

A process algebra for the modelling of hybrid systems

Vashti Galpin Laboratory for Foundations of Computer Science University of Edinburgh

Joint work with Jane Hillston (University of Edinburgh) and Luca Bortolussi (University of Trieste)

27 November 2009

Outline

Motivation

Syntax

Operational semantics

Hybrid semantics

Equivalences

Comparison

Adding stochasticity

Hybrid systems

- discrete behaviour
- continuous behaviour, expressed as ODEs

Hybrid systems

- discrete behaviour
- continuous behaviour, expressed as ODEs

Hybrid automata

- well known
- graphical rather than textual
- not very compositional

Hybrid systems

- discrete behaviour
- continuous behaviour, expressed as ODEs

Hybrid automata

- well known
- graphical rather than textual
- not very compositional

Process algebras for hybrid systems

- compositional language
- semantic equivalences

Vashti Galpin

Motivation

Motivation

Other hybrid process algebras

- ACP^{srt}_{hs} Bergstra and Middelburg
- HyPA Cuijpers and Reniers
- ▶ hybrid X van Beek et al
- ▶ φ-calculus Rounds and Song

Motivation

Other hybrid process algebras

- ACP^{srt}_{hs} Bergstra and Middelburg
- HyPA Cuijpers and Reniers
- ▶ hybrid X van Beek et al
- ▶ φ-calculus Rounds and Song

Comparison

differences: syntax, semantics, discontinuous behaviour, flow-determinism, theoretical results, tools – Khadim similarity: require full description of dynamic behaviour of subcomponents, ODEs appear in syntax

Monolithic ODEs

Monolithic ODEs

Heater system with temperature limit

$$\begin{split} \theta &\equiv (T_B^{\bullet} = {}^{\bullet}T_B) \qquad \psi \equiv (T_B = 25) \\ \text{Start} &\stackrel{\text{def}}{=} (T_B = T_0) \land \text{Off12} \\ \text{Off12} &\stackrel{\text{def}}{=} (\dot{T}_B = -T_B) \cap \sigma_{\text{rel}}^* (\theta \sqcap (\text{on}_1 \cdot \text{On}1 + \text{on}_2 \cdot \text{On}2)) \\ \text{On1} &\stackrel{\text{def}}{=} (T_B \leq 25 \land \dot{T}_B = -T_B + 0.5r_1) \\ &\cap \sigma_{\text{rel}}^* ((\theta \sqcap \text{on}_2 \cdot \text{On}12) + (\psi :\rightarrow (\theta \sqcap \text{off}_1 \cdot \text{Off12}))) \\ \text{On2} &\stackrel{\text{def}}{=} (T_B \leq 25 \land \dot{T}_B = -T_B + 0.5r_2) \\ &\cap \sigma_{\text{rel}}^* ((\theta \sqcap \text{on}_1 \cdot \text{On}12) + (\psi :\rightarrow (\theta \sqcap \text{off}_2 \cdot \text{Off12}))) \\ \text{On12} &\stackrel{\text{def}}{=} (T_B \leq 25 \land \dot{T}_B = -T_B + 0.5(r_1 + r_2)) \\ &\cap \sigma_{\text{rel}}^* (\psi :\rightarrow (\theta \sqcap (\text{off}_1 \cdot \text{On}2 + \text{off}_2 \cdot \text{On}1))) \end{split}$$

Vashti Galpin

Monolithic ODEs

Heater system with temperature limit

$$\begin{split} \theta &\equiv (T_B^{\bullet} = {}^{\bullet}T_B) \qquad \psi \equiv (T_B = 25) \\ \text{Start} &\stackrel{\text{def}}{=} (T_B = T_0) \land \text{Off12} \\ \text{Off12} &\stackrel{\text{def}}{=} (\dot{T}_B = -T_B) \cap \sigma_{\text{rel}}^* (\theta \sqcap (\text{on}_1 \cdot \text{On}1 + \text{on}_2 \cdot \text{On}2)) \\ \text{On1} &\stackrel{\text{def}}{=} (T_B \leq 25 \land \dot{T}_B = -T_B + 0.5r_1) \\ &\cap \sigma_{\text{rel}}^* ((\theta \sqcap \text{on}_2 \cdot \text{On}12) + (\psi :\rightarrow (\theta \sqcap \text{off}_1 \cdot \text{Off12}))) \\ \text{On2} &\stackrel{\text{def}}{=} (T_B \leq 25 \land \dot{T}_B = -T_B + 0.5r_2) \\ &\cap \sigma_{\text{rel}}^* ((\theta \sqcap \text{on}_1 \cdot \text{On}12) + (\psi :\rightarrow (\theta \sqcap \text{off}_2 \cdot \text{Off12}))) \\ \text{On12} &\stackrel{\text{def}}{=} (T_B \leq 25 \land \dot{T}_B = -T_B + 0.5(r_1 + r_2)) \\ &\cap \sigma_{\text{rel}}^* (\psi :\rightarrow (\theta \sqcap (\text{off}_1 \cdot \text{On}2 + \text{off}_2 \cdot \text{On}1))) \end{split}$$

Vashti Galpin

More monolithic ODEs

Vashti Galpin

More monolithic ODEs

Elements of orbiter system

$$\begin{array}{rcl} DOD & \stackrel{\text{def}}{=} & (dK/dt = -K) & \widehat{} & \sigma_{\text{rel}}^* \left(\left(\theta \ \overrightarrow{} & \textit{light} \cdot LOD \right) \\ & & + \left((K \leq t_2) : \rightarrow \left(\theta \ \overrightarrow{} & \textit{on} \cdot DND \right) \right) \right) \\ LOD & \stackrel{\text{def}}{=} & (dK/dt = r_s - K) & \widehat{} & \sigma_{\text{rel}}^* \left(\left(\theta \ \overrightarrow{} & \textit{dark} \cdot DOD \right) \\ & & + \left((K \geq t_3) : \rightarrow \left(\theta \ \overrightarrow{} & \textit{up} \cdot LOU \right) \right) \right) \\ DND & \stackrel{\text{def}}{=} & (dK/dt = r_h - K) & \widehat{} & \sigma_{\text{rel}}^* \left(\left(\theta \ \overrightarrow{} & \textit{light} \cdot LND \right) \\ & & + \left((K \geq t_1) : \rightarrow \left(\theta \ \overrightarrow{} & \textit{off} \cdot DND \right) \right) \right) \\ LOU & \stackrel{\text{def}}{=} & (dK/dt = r_s - r_d - K) & \widehat{} & \sigma_{\text{rel}}^* \left(\left(\theta \ \overrightarrow{} & \textit{dark} \cdot DOU \right) \\ & & + \left((K \leq t_4) : \rightarrow \left(\theta \ \overrightarrow{} & \textit{down} \cdot LOD \right) \right) \right) \end{array}$$

Vashti Galpin

More monolithic ODEs

Elements of orbiter system

$$DOD \stackrel{\text{def}}{=} (dK/dt = -K) \cap \sigma_{\text{rel}}^* \left((\theta \sqcap \text{light} \cdot LOD) + ((K \leq t_2) : \rightarrow (\theta \sqcap \text{on} \cdot DND)) \right) \\ + ((K \leq t_2) : \rightarrow (\theta \sqcap \text{on} \cdot DND)) \right) \\ LOD \stackrel{\text{def}}{=} (dK/dt = r_s - K) \cap \sigma_{\text{rel}}^* \left((\theta \sqcap \text{dark} \cdot DOD) + ((K \geq t_3) : \rightarrow (\theta \sqcap \text{up} \cdot LOU))) \right) \\ DND \stackrel{\text{def}}{=} (dK/dt = r_h - K) \cap \sigma_{\text{rel}}^* \left((\theta \sqcap \text{light} \cdot LND) + ((K \geq t_1) : \rightarrow (\theta \sqcap \text{off} \cdot DND))) \right) \\ LOU \stackrel{\text{def}}{=} (dK/dt = r_s - r_d - K) \cap \sigma_{\text{rel}}^* \left((\theta \sqcap \text{dark} \cdot DOU) + ((K \leq t_4) : \rightarrow (\theta \sqcap \text{down} \cdot LOD))) \right) \\ \end{array}$$

Vashti Galpin

HYPE

process algebra for hybrid systems

Vashti Galpin

HYPE

- process algebra for hybrid systems
- individual additive flows

Vashti Galpin

- process algebra for hybrid systems
- individual additive flows
- more fine-grained approach

- process algebra for hybrid systems
- individual additive flows
- more fine-grained approach
- separation of modelling concerns

- process algebra for hybrid systems
- individual additive flows
- more fine-grained approach
- separation of modelling concerns
- influence of continuous semantics of PEPA

- process algebra for hybrid systems
- individual additive flows
- more fine-grained approach
- separation of modelling concerns
- influence of continuous semantics of PEPA
- mapping to hybrid automata

HYPE

- process algebra for hybrid systems
- individual additive flows
- more fine-grained approach
- separation of modelling concerns
- influence of continuous semantics of PEPA
- mapping to hybrid automata
- not stochastic (yet)

Vashti Galpin

- process algebra for hybrid systems
- individual additive flows
- more fine-grained approach
- separation of modelling concerns
- influence of continuous semantics of PEPA
- mapping to hybrid automata
- not stochastic (yet)
- running example: temperature control for an orbiter

Events

instantaneous, discrete changes

$$\underline{a}\in \mathcal{E}$$

Events

instantaneous, discrete changes

 $\underline{a}\in \mathcal{E}$

Activities or influences

influences on continuous aspects, flows

Vashti Galpin

Events

instantaneous, discrete changes

 $\underline{a}\in \mathcal{E}$

Activities or influences

influences on continuous aspects, flows

Vashti Galpin

Events

instantaneous, discrete changes

 $\underline{a}\in \mathcal{E}$

Activities or influences

influences on continuous aspects, flows

Vashti Galpin

Events

instantaneous, discrete changes

 $\underline{a}\in \mathcal{E}$

Activities or influences

influences on continuous aspects, flows

Vashti Galpin

Subcomponents

$$S ::= \underline{a} : \alpha. C_s \mid S + S \qquad \underline{a} \in \mathcal{E}, \alpha \in \mathcal{A}$$
$$C_s(\vec{X}) \stackrel{\text{def}}{=} S$$

Subcomponents

$$S ::= \underline{a} : \alpha. C_s \mid S + S \qquad \underline{a} \in \mathcal{E}, \alpha \in \mathcal{A}$$
$$C_s(\vec{X}) \stackrel{\text{def}}{=} S$$

Components

 $P ::= C(\vec{X}) \mid P \bowtie_{L} P \qquad L \subseteq \mathcal{E}$ $C(\vec{X}) \stackrel{\text{\tiny def}}{=} P \text{ or subcomponent name}$

Vashti Galpin

Subcomponents

$$S ::= \underline{a} : \alpha. C_s \mid S + S \qquad \underline{a} \in \mathcal{E}, \alpha \in \mathcal{A}$$
$$C_s(\vec{X}) \stackrel{\text{def}}{=} S$$

Components

$$P ::= C(\vec{X}) \mid P \bowtie_{L} P \qquad L \subseteq \mathcal{E}$$
$$C(\vec{X}) \stackrel{\text{def}}{=} P \text{ or subcomponent name}$$

Uncontrolled system

$$\Sigma ::= C(\vec{V}) \mid \Sigma \bowtie_{L} \Sigma \qquad L \subseteq \mathcal{E}$$

Vashti Galpin

Vashti Galpin

Controller

 $M ::= \underline{a}.M \mid 0 \mid M + M \qquad \underline{a} \in \mathcal{E}$ Con ::= M \mid Con 🖾 Con $L \subseteq \mathcal{E}$
HYPE controlled system

Controller

 $M ::= \underline{a}.M \mid 0 \mid M + M \qquad \underline{a} \in \mathcal{E}$ Con ::= M \mid Con 🖾 Con $L \subseteq \mathcal{E}$

Controlled system

 $ConSys ::= \Sigma \bowtie_{L} Con \qquad L \subseteq \mathcal{E}$

Vashti Galpin

HYPE controlled system

Controller

$$M ::= \underline{a}.M \mid 0 \mid M + M \qquad \underline{a} \in \mathcal{E}$$

Con ::= M \| Con \!\Con \!L \subset Con \\L \subset

Controlled system

 $ConSys ::= \Sigma \bowtie_{L} Con \qquad L \subseteq \mathcal{E}$

Well-defined HYPE system

$$\begin{split} \mathcal{C}_{s}(\vec{X}) &\stackrel{\text{def}}{=} \underline{a}_{1} : \alpha_{1}.\mathcal{C}_{s}(\vec{X}) + \ldots + \underline{a}_{n} : \alpha_{n}.\mathcal{C}_{s}(\vec{X}) \quad \underline{a}_{i} \neq \underline{a}_{j} \\ \underline{\text{init}} : (\iota, _, _) \text{ appears exactly once} \\ \underline{a} : (\iota, _, _) \text{ appears at most once} \\ \text{synchronisation on shared events} \end{split}$$

Vashti Galpin

Passing of time

 $\mathsf{Time} \stackrel{\text{def}}{=} \frac{\mathsf{light}}{\mathsf{light}}: (t, 1, \mathit{const}).\mathsf{Time} + \frac{\mathsf{dark}}{\mathsf{init}}: (t, 1, \mathit{const}).\mathsf{Time} + \frac{\mathsf{init}}{\mathsf{init}}: (t, 1, \mathit{const}).\mathsf{Time}$

Vashti Galpin

Passing of time

```
\mathsf{Time} \stackrel{\text{def}}{=} \frac{\mathsf{light}}{\mathsf{light}}: (t, 1, \mathit{const}).\mathsf{Time} + \frac{\mathsf{dark}}{\mathsf{init}}: (t, 1, \mathit{const}).\mathsf{Time} + \frac{\mathsf{init}}{\mathsf{init}}: (t, 1, \mathit{const}).\mathsf{Time}
```

Effect of sun

 $Sun \stackrel{\text{def}}{=} \frac{\text{light}:(s, r_s, const).Sun + \underline{dark}:(s, 0, const).Sun + \underline{init}:(s, 0, const).Sun$

Passing of time

$$\mathsf{Time} \stackrel{\text{def}}{=} \underbrace{\mathsf{light}}_{:(t, 1, const)} \mathsf{.Time} + \underbrace{\mathsf{dark}}_{:(t, 1, const)} \mathsf{.Time} + \underbrace{\mathsf{init}}_{:(t, 1, const)} \mathsf{.Time}$$

Effect of sun

 $Sun \stackrel{\text{def}}{=} \frac{\text{light}:(s, r_s, const).Sun + \underline{dark}:(s, 0, const).Sun + \underline{init}:(s, 0, const).Sun$

Continual cooling

$$\operatorname{Cool}(X) \stackrel{\text{\tiny def}}{=} \operatorname{\underline{init}}: (c, -1, \operatorname{linear}(X)).\operatorname{Cool}(X)$$

Vashti Galpin

Effect of heater

 $\mathsf{Heat} \stackrel{\text{def}}{=} \underbrace{\mathsf{on}}_{:}(h, r_h, const).\mathsf{Heat} + \underbrace{\mathsf{off}}_{:}(h, 0, const).\mathsf{Heat} + \underbrace{\mathsf{init}}_{:}(h, 0, const).\mathsf{Heat}$

Effect of heater

 $\mathsf{Heat} \stackrel{\text{def}}{=} \underbrace{\mathsf{on}}_{:}(h, r_h, const).\mathsf{Heat} + \underbrace{\mathsf{off}}_{:}(h, 0, const).\mathsf{Heat} + \underbrace{\mathsf{init}}_{:}(h, 0, const).\mathsf{Heat}$

Effect of shade

Shade $\stackrel{\text{def}}{=}$ <u>up</u>: $(d, -r_d, const)$. Shade + <u>down</u>: (h, 0, const). Shade + <u>init</u>: (d, 0, const). Shade

Effect of heater

 $\mathsf{Heat} \stackrel{\text{def}}{=} \underbrace{\mathsf{on}}_{:}(h, r_h, const).\mathsf{Heat} + \underbrace{\mathsf{off}}_{:}(h, 0, const).\mathsf{Heat} + \underbrace{\mathsf{init}}_{:}(h, 0, const).\mathsf{Heat}$

Effect of shade

Shade $\stackrel{\text{def}}{=}$ <u>up</u>: $(d, -r_d, const)$. Shade + <u>down</u>: (h, 0, const). Shade + <u>init</u>: (d, 0, const). Shade

Uncontrolled system

 $\mathsf{Sys} \stackrel{{}_{def}}{=} (\mathsf{Heat} \boxtimes_{\{ \mathsf{init} \}} \mathsf{Shade}) \boxtimes_{\{ \mathsf{init} \}} (\mathsf{Cool}(\mathcal{K}) \boxtimes_{\{ \mathsf{init} \}} \mathsf{Sun} \boxtimes_{\{ \mathsf{init}, \mathsf{light}, \mathsf{dark} \}} \mathsf{Time})$

Vashti Galpin

Controllers

 $\begin{array}{l} Con_h \stackrel{\text{def}}{=} \underline{on}.\underline{off}.Con_h\\ Con_d \stackrel{\text{def}}{=} \underline{up}.\underline{down}.Con_d\\ Con_s \stackrel{\text{def}}{=} \underline{light}.\underline{dark}.Con_s \end{array}$

Controllers

 $Con_{h} \stackrel{\text{def}}{=} \underline{\text{on.off.}} Con_{h}$ $Con_{d} \stackrel{\text{def}}{=} \underline{\text{up.down.}} Con_{d}$ $Con_{s} \stackrel{\text{def}}{=} \underline{\text{light.dark.}} Con_{s}$ $Con \stackrel{\text{def}}{=} Con_{h} \bigotimes_{\emptyset} Con_{d} \bigotimes_{\emptyset} Con_{s}$

Controllers

 $Con_{h} \stackrel{\text{def}}{=} \underline{\text{on.off.}} Con_{h}$ $Con_{d} \stackrel{\text{def}}{=} \underline{\text{up.down.}} Con_{d}$ $Con_{s} \stackrel{\text{def}}{=} \underline{\text{light.dark.}} Con_{s}$ $Con \stackrel{\text{def}}{=} Con_{h} \bigotimes_{\emptyset} Con_{d} \bigotimes_{\emptyset} Con_{s}$

Controlled system

 $OTC \stackrel{\text{\tiny def}}{=} Sys \underset{M}{\boxtimes} \underbrace{\text{init.}}_{M} Con \quad M = \{\underbrace{\text{init}}_{n}, \underbrace{\text{on}}_{n}, \underbrace{\text{off}}_{n}, \underbrace{\text{up}}_{n}, \underbrace{\text{down}}_{n}, \underbrace{\text{light}}_{n}, \underbrace{\text{dark}}_{n}\}$

Vashti Galpin

HYPE model

```
(ConSys, \mathcal{V}, \mathcal{X}, IN, IT, \mathcal{E}, \mathcal{A}, ec, iv, EC, ID)
```

Vashti Galpin

HYPE model

 $(ConSys, \mathcal{V}, \mathcal{X}, IN, IT, \mathcal{E}, \mathcal{A}, ec, iv, EC, ID)$

HYPE model

 $(ConSys, \mathcal{V}, \mathcal{X}, IN, IT, \mathcal{E}, \mathcal{A}, ec, iv, EC, ID)$

ConSys, controlled system \mathcal{V} , actual variables; \mathcal{X} , formal variables

HYPE model

 $(ConSys, \mathcal{V}, \mathcal{X}, IN, IT, \mathcal{E}, \mathcal{A}, ec, iv, EC, ID)$

- $\mathcal V,$ actual variables; $\mathcal X,$ formal variables
- ${\mathcal E}$, events
- \mathcal{A} , activities

HYPE model

 $(ConSys, \mathcal{V}, \mathcal{X}, IN, IT, \mathcal{E}, \mathcal{A}, ec, iv, EC, ID)$

- $\mathcal V$, actual variables; $\mathcal X$, formal variables
- ${\mathcal E}$, events
- \mathcal{A} , activities
- IN, influence names
- IT, influence types

HYPE model

 $(ConSys, \mathcal{V}, \mathcal{X}, IN, IT, \mathcal{E}, \mathcal{A}, ec, iv, EC, ID)$

- $\mathcal V$, actual variables; $\mathcal X$, formal variables
- ${\mathcal E}$, events
- \mathcal{A} , activities
- IN, influence names
- IT, influence types
- $\textit{ec}: \mathcal{E} \rightarrow \textit{EC},$ association of events with event conditions
- EC, event conditions, (activation condition, reset)

HYPE model

 $(ConSys, \mathcal{V}, \mathcal{X}, IN, IT, \mathcal{E}, \mathcal{A}, ec, iv, EC, ID)$

- $\mathcal V$, actual variables; $\mathcal X$, formal variables
- ${\mathcal E}$, events
- \mathcal{A} , activities
- IN, influence names
- IT, influence types
- $ec: \mathcal{E} \rightarrow EC$, association of events with event conditions
- EC, event conditions, (activation condition, reset)
- $iv: IN \rightarrow \mathcal{V}$, association of influence names with variables

HYPE model

 $(ConSys, \mathcal{V}, \mathcal{X}, IN, IT, \mathcal{E}, \mathcal{A}, ec, iv, EC, ID)$

ConSys, controlled system

- $\mathcal V$, actual variables; $\mathcal X$, formal variables
- ${\mathcal E}$, events
- \mathcal{A} , activities
- IN, influence names
- IT, influence types

 $\mathit{ec}: \mathcal{E} \to \mathit{EC}$, association of events with event conditions

EC, event conditions, (activation condition, reset)

 $iv : IN \to \mathcal{V}$, association of influence names with variables ID, influence descriptions, $[I(\vec{X})] = f(\vec{X})$

Remaining definitions

 $V = \{T, K\}$

Vashti Galpin

Remaining definitions

- $V = \{T, K\}$
- iv(t) = T

Remaining definitions

 $V = \{T, K\}$

$$iv(t) = T$$

 $iv(c) = iv(s) = iv(h) = iv(d) = K$

Vashti Galpin

Remaining definitions

 $V = \{T, K\}$

$$iv(t) = T$$

 $iv(c) = iv(s) = iv(h) = iv(d) = K$

$$ec(\underline{init}) = (true, (T = 0 \land K = k_0))$$

Remaining definitions

 $V = \{T, K\}$

$$iv(t) = T$$

 $iv(c) = iv(s) = iv(h) = iv(d) = K$

$$ec(\underline{init}) = (true, (T = 0 \land K = k_0))$$

$$ec(\underline{light}) = (T = 12, true) \quad ec(\underline{dark}) = (T = 24, T' = 0)$$

Remaining definitions

 $V = \{T, K\}$ iv(t) = T iv(c) = iv(s) = iv(h) = iv(d) = K $ec(\underline{init}) = (true, (T = 0 \land K = k_0))$ $ec(\underline{light}) = (T = 12, true) \quad ec(\underline{dark}) = (T = 24, T' = 0)$ $ec(\underline{off}) = (K \ge t_1, true) \quad ec(\underline{on}) = (K \le t_2, true)$ $ec(\underline{up}) = (K \ge t_3, true) \quad ec(\underline{down}) = (K \le t_4, true)$

Vashti Galpin

Remaining definitions

 $V = \{T, K\}$ iv(t) = Tiv(c) = iv(s) = iv(h) = iv(d) = K $ec(init) = (true, (T = 0 \land K = k_0))$ ec(light) = (T = 12, true) ec(dark) = (T = 24, T' = 0) $ec(off) = (K \ge t_1, true)$ $ec(on) = (K \le t_2, true)$ $ec(up) = (K \ge t_3, true)$ $ec(down) = (K \le t_4, true)$ $\llbracket const \rrbracket = 1 \quad \llbracket linear(X) \rrbracket = X$

Vashti Galpin

Definitions

state: $\sigma: IN \to \mathbb{R} \times IT$

configuration:
$$\langle \mathit{ConSys}, \sigma
angle$$

Vashti Galpin

Definitions

state: $\sigma: IN \to \mathbb{R} \times IT$

configuration:
$$\langle ConSys, \sigma \rangle$$

Updating function: $\sigma[\iota \mapsto (r, I)]$

$$\sigma[\iota \mapsto (r, I)](x) = \begin{cases} (r, I) & \text{if } x = \iota \\ \sigma(x) & \text{otherwise} \end{cases}$$

Definitions

state: $\sigma: IN \to \mathbb{R} \times IT$

configuration:
$$\langle ConSys, \sigma \rangle$$

Updating function:
$$\sigma[\iota \mapsto (r, I)]$$

$$\sigma[\iota \mapsto (r, I)](x) = \begin{cases} (r, I) & \text{if } x = \iota \\ \sigma(x) & \text{otherwise} \end{cases}$$

Change identifying function: $\Gamma : S \times S \times S \to S$

$$(\Gamma(\sigma, \tau, \tau'))(\iota) = \begin{cases} \tau(\iota) & \text{if } \sigma(\iota) = \tau'(\iota) \\ \tau'(\iota) & \text{if } \sigma(\iota) = \tau(\iota) \\ \text{undefined otherwise} \end{cases}$$

Vashti Galpin

Operational semantics (continued)
Prefix with
influence:
$$\overline{\langle \underline{a}:(\iota,r,l).E,\sigma\rangle} \xrightarrow{\underline{a}} \langle E,\sigma[\iota\mapsto(r,l)]\rangle$$
Prefix without
influence: $\overline{\langle \underline{a}.E,\sigma\rangle} \xrightarrow{\underline{a}} \langle E,\sigma\rangle$ Choice: $\overline{\langle \underline{a}.E,\sigma\rangle} \xrightarrow{\underline{a}} \langle E',\sigma'\rangle$ $\overline{\langle E+F,\sigma\rangle} \xrightarrow{\underline{a}} \langle F',\sigma'\rangle$ Choice: $\overline{\langle E,\sigma\rangle} \xrightarrow{\underline{a}} \langle E',\sigma'\rangle$ $\overline{\langle E+F,\sigma\rangle} \xrightarrow{\underline{a}} \langle F',\sigma'\rangle$ Constant: $\overline{\langle E,\sigma\rangle} \xrightarrow{\underline{a}} \langle E',\sigma'\rangle$ $\overline{\langle A,\sigma\rangle} \xrightarrow{\underline{a}} \langle E',\sigma'\rangle$

Vashti Galpin

Prefix with
influence:
$$\overline{\langle \underline{a}:(\iota,r,l).E,\sigma\rangle} \xrightarrow{\underline{a}} \langle E,\sigma[\iota\mapsto(r,l)]\rangle$$
Prefix without
influence: $\overline{\langle \underline{a}.E,\sigma\rangle} \xrightarrow{\underline{a}} \langle E,\sigma\rangle$ Choice: $\overline{\langle \underline{a}.E,\sigma\rangle} \xrightarrow{\underline{a}} \langle E',\sigma'\rangle$ $\overline{\langle E+F,\sigma\rangle} \xrightarrow{\underline{a}} \langle E',\sigma'\rangle$ $\overline{\langle E+F,\sigma\rangle} \xrightarrow{\underline{a}} \langle F',\sigma'\rangle$ Constant: $\overline{\langle E,\sigma\rangle} \xrightarrow{\underline{a}} \langle E',\sigma'\rangle$ $(A_{def} E)$

Vashti Galpin

Parallel without
synchronisation:
$$\langle E, \sigma \rangle \xrightarrow{a} \langle E', \sigma' \rangle$$

 $\overline{\langle E \Join F, \sigma \rangle \xrightarrow{a} \langle E' \Join F, \sigma' \rangle}$ $\underline{a} \notin M$ $\frac{\langle F, \sigma \rangle \xrightarrow{a} \langle F', \sigma' \rangle}{\langle E \Join F, \sigma \rangle \xrightarrow{a} \langle E \Join F', \sigma' \rangle}$ $\underline{a} \notin M$

Parallel with synchronisation:

$$\frac{\langle E, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle E', \tau \rangle \quad \langle F, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle F', \tau' \rangle}{\langle E \bigotimes_{M} F, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle E' \bigotimes_{M} F', \Gamma(\sigma, \tau, \tau') \rangle}$$
$$\underline{a} \in M, \Gamma \text{ defined}$$

Vashti Galpin

Parallel without
synchronisation:
$$\frac{\langle E, \sigma \rangle \xrightarrow{\underline{a}} \langle E', \sigma' \rangle}{\langle E \bigotimes_{M} F, \sigma \rangle \xrightarrow{\underline{a}} \langle E' \bigotimes_{M} F, \sigma' \rangle} \qquad \underline{a} \notin M$$

$$\frac{\langle F, \sigma \rangle \xrightarrow{\underline{a}} \langle F', \sigma' \rangle}{\langle E \bigotimes_{M} F, \sigma \rangle \xrightarrow{\underline{a}} \langle E \bigotimes_{M} F', \sigma' \rangle} \qquad \underline{a} \notin M$$

Parallel with synchronisation:

$$\frac{\langle E, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle E', \tau \rangle \quad \langle F, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle F', \tau' \rangle}{\langle E \bigotimes_{M} F, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle E' \bigotimes_{M} F', \Gamma(\sigma, \tau, \tau') \rangle}$$
$$\underline{a} \in M, \Gamma \text{ defined}$$

Vashti Galpin

Vashti Galpin

$$\begin{aligned} \tau &= \{ s \mapsto (r_s, c), t \mapsto (1, c), \ldots \} \\ \tau_1 &= \tau [s \mapsto (0, c)] = \{ s \mapsto (0, c), t \mapsto (1, c), \ldots \} \\ \tau_2 &= \tau [t \mapsto (1, c)] = \{ s \mapsto (r_s, c), t \mapsto (1, c), \ldots \} \\ \tau_3 &= \Gamma(\tau, \tau_1, \tau_2) = \{ s \mapsto (0, c), t \mapsto (1, c), \ldots \} \end{aligned}$$

Vashti Galpin

$$\begin{array}{c|c} & \underline{\langle \underline{\mathsf{dark.}}(s,0,c).S,\tau\rangle \xrightarrow{\underline{\mathsf{dark.}}} \langle S,\tau_1 \rangle} & \underline{\langle \underline{\mathsf{dark.}}(t,1,c).T,\tau\rangle \xrightarrow{\underline{\mathsf{dark.}}} \langle T,\tau_2 \rangle} \\ & \vdots & \vdots \\ & \underline{\langle S,\tau\rangle \xrightarrow{\underline{\mathsf{dark.}}} \langle S,\tau_1 \rangle} & \underline{\langle T,\tau\rangle \xrightarrow{\underline{\mathsf{dark.}}} \langle T,\tau_2 \rangle} \\ & \underline{\langle S \bowtie_{_{M}} T,\tau\rangle \xrightarrow{\underline{\mathsf{dark.}}} \langle S \bowtie_{_{M}} T,\tau_3 \rangle} \end{array}$$

$$\begin{aligned} \tau &= \qquad = \ \{s \mapsto (r_s, c), t \mapsto (1, c), \ldots\} \\ \tau_1 &= \ \tau[s \mapsto (0, c)] = \ \{s \mapsto (0, c), \ t \mapsto (1, c), \ldots\} \\ \tau_2 &= \ \tau[t \mapsto (1, c)] = \ \{s \mapsto (r_s, c), t \mapsto (1, c), \ldots\} \\ \tau_3 &= \ \Gamma(\tau, \tau_1, \tau_2) = \ \{s \mapsto (0, c), \ t \mapsto (1, c), \ldots\} \end{aligned}$$

Vashti Galpin

$$\begin{array}{c|c} \langle \underline{\operatorname{dark.}(s,0,c).S,\tau} \rangle & \underline{\operatorname{dark}} \langle S,\tau_1 \rangle & \langle \underline{\operatorname{dark.}(t,1,c).T,\tau} \rangle & \underline{\operatorname{dark}} \langle T,\tau_2 \rangle \\ \vdots & \vdots \\ & & \vdots \\ & & & \vdots \\ & & & & \\ \langle \underline{S,\tau} \rangle & \underline{\operatorname{dark}} \langle S,\tau_1 \rangle & \langle T,\tau \rangle & \underline{\operatorname{dark}} \langle T,\tau_2 \rangle \\ & & & & \langle S \bowtie_M T,\tau \rangle & \underline{\operatorname{dark}} \langle S \boxtimes_M T,\tau_3 \rangle \end{array}$$

$$\begin{aligned} \tau &= \{s \mapsto (r_s, c), t \mapsto (1, c), \ldots\} \\ \tau_1 &= \tau[s \mapsto (0, c)] &= \{s \mapsto (0, c), t \mapsto (1, c), \ldots\} \\ \tau_2 &= \tau[t \mapsto (1, c)] &= \{s \mapsto (r_s, c), t \mapsto (1, c), \ldots\} \\ \tau_3 &= \Gamma(\tau, \tau_1, \tau_2) &= \{s \mapsto (0, c), t \mapsto (1, c), \ldots\} \end{aligned}$$

Vashti Galpin

$$\begin{array}{c|c} \langle \underline{\operatorname{dark.}(s,0,c).S,\tau} \rangle & \underline{\operatorname{dark}} \langle S,\tau_1 \rangle & \langle \underline{\operatorname{dark.}(t,1,c).T,\tau} \rangle & \underline{\underline{\operatorname{dark}}} \langle T,\tau_2 \rangle \\ \vdots & \vdots \\ & & \vdots \\ & & & \vdots \\ & & & & \\ \langle \underline{S,\tau} \rangle & \underline{\operatorname{dark}} \langle S,\tau_1 \rangle & \langle T,\tau \rangle & \underline{\underline{\operatorname{dark}}} \langle T,\tau_2 \rangle \\ & & & & \langle S \bowtie_M T,\tau \rangle & \underline{\underline{\operatorname{dark}}} \langle S \bowtie_M T,\tau_3 \rangle \end{array}$$

$$\begin{aligned} \tau &= \{s \mapsto (r_s, c), t \mapsto (1, c), \ldots\} \\ \tau_1 &= \tau[s \mapsto (0, c)] &= \{s \mapsto (0, c), t \mapsto (1, c), \ldots\} \\ \tau_2 &= \tau[t \mapsto (1, c)] &= \{s \mapsto (r_s, c), t \mapsto (1, c), \ldots\} \\ \tau_3 &= \Gamma(\tau, \tau_1, \tau_2) &= \{s \mapsto (0, c), t \mapsto (1, c), \ldots\} \end{aligned}$$

Vashti Galpin

$$\begin{array}{c|c} \langle \underline{\operatorname{dark.}(s,0,c).S,\tau} \rangle & \underline{\operatorname{dark}} \langle S,\tau_1 \rangle & \langle \underline{\operatorname{dark.}(t,1,c).T,\tau} \rangle & \underline{\underline{\operatorname{dark}}} \langle T,\tau_2 \rangle \\ \vdots & \vdots \\ & & \vdots \\ & & & \vdots \\ & & & & \\ \langle \underline{S,\tau} \rangle & \underline{\operatorname{dark}} \langle S,\tau_1 \rangle & \langle T,\tau \rangle & \underline{\underline{\operatorname{dark}}} \langle T,\tau_2 \rangle \\ & & & & \langle S \bowtie_M T,\tau \rangle & \underline{\underline{\operatorname{dark}}} \langle S \bowtie_M T,\tau_3 \rangle \end{array}$$

$$\tau = \{ s \mapsto (r_s, c), t \mapsto (1, c), \ldots \}$$

$$\tau_1 = \tau[s \mapsto (0, c)] = \{ s \mapsto (0, c), t \mapsto (1, c), \ldots \}$$

$$\tau_2 = \tau[t \mapsto (1, c)] = \{ s \mapsto (r_s, c), t \mapsto (1, c), \ldots \}$$

$$\tau_3 = \Gamma(\tau, \tau_1, \tau_2) = \{ s \mapsto (0, c), t \mapsto (1, c), \ldots \}$$

Vashti Galpin

$$\begin{array}{c|c} \langle \underline{\operatorname{dark.}(s,0,c).S,\tau} \rangle & \underline{\operatorname{dark}} \langle S,\tau_1 \rangle & \langle \underline{\operatorname{dark.}(t,1,c).T,\tau} \rangle & \underline{\underline{\operatorname{dark}}} \langle T,\tau_2 \rangle \\ \vdots & \vdots \\ & & \vdots \\ \langle \underline{S,\tau} \rangle & \underline{\underline{\operatorname{dark}}} \langle S,\tau_1 \rangle & \langle T,\tau \rangle & \underline{\underline{\operatorname{dark}}} \langle T,\tau_2 \rangle \\ & & \langle S \bowtie_M T,\tau \rangle & \underline{\underline{\operatorname{dark}}} \langle S \bowtie_M T,\tau_3 \rangle \end{array}$$

$$\begin{aligned} \tau &= \{s \mapsto (r_s, c), t \mapsto (1, c), \ldots\} \\ \tau_1 &= \tau[s \mapsto (0, c)] &= \{s \mapsto (0, c), t \mapsto (1, c), \ldots\} \\ \tau_2 &= \tau[t \mapsto (1, c)] &= \{s \mapsto (r_s, c), t \mapsto (1, c), \ldots\} \\ \tau_3 &= \Gamma(\tau, \tau_1, \tau_2) &= \{s \mapsto (0, c), t \mapsto (1, c), \ldots\} \end{aligned}$$

Vashti Galpin

$$\begin{array}{c|c} \langle \underline{\operatorname{dark.}(s,0,c).S,\tau} \rangle & \underline{\operatorname{dark}} \langle S,\tau_1 \rangle & \langle \underline{\operatorname{dark.}(t,1,c).T,\tau} \rangle & \underline{\underline{\operatorname{dark}}} \langle T,\tau_2 \rangle \\ \vdots & \vdots \\ & & \vdots \\ & & & \vdots \\ & & & & \\ \langle \underline{S,\tau} \rangle & \underline{\operatorname{dark}} \langle S,\tau_1 \rangle & \langle T,\tau \rangle & \underline{\underline{\operatorname{dark}}} \langle T,\tau_2 \rangle \\ & & & & \langle S \bowtie_M T,\tau \rangle & \underline{\underline{\operatorname{dark}}} \langle S \bowtie_M T,\tau_3 \rangle \end{array}$$

$$\begin{aligned} \tau &= \{s \mapsto (r_s, c), t \mapsto (1, c), \ldots\} \\ \tau_1 &= \tau[s \mapsto (0, c)] &= \{s \mapsto (0, c), t \mapsto (1, c), \ldots\} \\ \tau_2 &= \tau[t \mapsto (1, c)] &= \{s \mapsto (r_s, c), t \mapsto (1, c), \ldots\} \\ \tau_3 &= \Gamma(\tau, \tau_1, \tau_2) &= \{s \mapsto (0, c), t \mapsto (1, c), \ldots\} \end{aligned}$$

Vashti Galpin

$$\begin{array}{c|c} \langle \underline{\operatorname{dark.}(s,0,c).S,\tau} \rangle & \underline{\operatorname{dark}} \langle S,\tau_1 \rangle & \langle \underline{\operatorname{dark.}(t,1,c).T,\tau} \rangle & \underline{\underline{\operatorname{dark}}} \langle T,\tau_2 \rangle \\ \vdots & \vdots \\ & & \vdots \\ & & & \vdots \\ & & & & \\ \langle \underline{S,\tau} \rangle & \underline{\operatorname{dark}} \langle S,\tau_1 \rangle & \langle T,\tau \rangle & \underline{\underline{\operatorname{dark}}} \langle T,\tau_2 \rangle \\ & & & & \langle S \bowtie_M T,\tau \rangle & \underline{\underline{\operatorname{dark}}} \langle S \bowtie_M T,\tau_3 \rangle \end{array}$$

$$\begin{aligned} \tau &= \{s \mapsto (r_s, c), t \mapsto (1, c), \ldots\} \\ \tau_1 &= \tau[s \mapsto (0, c)] &= \{s \mapsto (0, c), t \mapsto (1, c), \ldots\} \\ \tau_2 &= \tau[t \mapsto (1, c)] &= \{s \mapsto (r_s, c), t \mapsto (1, c), \ldots\} \\ \tau_3 &= \Gamma(\tau, \tau_1, \tau_2) &= \{s \mapsto (0, c), t \mapsto (1, c), \ldots\} \end{aligned}$$

Vashti Galpin

Orbiter Temperature Control – labelled transition system

Orbiter Temperature Control – labelled transition system

8 configurations represent all possibilities with 8 distinct states

$$\begin{aligned} \sigma_0 &= \{h \mapsto (0, const), \quad d \mapsto (0, const), \quad s \mapsto (0, const)\} \cup D \\ \sigma_1 &= \{h \mapsto (0, const), \quad d \mapsto (0, const), \quad s \mapsto (r_s, const)\} \cup D \\ \sigma_2 &= \{h \mapsto (0, const), \quad d \mapsto (-r_d, const), \quad s \mapsto (0, const)\} \cup D \\ \sigma_3 &= \{h \mapsto (0, const), \quad d \mapsto (-r_d, const), \quad s \mapsto (r_s, const)\} \cup D \\ \sigma_4 &= \{h \mapsto (r_h, const), \quad d \mapsto (0, const), \quad s \mapsto (0, const)\} \cup D \\ \sigma_5 &= \{h \mapsto (r_h, const), \quad d \mapsto (0, const), \quad s \mapsto (r_s, const)\} \cup D \\ \sigma_6 &= \{h \mapsto (r_h, const), \quad d \mapsto (-r_d, const), \quad s \mapsto (0, const)\} \cup D \\ \sigma_7 &= \{h \mapsto (r_h, const), \quad d \mapsto (-r_d, const), \quad s \mapsto (r_s, const)\} \cup D \\ \sigma_7 &= \{h \mapsto (r_h, const), \quad d \mapsto (-r_d, const), \quad s \mapsto (r_s, const)\} \cup D \\ \sigma_7 &= \{h \mapsto (r_h, const), \quad d \mapsto (-r_d, const), \quad s \mapsto (r_s, const)\} \cup D \\ \sigma_7 &= \{h \mapsto (r_h, const), \quad d \mapsto (-r_d, const), \quad s \mapsto (r_s, const)\} \cup D \\ \sigma_7 &= \{h \mapsto (r_h, const), \quad d \mapsto (-r_d, const), \quad s \mapsto (r_s, const)\} \cup D \\ \sigma_7 &= \{h \mapsto (r_h, const), \quad d \mapsto (-r_d, const), \quad s \mapsto (r_s, const)\} \cup D \\ \sigma_7 &= \{h \mapsto (r_h, const), \quad d \mapsto (-r_d, const), \quad s \mapsto (r_s, const)\} \cup D \\ \sigma_7 &= \{h \mapsto (r_h, const), \quad d \mapsto (-r_d, const), \quad s \mapsto (r_s, const)\} \cup D \\ \sigma_7 &= \{h \mapsto (r_h, const), \quad d \mapsto (-r_d, const), \quad s \mapsto (r_s, const)\} \cup D \\ \sigma_7 &= \{h \mapsto (r_h, const), \quad d \mapsto (-r_d, const), \quad s \mapsto (r_s, const)\} \cup D \\ \sigma_7 &= \{h \mapsto (r_h, const), \quad d \mapsto (-r_d, const), \quad s \mapsto (r_s, const)\} \cup D \\ \sigma_7 &= \{h \mapsto (r_h, const), \quad d \mapsto (-r_d, const), \quad s \mapsto (r_s, const)\} \cup D \\ \sigma_7 &= \{h \mapsto (r_h, const), \quad d \mapsto (-r_d, const), \quad s \mapsto (r_s, const)\} \cup D \\ \sigma_7 &= \{h \mapsto (r_h, const), \quad d \mapsto (-r_d, const), \quad s \mapsto (r_s, const)\} \cup D \\ \sigma_8 &= (h \mapsto (r_h, const), \quad d \mapsto (-r_h, const), \quad s \mapsto (r_s, const)\} \cup D \\ \sigma_8 &= (h \mapsto (r_h, const), \quad d \mapsto (-r_h, const), \quad s \mapsto (r_s, const)\} \cup D \\ \sigma_8 &= (h \mapsto (r_h, const), \quad d \mapsto (-r_h, const), \quad s \mapsto (r_s, const)\} \cup D \\ \sigma_8 &= (h \mapsto (r_h, const), \quad d \mapsto (-r_h, const), \quad d \mapsto (-r_h, const), \quad d \mapsto (-r_h, const)\} \cup D \\ \sigma_8 &= (h \mapsto (r_h, const), \quad d \mapsto (-r_h, const), \quad d \mapsto (-r_h, const), \quad d \mapsto (-r_h, const)$$

where $D = \{ c \mapsto (-1, linear(K)), t \mapsto (1, k) \}$

Vashti Galpin

Extracting ODEs from states

each state σ in the lts of *CS* provides an ODE for each $V \in \mathcal{V}$

$$CS_{\sigma} = \left\{ \mathsf{ODE} \text{ for variable } V \mid V \in \mathcal{V} \right\}$$

Extracting ODEs from states

each state σ in the lts of *CS* provides an ODE for each $V \in \mathcal{V}$

$$\mathit{CS}_\sigma = \Big\{ \mathsf{ODE} ext{ for variable } V \; \Big| \; V \in \mathcal{V} \Big\}$$

Constructing an ODE for state σ

$$\frac{dV}{dt} = \sum \left\{ r \llbracket I(\vec{W}) \rrbracket \mid iv(\iota) = V \text{ and } \sigma(\iota) = (r, I(\vec{W})) \right\}$$

.. .

Extracting ODEs from states

each state σ in the lts of *CS* provides an ODE for each $V \in \mathcal{V}$

$$\mathit{CS}_{\sigma} = \Big\{ \mathsf{ODE} ext{ for variable } V \; \Big| \; V \in \mathcal{V} \Big\}$$

Constructing an ODE for state σ

$$\frac{dV}{dt} = \sum \left\{ r \llbracket I(\vec{W}) \rrbracket \middle| iv(\iota) = V \text{ and } \sigma(\iota) = (r, I(\vec{W})) \right\}$$

• for any influence name associated with V

n /

Extracting ODEs from states

each state σ in the lts of *CS* provides an ODE for each $V \in \mathcal{V}$

$$\mathit{CS}_{\sigma} = \Big\{ \mathsf{ODE} ext{ for variable } V \; \Big| \; V \in \mathcal{V} \Big\}$$

Constructing an ODE for state σ

$$\frac{dV}{dt} = \sum \left\{ r \llbracket I(\vec{W}) \rrbracket \mid iv(\iota) = V \text{ and } \sigma(\iota) = (r, I(\vec{W})) \right\}$$

▶ for any influence name associated with V

• determine from σ its rate and influence type

Extracting ODEs from states

each state σ in the Its of CS provides an ODE for each $\mathit{V} \in \mathcal{V}$

$$\mathit{CS}_{\sigma} = \Big\{ \mathsf{ODE} ext{ for variable } V \; \Big| \; V \in \mathcal{V} \Big\}$$

Constructing an ODE for state σ

 $\frac{dV}{dt} = \sum \left\{ r \llbracket I(\vec{W}) \rrbracket \mid iv(\iota) = V \text{ and } \sigma(\iota) = (r, I(\vec{W})) \right\}$

- for any influence name associated with V
- determine from σ its rate and influence type
- multiply its rate and influence function together

Vashti Galpin

Extracting ODEs from states

each state σ in the lts of *CS* provides an ODE for each $V \in \mathcal{V}$

$$\mathit{CS}_{\sigma} = \Big\{ \mathsf{ODE} ext{ for variable } V \; \Big| \; V \in \mathcal{V} \Big\}$$

Constructing an ODE for state σ

 $\frac{dV}{dt} = \sum \left\{ r \llbracket I(\vec{W}) \rrbracket \mid iv(\iota) = V \text{ and } \sigma(\iota) = (r, I(\vec{W})) \right\}$

- for any influence name associated with V
- determine from σ its rate and influence type
- multiply its rate and influence function together
- sum these over all associated influence names

Vashti Galpin

Orbiter Temperature Control – ODEs

Orbiter Temperature Control – ODEs

Sun shining and shade up

Consider the state

$$\sigma_3 = \{h \mapsto (0, const), d \mapsto (-r_d, const), \\ s \mapsto (r_s, const), c \mapsto (-1, linear(K)), t \mapsto (1, k)\}$$

Vashti Galpin

Orbiter Temperature Control – ODEs

Sun shining and shade up

Consider the state

$$\sigma_3 = \{h \mapsto (0, const), d \mapsto (-r_d, const), s \mapsto (r_s, const), c \mapsto (-1, linear(K)), t \mapsto (1, k)\}$$

ODEs in state σ_3

$$\frac{dT}{dt} = 1 \qquad \frac{dK}{dt} = r_s - r_d - K$$

Vashti Galpin

 \blacktriangleright (V, E, X, E, flow, init, inv, event, jump, reset, urgent)

Vashti Galpin

(V, E, X, E, flow, init, inv, event, jump, reset, urgent) X = {X₁,..., X_n}, X_j, X_j'

- \blacktriangleright (V, E, X, \mathcal{E} , flow, init, inv, event, jump, reset, urgent)
- $\blacktriangleright \mathbf{X} = \{X_1, \ldots, X_n\}, \dot{X}_j, X'_j$
- control graph: G = (V, E)

- $\blacktriangleright (V, E, \mathbf{X}, \mathcal{E}, flow, init, inv, event, jump, reset, urgent)$
- $\blacktriangleright \mathbf{X} = \{X_1, \ldots, X_n\}, \ \dot{X}_j, \ X'_j$
- control graph: G = (V, E)
- (control) modes: $v \in V$
 - associated ODEs: $\dot{\mathbf{X}} = flow(v)$
 - initial conditions: init(v)
 - ► invariants: inv(v)

- $\blacktriangleright (V, E, \mathbf{X}, \mathcal{E}, flow, init, inv, event, jump, reset, urgent)$
- $\mathbf{X} = \{X_1, \ldots, X_n\}, \dot{X}_j, X'_j$
- control graph: G = (V, E)
- (control) modes: $v \in V$
 - associated ODEs: $\dot{\mathbf{X}} = flow(v)$
 - initial conditions: init(v)
 - invariants: inv(v)
- (control) switches: $e \in E$
 - events: $event(e) \in \mathcal{E}$
 - predicate on X: jump(e)
 - ▶ predicate on X ∪ X': reset(e)
 - boolean: urgent(e)

Vashti Galpin

HYPE model to hybrid automaton

Vashti Galpin

HYPE model to hybrid automaton

modes V: set of reachable configurations

HYPE model to hybrid automaton

- modes V: set of reachable configurations
- edges E: transitions between configurations
- modes V: set of reachable configurations
- edges E: transitions between configurations
- ► variables X: variables V

Motivation Syntax Operational semantics Hybrid semantics Equivalences Comparison Adding stochasticity

HYPE model to hybrid automaton

- modes V: set of reachable configurations
- edges E: transitions between configurations
- variables X: variables \mathcal{V}

▶ if $v_j = \langle P_j, \sigma_j \rangle$ then $flow(v_j)[X_i] = \sum \{r[[I(\vec{W})]] \mid iv(\iota) = X_i \text{ and } \sigma_j(\iota) = (r, I(\vec{W}))\}$

- modes V: set of reachable configurations
- edges E: transitions between configurations
- variables X: variables \mathcal{V}
- if $v_j = \langle P_j, \sigma_j \rangle$ then $flow(v_j)[X_i] = \sum \{r[[I(\vec{W})]] \mid iv(\iota) = X_i \text{ and } \sigma_j(\iota) = (r, I(\vec{W}))\}$
- inv(v) = true

- modes V: set of reachable configurations
- edges E: transitions between configurations
- ► variables X: variables V
- if $v_j = \langle P_j, \sigma_j \rangle$ then $flow(v_j)[X_i] = \sum \{r[[I(\vec{W})]] \mid iv(\iota) = X_i \text{ and } \sigma_j(\iota) = (r, I(\vec{W}))\}$
- inv(v) = true
- ▶ let *e* be an edge associated with <u>a</u> and let $ec(\underline{a}) = (act_{\underline{a}}, res_{\underline{a}})$

- modes V: set of reachable configurations
- edges E: transitions between configurations
- ► variables X: variables V
- if $v_j = \langle P_j, \sigma_j \rangle$ then $flow(v_j)[X_i] = \sum \{r[[I(\vec{W})]] \mid iv(\iota) = X_i \text{ and } \sigma_j(\iota) = (r, I(\vec{W}))\}$
- inv(v) = true
- ▶ let e be an edge associated with <u>a</u> and let ec(<u>a</u>) = (act_a, res_a)
 - $event(e) = \underline{a}$ and $reset(e) = res_{\underline{a}}$
 - if act_a ≠ ⊥ then jump(e) = act_a and urgent(e) = true else jump(e) = true and urgent(e) = false

Vashti Galpin

- modes V: set of reachable configurations
- edges E: transitions between configurations
- ► variables X: variables V
- if $v_j = \langle P_j, \sigma_j \rangle$ then $flow(v_j)[X_i] = \sum \{r[[I(\vec{W})]] \mid iv(\iota) = X_i \text{ and } \sigma_j(\iota) = (r, I(\vec{W}))\}$
- inv(v) = true

▶ let *e* be an edge associated with <u>a</u> and let $ec(\underline{a}) = (act_{\underline{a}}, res_{\underline{a}})$

 if act_a ≠ ⊥ then jump(e) = act_a and urgent(e) = true else jump(e) = true and urgent(e) = false

$$\bullet init(v) = \begin{cases} res_{init} & \text{if } v = \langle P, \sigma \rangle \text{ with primes removed} \\ false & otherwise \end{cases}$$

Vashti Galpin

Vashti Galpin

Vashti Galpin

Vashti Galpin

Vashti Galpin

Orbiter Temperature Control – without control

Vashti Galpin

Orbiter Temperature Control – with control

Vashti Galpin

Vashti Galpin

System bisimulation

relation B if for all $(P, Q) \in B$ whenever

1. $\langle P, \sigma \rangle \xrightarrow{a} \langle P', \sigma' \rangle$, there exists $\langle Q', \sigma' \rangle$ with $\langle Q, \sigma \rangle \xrightarrow{a} \langle Q', \sigma' \rangle$ and $(P', Q') \in B$.

System bisimulation

relation B if for all $(P, Q) \in B$ whenever

1.
$$\langle P, \sigma \rangle \xrightarrow{a} \langle P', \sigma' \rangle$$
, there exists $\langle Q', \sigma' \rangle$ with $\langle Q, \sigma \rangle \xrightarrow{a} \langle Q', \sigma' \rangle$ and $(P', Q') \in B$.

2.
$$\langle Q, \sigma \rangle \xrightarrow{a} \langle Q', \sigma' \rangle$$
, there exists $\langle P', \sigma' \rangle$ with $\langle P, \sigma \rangle \xrightarrow{a} \langle P', \sigma' \rangle$ and $(P', Q') \in B$.

System bisimulation

relation B if for all $(P, Q) \in B$ whenever

1.
$$\langle P, \sigma \rangle \xrightarrow{a} \langle P', \sigma' \rangle$$
, there exists $\langle Q', \sigma' \rangle$ with $\langle Q, \sigma \rangle \xrightarrow{a} \langle Q', \sigma' \rangle$ and $(P', Q') \in B$.

2.
$$\langle Q, \sigma \rangle \xrightarrow{a} \langle Q', \sigma' \rangle$$
, there exists $\langle P', \sigma' \rangle$ with $\langle P, \sigma \rangle \xrightarrow{a} \langle P', \sigma' \rangle$ and $(P', Q') \in B$.

System bisimilar

 $P \sim_s Q$ if in a system bisimulation

Vashti Galpin

Theorem 1

 \sim_{s} is a congruence for all operators

Theorem 1

 \sim_s is a congruence for all operators

Theorem 2

if uncontrolled systems Σ_1 and Σ_2 have the same prefixes then $\Sigma_1 \bowtie_{l} \underline{init}$. Con $\sim_s \Sigma_2 \bowtie_{l} \underline{init}$. Con, assuming well-defined systems

Theorem 1

 \sim_s is a congruence for all operators

Theorem 2

if uncontrolled systems Σ_1 and Σ_2 have the same prefixes then $\Sigma_1 \bowtie_{l} \underline{init}$. Con $\sim_s \Sigma_2 \bowtie_{l} \underline{init}$. Con, assuming well-defined systems

Theorem 3

if $P \sim_s Q$ then $P_{\sigma} = Q_{\sigma}$ for all σ , assuming well-defined systems

in other words, bisimilar well-defined models have the same ODEs

Three rooms					
	А	В	С		
]	

Vashti Galpin

Three rooms				
	А	В	С	
			2	

Three rooms				
	А	В	С	
		?	2	

Room

$$R_B(T) \stackrel{\text{\tiny def}}{=} \underline{\text{init}}: (t_{0,B}, -1, \textit{linear}(T)).R_B(T)$$

Vashti Galpin

Room

$$R_B(T) \stackrel{\text{\tiny def}}{=} \underline{\text{init}}: (t_{0,B}, -1, \textit{linear}(T)).R_B(T)$$

Heater

$$H_{i,x,B} \stackrel{\text{def}}{=} \underbrace{\operatorname{off}_i: (t_{i,B}, 0, c). H_{i,x,B}}_{\operatorname{init}: (t_{i,B}, 0, c). H_{i,x,B}} + \underbrace{\operatorname{on}_i: (t_{i,B}, r_i, c_{\psi(x,B)}). H_{i,x,B}}_{\operatorname{init}: (t_{i,B}, 0, c). H_{i,x,B}}$$

Vashti Galpin

Heater example (continued)

Heater example (continued)

System

$$\begin{aligned} Sys &\stackrel{\text{def}}{=} (H_{1,A,B} \underset{\text{{(init)}}}{\boxtimes} H_{2,C,B}) \underset{\text{{(init)}}}{\boxtimes} R_B(T_B) \\ Con &\stackrel{\text{def}}{=} Con_1 \underset{\emptyset}{\boxtimes} Con_2 \qquad Con_i \stackrel{\text{def}}{=} \underline{on}_i . \underline{off}_i . Con_i \\ HSys \stackrel{\text{def}}{=} Sys \underset{M}{\boxtimes} \underbrace{\text{init}} . Con \qquad M = \{ \underbrace{\text{init}}, \underline{on}_1, \underline{off}_1, \underline{on}_2, \underline{off}_2 \} \end{aligned}$$

Heater example (continued)

System

$$\begin{aligned} Sys &\stackrel{\text{def}}{=} (H_{1,A,B} \underset{\emptyset}{\boxtimes} H_{2,C,B}) \underset{(\text{init})}{\boxtimes} R_B(T_B) \\ Con &\stackrel{\text{def}}{=} Con_1 \underset{\emptyset}{\boxtimes} Con_2 \\ HSys &\stackrel{\text{def}}{=} Sys \underset{M}{\boxtimes} \underset{\text{init}}{\inf} Con \\ & M = \{ \underset{init, on_1, off_1, on_2, off_2 \} \end{aligned}$$

HYPE model

$$\begin{split} \mathcal{V} &= \{T_B\} \text{ with } iv(t_{i,B}) = T_B \\ ec(\underline{off}_i) &= ((T_B = 25), (T'_B = T_B)) \\ ec(\underline{on}_i) &= (\bot, true) \\ ec(\underline{init}) &= (true, (T'_B = T_0)) \\ \llbracket const_{adj} \rrbracket &= 0.5 \quad \llbracket const \rrbracket = 1 \quad \llbracket linear(X) \rrbracket = X \end{split}$$

Vashti Galpin

Heater system as a hybrid automata

Heater system as a hybrid automata

Vashti Galpin

Vashti Galpin

Heater 1 in Room A and Heater 2 in Room C

 $Sys \stackrel{\text{\tiny def}}{=} (H_{1,A,B} \underset{\text{\tiny \{\text{init}\}}}{\bowtie} H_{2,C,B}) \underset{\text{\tiny \{\text{init}\}}}{\bowtie} R_B(T_B) \quad HSys \stackrel{\text{\tiny def}}{=} Sys \underset{M}{\bowtie} \underset{M}{\inf} \text{init}.Con$

Heater 1 in Room A and Heater 2 in Room C

 $Sys \stackrel{\text{\tiny def}}{=} (H_{1,A,B} \underset{\text{\tiny {(init)}}}{\boxtimes} H_{2,C,B}) \underset{\text{\tiny {(init)}}}{\boxtimes} R_B(T_B) \quad HSys \stackrel{\text{\tiny def}}{=} Sys \underset{M}{\boxtimes} \underset{M}{\underline{init}} .Con$

Heater 1 is moved to Room C

 $Sys' \stackrel{def}{=} (H_{1,C,B} \underset{\text{{(init)}}}{\bowtie} H_{2,C,B}) \underset{\text{{(init)}}}{\bowtie} R_B(T_B) \quad HSys' \stackrel{def}{=} Sys' \underset{M'}{\bowtie} init. Con$

Heater 1 in Room A and Heater 2 in Room C

 $Sys \stackrel{\text{\tiny def}}{=} (H_{1,\mathbf{A},B} \underset{\text{\tiny (init)}}{\boxtimes} H_{2,C,B}) \underset{\text{\tiny (init)}}{\boxtimes} R_B(T_B) \quad HSys \stackrel{\text{\tiny def}}{=} Sys \underset{M}{\boxtimes} \underset{M}{\underline{init}} .Con$

Heater 1 is moved to Room C

 $Sys' \stackrel{def}{=} (H_{1, \mathbf{C}, B} \bowtie_{\{init\}} H_{2, C, B}) \underset{\{init\}}{\bowtie} R_B(T_B) \quad HSys' \stackrel{def}{=} Sys' \underset{M'}{\bowtie} init. Con$

Heater 1 in Room A and Heater 2 in Room C

 $Sys \stackrel{\text{\tiny def}}{=} (H_{1,A,B} \underset{\text{\tiny (init)}}{\boxtimes} H_{2,C,B}) \underset{\text{\tiny (init)}}{\boxtimes} R_B(T_B) \quad HSys \stackrel{\text{\tiny def}}{=} Sys \underset{M}{\boxtimes} \underset{M}{\underline{init}} .Con$

Heater 1 is moved to Room C

$$Sys' \stackrel{def}{=} (H_{1,C,B} \bowtie_{\{init\}} H_{2,C,B}) \underset{\{init\}}{\bowtie} R_B(T_B) \quad HSys' \stackrel{def}{=} Sys' \underset{M'}{\bowtie} init. Con$$

Comparison

Sys and Sys' have the same prefixes
Different heater systems

Heater 1 in Room A and Heater 2 in Room C

 $Sys \stackrel{\text{\tiny def}}{=} (H_{1,A,B} \underset{\text{\tiny \{init\}}}{\boxtimes} H_{2,C,B}) \underset{\text{\tiny \{init\}}}{\boxtimes} R_B(T_B) \quad HSys \stackrel{\text{\tiny def}}{=} Sys \underset{M}{\boxtimes} \underset{M}{\underline{init}} .Con$

Heater 1 is moved to Room C

$$Sys' \stackrel{def}{=} (H_{1,C,B} \underset{\text{(init)}}{\boxtimes} H_{2,C,B}) \underset{\text{(init)}}{\boxtimes} R_B(T_B) \quad HSys' \stackrel{def}{=} Sys' \underset{M'}{\boxtimes} \underline{\text{init}}.Con$$

Comparison

- Sys and Sys' have the same prefixes
- ▶ by Theorem 2, HSys ~_s HSys'

Different heater systems

Heater 1 in Room A and Heater 2 in Room C

 $Sys \stackrel{\text{\tiny def}}{=} (H_{1,A,B} \underset{\text{\tiny \{init\}}}{\boxtimes} H_{2,C,B}) \underset{\text{\tiny \{init\}}}{\boxtimes} R_B(T_B) \quad HSys \stackrel{\text{\tiny def}}{=} Sys \underset{M}{\boxtimes} \underset{M}{\underline{init}} .Con$

Heater 1 is moved to Room C

$$Sys' \stackrel{def}{=} (H_{1,C,B} \underset{\text{(init)}}{\boxtimes} H_{2,C,B}) \underset{\text{(init)}}{\boxtimes} R_B(T_B) \quad HSys' \stackrel{def}{=} Sys' \underset{M'}{\boxtimes} \underline{\text{init}}.Con$$

Comparison

- Sys and Sys' have the same prefixes
- ▶ by Theorem 2, HSys ~_s HSys'
- ▶ by Theorem 3, *HSys* and *HSys'* have the same ODEs

bisimulation for ACP_{hs}^{srt}

defined over pairs $(\langle P, \sigma \rangle, \langle Q, \sigma \rangle)$ not a congruence for parallel operator of ACP_{bs}^{srt}

Vashti Galpin

bisimulation for ACP_{hs}^{srt}

defined over pairs $(\langle P, \sigma \rangle, \langle Q, \sigma \rangle)$ not a congruence for parallel operator of ACP_{hs}^{srt}

ic-bisimulation for ACP_{hs}^{srt}

definition is identical to system bisimulation congruence for parallel operator of ACP_{hs}^{srt}

bisimulation for ACP_{hs}^{srt}

defined over pairs $(\langle P, \sigma \rangle, \langle Q, \sigma \rangle)$ not a congruence for parallel operator of ACP_{hs}^{srt}

ic-bisimulation for ACP_{hs}^{srt}

definition is identical to system bisimulation congruence for parallel operator of ACP_{hs}^{srt}

Theorem 4

over HYPE models, all three equivalences are the same

Vashti Galpin

A process algebra for the modelling of hybrid systems

System equivalence with respect to \equiv

relation B if for all $(P, Q) \in B$ whenever

1.
$$\langle P, \sigma \rangle \xrightarrow{a} \langle P', \sigma' \rangle$$
, there exists $\langle Q', \tau' \rangle$ with $\langle Q, \tau \rangle \xrightarrow{a} \langle Q', \tau' \rangle$, $\sigma' \equiv \tau'$ and $(P', Q') \in B$.

System equivalence with respect to \equiv

relation B if for all $(P, Q) \in B$ whenever

1.
$$\langle P, \sigma \rangle \xrightarrow{a} \langle P', \sigma' \rangle$$
, there exists $\langle Q', \tau' \rangle$ with $\langle Q, \tau \rangle \xrightarrow{a} \langle Q', \tau' \rangle$, $\sigma' \equiv \tau'$ and $(P', Q') \in B$.

2.
$$\langle Q, \tau \rangle \xrightarrow{a} \langle Q', \tau' \rangle$$
, there exists $\langle P', \sigma' \rangle$ with $\langle P, \sigma \rangle \xrightarrow{a} \langle P', \sigma' \rangle$, $\sigma' \equiv \tau'$ and $(P', Q') \in B$

System equivalence with respect to \equiv

relation B if for all $(P, Q) \in B$ whenever

1.
$$\langle P, \sigma \rangle \xrightarrow{a} \langle P', \sigma' \rangle$$
, there exists $\langle Q', \tau' \rangle$ with $\langle Q, \tau \rangle \xrightarrow{a} \langle Q', \tau' \rangle$, $\sigma' \equiv \tau'$ and $(P', Q') \in B$.

2.
$$\langle Q, \tau \rangle \xrightarrow{a} \langle Q', \tau' \rangle$$
, there exists $\langle P', \sigma' \rangle$ with $\langle P, \sigma \rangle \xrightarrow{a} \langle P', \sigma' \rangle$, $\sigma' \equiv \tau'$ and $(P', Q') \in B$.

System equivalence with respect to \equiv

relation B if for all $(P, Q) \in B$ whenever

1.
$$\langle P, \sigma \rangle \xrightarrow{a} \langle P', \sigma' \rangle$$
, there exists $\langle Q', \tau' \rangle$ with $\langle Q, \tau \rangle \xrightarrow{a} \langle Q', \tau' \rangle$, $\sigma' \equiv \tau'$ and $(P', Q') \in B$.

2.
$$\langle Q, \tau \rangle \xrightarrow{a} \langle Q', \tau' \rangle$$
, there exists $\langle P', \sigma' \rangle$ with $\langle P, \sigma \rangle \xrightarrow{a} \langle P', \sigma' \rangle$, $\sigma' \equiv \tau'$ and $(P', Q') \in B$.
3. $\sigma \equiv \tau$

Theorem 5

if \equiv preserves updating then system equivalence with respect to \equiv is a congruence

Vashti Galpin

A process algebra for the modelling of hybrid systems

Hybrid automata synchronised product: $H_1 \times H_2$

union of variables, product of vertices product of edges if they have the same event label functions on vertices: *flow*, *init*, *inv* defined by conjunction functions on edges: *event*, *jump*, *reset*, *urgent* depend on edge type

Hybrid automata synchronised product: $H_1 \times H_2$

union of variables, product of vertices product of edges if they have the same event label functions on vertices: *flow*, *init*, *inv* defined by conjunction functions on edges: *event*, *jump*, *reset*, *urgent* depend on edge type implicitly, if $X \in \mathbf{X}_1 \cap \mathbf{X}_2$ then $flow_1 = flow_2$

Hybrid automata synchronised product: $H_1 \times H_2$

union of variables, product of vertices product of edges if they have the same event label functions on vertices: *flow*, *init*, *inv* defined by conjunction functions on edges: *event*, *jump*, *reset*, *urgent* depend on edge type implicitly, if $X \in \mathbf{X}_1 \cap \mathbf{X}_2$ then $flow_1 = flow_2$

HYPE model synchronisation: $P_1 \otimes P_2$

appropriate synchronisation of P_1 and P_2 union of variables, union of events, union of activities union of influence names with $IN_1 \cap IN_2 = \emptyset$ union of influence types with matching definition if in $ID_1 \cap ID_2$ function on influence names: *iv* defined as union function on events: *ec* defined as conjunction if shared,

Vashti Galpin

Comparison results

Comparison results

Motivation

how compositional is each formalism? assess at level of model composition

Definition 6

Let $\mathcal{H}(P)$ be the HA obtained from HYPE model P

Comparison results

Motivation

how compositional is each formalism? assess at level of model composition

Definition 6

Let $\mathcal{H}(P)$ be the HA obtained from HYPE model P

Theorem 7

If no variables are shared, then $\mathcal{H}(P_1 \otimes P_2) = \mathcal{H}(P_1) \times \mathcal{H}(P_2)$

A process algebra for the modelling of hybrid systems

Vashti Galpin

A process algebra for the modelling of hybrid systems

Theorem 8

HYPE model synchronisation is more expressive than hybrid automata synchronised product if there are shared variables

Theorem 8

HYPE model synchronisation is more expressive than hybrid automata synchronised product if there are shared variables

Proof

For HA, if $X \in \mathbf{X}_1 \cup \mathbf{X}_2$ then product may be undefined For HYPE models, as long as influence names disjoint, synchronisation is defined

Theorem 8

HYPE model synchronisation is more expressive than hybrid automata synchronised product if there are shared variables

Proof

For HA, if $X \in \mathbf{X}_1 \cup \mathbf{X}_2$ then product may be undefined For HYPE models, as long as influence names disjoint, synchronisation is defined

Implications

With HA product, only new variables can be added With HYPE model synchronisation, new influences on existing variables can be added

Vashti Galpin

A process algebra for the modelling of hybrid systems

Stochastic HYPE: syntax

remove non-urgency \perp in event conditions replace with rate

Vashti Galpin

A process algebra for the modelling of hybrid systems

Stochastic HYPE: syntax

remove non-urgency \perp in event conditions replace with rate

Heater example

instead of $ec(\underline{on}_i) = (\bot, true)$ use $ec(\underline{on}_i) = (r, true)$ for r > 0

Stochastic HYPE: syntax

remove non-urgency \perp in event conditions replace with rate

Heater example

instead of $ec(\underline{on}_i) = (\bot, true)$ use $ec(\underline{on}_i) = (r, true)$ for r > 0

Stochastic HYPE: semantics

piecewise deterministic Markov processes (PDMP) complex and rarely used transition-driven stochastic hybrid automata (Bortolussi)

Vashti Galpin

A process algebra for the modelling of hybrid systems

Transition-driven stochastic hybrid automata

V, finite set of control modes

- V, finite set of control modes
- X_1, \ldots, X_n variables

- V, finite set of control modes
- X_1, \ldots, X_n variables
- ▶ \mathcal{E} , set of event names

- V, finite set of control modes
- X_1, \ldots, X_n variables
- \mathcal{E} , set of event names
- $init = (q_0, inp)$

- V, finite set of control modes
- X_1, \ldots, X_n variables
- *E*, set of event names
- $init = (q_0, inp)$
- continuous transitions/flows, $(q, s, f) \in \mathcal{TC}$

- V, finite set of control modes
- X_1, \ldots, X_n variables
- *E*, set of event names
- $init = (q_0, inp)$
- continuous transitions/flows, $(q, s, f) \in \mathcal{TC}$
- ▶ instantaneous transitions, $(q, q', p, g, r, e) \in TD$

- V, finite set of control modes
- X_1, \ldots, X_n variables
- *E*, set of event names
- $init = (q_0, inp)$
- continuous transitions/flows, $(q, s, f) \in TC$
- ▶ instantaneous transitions, $(q, q', p, g, r, e) \in TD$
- ▶ stochastic transitions, $(q, q', g, r, f, e) \in TS$

- V, finite set of control modes
- X_1, \ldots, X_n variables
- *E*, set of event names
- $init = (q_0, inp)$
- continuous transitions/flows, $(q, s, f) \in TC$
- ▶ instantaneous transitions, $(q, q', p, g, r, e) \in TD$
- ▶ stochastic transitions, $(q, q', g, r, f, e) \in TS$
- mapping to PDMPs
Work in progress

Vashti Galpin

Work in progress

modify HYPE definition

Vashti Galpin

Work in progress

- modify HYPE definition
- use TDSHAs as underlying semantics

Work in progress

- modify HYPE definition
- use TDSHAs as underlying semantics
- use TDSHAs to explore use of PDMPs

Work in progress

- modify HYPE definition
- use TDSHAs as underlying semantics
- use TDSHAs to explore use of PDMPs
- network modelling

Work in progress

- modify HYPE definition
- use TDSHAs as underlying semantics
- use TDSHAs to explore use of PDMPs
- network modelling

Definition 9

Let $\mathcal{T}(P)$ be the TDSHA obtained from HYPE model P

Work in progress

- modify HYPE definition
- use TDSHAs as underlying semantics
- use TDSHAs to explore use of PDMPs
- network modelling

Definition 9

Let $\mathcal{T}(P)$ be the TDSHA obtained from HYPE model P

Preliminary result

for a non-stochastic HYPE model P without non-urgent conditions $\mathcal{T}(P)=\mathcal{H}(P)$

Vashti Galpin

Conclusion

Conclusion

Summary

- HYPE for modelling hybrid systems
- use of additive flows to obtain ODEs compositionally
- now modelling continuous, discrete and stochastic behaviour

Conclusion

Summary

- HYPE for modelling hybrid systems
- use of additive flows to obtain ODEs compositionally
- now modelling continuous, discrete and stochastic behaviour

Main results

- congruence of semantic equivalences
- system bisimilar HYPE models gives identical ODEs
- combining HYPE models is more expressive than combining HAs

Thank you

Vashti Galpin