Model results

How to use HYPE to model hybrid systems: a railway crossing example

Vashti Galpin Laboratory for Foundations of Computer Science University of Edinburgh

Joint work with Jane Hillston (University of Edinburgh) and Luca Bortolussi (University of Trieste)

13 December 2010

Vashti Galpin

How to use HYPE to model hybrid systems

Workshop on Probabilistic Modelling, Model-Checking and Planning

Train gate	Model results	Conclusions

Outline

Introduction

Train gate

Semantics

Model results

Conclusions

Vashti Galpin

How to use HYPE to model hybrid systems

Workshop on Probabilistic Modelling, Model-Checking and Planning

Introduction	Train gate	Model results	Conclusions
1			

Introduction

- hybrid systems
 - discrete behaviour
 - continuous behaviour, expressed as ODEs

Vashti Galpin

How to use HYPE to model hybrid systems

Workshop on Probabilistic Modelling, Model-Checking and Planning

Introduction	Train gate	Model results	Conclusions
Introductio	n		

ntroduction

- hybrid systems
 - discrete behaviour
 - continuous behaviour, expressed as ODEs
- hybrid automata
 - well known, graphical
 - somewhat compositional

Introduction	Train gate	Model results	Conclusions
Introducti	on		

- hybrid systems
 - discrete behaviour
 - continuous behaviour, expressed as ODEs
 - hybrid automata
 - well known, graphical
 - somewhat compositional
 - process algebras for hybrid systems
 - textual
 - compositional
 - often require monolithic ODEs in syntax
 - HYPE: more fine-grained, individual flows

Semantics

Train gate system

Vashti Galpin

How to use HYPE to model hybrid systems

Workshop on Probabilistic Modelling, Model-Checking and Planning

Semantics

Train gate system

Vashti Galpin

How to use HYPE to model hybrid systems

Workshop on Probabilistic Modelling, Model-Checking and Planning

Introduction	Train gate	Model results	Conclusions
+ · · ·			

standard example for hybrid systems modelling

Vashti Galpin

How to use HYPE to model hybrid systems

Workshop on Probabilistic Modelling, Model-Checking and Planning

Introduction	Train gate	Model results	Conclusions
- · ·			

- standard example for hybrid systems modelling
- railway track with guarded crossing

How to use HYPE to model hybrid systems

Workshop on Probabilistic Modelling, Model-Checking and Planning

Introduction	Train gate	Model results	Conclusions

- standard example for hybrid systems modelling
- railway track with guarded crossing
- track to be modelled
 - starts at least 1500m before crossing
 - ends 100m after crossing

Introduction	Train gate	Model results	Conclusions

- standard example for hybrid systems modelling
- railway track with guarded crossing
- track to be modelled
 - starts at least 1500m before crossing
 - ends 100m after crossing
- two sensors
 - ▶ first: 1000m before crossing sends *approach* signal to controller
 - second: 100m after crossing sends exit signal to controller

Introduction	Train gate	Model results	Conclusions

- standard example for hybrid systems modelling
- railway track with guarded crossing
- track to be modelled
 - starts at least 1500m before crossing
 - ends 100m after crossing
- two sensors
 - ▶ first: 1000m before crossing sends *approach* signal to controller
 - second: 100m after crossing sends exit signal to controller
- train speed
 - between 48m/s and 52m/s before first sensor
 - between 40m/s and 52m/s after first sensor

Introduction	Train gate	Model results	Conclusions

- standard example for hybrid systems modelling
- railway track with guarded crossing
- track to be modelled
 - starts at least 1500m before crossing
 - ends 100m after crossing
- two sensors
 - ▶ first: 1000m before crossing sends *approach* signal to controller
 - second: 100m after crossing sends exit signal to controller
- train speed
 - between 48m/s and 52m/s before first sensor
 - between 40m/s and 52m/s after first sensor
- gate
 - opens and closes at 20°/s

Vashti Galpin

How to use HYPE to model hybrid systems

- controller
 - on receiving *approach* signal, takes up to 5 seconds to send *lower* signal to gate
 - on receiving *exit* signal, takes up to 5 seconds to send *raise* signal to gate

- controller
 - on receiving *approach* signal, takes up to 5 seconds to send *lower* signal to gate
 - on receiving *exit* signal, takes up to 5 seconds to send *raise* signal to gate
- initial conditions
 - ▶ train starts at 1400m before crossing, gate is open (at 90°)

- controller
 - on receiving *approach* signal, takes up to 5 seconds to send *lower* signal to gate
 - on receiving *exit* signal, takes up to 5 seconds to send *raise* signal to gate
- initial conditions
 - ▶ train starts at 1400m before crossing, gate is open (at 90°)
- safety property
 - when the train is 100m before the gate, the gate is closed

- controller
 - on receiving *approach* signal, takes up to 5 seconds to send *lower* signal to gate
 - on receiving *exit* signal, takes up to 5 seconds to send *raise* signal to gate
- initial conditions
 - ▶ train starts at 1400m before crossing, gate is open (at 90°)
- safety property
 - when the train is 100m before the gate, the gate is closed
- assumptions for HYPE model, worst case
 - trains start at 1500m before crossing
 - ▶ signals from controller take 5 seconds to be received by gate
 - trains travel at 52m/s

Vashti Galpin

Train gate	Model results	Conclusions
_		

HYPE syntax

two types of actions

Vashti Galpin

	Train gate	Model results	Conclusions
HYPE syntax	(

- two types of actions
- events: instantaneous, discrete changes

 $\underline{\mathsf{a}}\in\mathcal{E}$

Vashti Galpin

	Train gate	Model results	Conclusions
HYPE synta>	<		

- two types of actions
- events: instantaneous, discrete changes

$$\underline{\mathsf{a}}\in\mathcal{E}$$

activities: influences on continuous aspect of system, flows

$$\alpha \in \mathcal{A}$$
 $\alpha(\mathcal{W}) = (\iota, r, I(\mathcal{W}))$

- influence name $\iota \in IN$
- rate $r \in \mathbb{R}$
- ▶ influence type I(W) with $\llbracket I(W) \rrbracket = f(W)$ with $W \subseteq V$

How to use HYPE to model hybrid systems

a

	Train gate	Model results	Conclusions
HYPE syntax	(

- two types of actions
- events: instantaneous, discrete changes

$$\underline{\mathsf{a}}\in\mathcal{E}$$

activities: influences on continuous aspect of system, flows

$$\alpha \in \mathcal{A}$$
 $\alpha(\mathcal{W}) = (\iota, r, I(\mathcal{W}))$

- influence name $\iota \in IN$
- rate $r \in \mathbb{R}$
- ▶ influence type I(W) with $\llbracket I(W) \rrbracket = f(W)$ with $W \subseteq V$
- well-defined subcomponent: $\underline{a}_i \neq \underline{a}_j$ for $i \neq j$

$$C_{s}(\mathcal{W}) \stackrel{\text{\tiny def}}{=} \sum_{i=1}^{n} \underline{a}_{i} : (\iota, r_{i}, I_{i}(\mathcal{W})) \cdot C_{s}(\mathcal{W}) + \underline{\text{init}} : (\iota, r, I(\mathcal{W})) \cdot C_{s}(\mathcal{W})$$

Vashti Galpin

	Train gate		Model results	Conclusions
Continuous a	spects of tra	in gate syste	m	
► train				
Train	$\stackrel{\text{\tiny def}}{=}$ <u>init</u> :(d, r _{tr}	, c). Train		

How to use HYPE to model hybrid systems

Workshop on Probabilistic Modelling, Model-Checking and Planning

Introduction	Train gate	Semantics	Model results	Conclusions
Continuous	s aspects of	train gate sy	stem	
► train				
Tra	$ain \stackrel{def}{=} init:$	d, r _{tr} , c). Train		

continuous aspects of gate

$$Gate \stackrel{\text{def}}{=} \underline{\text{lower}}: (g, -r_{gt}, c). Gate + \underline{\text{closed}}: (g, 0, c). Gate + \underline{\text{raise}}: (g, r_{gt}, c). Gate + \underline{\text{open}}: (g, 0, c). Gate + \underline{\text{init}}: (g, 0, c). Gate$$

Vashti Galpin

How to use HYPE to model hybrid systems

	Train gate		Model results	Conclusions
Continuous	aspects of tra	in gate syster	n	
► train				
Trair	$n \stackrel{def}{=} \underline{\text{init}}: (d, r_{tr})$, c). Train		
contin	uous aspects of g	ate		
Gate	$\stackrel{def}{=}$ lower: $(g, -$	$-r_{gt}, c$). Gate $+ \underline{cl}$	<u>osed</u> ∶(g,0,c).Gate	÷ +

<u>raise</u>: (g, r_{gt}, c) . Gate + <u>open</u>: (g, 0, c). Gate +

$$Timer_{L} \stackrel{\text{def}}{=} \underbrace{\operatorname{appr}}_{i}: (t_{L}, 1, const). Timer_{L} + \underbrace{\operatorname{lower}}_{i}: (t_{L}, 0, const). Timer_{L} + \underbrace{\operatorname{init}}_{i}: (t_{L}, 0, const). Timer_{L}$$

 $\underline{init}:(g, 0, c). Gate$

$$Timer_R \stackrel{\text{def}}{=} \underbrace{\text{exit}: (t_R, 1, const). Timer_R + \underline{\text{raise}}: (t_R, 0, const). Timer_R + \underline{\text{init}}: (t_R, 0, const). Timer_R$$

Vashti Galpin

How to use HYPE to model hybrid systems

two timers

Train gate	Model results	Conclusions

► components: $P ::= C_s(W) | C(W) | P \bowtie_l P \qquad L \subseteq \mathcal{E}$

Vashti Galpin

How to use HYPE to model hybrid systems

Workshop on Probabilistic Modelling, Model-Checking and Planning

	Train gate	Model results	Conclusions
HYPE syntax	(continued)		

- components: $P ::= C_s(\mathcal{W}) \mid C(\mathcal{W}) \mid P \bowtie_l P \qquad L \subseteq \mathcal{E}$
- uncontrolled system: $\Sigma ::= C(\vec{V}) \mid \Sigma \bowtie_{I} \Sigma \qquad L \subseteq \mathcal{E}$

How to use HYPE to model hybrid systems

	Train gate		Model results	Conclusions
UVDE cymt	av (continu	(\mathbf{d})		

- ► components: $P ::= C_s(W) \mid C(W) \mid P \bowtie_l P \qquad L \subseteq \mathcal{E}$
- uncontrolled system: $\Sigma ::= C(\vec{V}) \mid \Sigma \bowtie_{L} \Sigma \qquad L \subseteq \mathcal{E}$

► controller:
$$M ::= \underline{a}.M \mid 0 \mid M + M$$
 $\underline{a} \in \mathcal{E}$
 $Con ::= M \mid Con \bowtie_{L} Con$ $L \subseteq \mathcal{E}$

	Train gate		Model results	Conclusions
LIVDE aven	tax (continu	~d)		

- ► components: $P ::= C_s(W) \mid C(W) \mid P \bowtie_L P \qquad L \subseteq \mathcal{E}$
- uncontrolled system: $\Sigma ::= C(\vec{V}) \mid \Sigma \bowtie_{L} \Sigma \qquad L \subseteq \mathcal{E}$
- ► controller: $M ::= \underline{a} \cdot M \mid 0 \mid M + M$ $\underline{a} \in \mathcal{E}$ $Con ::= M \mid Con \Join Con$ $L \subseteq \mathcal{E}$
- controlled system: ConSys ::= $\Sigma \bowtie_{L} \underline{init}$. Con $L \subseteq \mathcal{E}$

Vashti Galpin

Train gate	Semantics	Model results	Conclusions

- ► components: $P ::= C_s(W) \mid C(W) \mid P \bowtie_L P \qquad L \subseteq \mathcal{E}$
- uncontrolled system: $\Sigma ::= C(\vec{V}) \mid \Sigma \bowtie_{L} \Sigma \qquad L \subseteq \mathcal{E}$
- ► controller: $M ::= \underline{a}.M \mid 0 \mid M + M$ $\underline{a} \in \mathcal{E}$ $Con ::= M \mid Con \bowtie_{L} Con$ $L \subseteq \mathcal{E}$
- controlled system: ConSys ::= $\Sigma \bowtie_{L} \underline{init}$. Con $L \subseteq \mathcal{E}$
- ▶ HYPE model: (*ConSys*, V, *IN*, *IT*, \mathcal{E} , \mathcal{A} , ec, iv, *EC*, *ID*)
 - IN influence names, IT influence types
 - $\blacktriangleright\ \mathrm{ec}:\mathcal{E}\to \textit{EC},$ associates events with event conditions
 - ► *EC*, event conditions, (activation condition, reset)
 - $\blacktriangleright~{\rm iv}: \textit{IN} \rightarrow \mathcal{V},$ associates influence names with variables
 - *ID* influence descriptions, $\llbracket I(\vec{X}) \rrbracket = f(\vec{X})$,

Vashti Galpin

	Train gate		Model results	Conclusions
Discrete as ► sequ Se	spects of the tencing of train ev $q_a \stackrel{def}{=} appr.Seq_p$	train gate syst ents $Seq_p \stackrel{def}{=} pass.Section$	em q_e Se $q_e \stackrel{def}{=} \underline{\text{exit}}$	Seq _a

How to use HYPE to model hybrid systems

Workshop on Probabilistic Modelling, Model-Checking and Planning

	Train gate		Model results	Conclusions
Discrete as	pects of the	train gate sy	vstem	
seque	encing of train ev	/ents		
Sec	$\eta_a \stackrel{\text{\tiny def}}{=} \underline{\operatorname{appr}}.Seq_p$	$Seq_p \stackrel{def}{=} pass.$	Seq_e $Seq_e \stackrel{def}{=} exp$	<u>(it</u> .Seq _a
► gate	internal controlle	er		
GC	$b \stackrel{def}{=} \underline{raise}.GC_o$	+ <u>lower</u> . GC ₁		
GC	$I \stackrel{def}{=} \underline{raise}.GC_r$	+ <u>lower</u> . <i>GC</i> ₁ +	<u>closed</u> .GC _c	
GC	$c \stackrel{def}{=} \underline{raise}.GC_r$	+ <u>lower</u> . GC _c		
GC	$r \stackrel{def}{=} \underline{raise}.GC_r$	+ <u>lower</u> . GC ₁ +	open.GC _o	

How to use HYPE to model hybrid systems

	Train gate		Model results	Conclusions
Discrete as	pects of the tr	ain gate syste	em	
seque	encing of train eve	nts		
Sec	$q_a \stackrel{\text{\tiny def}}{=} \underline{appr}.Seq_p$	$Seq_p \stackrel{\text{\tiny def}}{=} pass.Seq$	f_e Seq _e $\stackrel{\text{\tiny def}}{=}$ <u>exit</u> .S	eq _a
gate	internal controller			
GC	$_{o} \stackrel{def}{=} \underline{raise}.GC_{o} +$	⊢ <u>lower</u> .GC		
GC	$I \stackrel{\text{def}}{=} \underline{\text{raise}}.GC_r +$	$-$ <u>lower</u> . $GC_I + $ <u>clos</u>	$\underline{sed}.GC_c$	
GC	$c \stackrel{def}{=} \underline{raise}.GC_r +$	- <u>lower</u> .GC _c		
GC	$r \stackrel{def}{=} \underline{raise}.GC_r +$	$-$ lower. $GC_I + ope$	<u>en</u> .GC _o	
event	t conditions			
ec(<u>appr</u>)	= (D = -1000)	$, T_L' = 0) ec(\mathbf{p})$	$\underline{ass}) = (D = 0,$	true)
ec(exit)	$= (D = 100, T_{F})$	$C_{R}' = 0 \wedge D' = -15$	500)	

How to use HYPE to model hybrid systems

	Train gate		Model results	Conclusions
Discrete as	spects of the	train gate	system	
► sequ	encing of train ev	vents		
Se	$q_a \stackrel{def}{=} \underline{appr}.Seq_p$	$Seq_p \stackrel{\tiny def}{=} pa$	<u>ss</u> .Seq _e Seq _e	$\stackrel{def}{=}$ exit.Seq _a
► gate	internal controlle	er		
GC	$_{o} \stackrel{def}{=} \underline{raise}.GC_{c}$	$+ \underline{lower}.GC_I$		
GC	$I \stackrel{def}{=} \underline{raise}.GC_r$	$+$ <u>lower</u> . GC_1	$+ \underline{closed}.GC_c$	
GC	$_{c} \stackrel{def}{=} \underline{raise}.GC_{r}$	+ <u>lower</u> . GC _c		
GC	$r \stackrel{def}{=} \underline{raise}.GC_r$	+ <u>lower</u> . GC ₁	$+ \underline{open}.GC_o$	
even	t conditions			
ec(appr)	= (D = -100)	$00, T_L' = 0)$	ec(pass) =	(D = 0, true)
$ec(\underline{exit})$	= (D = 100,	$T'_R = 0 \wedge D'$	= -1500)	
ec(<u>lower</u>)	$= (T_L = 5, T$	I' = 0)	ec(closed) =	(G = 0, true)
ec(<u>raise</u>)	$= (T_R = 5, T)$	$f'_{R} = 0$)	ec(open) =	(G = 90, true)
Vachti Calpin				

	Train gate		Model results	Conclusions
Discrete a	spects of the	train gate s	ystem (continu	ed)

system controller

 $Con_a \stackrel{\text{\tiny def}}{=} \underline{appr}.Con_l + \underline{exit}.Con_a$

- $Con_I \stackrel{\text{def}}{=} \underline{appr}.Con_I + \underline{exit}.Con_I + \underline{lower}.Con_e$
- $Con_e \stackrel{def}{=} \underline{appr}.Con_e + \underline{exit}.Con_r$
- $Con_r \stackrel{\text{def}}{=} \underline{appr}.Con_l + \underline{exit}.Con_r + \underline{raise}.Con_a$

	Train gate		Model results	Conclusions
Discrete a	aspects of the t	rain gate s	system (continue	d)
► SVS	tem controller			

additional items

$$iv(g) = G$$
 $iv(t_L) = T_L$
 $iv(d) = D$ $iv(t_R) = T_R$

Vashti Galpin

How to use HYPE to model hybrid systems

Workshop on Probabilistic Modelling, Model-Checking and Planning

	Train gate		Model results	Conclusions
Discrete a	aspects of the	train gate s	system (continue	ed)
SVS	tem controller			

additional items

Vashti Galpin

How to use HYPE to model hybrid systems

Workshop on Probabilistic Modelling, Model-Checking and Planning
	Train gate		Model results	Conclusions		
Discrete aspects of the train gate system (continued)						
► SV	stem controller					

additional items

$$\begin{array}{rcl} \operatorname{iv}(g) &=& G & \operatorname{iv}(t_L) &=& T_L \\ \operatorname{iv}(d) &=& D & \operatorname{iv}(t_R) &=& T_R & \llbracket c \rrbracket &=& 1 \\ \operatorname{ec}(\operatorname{\underline{init}}) &=& (true, \, G' = 90 \wedge D' = -1400 \wedge \, T_L' = 0 \wedge \, T_R' = 0) \end{array}$$

Vashti Galpin

How to use HYPE to model hybrid systems

	Train gate		Model results	Conclusions		
Discrete aspects of the train gate system (continued)						
► SVS	stem controller					

additional items

$$\begin{array}{rcl} \operatorname{iv}(g) &=& G & \operatorname{iv}(t_L) &=& T_L \\ \operatorname{iv}(d) &=& D & \operatorname{iv}(t_R) &=& T_R & \llbracket c \rrbracket &=& 1 \\ \operatorname{ec}(\operatorname{\underline{init}}) &=& (true, G' = 90 \land D' = -1400 \land T'_L = 0 \land T'_R = 0) \end{array}$$

controlled system

 $(Gate \Join Train \Join Timer_L \bowtie Timer_R) \Join \underbrace{init}_{*} ((Con_a \Join GC_o) \Join Seq_a)$

Vashti Galpin

How to use HYPE to model hybrid systems

ð

Train gate system as a hybrid automata product

Vashti Galpin

How to use HYPE to model hybrid systems

Workshop on Probabilistic Modelling, Model-Checking and Planning

Train gate	Semantics	Model results	Conclusions

• state: $\sigma : IN \to (\mathbb{R} \times IT)$

Vashti Galpin

Train gate	Semantics	Model results	Conclusions

- state: $\sigma : IN \to (\mathbb{R} \times IT)$
- configuration: $\langle ConSys, \sigma \rangle$

Vashti Galpin

Train gate	Semantics	Model results	Conclusions

- state: $\sigma: IN \to (\mathbb{R} \times IT)$
- configuration: $\langle ConSys, \sigma \rangle$
- ▶ labelled transition system: $(\mathcal{F}, \mathcal{E}, \rightarrow \subseteq \mathcal{F} \times \mathcal{E} \times \mathcal{F})$

Vashti Galpin

Train gate	Semantics	Model results	Conclusions

- state: $\sigma: IN \to (\mathbb{R} \times IT)$
- configuration: $\langle ConSys, \sigma \rangle$
- ▶ labelled transition system: $(\mathcal{F}, \mathcal{E}, \rightarrow \subseteq \mathcal{F} \times \mathcal{E} \times \mathcal{F})$
- updating function: $\sigma[\iota \mapsto (r, I)]$

$$\sigma[\iota\mapsto (r,I)](x) = egin{cases} (r,I) & ext{if } x=\iota \ \sigma(x) & ext{otherwise} \end{cases}$$

	Train gate	Semantics	Model results	Conclusions
<u> </u>	1.1			

- state: $\sigma: IN \to (\mathbb{R} \times IT)$
- configuration: $\langle ConSys, \sigma \rangle$
- ▶ labelled transition system: $(\mathcal{F}, \mathcal{E}, \rightarrow \subseteq \mathcal{F} \times \mathcal{E} \times \mathcal{F})$
- updating function: $\sigma[\iota \mapsto (r, I)]$

$$\sigma[\iota\mapsto (r,I)](x) = egin{cases} (r,I) & ext{if } x=\iota \ \sigma(x) & ext{otherwise} \end{cases}$$

• change identifying function: $\Gamma : S \times S \times S \to S$

$$(\Gamma(\sigma, \tau, \tau'))(\iota) = \begin{cases} \tau(\iota) & \text{if } \sigma(\iota) = \tau'(\iota) \\ \tau'(\iota) & \text{if } \sigma(\iota) = \tau(\iota) \\ \text{undefined} & \text{otherwise} \end{cases}$$

Vashti Galpin

Prefix with influence:

$$\left< \underline{\mathsf{a}} : (\iota, r, I) . E, \sigma \right> \xrightarrow{\underline{\mathsf{a}}} \left< E, \sigma[\iota \mapsto (r, I)] \right>$$

Prefix without influence:

$$\overline{\langle \underline{\mathbf{a}}. E, \sigma \rangle \xrightarrow{\underline{\mathbf{a}}} \langle E, \sigma \rangle}$$

Choice:

$$\frac{\langle E, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle E', \sigma' \rangle}{E + F, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle E', \sigma' \rangle} \qquad \frac{\langle F, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle F', \sigma' \rangle}{\langle E + F, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle F', \sigma' \rangle}$$

Constant:

$$\frac{\langle E, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle E', \sigma' \rangle}{\langle A, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle E', \sigma' \rangle} (A \stackrel{\text{\tiny def}}{=} E)$$

Vashti Galpin

Prefix with influence:

$$\langle \underline{\mathsf{a}}:(\iota,r,I).E,\sigma\rangle \xrightarrow{\underline{\mathsf{a}}} \langle E,\sigma[\iota\mapsto(r,I)]\rangle$$

Prefix without influence:

$$\overline{\langle \underline{\mathbf{a}}. E, \sigma \rangle \xrightarrow{\underline{\mathbf{a}}} \langle E, \sigma \rangle}$$

Choice:

$$\frac{\langle E, \sigma \rangle \xrightarrow{\underline{a}} \langle E', \sigma' \rangle}{E + F, \sigma \rangle \xrightarrow{\underline{a}} \langle E', \sigma' \rangle} \qquad \frac{\langle F, \sigma \rangle \xrightarrow{\underline{a}} \langle F', \sigma' \rangle}{\langle E + F, \sigma \rangle \xrightarrow{\underline{a}} \langle F', \sigma' \rangle}$$

Constant:

$$\frac{\langle E, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle E', \sigma' \rangle}{\langle A, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle E', \sigma' \rangle} (A \stackrel{\text{\tiny def}}{=} E)$$

Vashti Galpin

Parallel without synchronisation:

$$\frac{\langle E, \sigma \rangle \xrightarrow{\underline{a}} \langle E', \sigma' \rangle}{\langle E \bowtie_{M} F, \sigma \rangle \xrightarrow{\underline{a}} \langle E' \bowtie_{M} F, \sigma' \rangle} \qquad \underline{a} \notin M$$

$$\frac{\langle F, \sigma \rangle \xrightarrow{\underline{a}} \langle F', \sigma' \rangle}{\langle E \bowtie_{M} F, \sigma \rangle \xrightarrow{\underline{a}} \langle E \bowtie_{M} F', \sigma' \rangle} \qquad \underline{a} \notin M$$

Parallel with synchronisation:

$$\frac{\langle E, \sigma \rangle \xrightarrow{a} \langle E', \tau \rangle \quad \langle F, \sigma \rangle \xrightarrow{a} \langle F', \tau' \rangle}{\langle E \bigotimes_{M} F, \sigma \rangle \xrightarrow{a} \langle E' \bigotimes_{M} F', \Gamma(\sigma, \tau, \tau') \rangle}$$
$$\underline{a} \in M, \Gamma \text{ defined}$$

Vashti Galpin

How to use HYPE to model hybrid systems

Parallel without synchronisation:

$$\frac{\langle E, \sigma \rangle \xrightarrow{a} \langle E', \sigma' \rangle}{\langle E \underset{M}{\bowtie} F, \sigma \rangle \xrightarrow{a} \langle E' \underset{M}{\bowtie} F, \sigma' \rangle} \qquad \underline{a} \notin M$$

$$\frac{\langle F, \sigma \rangle \xrightarrow{\underline{a}} \langle F', \sigma' \rangle}{\langle E \bowtie_{M} F, \sigma \rangle \xrightarrow{\underline{a}} \langle E \bowtie_{M} F', \sigma' \rangle} \qquad \underline{a} \notin M$$

Parallel with synchronisation:

$$\frac{\langle E, \sigma \rangle \xrightarrow{a} \langle E', \tau \rangle \quad \langle F, \sigma \rangle \xrightarrow{a} \langle F', \tau' \rangle}{\langle E \bigotimes_{M} F, \sigma \rangle \xrightarrow{a} \langle E' \bigotimes_{M} F', \Gamma(\sigma, \tau, \tau') \rangle}$$
$$\underline{a} \in M, \Gamma \text{ defined}$$

Vashti Galpin

How to use HYPE to model hybrid systems

	Train gate	Semantics	Model results	Conclusions
Hybrid se	mantics			

• extract ODEs from each state σ for each configuration

$$CS_{\sigma} = \{ \mathsf{ODE} \text{ for variable } V \mid V \in \mathcal{V} \} \text{ where }$$

$$\frac{dV}{dt} = \sum \left\{ r \llbracket \mathcal{W} \rrbracket \ \big| \ \operatorname{iv}(\iota) = V \text{ and } \sigma(\iota) = (r, \mathcal{W}) \right\}$$

- for any influence name associated with V
- determine from σ its rate and influence type
- multiply its rate and influence function together
- sum these over all associated influence names

How to use HYPE to model hybrid systems

a

	Train gate	Semantics	Model results	Conclusions
Hybrid sei	mantics			

 \blacktriangleright extract ODEs from each state σ for each configuration

$$CS_{\sigma} = \{ \mathsf{ODE} \text{ for variable } V \mid V \in \mathcal{V} \} \text{ where }$$

$$\frac{dV}{dt} = \sum \left\{ r \llbracket \mathcal{W} \rrbracket \ \big| \ \operatorname{iv}(\iota) = V \text{ and } \sigma(\iota) = (r, \mathcal{W}) \right\}$$

- for any influence name associated with V
- determine from σ its rate and influence type
- multiply its rate and influence function together
- sum these over all associated influence names
- map labelled transition system to hybrid automaton
 - configurations are modes, transitions are edges
 - ODEs are flows at configurations

Vashti Galpin

	Train gate		Model results	Conclusions
Train gat	e system			
COR	nfigurations have	the form		
	1.			

 $\langle (Gate \bowtie Train \bowtie Timer_L \bowtie Timer_R) \bowtie_{*}$

 $\underline{\mathsf{init}}.((Con_x \Join_* GC_y) \Join_* Seq_z), \sigma \rangle$

How to use HYPE to model hybrid systems

Workshop on Probabilistic Modelling, Model-Checking and Planning

	Train gate	Semantics	Model results	Conclusions
Train gate	system			
► conf	igurations have	the form		
	⟨(Gate 🛤 Trai	in 🖂 Timer _L 🖂 7	Γimer _R) ⊠	
		<u>init</u> .(($(Con_x \Join_* GC_y) \Join_*$	$Seq_z), \sigma \rangle$

which will be abbreviated to

 $\langle \mathit{CxGySz}, \sigma \rangle$

Vashti Galpin

How to use HYPE to model hybrid systems

Introduction	Train gate	Semantics	woder results	Conclusions
- · ·				
Irain gate	e system			
► con	figurations have	the form		
⟨(Gate 🛤 Train 🛤 Timer_L 🛤 Timer_R) 🛤				
		<u>init</u> .($(Con_x \Join_* GC_y) \Join_*$	$\exists Seq_z), \sigma \rangle$
► whi	ch will be abbrev	iated to		
	$\langle \mathit{CxGySz}, \sigma \rangle$			

► first configuration after init $\langle CaGoSa, \{d \mapsto (r_{tr}, c), g \mapsto (0, c), t_l \mapsto (0, c), t_r \mapsto (0, c)\} \rangle$

How to use HYPE to model hybrid systems

- · ·				
Irain gate	e system			
► con	figurations have	the form		
	⟨(Gate 🛤 Trair	$m \bowtie_{*} Timer_L \bowtie_{*}$	Timer _R) ⊠	
		<u>init</u> .($(Con_x \Join GC_y) \Join_*$	$\exists Seq_z), \sigma \rangle$
► whi	ch will be abbrev	iated to		
	$\langle CxGySz, \sigma \rangle$			

► first configuration after init $\langle CaGoSa, \{d \mapsto (r_{tr}, c), g \mapsto (0, c), t_I \mapsto (0, c), t_r \mapsto (0, c)\} \rangle$

first configuration has the following ODEs

$$\frac{dD}{dt} = r_{tr} \qquad \frac{dG}{dt} = 0 \qquad \frac{dT_L}{dt} = 0 \qquad \frac{dT_R}{dt} = 0$$

Vashti Galpin

How to use HYPE to model hybrid systems

Train gate	Model results	Conclusions

Labelled transition system of train gate system

Vashti Galpin

How to use HYPE to model hybrid systems

Workshop on Probabilistic Modelling, Model-Checking and Planning

Train gate system

Vashti Galpin

new trains can travel significantly faster

Vashti Galpin

How to use HYPE to model hybrid systems

Workshop on Probabilistic Modelling, Model-Checking and Planning

Train gate	Model results	Conclusions

- new trains can travel significantly faster
- gate speed and behaviour remains unchanged

Vashti Galpin

Train gate	Model results	Conclusions

- new trains can travel significantly faster
- gate speed and behaviour remains unchanged
- trains must slow as they approach gate

Vashti Galpin

Train gate	Model results	Conclusions

- new trains can travel significantly faster
- gate speed and behaviour remains unchanged
- trains must slow as they approach gate
- use first sensor as slowing point, unnecessary to add event

Train gate	Model results	Conclusions

- new trains can travel significantly faster
- gate speed and behaviour remains unchanged
- trains must slow as they approach gate
- use first sensor as slowing point, unnecessary to add event
- add new subcomponent

 $\begin{array}{rcl} \textit{TrainRS} & \stackrel{\textit{def}}{=} & \underline{appr}: (d_s, -r_{sl}, c). \textit{TrainRS} + \underline{exit}: (d_s, 0, c). \textit{TrainRS} & + \\ & \underline{init}: (d_s, 0, c). \textit{TrainRS} \end{array}$

How to use HYPE to model hybrid systems

Workshop on Probabilistic Modelling, Model-Checking and Planning

Train gate	Model results	Conclusions

- new trains can travel significantly faster
- gate speed and behaviour remains unchanged
- trains must slow as they approach gate
- use first sensor as slowing point, unnecessary to add event
- add new subcomponent

 $\begin{array}{rcl} \textit{TrainRS} & \stackrel{\textit{def}}{=} & \underline{appr}: (d_s, -r_{sl}, c). \textit{TrainRS} + \underline{exit}: (d_s, 0, c). \textit{TrainRS} & + \\ & \underline{init}: (d_s, 0, c). \textit{TrainRS} \end{array}$

• associate new influence with distance: $iv(d_s) = D$

Vashti Galpin

How to use HYPE to model hybrid systems

Ó٦

Introduction	Train gate	Semantics	Model results	Conclusions

- new trains can travel significantly faster
- gate speed and behaviour remains unchanged
- trains must slow as they approach gate
- use first sensor as slowing point, unnecessary to add event
- add new subcomponent

 $TrainRS \stackrel{\text{def}}{=} \underline{appr}: (d_s, -r_{sl}, c). TrainRS + \underline{exit}: (d_s, 0, c). TrainRS + \underline{init}: (d_s, 0, c). TrainRS$

- associate new influence with distance: $iv(d_s) = D$
- distance ODE for configurations where slowing is in effect

$$\frac{dD}{dt} = r_{tr} - r_{sl}$$

Vashti Galpin

Modified train gate system

Modified train gate system

violation of safety condition

Train gate	Model results	Conclusions

- violation of safety condition
- introduce a new event <u>fail</u>

Vashti Galpin

Train gate	Model results	Conclusions

- violation of safety condition
- introduce a new event <u>fail</u>
- $ec(fail) = (-100 \le D \land G \ne 0, true)$

Vashti Galpin

Train gate	Model results	Conclusions

- violation of safety condition
- introduce a new event <u>fail</u>
- $ec(fail) = (-100 \le D \land G \ne 0, true)$
- requires controller

Train gate	Model results	Conclusions

- violation of safety condition
- introduce a new event <u>fail</u>
- $ec(fail) = (-100 \le D \land G \ne 0, true)$
- requires controller
- ► $FC \stackrel{def}{=} \frac{fail}{10}$.0

Vashti Galpin

Train gate	Model results	Conclusions

- violation of safety condition
- introduce a new event <u>fail</u>
- $ec(fail) = (-100 \le D \land G \ne 0, true)$
- requires controller
- $FC \stackrel{\text{\tiny def}}{=} \underline{fail}.0$
- doubles labelled transition system and hybrid automata size

Train gate	Model results	Conclusions

- violation of safety condition
- introduce a new event <u>fail</u>
- $ec(fail) = (-100 \le D \land G \ne 0, true)$
- requires controller
- ► $FC \stackrel{def}{=} \frac{fail}{10}$.0
- doubles labelled transition system and hybrid automata size
- alternative approach adds only one state
 - add <u>fail</u> to all subcomponents
 - set all influences to zero

Vashti Galpin

How to use HYPE to model hybrid systems

Ó٦
Train gate	Model results	Conclusions

Modification to identify failure

- violation of safety condition
- introduce a new event <u>fail</u>
- $ec(fail) = (-100 \le D \land G \ne 0, true)$
- requires controller
- $FC \stackrel{\text{\tiny def}}{=} \frac{\text{fail}}{10}.0$
- doubles labelled transition system and hybrid automata size
- alternative approach adds only one state
 - add <u>fail</u> to all subcomponents
 - set all influences to zero
- graph based on alternative approach

Vashti Galpin

How to use HYPE to model hybrid systems

Ó٦

Train gate	Model results	Conclusions

Train gate system with failure event

Train gate	Model results	Conclusions

Train gate system: slower speed

Train gate	Model results	Conclusions

Train gate system: larger orginating distance

Vashti Galpin

- well-behaved no instantaneous Zeno behaviour
 - no infinite sequence of simultaneous events

Vashti Galpin

- well-behaved no instantaneous Zeno behaviour
 - no infinite sequence of simultaneous events
- construct l-graph
 - from controller and event conditions
 - identify overlaps between resets and activation conditions
 - identify whether an event can instantaneously follow another

- well-behaved no instantaneous Zeno behaviour
 - no infinite sequence of simultaneous events
- construct l-graph
 - from controller and event conditions
 - identify overlaps between resets and activation conditions
 - identify whether an event can instantaneously follow another
- ▶ theorem: HYPE model with an acyclic I-graph is well-behaved

a

- well-behaved no instantaneous Zeno behaviour
 - no infinite sequence of simultaneous events
- construct l-graph
 - from controller and event conditions
 - identify overlaps between resets and activation conditions
 - identify whether an event can instantaneously follow another
- ▶ theorem: HYPE model with an acyclic I-graph is well-behaved
- proposition: two well-behaved controllers whose unshared events do not activate events of the other controller have well-behaved cooperation
 - assuming all shared events appear in the cooperation set

- well-behaved no instantaneous Zeno behaviour
 - no infinite sequence of simultaneous events
- construct l-graph
 - from controller and event conditions
 - identify overlaps between resets and activation conditions
 - identify whether an event can instantaneously follow another
- ▶ theorem: HYPE model with an acyclic I-graph is well-behaved
- proposition: two well-behaved controllers whose unshared events do not activate events of the other controller have well-behaved cooperation
 - assuming all shared events appear in the cooperation set
- apply result to train gate controller

Vashti Galpin

How to use HYPE to model hybrid systems

Ó٦

Train gate	Model results	Conclusions

- Con_a is not well-behaved
 - $Con_I \stackrel{\text{def}}{=} \underline{appr}. Con_I + \underline{exit}. Con_r$
 - <u>appr</u> does not inhibit itself
 - $(Con_{I}, \underline{appr}, 10001) \rightarrow (Con_{I}, \underline{appr}, 10001)$

	Train gate		Model results	Conclusions
Train gat	e system: we	I-behaved?		

- Con_a is not well-behaved
 - $Con_I \stackrel{\text{def}}{=} \underline{appr}. Con_I + \underline{exit}. Con_r$
 - <u>appr</u> does not inhibit itself
 - $(Con_{I}, \underline{appr}, 10001) \rightarrow (Con_{I}, \underline{appr}, 10001)$
- ► I-graph of $Con_a \Join Seq_a$

	Train gate		Model results	Conclusions
Train gate	e system: wel	I-behaved?		
	n, is not well-beh	naved		

- $Con_I \stackrel{\text{def}}{=} \underline{appr}. Con_I + \underline{exit}. Con_r$
- appr does not inhibit itself
- $(Con_l, \underline{appr}, 10001) \rightarrow (Con_l, \underline{appr}, 10001)$
- ► I-graph of Con_a ⋈ Seq_a

Vashti Galpin

How to use HYPE to model hybrid systems

Workshop on Probabilistic Modelling, Model-Checking and Planning

ð

I-graph of gate controller

Vashti Galpin

How to use HYPE to model hybrid systems

Workshop on Probabilistic Modelling, Model-Checking and Planning

ð

I-graph of gate controller

• $Con_a \Join Seq_a$ is well-behaved and GC_o is well-behaved

How to use HYPE to model hybrid systems

Workshop on Probabilistic Modelling, Model-Checking and Planning

I-graph of gate controller

• $Con_a \Join Seq_a$ is well-behaved and GC_o is well-behaved

no event activates another event

Vashti Gal<u>pin</u>

I-graph of gate controller

- $Con_a \bowtie Seq_a$ is well-behaved and GC_o is well-behaved
- no event activates another event
- hence $Con_a \Join Seq_a \Join GC_o$ is well-behaved

Vashti Galpin

How to use HYPE to model hybrid systems

Workshop on Probabilistic Modelling, Model-Checking and Planning

	Train gate	Model results	Conclusions
Conclusion			

- HYPE
 - process algebra for hybrid systems, describes flows
 - operational semantics provide ODEs, then map to hybrid automata

	Train gate	Model results	Conclusions
Conclusion			

- HYPE
 - process algebra for hybrid systems, describes flows
 - operational semantics provide ODEs, then map to hybrid automata
- illustrated through a railway gate system
 - separation of continuous and discrete aspects
 - compositionality to modify behaviour
 - add failure event based on conditions from different subsystems

	Train gate	Model results	Conclusions
Conclusion			

- HYPE
 - process algebra for hybrid systems, describes flows
 - operational semantics provide ODEs, then map to hybrid automata
- illustrated through a railway gate system
 - separation of continuous and discrete aspects
 - compositionality to modify behaviour
 - add failure event based on conditions from different subsystems
- exclusion of infinite behaviour at a time instant
 - instantaneous Zeno behaviour
 - construct I-graph from controller and event conditions
 - check for acyclicity
 - abstract from continuous behaviour

Vashti Galpin

How to use HYPE to model hybrid systems

Workshop on Probabilistic Modelling, Model-Checking and Planning

Train gate	Model results	Conclusions

Thank you

Vashti Galpin

How to use HYPE to model hybrid systems

Workshop on Probabilistic Modelling, Model-Checking and Planning

ð

- Zeno behaviour
 - infinite number of events in a finite time period

Vashti Galpin

- Zeno behaviour
 - infinite number of events in a finite time period
- instantaneous Zeno behaviour
 - infinite number of events in a time instant
 - not representative of reality
 - not permitted in piecewise deterministic Markov processes

- Zeno behaviour
 - infinite number of events in a finite time period
- instantaneous Zeno behaviour
 - infinite number of events in a time instant
 - not representative of reality
 - not permitted in piecewise deterministic Markov processes
- how to check for this behaviour
 - without investigating the full behaviour of a model
 - controller determines event ordering
 - event conditions affect possible values
 - combine these and ignore continuous behaviour

- Zeno behaviour
 - infinite number of events in a finite time period
- instantaneous Zeno behaviour
 - infinite number of events in a time instant
 - not representative of reality
 - not permitted in piecewise deterministic Markov processes
- how to check for this behaviour
 - without investigating the full behaviour of a model
 - controller determines event ordering
 - event conditions affect possible values
 - combine these and ignore continuous behaviour
- basic idea: how does the activation condition and reset of one event affect whether another event can occur immediately

Vashti Galpin

Train gate	Model results	Conclusions

Instantaneous activation graph

- ▶ nodes: (*CeGlcSp*, <u>closed</u>, 1110111)
 - controller state
 - possible next event
 - vector indicating what events are enabled or inhibited

	Train gate		Model results	Conclusions
Instantan	eous activatic	on graph		

- ▶ nodes: (*CeGlcSp*, <u>closed</u>, 1110111)
 - controller state
 - possible next event
 - vector indicating what events are enabled or inhibited
- ▶ edges: $(CeGlSp, \underline{closed}, 1110111) \rightarrow (CeGcSp, \underline{pass}, 1110110)$
 - transition in controller, $CeGlSp \xrightarrow{closed} CeGcSp$
 - current event is enabled, following event is enabled
 - new vector is update of previous vector taking in account what has been enabled and inhibited by current event

How to use HYPE to model hybrid systems

Ó٦

	Train gate		Model results	Conclusions
Instantan	eous activatic	on graph		

- ▶ nodes: (*CeGlcSp*, <u>closed</u>, 1110111)
 - controller state
 - possible next event
 - vector indicating what events are enabled or inhibited
- ▶ edges: $(CeGlSp, \underline{closed}, 1110111) \rightarrow (CeGcSp, \underline{pass}, 1110110)$
 - transition in controller, $CeGlSp \xrightarrow{closed} CeGcSp$
 - current event is enabled, following event is enabled
 - new vector is update of previous vector taking in account what has been enabled and inhibited by current event
- construct graph from every valid controller state and event pair together with vector consisting of ones
 - abstracts from initial conditions

Ó٦