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Introduction

Hybrid systems

I discrete behaviour
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I well known

I graphical rather than textual
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Process algebras for hybrid systems

I compositional language

I semantic equivalences
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Motivation

Other hybrid process algebras

I ACPsrt
hs – Bergstra and Middelburg

I HyPA – Cuijpers and Reniers

I hybrid χ – van Beek et al

I φ-calculus – Rounds and Song

Comparison

differences: syntax, semantics, discontinuous behaviour,
flow-determinism, theoretical results, tools – Khadim

similarity: require full description of dynamic behaviour of
subcomponents, ODEs appear in syntax
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Monolithic ODEs

Heater system with temperature limit

θ ≡ (T •
B = •TB) ψ ≡ (TB = 25)

Start
def
= (TB = T0) ∧N Off12

Off12
def
= (ṪB = −TB) ∩H σ∗rel

(
θ uH

(
on1 · On1 + on2 · On2

))
On1

def
= (TB ≤ 25 ∧ ṪB = −TB + 0.5r1)

∩H σ∗rel
((
θ uH on2 · On12

)
+

(
ψ :→

(
θ uH off1 · Off12

)))
On2

def
= (TB ≤ 25 ∧ ṪB = −TB + 0.5r2)

∩H σ∗rel
((
θ uH on1 · On12

)
+

(
ψ :→

(
θ uH off2 · Off12

)))
On12

def
= (TB ≤ 25 ∧ ṪB = −TB + 0.5(r1 + r2))

∩H σ∗rel
(
ψ :→

(
θ uH

(
off1 · On2 + off2 · On1

)))
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More monolithic ODEs

Elements of orbiter system

DOD
def
= (dK/dt = −K ) ∩H σ∗rel

((
θ uH light · LOD

)
+

(
(K ≤ t2) :→

(
θ uH on · DND

)))
LOD

def
= (dK/dt = rs − K ) ∩H σ∗rel

((
θ uH dark · DOD

)
+

(
(K ≥ t3) :→

(
θ uH up · LOU

)))
DND

def
= (dK/dt = rh − K ) ∩H σ∗rel

((
θ uH light · LND

)
+

(
(K ≥ t1) :→

(
θ uH off · DND

)))
LOU

def
= (dK/dt = rs − rd − K ) ∩H σ∗rel

((
θ uH dark · DOU

)
+

(
(K ≤ t4) :→

(
θ uH down · LOD

)))
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A different approach

HYPE

I process algebra for hybrid systems

I individual additive flows

I more fine-grained approach

I separation of modelling concerns

I influence of continuous semantics of PEPA

I mapping to hybrid automata

I not stochastic (yet)

I running example: temperature control for an orbiter
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HYPE actions

Events

instantaneous, discrete changes

a ∈ E

Activities or influences

influences on continuous aspects, flows

α ∈ A α(~X ) = (ι, r , I (~X ))

�
��* 6 H

HHY

influence name rate influence type

with JI (~X )K = f (~X )

where ~X is a formal parameter.

Vashti Galpin

A process algebra for the modelling of hybrid systems



Motivation Syntax Operational semantics Hybrid semantics Equivalences Comparison Adding stochasticity

HYPE actions

Events

instantaneous, discrete changes

a ∈ E

Activities or influences

influences on continuous aspects, flows

α ∈ A α(~X ) = (ι, r , I (~X ))

�
��* 6 H

HHY

influence name rate influence type

with JI (~X )K = f (~X )

where ~X is a formal parameter.

Vashti Galpin

A process algebra for the modelling of hybrid systems



Motivation Syntax Operational semantics Hybrid semantics Equivalences Comparison Adding stochasticity

HYPE actions

Events

instantaneous, discrete changes

a ∈ E

Activities or influences

influences on continuous aspects, flows

α ∈ A α(~X ) = (ι, r , I (~X ))

�
��* 6 HHHY

influence name rate influence type

with JI (~X )K = f (~X )

where ~X is a formal parameter.

Vashti Galpin

A process algebra for the modelling of hybrid systems



Motivation Syntax Operational semantics Hybrid semantics Equivalences Comparison Adding stochasticity

HYPE actions

Events

instantaneous, discrete changes

a ∈ E

Activities or influences

influences on continuous aspects, flows

α ∈ A α(~X ) = (ι, r , I (~X ))

�
��* 6 HHHY

influence name rate influence type

with JI (~X )K = f (~X )

where ~X is a formal parameter.

Vashti Galpin

A process algebra for the modelling of hybrid systems



Motivation Syntax Operational semantics Hybrid semantics Equivalences Comparison Adding stochasticity

HYPE actions

Events

instantaneous, discrete changes

a ∈ E

Activities or influences

influences on continuous aspects, flows

α ∈ A α(~X ) = (ι, r , I (~X ))

�
��* 6 HHHY

influence name rate influence type

with JI (~X )K = f (~X )

where ~X is a formal parameter.

Vashti Galpin

A process algebra for the modelling of hybrid systems



Motivation Syntax Operational semantics Hybrid semantics Equivalences Comparison Adding stochasticity

HYPE actions

Events

instantaneous, discrete changes

a ∈ E

Activities or influences

influences on continuous aspects, flows

α ∈ A α(~X ) = (ι, r , I (~X ))

�
��* 6 HHHY

influence name rate influence type

with JI (~X )K = f (~X )

where ~X is a formal parameter.

Vashti Galpin

A process algebra for the modelling of hybrid systems



Motivation Syntax Operational semantics Hybrid semantics Equivalences Comparison Adding stochasticity

HYPE uncontrolled system

Subcomponents

S ::= a:α.Cs | S + S a ∈ E , α ∈ A
Cs(~X )

def
= S

Components

P ::= C (~X ) | P BC
L

P L ⊆ E

C (~X )
def
= P or subcomponent name

Uncontrolled system

Σ ::= C (~V ) | Σ BC
L

Σ L ⊆ E
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HYPE controlled system

Controller

M ::= a.M | 0 | M + M a ∈ E
Con ::= M | Con BC

L
Con L ⊆ E

Controlled system

ConSys ::= Σ BC
L

Con L ⊆ E

Well-defined HYPE system

Cs(~X )
def
= a1 :α1.Cs(~X ) + . . .+ an :αn.Cs(~X ) ai 6= aj

init : (ι, , ) appears exactly once
a:(ι, , ) appears at most once
synchronisation on shared events
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Orbiter Temperature Control in HYPE

Passing of time

Time
def
= light : (t, 1, const).Time + dark:(t, 1, const).Time +

init : (t, 1, const).Time

Effect of sun

Sun
def
= light : (s, rs , const).Sun + dark:(s, 0, const).Sun +

init : (s, 0, const).Sun

Continual cooling

Cool(X )
def
= init : (c ,−1, linear(X )).Cool(X )

Vashti Galpin

A process algebra for the modelling of hybrid systems



Motivation Syntax Operational semantics Hybrid semantics Equivalences Comparison Adding stochasticity

Orbiter Temperature Control in HYPE

Passing of time

Time
def
= light : (t, 1, const).Time + dark:(t, 1, const).Time +

init : (t, 1, const).Time

Effect of sun

Sun
def
= light : (s, rs , const).Sun + dark:(s, 0, const).Sun +

init : (s, 0, const).Sun

Continual cooling

Cool(X )
def
= init : (c ,−1, linear(X )).Cool(X )

Vashti Galpin

A process algebra for the modelling of hybrid systems



Motivation Syntax Operational semantics Hybrid semantics Equivalences Comparison Adding stochasticity

Orbiter Temperature Control in HYPE

Passing of time

Time
def
= light : (t, 1, const).Time + dark:(t, 1, const).Time +

init : (t, 1, const).Time

Effect of sun

Sun
def
= light : (s, rs , const).Sun + dark:(s, 0, const).Sun +

init : (s, 0, const).Sun

Continual cooling

Cool(X )
def
= init : (c ,−1, linear(X )).Cool(X )

Vashti Galpin

A process algebra for the modelling of hybrid systems



Motivation Syntax Operational semantics Hybrid semantics Equivalences Comparison Adding stochasticity

Orbiter Temperature Control in HYPE

Passing of time

Time
def
= light : (t, 1, const).Time + dark:(t, 1, const).Time +

init : (t, 1, const).Time

Effect of sun

Sun
def
= light : (s, rs , const).Sun + dark:(s, 0, const).Sun +

init : (s, 0, const).Sun

Continual cooling

Cool(X )
def
= init : (c ,−1, linear(X )).Cool(X )

Vashti Galpin

A process algebra for the modelling of hybrid systems



Motivation Syntax Operational semantics Hybrid semantics Equivalences Comparison Adding stochasticity

Orbiter Temperature Control in HYPE (continued)

Effect of heater

Heat
def
= on:(h, rh, const).Heat + off:(h, 0, const).Heat +

init : (h, 0, const).Heat

Effect of shade

Shade
def
= up:(d ,−rd , const).Shade + down:(h, 0, const).Shade +

init : (d , 0, const).Shade

Uncontrolled system

Sys
def
= (Heat BC

{init}
Shade) BC

{init}
(Cool(K ) BC

{init}
Sun BC

{init,light,dark}
Time)
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Orbiter Temperature Control in HYPE (continued)
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Orbiter Temperature Control in HYPE (continued)

Controllers

Conh
def
= on.off.Conh

Cond
def
= up.down.Cond

Cons
def
= light.dark.Cons

Con
def
= Conh BC

∅
Cond BC

∅
Cons

Controlled system

OTC
def
= Sys BC

M
init.Con M = {init, on, off, up, down, light, dark}

Vashti Galpin

A process algebra for the modelling of hybrid systems



Motivation Syntax Operational semantics Hybrid semantics Equivalences Comparison Adding stochasticity

Orbiter Temperature Control in HYPE (continued)

Controllers

Conh
def
= on.off.Conh

Cond
def
= up.down.Cond

Cons
def
= light.dark.Cons

Con
def
= Conh BC

∅
Cond BC

∅
Cons

Controlled system

OTC
def
= Sys BC

M
init.Con M = {init, on, off, up, down, light, dark}

Vashti Galpin

A process algebra for the modelling of hybrid systems



Motivation Syntax Operational semantics Hybrid semantics Equivalences Comparison Adding stochasticity

Orbiter Temperature Control in HYPE (continued)

Controllers

Conh
def
= on.off.Conh

Cond
def
= up.down.Cond

Cons
def
= light.dark.Cons

Con
def
= Conh BC

∅
Cond BC

∅
Cons

Controlled system

OTC
def
= Sys BC

M
init.Con M = {init, on, off, up, down, light, dark}

Vashti Galpin

A process algebra for the modelling of hybrid systems



Motivation Syntax Operational semantics Hybrid semantics Equivalences Comparison Adding stochasticity

Orbiter Temperature Control in HYPE (continued)

Controllers

Conh
def
= on.off.Conh

Cond
def
= up.down.Cond

Cons
def
= light.dark.Cons

Con
def
= Conh BC

∅
Cond BC

∅
Cons

Controlled system

OTC
def
= Sys BC

M
init.Con M = {init, on, off, up, down, light, dark}

Vashti Galpin

A process algebra for the modelling of hybrid systems



Motivation Syntax Operational semantics Hybrid semantics Equivalences Comparison Adding stochasticity

HYPE syntax (continued)

HYPE model

(ConSys,V,X , IN, IT , E ,A, ec , iv ,EC , ID)

ConSys, controlled system
V, actual variables; X , formal variables
E , events
A, activities
IN, influence names
IT , influence types
ec : E → EC , association of events with event conditions
EC , event conditions, (activation condition, reset)
iv : IN → V, association of influence names with variables
ID, influence descriptions, JI (~X )K = f (~X )
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Orbiter Temperature Control in HYPE (continued)

Remaining definitions

V = {T ,K}

iv(t) = T
iv(c) = iv(s) = iv(h) = iv(d) = K

ec(init) = (true, (T = 0 ∧ K = k0))
ec(light) = (T = 12, true) ec(dark) = (T = 24,T ′ = 0)
ec(off) = (K ≥ t1, true) ec(on) = (K ≤ t2, true)
ec(up) = (K ≥ t3, true) ec(down) = (K ≤ t4, true)

JconstK = 1 Jlinear(X )K = X

Vashti Galpin

A process algebra for the modelling of hybrid systems



Motivation Syntax Operational semantics Hybrid semantics Equivalences Comparison Adding stochasticity

Orbiter Temperature Control in HYPE (continued)

Remaining definitions

V = {T ,K}

iv(t) = T
iv(c) = iv(s) = iv(h) = iv(d) = K

ec(init) = (true, (T = 0 ∧ K = k0))
ec(light) = (T = 12, true) ec(dark) = (T = 24,T ′ = 0)
ec(off) = (K ≥ t1, true) ec(on) = (K ≤ t2, true)
ec(up) = (K ≥ t3, true) ec(down) = (K ≤ t4, true)

JconstK = 1 Jlinear(X )K = X

Vashti Galpin

A process algebra for the modelling of hybrid systems



Motivation Syntax Operational semantics Hybrid semantics Equivalences Comparison Adding stochasticity

Orbiter Temperature Control in HYPE (continued)

Remaining definitions

V = {T ,K}

iv(t) = T

iv(c) = iv(s) = iv(h) = iv(d) = K

ec(init) = (true, (T = 0 ∧ K = k0))
ec(light) = (T = 12, true) ec(dark) = (T = 24,T ′ = 0)
ec(off) = (K ≥ t1, true) ec(on) = (K ≤ t2, true)
ec(up) = (K ≥ t3, true) ec(down) = (K ≤ t4, true)

JconstK = 1 Jlinear(X )K = X

Vashti Galpin

A process algebra for the modelling of hybrid systems



Motivation Syntax Operational semantics Hybrid semantics Equivalences Comparison Adding stochasticity

Orbiter Temperature Control in HYPE (continued)

Remaining definitions

V = {T ,K}

iv(t) = T
iv(c) = iv(s) = iv(h) = iv(d) = K

ec(init) = (true, (T = 0 ∧ K = k0))
ec(light) = (T = 12, true) ec(dark) = (T = 24,T ′ = 0)
ec(off) = (K ≥ t1, true) ec(on) = (K ≤ t2, true)
ec(up) = (K ≥ t3, true) ec(down) = (K ≤ t4, true)

JconstK = 1 Jlinear(X )K = X

Vashti Galpin

A process algebra for the modelling of hybrid systems



Motivation Syntax Operational semantics Hybrid semantics Equivalences Comparison Adding stochasticity

Orbiter Temperature Control in HYPE (continued)

Remaining definitions

V = {T ,K}

iv(t) = T
iv(c) = iv(s) = iv(h) = iv(d) = K

ec(init) = (true, (T = 0 ∧ K = k0))

ec(light) = (T = 12, true) ec(dark) = (T = 24,T ′ = 0)
ec(off) = (K ≥ t1, true) ec(on) = (K ≤ t2, true)
ec(up) = (K ≥ t3, true) ec(down) = (K ≤ t4, true)

JconstK = 1 Jlinear(X )K = X

Vashti Galpin

A process algebra for the modelling of hybrid systems



Motivation Syntax Operational semantics Hybrid semantics Equivalences Comparison Adding stochasticity

Orbiter Temperature Control in HYPE (continued)

Remaining definitions

V = {T ,K}

iv(t) = T
iv(c) = iv(s) = iv(h) = iv(d) = K

ec(init) = (true, (T = 0 ∧ K = k0))
ec(light) = (T = 12, true) ec(dark) = (T = 24,T ′ = 0)

ec(off) = (K ≥ t1, true) ec(on) = (K ≤ t2, true)
ec(up) = (K ≥ t3, true) ec(down) = (K ≤ t4, true)

JconstK = 1 Jlinear(X )K = X

Vashti Galpin

A process algebra for the modelling of hybrid systems



Motivation Syntax Operational semantics Hybrid semantics Equivalences Comparison Adding stochasticity

Orbiter Temperature Control in HYPE (continued)

Remaining definitions

V = {T ,K}

iv(t) = T
iv(c) = iv(s) = iv(h) = iv(d) = K

ec(init) = (true, (T = 0 ∧ K = k0))
ec(light) = (T = 12, true) ec(dark) = (T = 24,T ′ = 0)
ec(off) = (K ≥ t1, true) ec(on) = (K ≤ t2, true)
ec(up) = (K ≥ t3, true) ec(down) = (K ≤ t4, true)

JconstK = 1 Jlinear(X )K = X

Vashti Galpin

A process algebra for the modelling of hybrid systems



Motivation Syntax Operational semantics Hybrid semantics Equivalences Comparison Adding stochasticity

Orbiter Temperature Control in HYPE (continued)

Remaining definitions

V = {T ,K}

iv(t) = T
iv(c) = iv(s) = iv(h) = iv(d) = K

ec(init) = (true, (T = 0 ∧ K = k0))
ec(light) = (T = 12, true) ec(dark) = (T = 24,T ′ = 0)
ec(off) = (K ≥ t1, true) ec(on) = (K ≤ t2, true)
ec(up) = (K ≥ t3, true) ec(down) = (K ≤ t4, true)

JconstK = 1 Jlinear(X )K = X

Vashti Galpin

A process algebra for the modelling of hybrid systems



Motivation Syntax Operational semantics Hybrid semantics Equivalences Comparison Adding stochasticity

Operational semantics

Definitions

state: σ : IN → R× IT configuration:
〈
ConSys, σ

〉
Updating function: σ[ι 7→ (r , I )]

σ[ι 7→ (r , I )](x) =

{
(r , I ) if x = ι

σ(x) otherwise

Change identifying function: Γ : S × S × S → S

(Γ(σ, τ, τ ′))(ι) =


τ(ι) if σ(ι) = τ ′(ι)

τ ′(ι) if σ(ι) = τ(ι)

undefined otherwise
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Operational semantics (continued)

Prefix with
influence:

〈
a:(ι, r , I ).E , σ

〉 a−→
〈
E , σ[ι 7→ (r , I )]

〉
Prefix without
influence: 〈

a.E , σ
〉 a−→

〈
E , σ

〉

Choice:
〈
E , σ

〉 a−→
〈
E ′, σ′

〉〈
E + F , σ

〉 a−→
〈
E ′, σ′

〉 〈
F , σ

〉 a−→
〈
F ′, σ′

〉〈
E + F , σ

〉 a−→
〈
F ′, σ′

〉
Constant:

〈
E , σ

〉 a−→
〈
E ′, σ′

〉〈
A, σ

〉 a−→
〈
E ′, σ′

〉 (A
def
= E )
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Operational semantics (continued)
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Operational semantics (continued)
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Operational semantics (continued)

Parallel without
synchronisation:

〈
E , σ

〉 a−→
〈
E ′, σ′

〉〈
E BC

M
F , σ

〉 a−→
〈
E ′ BC

M
F , σ′

〉 a 6∈ M

〈
F , σ

〉 a−→
〈
F ′, σ′

〉〈
E BC

M
F , σ

〉 a−→
〈
E BC

M
F ′, σ′

〉 a 6∈ M

Parallel with
synchronisation:

〈
E , σ

〉 a−→
〈
E ′, τ

〉 〈
F , σ

〉 a−→
〈
F ′, τ ′

〉〈
E BC

M
F , σ

〉 a−→
〈
E ′ BC

M
F ′, Γ(σ, τ, τ ′)

〉
a ∈ M, Γ defined
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Operational semantics (continued)
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Orbiter Temperature Control – transition derivation

〈dark.(s, 0, c).S , τ〉 dark−−→ 〈S , τ1〉 〈dark.(t, 1, c).T , τ〉 dark−−→ 〈T , τ2〉

...
...

〈S , τ〉 dark−−→ 〈S , τ1〉 〈T , τ〉 dark−−→ 〈T , τ2〉

〈S BC
M

T , τ〉 dark−−→ 〈S BC
M

T , τ3〉

τ = = {s 7→ (rs , c), t 7→ (1, c), . . .}
τ1 = τ [s 7→ (0, c)] = {s 7→ (0, c), t 7→ (1, c), . . .}
τ2 = τ [t 7→ (1, c)] = {s 7→ (rs , c), t 7→ (1, c), . . .}
τ3 = Γ(τ , τ1, τ2) = {s 7→ (0, c), t 7→ (1, c), . . .}
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...

〈S , τ〉 dark−−→ 〈S , τ1〉 〈T , τ〉 dark−−→ 〈T , τ2〉

〈S BC
M

T , τ〉 dark−−→ 〈S BC
M

T , τ3〉

τ = = {s 7→ (rs , c), t 7→ (1, c), . . .}
τ1 = τ [s 7→ (0, c)] = {s 7→ (0, c), t 7→ (1, c), . . .}
τ2 = τ [t 7→ (1, c)] = {s 7→ (rs , c), t 7→ (1, c), . . .}
τ3 = Γ(τ , τ1, τ2) = {s 7→ (0, c), t 7→ (1, c), . . .}
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Orbiter Temperature Control – labelled transition system

8 configurations represent all possibilities with 8 distinct states

σ0 = {h 7→ (0, const), d 7→ (0, const), s 7→ (0, const) } ∪ D

σ1 = {h 7→ (0, const), d 7→ (0, const), s 7→ (rs , const)} ∪ D

σ2 = {h 7→ (0, const), d 7→ (−rd , const), s 7→ (0, const) } ∪ D

σ3 = {h 7→ (0, const), d 7→ (−rd , const), s 7→ (rs , const)} ∪ D

σ4 = {h 7→ (rh, const), d 7→ (0, const), s 7→ (0, const) } ∪ D

σ5 = {h 7→ (rh, const), d 7→ (0, const), s 7→ (rs , const)} ∪ D

σ6 = {h 7→ (rh, const), d 7→ (−rd , const), s 7→ (0, const) } ∪ D

σ7 = {h 7→ (rh, const), d 7→ (−rd , const), s 7→ (rs , const)} ∪ D

where D = {c 7→ (−1, linear(K )), t 7→ (1, k)}
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Hybrid semantics

Extracting ODEs from states

each state σ in the lts of CS provides an ODE for each V ∈ V

CSσ =
{

ODE for variable V
∣∣∣ V ∈ V

}
Constructing an ODE for state σ

dV

dt
=

∑{
rJI ( ~W )K

∣∣ iv(ι) = V and σ(ι) = (r , I ( ~W ))
}

I for any influence name associated with V

I determine from σ its rate and influence type

I multiply its rate and influence function together

I sum these over all associated influence names
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Orbiter Temperature Control – ODEs

Sun shining and shade up

Consider the state

σ3 = {h 7→ (0, const), d 7→ (−rd , const),

s 7→ (rs , const), c 7→ (−1, linear(K )), t 7→ (1, k)}

ODEs in state σ3

dT

dt
= 1

dK

dt
= rs − rd − K
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Hybrid automata

I (V ,E ,X, E , flow , init, inv , event, jump, reset, urgent)

I X = {X1, . . . ,Xn}, Ẋj , X ′
j

I control graph: G = (V ,E )

I (control) modes: v ∈ V
I associated ODEs: Ẋ = flow(v)
I initial conditions: init(v)
I invariants: inv(v)

I (control) switches: e ∈ E
I events: event(e) ∈ E
I predicate on X: jump(e)
I predicate on X ∪ X′: reset(e)
I boolean: urgent(e)
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j

I control graph: G = (V ,E )

I (control) modes: v ∈ V
I associated ODEs: Ẋ = flow(v)
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HYPE model to hybrid automaton

I modes V : set of reachable configurations

I edges E : transitions between configurations

I variables X: variables V
I if vj = 〈Pj , σj〉 then

flow(vj)[Xi ] =
∑
{rJI ( ~W )K | iv(ι)=Xi and σj(ι)=(r , I ( ~W ))}

I inv(v) = true
I let e be an edge associated with a and let ec(a) = (acta, resa)

I event(e) = a and reset(e) = resa

I if acta 6= ⊥ then jump(e) = acta and urgent(e) = true
else jump(e) = true and urgent(e) = false

I init(v) =

{
resinit if v = 〈P, σ〉 with primes removed

false otherwise
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Orbiter Temperature Control – hybrid automaton
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Orbiter Temperature Control – without control
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Orbiter Temperature Control – with control
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Equivalence semantics

System bisimulation

relation B if for all (P,Q) ∈ B whenever

1. 〈P, σ〉 a−→ 〈P ′, σ′〉, there exists 〈Q ′, σ′〉 with

〈Q, σ〉 a−→ 〈Q ′, σ′〉 and (P ′,Q ′) ∈ B.

2. 〈Q, σ〉 a−→ 〈Q ′, σ′〉, there exists 〈P ′, σ′〉 with

〈P, σ〉 a−→ 〈P ′, σ′〉 and (P ′,Q ′) ∈ B.

System bisimilar

P ∼s Q if in a system bisimulation
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Results

Theorem 1

∼s is a congruence for all operators

Theorem 2

if uncontrolled systems Σ1 and Σ2 have the same prefixes then
Σ1 BC

L
init.Con ∼s Σ2 BC

L
init.Con, assuming well-defined systems

Theorem 3

if P ∼s Q then Pσ = Qσ for all σ, assuming well-defined systems

in other words, bisimilar well-defined models have the same ODEs
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Heater example

Three rooms

A B C

Room

RB(T )
def
= init : (t0,B ,−1, linear(T )).RB(T )

Heater

Hi ,x ,B
def
= offi : (ti ,B , 0, c).Hi ,x ,B + oni : (ti ,B , ri , cψ(x ,B)).Hi ,x ,B+

init : (ti ,B , 0, c).Hi ,x ,B
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Heater example (continued)

System

Sys
def
= (H1,A,B BC

{init}
H2,C ,B) BC

{init}
RB(TB)

Con
def
= Con1 BC

∅
Con2 Coni

def
= oni .offi .Coni

HSys
def
= Sys BC

M
init.Con M = {init, on1, off1, on2, off2}

HYPE model

V = {TB} with iv(ti ,B) = TB

ec(offi ) = ((TB = 25), (T ′
B = TB))

ec(oni ) = (⊥, true)
ec(init) = (true, (T ′

B = T0))

JconstadjK = 0.5 JconstK = 1 Jlinear(X )K = X
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Heater system as a hybrid automata

ṪB=−TB
init; TB=T0 ṪB=−TB

+0.5r1

ṪB=−TB

+0.5r2

ṪB=−TB

+0.5(r1+r2)

on1

TB=25; off1

on1

TB=25; off1

o
n

2

T
B
=

2
5
;
o
ff

2

o
n

2

T
B
=

2
5
;
o
ff

2
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Different heater systems

Heater 1 in Room A and Heater 2 in Room C

Sys
def
= (H1,A,B BC

{init}
H2,C ,B) BC

{init}
RB(TB) HSys

def
= Sys BC

M
init.Con

Heater 1 is moved to Room C

Sys ′
def
= (H1,C ,B BC

{init}
H2,C ,B) BC

{init}
RB(TB) HSys ′

def
= Sys ′ BC

M′ init.Con

Comparison

I Sys and Sys ′ have the same prefixes

I by Theorem 2, HSys ∼s HSys ′

I by Theorem 3, HSys and HSys ′ have the same ODEs
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Other equivalences

bisimulation for ACP srt
hs

defined over pairs (〈P, σ〉, 〈Q, σ〉)
not a congruence for parallel operator of ACPsrt

hs

ic-bisimulation for ACP srt
hs

definition is identical to system bisimulation
congruence for parallel operator of ACPsrt

hs

Theorem 4

over HYPE models, all three equivalences are the same
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A more flexible equivalence

System equivalence with respect to ≡
relation B if for all (P,Q) ∈ B whenever

1. 〈P, σ〉 a−→ 〈P ′, σ′〉, there exists 〈Q ′, τ ′〉 with

〈Q, τ〉 a−→ 〈Q ′, τ ′〉, σ′ ≡ τ ′ and (P ′,Q ′) ∈ B.

2. 〈Q, τ〉 a−→ 〈Q ′, τ ′〉, there exists 〈P ′, σ′〉 with

〈P, σ〉 a−→ 〈P ′, σ′〉, σ′ ≡ τ ′ and (P ′,Q ′) ∈ B.

3. σ ≡ τ

Theorem 5

if ≡ preserves updating then system equivalence with respect to ≡
is a congruence
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Comparison with hybrid automata

Hybrid automata synchronised product: H1 × H2

union of variables, product of vertices
product of edges if they have the same event label
functions on vertices: flow , init, inv defined by conjunction
functions on edges: event, jump, reset, urgent depend on edge type

implicitly, if X ∈ X1 ∩ X2 then flow1 = flow2

HYPE model synchronisation: P1 ⊗ P2

appropriate synchronisation of P1 and P2

union of variables, union of events, union of activities
union of influence names with IN1 ∩ IN2 = ∅
union of influence types with matching definition if in ID1 ∩ ID2

function on influence names: iv defined as union
function on events: ec defined as conjunction if shared,
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Comparison results

Motivation

how compositional is each formalism?
assess at level of model composition

Definition 6

Let H(P) be the HA obtained from HYPE model P

Theorem 7

If no variables are shared, then H(P1 ⊗ P2) = H(P1)×H(P2)
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Modelling expressiveness

Theorem 8

HYPE model synchronisation is more expressive than hybrid
automata synchronised product if there are shared variables

Proof

For HA, if X ∈ X1 ∪ X2 then product may be undefined
For HYPE models, as long as influence names disjoint,
synchronisation is defined

Implications

With HA product, only new variables can be added
With HYPE model synchronisation, new influences on existing
variables can be added
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Adding stochastic behaviour

Stochastic HYPE: syntax

remove non-urgency ⊥ in event conditions
replace with rate

Heater example

instead of ec(oni ) = (⊥, true)
use ec(oni ) = (r , true) for r > 0

Stochastic HYPE: semantics

piecewise deterministic Markov processes (PDMP)
complex and rarely used
transition-driven stochastic hybrid automata (Bortolussi)
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Continuous, discrete and stochastic

Transition-driven stochastic hybrid automata

I V , finite set of control modes

I X1, . . . ,Xn variables

I E , set of event names

I init = (q0, inp)

I continuous transitions/flows, (q, s, f ) ∈ T C
I instantaneous transitions, (q, q′, p, g , r , e) ∈ T D
I stochastic transitions, (q, q′, g , r , f , e) ∈ T S

I mapping to PDMPs
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Stochastic HYPE

Work in progress

I modify HYPE definition

I use TDSHAs as underlying semantics

I use TDSHAs to explore use of PDMPs

I network modelling

Definition 9

Let T (P) be the TDSHA obtained from HYPE model P

Preliminary result

for a non-stochastic HYPE model P without non-urgent conditions
T (P) = H(P)
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Conclusion

Summary

I HYPE for modelling hybrid systems

I use of additive flows to obtain ODEs compositionally

I now modelling continuous, discrete and stochastic behaviour

Main results
I congruence of semantic equivalences

I system bisimilar HYPE models gives identical ODEs

I combining HYPE models is more expressive than combining
HAs
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Thank you
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