a discrete
Petri net, since the behaviour of both the PEPA model and the net is the same.
If an activity reduces by one the count of a particular derivative and increases by
one the count of another derivative in the PEPA model, then in the Petri net, the
transition that is that activity will fire and remove one token from the place that
represents that particular derivative and add a token to the place that represents
the other derivative. Similarly the token changes associated with a firing of a
transition can be expressed as changes in the number of derivatives in the PEPA
model. Hence, m(p, τ) = N(p, τ). The resulting net is bounded because the total
number of derivatives for each component is fixed in the PEPA model.

Figure 3 Servers example

C
def= (serv1, s1).C ′ + (serv2, s2).C ′ C ′ def= (do, d).C

S′
i

def= (reset i, ri).Si Si
def= (serv i, si).S′

i

Sys
def= C[100] BC

{serv1,serv2}

(
S1[50]||S2[50]

)
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Considering the continuous case, the ODEs defined from PEPA for the place p
are as follows.

dN(p, τ)
dt

=
∑

t∈En(p)

r × min
p′∈Ex(t)

{N(p′, τ)} −
∑

t∈Ex(p)

r × min
p′∈Ex(t)

{N(p′, τ)}

=
∑
t∈•p

λ(t)× min
p′∈•t

{m(p′, τ)} −
∑
t∈p•

λ(t)× min
p′∈•t

{m(p′, τ)}.

The equation holds since t ∈ En(p) is equivalent to t ∈ •p, t ∈ Ex(p) is
equivalent to t ∈ p• and p′ ∈ Ex(t) is equivalent to p′ ∈ •t. Hence the ODEs
generated by a PEPA model are the same as those for the associated CPN under
infinite server semantics.

Figure 4 shows the CPN obtained from the activity graph for the servers exam-
ple, together with its initial marking. Pre and Post can easily be determined, and
it is clear, for example, that Ex(C) is the same as the post set of the place with
initial marking 100.

5 From a CPN to a PEPA model

It is more complex to do the reverse translation. First, it is necessary to add
implicit places to the net and to show this does not affect the ODEs that are
obtained. Once implicit places have been added, the net can be transformed to a
PEPA model using an existing algorithm (Hillston et al. 2001). An implicit place
is a place in a net that can be removed without changing the behaviour of the net
(Silva et al. 1998).

Definition 5 An implicit place p ∈ P is a place such that whenever t ∈ p• is

Figure 4 The activity graph and its translation to a CPN with initial marking for
the servers example

reset1

S1

serv1
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enabled at time τ , m(p, τ) ≥ minp′∈•t\{p}{m(p′, τ)}

The addition of an implicit or complementary place for each place in a net is called
complementation. For each place p, a new place p is added such that •p = p• and
p• = •p using the following construction (Hillston et al. 2001). The construction
requires that the net be bounded, and for each place p there is an upper bound b(p)
on the value that the place p can have in any marking reachable from m0.

Definition 6 Given a net S = 〈N,m0〉 with N = (P, T, Pre, Post, λ), its com-
plementation is a net S′ = 〈N ′,m′

0〉 with N ′ = (P ′, T, Pre′, Post′, λ) where P ′ =
P ∪ P with P = {p | p ∈ P}.

Pre′ =
[

Pre
Post

]
Post′ =

[
Post
Pre

]
m′

0 =
[

m0

b−m0

]
A new place p can be shown to be implicit by proof by contradiction on the bound
b(p). Also mS′(p, τ) = mS(p, τ) for all p ∈ P , where mR refers to the marking
in the context of the net R. Furthermore enabS′(t, τ) = enabS(t, τ) for all t ∈ T
where enabR refers to the enabling degree in the context of the net R. The following
ODEs can be obtained from the CPN S′ created by complementation of S.

dmS′(p, τ)
dτ

=
∑
t∈•p

λ(t). min
p′∈•t

{mS′(p′, τ)} −
∑
t∈p•

λ(t). min
p′∈•t

{mS′(p′, τ)}.

Figure 5 The activity matrix and the ODEs for the servers example
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C −1 −1 0 0 +1

C ′ +1 +1 0 0 −1

S1 −1 0 +1 0 0

S′
1 +1 0 −1 0 0

S2 0 −1 0 +1 0

S′
2 0 +1 0 −1 0

dN(C, τ)
dτ

= d.N(C ′, τ)− s1.min(N(C, τ), N(S1, τ))− s2.min(N(C, τ), N(S2, τ))

dN(C ′, τ)
dτ

= s1.min(N(C, τ), N(S1, τ)) + s2.min(N(C, τ), N(S2, τ))− d.N(C ′, τ)

dN(Si, τ)
dτ

= ri.N(S′
i)− si.min(N(C, τ), N(Si, τ)), i = 1, 2

dN(S′
i, τ)

dτ
= si.min(N(C, τ), N(Si, τ))− ri.N(S′

i), i = 1, 2
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The focus here is on the original places in P . Note that

min
p′∈•t

{mS′(p′, τ)} = min
(

min
p∈•t∩P

{mS(p, τ)}, min
p∈•t∩P

{mS′(p, τ)}
)

= min
p∈•t∩P

{mS(p, τ)}

since for each p, m(p, τ) ≥ minp′∈•t∩P {m(p′, τ)}, and so the value of the marking
at that implicit place can be ignored when determining the minimum. Considering
a place p in P , we obtain the same equation as that obtained before complemen-
tantion.

dmS′(p, τ)
dτ

=
∑
t∈•p

λ(t). min
p′∈•t∩P

{mS(p′, τ)} −
∑
t∈p•

λ(t). min
p′∈•t∩P

{mS(p′, τ)}.

The net formed by complementation can be translated into a PEPA model using
the algorithm presented by Hillston et al. (2001). The algorithm has one minor
change; the rates are not passive in the sequential components. This is necessary
to meet the restriction on the form a PEPA model can take and does not affect the
correctness of the algorithm. It is possible to derive ODEs from this PEPA model
as done above. However, it is simpler to use the high/low approach for modelling
biological systems in a reagent-centric fashion (Calder et al. 2005). In this approach,
each reagent can be at a high or low concentration, and this is modelled using a
single component with two states. The ODEs are then obtained for the reagent
rather than for each of its states. In the cited reference, mass action is used in the
ODEs since it is appropriate for the biological model. In the context of this paper,
min is the appropriate function to use as it captures possible synchronisations.

The PEPA model obtained by complementation can be viewed similarly, so com-
ponent Cp is the high concentration and its derivative Cp is the low concentration.
An activity graph and an activity matrix can be constructed (Calder et al. 2005).

Definition 7 An HL activity graph is a bipartite graph (N,A). The nodes are par-
titioned into Nt the activities and Np = {Cp | p ∈ P}. A ⊆ (Nt ×Np)∪ (Np ×Nt),
where a = (nt, np) ∈ A if nt if nt is an entry activity of Cp (and an exit activity
of Cp) and a = (np, nt) ∈ A if nt an exit activity of Cp (and an entry activity of

Figure 6 A CPN with complementation

prepare

finish
servereset

fail

repair
200 p1

p2

p3

100

p4

p5

p6p1

200p2

200p3

p4

100p5

100 p6



10 Vashti Galpin

Cp). The HL activity matrix Ma is an Np ×Nt matrix and entries are defined as
follows.

Ma(Cp, t) =


+1 if t is an entry activity of Cp

−1 if t is an exit activity of Cp

0 otherwise.

Note that here the activities are just the transitions T from the net. However, Np

is the same size as the set of original places, and hence the activity graph is not
isomorphic to the complemented net but rather to the original CPN. The ODEs
that can be extracted from this model are as follows.

Figure 7 The activity matrix obtained from the unreliable servers PEPA model and
the ODEs obtained from the unreliable servers CPN in Figure 1
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re
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Cp1 −1 0 +1 0 0 0

Cp2 +1 −1 0 0 0 0

Cp3 0 +1 −1 0 0 0

Cp4 0 −1 0 +1 0 +1

Cp5 0 +1 0 −1 −1 0

Cp6 0 0 0 0 +1 −1

dm(p1, τ)
dτ

= f.m(p3, τ)− p.m(p1, τ)

dm(p2, τ)
dτ

= p.m(p1, τ)− s.min{m(p2, τ),m(p4, τ)}

dm(p3, τ)
dτ

= s.min{m(p2, τ),m(p4, τ)} − f.m(p3, τ)

dm(p4, τ)
dτ

= r.m(p5, τ) + e.m(p6, τ)− s.min{m(p2, τ),m(p4, τ)}

dm(p5, τ)
dτ

= s.min{m(p2, τ),m(p4, τ)} − r.m(p5, τ)− a.m(p5, τ)

dm(p6, τ)
dτ

= a.m(p5, τ)− e.m(p6, τ)
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dN(Cp, τ)
dτ

=
∑

(t,λ(t))∈En(Cp)

λ(t)× min
Cp′∈Ex(t,λ(t))

{N(Cp′ , τ)}

−
∑

(t,λ(t))∈Ex(Cp)

λ(t)× min
Cp′∈Ex(t,λ(t))

{N(Cp′ , τ)}

Note that N(Cp, τ) = m(p, τ), (t, λ(t)) ∈ En(Cp) is equivalent to t ∈ •p and
(t, λ(t)) ∈ Ex(Cp) is equivalent to t ∈ p•. Moreover, Cp′ ∈ Ex(t, λ(t)) is equiv-
alent to p′ ∈ •t ∩ P since only the components created from p ∈ P and not the
complementary places, are under consideration. Hence, the ODEs are the same.

Hillston et al. (2001) also present an algorithm that reduces the number of
implicit places required. For the algorithm presented above, this improvement is
not necessary since using the high/low reagent approach means that a place and
its complement are treated as a single object resulting in ODEs that are the same
as those found for the original CPN.

Figure 6 shows the unreliable servers example from Figure 1 under complemen-
tation with appropriate bounds. The ODEs from the uncomplemented net are given
in Figure 7. From the complemented net the PEPA model in Figure 8 is obtained.
The HL activity matrix is given in Figure 7, and the same ODEs as in Figure 7 can
be extracted from this matrix.

6 Server semantics

As mentioned above, there are two types of server semantics. In infinite server
semantics, a transition can fire simultaneously as much as it is enabled. This is also
called marking dependent or variable speed (David and Alla 2005). For the finite
server or constant speed case (David and Alla 2005), the number of simultaneous
firings of transition is bounded. The transformations above have shown that the
ODE semantics of PEPA are infinite server semantics. Infinite server semantics are
the more general case. In the discrete case, finite server semantics can be obtained
in a net with infinite server semantics by modifying the net. This requires the

Figure 8 Unreliable servers example

Cp1

def= (prepare, p).Cp1
Cp1

def= (finish, f).Cp1

Cp2

def= (serve, s).Cp2
Cp2

def= (prepare, p).Cp2

Cp3

def= (serve, s).Cp3 Cp3

def= (finish, f).Cp3

Cp4

def= (serve, s).Cp4
Cp4

def= (reset, r).Cp4 + (repair, e).Cp4

Cp5

def= (reset, r).Cp5
+ (fail, a).Cp5

Cp5

def= (serve, s).Cp5

Cp6

def= (repair, e).Cp6
Cp6

def= (fail, a).Cp5

M def= Cp1 [200] BC
{prepare,finish}

Cp2
[200] BC

{serve}
Cp3

[200] BC
{serve}

Cp4 [100] BC
{serve,reset,repair}

Cp5
[100] BC

{fail}
Cp6

[100]
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addition of a place with k tokens with arcs to and from the transition which is to
be bounded (Mahulea et al. 2006).

A similar approach can be taken in PEPA. When a particular activity is to be
limited, a new component can be added of the form Bα

def= (α, r).Bα with kα copies
where (α, r) is the activity to be constrained. Letting N(C) refer only to the original
components and their derivatives, then the resulting ODEs can be expressed as

dN(D, τ)
dτ

=
∑

(α,r)∈En(D)

r ×min{kα, min
C∈Ex(α,r)

{N(C, τ)}}

−
∑

(α,r)∈Ex(D)

r ×min{kα, min
C∈Ex(α,r)

{N(C, τ)}}. (∗)

Note that the ODE for each Bα has the form dN(Bα)
dτ = 0 since the number

Figure 9 PEPA models of sender and receiver example

P1
def= (t2, λ2).P2 P3

def= (t2, λ2).P4

P2
def= (t1, λ1).P1 P4

def= (t3, λ3).P3

SendRec
def= P1[100] BC

t2
P3[100] Bti

def= (ti, kti).Bti

SendRecK
def= (P1[100] BC

t1
Bt1 [kt1 ]) BC

t2
(Bt2 [kt2 ] BCt2 (P3[100] BC

t3
Bt3 [kt3 ]))

Figure 10 CPNs for sender and receiver example

sender︷ ︸︸ ︷ receiver︷ ︸︸ ︷
t1λ1 t2λ2 t3λ3

100
p1

p2

100
p3

p4

t1λ1 t2λ2 t3λ3

100
p1

p2

100
p3

p4

kt1 bt1

buffer

kt2 bt2

medium

kt3 bt3

buffer
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of copies is always kα. An example is given in Figures 10 and 9. This represents
senders that collect data and pass it on to receivers that deliver the data. The
more abstract version (on the left in Figure 10 and SendRec in Figure 9) has infinite
server semantics and represents the system without constraints. The second version
(on the right and SendRecK) has additional places/components that constrain the
transitions/activities. This represents a more concrete version of the system where
there is a medium between senders and receivers that only permits a certain number
of exchanges at one time, and both the sender and receiver must each interact with
a buffer of limited capacity in collecting or delivering the data. The behaviour over
time of this system can then be expressed using the approximation given by the
ODEs in (∗).

However, Silva and Recalde (2005) argue that in the continuous case, infinite
and finite server semantics are about two different relaxations of the model for
approximation; many servers and many clients for infinite, and few servers and
many clients for finite server semantics and are therefore different. In their view
of finite server semantics, a transition has a maximal firing speed λ′(t) at which it
can perform representing k times the speed of a single server (Mahulea et al. 2006)
and a different expression is required for the flow of a transition.

f(t, τ) =



λ′(t), if ∀p ∈ •t, m(p, τ) > 0

min
{

λ′(t), min
p∈•t∧

m(p,τ)=0

{ ∑
t′∈•p

f(t′, τ)Post(p, t′)
Pre(p, t)

}}
,

otherwise.

In the case that enab(t, τ) > 0 then the flow is just the firing speed of the
transition. Otherwise, the flow through the transition is determined by minimum of
the speeds of the transitions supplying the empty places that supply the transition.
Determining the speeds requires the solution of a linear programming problem
(David and Alla 2005). Hence for ordinary nets, the ODEs have the form

dm(p, τ)
dτ

=
∑
t∈•p

f(t, τ)−
∑
t∈p•

f(t, τ)

with f(t, τ) defined as above, and with the Pre and Post terms equal to one. These
equations result in linear piecewise ODEs (Mahulea et al. 2006). The net behaves
as described by a set of equations until a place empties, and then the speeds change
since the enabling of the net has changed (a place is now empty). This switching
between equations continues until a steady state is reached where no more changes
in the marking can happen. This steady state is guaranteed if there is no conflict
in the net (David and Alla 2005).

Infinite server semantics also result in linear piecewise ODEs. Changes between
equations occur because of the minimum function. Hence the ODEs for both types
of server semantics can be viewed as a hybrid system. ie. a system with both
discrete and continuous behaviours. The continuous behaviour in this case are the
sets of ODEs and the discrete behaviour is the switching from one set of ODEs to
another due to a specific event, either the change in the minimum or the emptying
of a place. Hybrid systems are an area of ongoing research.
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A question of interest is how these the finite server ODEs compare to the ex-
plicitly constrained infinite server ODES. Transforming the ODEs in (∗) to the
equivalent Petri net description gives

dm(p, τ)
dτ

=
∑
t∈•p

λ(t).min{k(t),min
p′∈•t

{m(p′, τ)}}

−
∑
t∈p•

λ(t).min{k(t),min
p′∈•t

{m(p′, τ)}}

where k(t) is the equivalent of kα. Since λ(t) represents the rate at which transition
t can fire, and λ′(t) represents the speed at which k(t) servers can be served, it can
be assumed that λ(t).k(t) = λ′(t). Hence the question becomes a comparison of
the following terms.

φ(t, τ) = λ(t).min{k(t), min
p′∈•t

{m(p′, τ)}} and

f(t, τ) =



λ(t).k(t), if ∀p ∈ •t, m(p, τ) > 0

min
{

λ(t).k(t), min
p∈•t∧

m(p,τ)=0

{ ∑
t′∈•p

f(t′, τ)
}}

,

otherwise.

Clearly the closer k(t) is to zero, the closer the values of φ and f will be since the
term involving k(t) is likely to be the minimum and hence both equation are likely
to have the value λ(t).k(t). Understanding in more detail the relationship between
these three approximations is future research.

7 Conclusion

This paper has shown how to construct an ordinary timed continuous Petri net
from a PEPA model (using a subset of the language) and vice versa. Moreover it
has been shown that when approximated continuously, the behaviour of both can
be characterised by the same set of coupled ODEs. Furthermore the continuous
approximation using PEPA has infinite server semantics. This paper has estab-
lished links between two continuous approaches to modelling the performance of
systems, one graphically based and the other textual, and hence techniques and re-
sults for one approach can be applied to the other. Both continuous approximation
approaches are suitable for systems with many identical components. Questions
for ongoing research include how robust these modelling approaches are when com-
ponent numbers decrease, and how the appropriate ODES can be obtained when
modelling large number of clients and a much smaller number of servers.
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