Stochastic HYPE: modelling stochastic hybrid systems

Vashti Galpin Laboratory for Foundations of Computer Science University of Edinburgh

Joint work with Jane Hillston (University of Edinburgh) and Luca Bortolussi (University of Trieste)

20 April 2011

Vashti Galpin

Stochastic HYPE: modelling stochastic hybrid systems

ð

Introduction	Stochastic HYPE	Train gate	Infinite instantaneous behaviour	Conclusions
Introduc	tion			

- stochastic hybrid process algebra
 - discrete behaviour
 - continuous behaviour, expressed as ODEs
 - stochastic behaviour, here using exponential distribution

Introduction	Stochastic HYPE	Train gate	Infinite instantaneous behaviour	Conclusions
I the task of the second	a tha an			

Introduction

- stochastic hybrid process algebra
 - discrete behaviour
 - continuous behaviour, expressed as ODEs
 - stochastic behaviour, here using exponential distribution
- why use a process algebra
 - compositional
 - language allows for abstract reasoning

Introduction	Stochastic HYPE	Train gate	Infinite instantaneous behaviour	Conclusions
- I - A I	1 C			

Introduction

- stochastic hybrid process algebra
 - discrete behaviour
 - continuous behaviour, expressed as ODEs
 - stochastic behaviour, here using exponential distribution
- why use a process algebra
 - compositional
 - language allows for abstract reasoning
- outline
 - HYPE and stochastic HYPE
 - train gate example
 - checking for infinite discrete behaviour
 - I-graphs and acyclicity

Vashti Galpin

components

 $(C_1(\mathcal{V}) \Join \cdots \Join C_n(\mathcal{V}))$

$(C_1(\mathcal{V}) \Join \cdots \Join C_n(\mathcal{V})) \quad \Join$

 $\begin{array}{c} \text{components} & \text{controllers} \\ \left(\mathcal{C}_1(\mathcal{V}) \Join \cdots \Join \mathcal{C}_n(\mathcal{V}) \right) & \Join & \left(\mathcal{Con}_1 \Join \cdots \Join \mathcal{Con}_m \right) \end{array}$

 $\begin{array}{ccc} \text{components} & \text{controllers} \\ \left(\begin{array}{ccc} C_1(\mathcal{V}) \Join & \cdots \Join & C_n(\mathcal{V}) \end{array} \right) & \Join & \left(\begin{array}{cccc} Con_1 \Join & \cdots & \Join & Con_m \end{array} \right) \end{array}$

well-defined component

$$C(\mathcal{V}) \stackrel{def}{=} \sum_{j} a_{j} : \alpha_{j} . C(\mathcal{V}) + \underline{init} : \alpha . C(\mathcal{V})$$

 $\begin{array}{cc} \text{components} & \text{controllers} \\ \left(\begin{array}{c} C_1(\mathcal{V}) \Join \cdots \Join C_n(\mathcal{V}) \end{array} \right) & \Join & \left(\begin{array}{c} Con_1 \Join \cdots \Join Con_m \end{array} \right) \end{array}$

well-defined component

$$C(\mathcal{V}) \stackrel{\text{def}}{=} \sum_{j} a_{j} : \alpha_{j} . C(\mathcal{V}) + \underline{\text{init}} : \alpha . C(\mathcal{V})$$

components are parameterised by variables

 $\begin{array}{ccc} \text{components} & \text{controllers} \\ \left(\begin{array}{ccc} C_1(\mathcal{V}) \Join \cdots \Join C_n(\mathcal{V}) \end{array} \right) & \Join & \left(\begin{array}{cccc} Con_1 \Join \cdots \Join Con_m \end{array} \right) \end{array}$

well-defined component $C(\mathcal{V}) \stackrel{\text{def}}{=} \sum_{j} \mathbf{a}_{j} : \alpha_{j} . C(\mathcal{V}) + \underline{\mathsf{init}} : \alpha . C(\mathcal{V})$

 $\begin{array}{cc} \text{components} & \text{controllers} \\ \left(\begin{array}{c} C_1(\mathcal{V}) \Join \cdots \Join C_n(\mathcal{V}) \end{array} \right) & \Join & \left(\begin{array}{c} Con_1 \Join \cdots \Join Con_m \end{array} \right) \end{array}$

well-defined component

$$C(\mathcal{V}) \stackrel{\text{def}}{=} \sum_{j} \mathbf{a}_{j} : \alpha_{j} . C(\mathcal{V}) + \underline{\mathsf{init}} : \alpha . C(\mathcal{V})$$

events have event conditions: guards and resets

 $\begin{array}{cc} \text{components} & \text{controllers} \\ \left(\textit{C}_1(\textit{V}) \Join \cdots \Join \textit{C}_n(\textit{V}) \right) & \Join & \left(\textit{Con}_1 \Join \cdots \Join \textit{Con}_m \right) \end{array}$

well-defined component

$$C(\mathcal{V}) \stackrel{\text{def}}{=} \sum_{j} \mathbf{a}_{j} : \alpha_{j} . C(\mathcal{V}) + \underline{\text{init}} : \alpha . C(\mathcal{V})$$

events have event conditions: guards and resets $ec(\underline{a}_i) = (f(\mathcal{V}), \mathcal{V}' = f'(\mathcal{V}))$ discrete events

 $\begin{array}{cc} \text{components} & \text{controllers} \\ \left(\textit{C}_1(\mathcal{V}) \Join \cdots \Join \textit{C}_n(\mathcal{V}) \right) & \Join & \left(\textit{Con}_1 \Join \cdots \Join \textit{Con}_m \right) \end{array}$

well-defined component

$$C(\mathcal{V}) \stackrel{\text{def}}{=} \sum_{j} \mathbf{a}_{j} : \alpha_{j} . C(\mathcal{V}) + \underline{\text{init}} : \alpha . C(\mathcal{V})$$

events have event conditions: guards and resets

 $ec(\underline{a}_j) = (f(\mathcal{V}), \mathcal{V}' = f'(\mathcal{V}))$ discrete events $ec(\overline{a}_j) = (r, \mathcal{V} = f'(\mathcal{V}))$ stochastic events

Vashti Galpin

 $\begin{array}{ccc} \text{components} & \text{controllers} \\ \left(\begin{array}{ccc} C_1(\mathcal{V}) \Join & \cdots \Join & C_n(\mathcal{V}) \end{array} \right) & \Join & \left(\begin{array}{cccc} Con_1 \Join & \cdots & \Join & Con_m \end{array} \right) \end{array}$

well-defined component $C(\mathcal{V}) \stackrel{\text{def}}{=} \sum_{j} a_{j} : \alpha_{j} . C(\mathcal{V}) + \underline{\text{init}} : \alpha . C(\mathcal{V})$

 $\begin{array}{cc} \text{components} & \text{controllers} \\ \left(\begin{array}{c} C_1(\mathcal{V}) \Join \cdots \Join C_n(\mathcal{V}) \end{array} \right) & \Join & \left(\begin{array}{c} Con_1 \Join \cdots \Join Con_m \end{array} \right) \end{array}$

well-defined component

$$C(\mathcal{V}) \stackrel{\text{def}}{=} \sum_{j} a_{j} : \alpha_{j} \cdot C(\mathcal{V}) + \underline{\text{init}} : \alpha \cdot C(\mathcal{V})$$
influences are defined by a triple

 $\begin{array}{ccc} \text{components} & \text{controllers} \\ \left(\begin{array}{ccc} C_1(\mathcal{V}) \Join & \cdots \Join & C_n(\mathcal{V}) \end{array} \right) & \Join & \left(\begin{array}{cccc} Con_1 \Join & \cdots & \Join & Con_m \end{array} \right) \end{array}$

well-defined component

$$C(\mathcal{V}) \stackrel{\text{def}}{=} \sum_{j} a_{j} : \alpha_{j} \cdot C(\mathcal{V}) + \underline{\text{init}} : \alpha \cdot C(\mathcal{V})$$
influences are defined by a triple
$$\alpha_{i} = (\iota_{i}, r_{i}, I(\mathcal{V}))$$

 $\begin{array}{cc} \text{components} & \text{controllers} \\ \left(\textit{C}_1(\textit{V}) \Join \cdots \Join \textit{C}_n(\textit{V}) \right) & \Join & \left(\textit{Con}_1 \Join \cdots \Join \textit{Con}_m \right) \end{array}$

well-defined component

$$C(\mathcal{V}) \stackrel{\text{def}}{=} \sum_{j} a_{j} : \alpha_{j} \cdot C(\mathcal{V}) + \underline{\text{init}} : \alpha \cdot C(\mathcal{V})$$
influences are defined by a triple
$$\alpha_{i} = (\iota_{i}, r_{i}, I(\mathcal{V}))$$

influence names are mapped to variables $\operatorname{iv}(\iota_i) \in \mathcal{V}$

Vashti Galpin

Stochastic HYPE: modelling stochastic hybrid systems

 $\begin{array}{c} \text{components} & \text{controllers} \\ \left(\mathcal{C}_1(\mathcal{V}) \Join \cdots \Join \mathcal{C}_n(\mathcal{V}) \right) & \Join & \left(\mathcal{Con}_1 \Join \cdots \Join \mathcal{Con}_m \right) \end{array}$

components

controllers

 $(C_1(\mathcal{V}) \Join \cdots \Join C_n(\mathcal{V})) \Join (Con_1 \Join \cdots \Join Con_m)$

components

controllers

 $(C_1(\mathcal{V}) \Join \cdots \Join C_n(\mathcal{V})) \Join (Con_1 \Join \cdots \Join Con_m)$

controller grammar

ð

components

controllers

 $(C_1(\mathcal{V}) \Join \cdots \Join C_n(\mathcal{V})) \Join (Con_1 \Join \cdots \Join Con_m)$

controller grammar $M ::= a.M \mid 0 \mid M + M$

components

controllers

 $(C_1(\mathcal{V}) \Join \cdots \Join C_n(\mathcal{V})) \Join (Con_1 \Join \cdots \Join Con_m)$

controller grammar $M ::= \mathbf{a}.M \mid \mathbf{0} \mid M + M$

components

controllers

 $(C_1(\mathcal{V}) \Join \cdots \Join C_n(\mathcal{V})) \Join (Con_1 \Join \cdots \Join Con_m)$

controller grammar $M ::= a.M \mid 0 \mid M + M$ $Con ::= M \mid Con \Join Con$

ð

Stochastic HYPE	Train gate	Infinite instantaneous behaviour	Conclusions

Semantics

HYPE semantics

	Stochastic HYPE	Train gate	Infinite instantaneous behaviour	Conclusions
Semantics	5			

- HYPE semantics
 - no stochastic events, only <u>a</u>

ð

	Stochastic HYPE	Train gate	Infinite instantaneous behaviour	Conclusions
Semanti	ics			

- HYPE semantics
 - no stochastic events, only <u>a</u>
 - SOS generates labelled transition system (LTS)

 $\langle {\cal H}, \sigma \rangle \overset{\underline{\rm a}}{\longrightarrow} \langle {\cal H}', \sigma' \rangle$

ð

	Stochastic HYPE	Train gate	Infinite instantaneous behaviour	Conclusions
Semant	ics			

- HYPE semantics
 - no stochastic events, only <u>a</u>
 - ► SOS generates labelled transition system (LTS) $\langle H, \sigma \rangle \xrightarrow{a} \langle H', \sigma' \rangle$
 - simple mapping of LTS to hybrid automaton (HA)

	Stochastic HYPE	Train gate	Infinite instantaneous behaviour	Conclusions
Semanti	ics			

- HYPE semantics
 - no stochastic events, only <u>a</u>
 - ► SOS generates labelled transition system (LTS) $\langle H, \sigma \rangle \xrightarrow{a} \langle H', \sigma' \rangle$
 - simple mapping of LTS to hybrid automaton (HA)
- stochastic HYPE semantics

	Stochastic HYPE	Train gate	Infinite instantaneous behaviour	Conclusions
Semant	ics			

- HYPE semantics
 - no stochastic events, only <u>a</u>
 - ► SOS generates labelled transition system (LTS) $\langle H, \sigma \rangle \xrightarrow{a} \langle H', \sigma' \rangle$
 - simple mapping of LTS to hybrid automaton (HA)
 - stochastic HYPE semantics
 - mapping to transition driven stochastic HA (TDSHA)

	Stochastic HYPE	Train gate	Infinite instantaneous behaviour	Conclusions
Semanti	ics			

- HYPE semantics
 - no stochastic events, only <u>a</u>
 - ► SOS generates labelled transition system (LTS) $\langle H, \sigma \rangle \xrightarrow{a} \langle H', \sigma' \rangle$
 - simple mapping of LTS to hybrid automaton (HA)
- stochastic HYPE semantics
 - mapping to transition driven stochastic HA (TDSHA)
 - compositional mapping using TDSHA product on shared events

	Stochastic HYPE	Train gate	Infinite instantaneous behaviour	Conclusions
Semanti	ics			

- HYPE semantics
 - no stochastic events, only <u>a</u>
 - ► SOS generates labelled transition system (LTS) $\langle H, \sigma \rangle \xrightarrow{a} \langle H', \sigma' \rangle$
 - simple mapping of LTS to hybrid automaton (HA)
- stochastic HYPE semantics
 - mapping to transition driven stochastic HA (TDSHA)
 - compositional mapping using TDSHA product on shared events
 - subset of piecewise deterministic Markov processes (PDMP)

Train gate system

Vashti Galpin

Stochastic HYPE: modelling stochastic hybrid systems

	Stochastic HYPE	Train gate	Infinite instantaneous behaviour	Conclusions
Train ga	te system			

standard example for hybrid systems modelling

- standard example for hybrid systems modelling
- railway track with guarded crossing

ð

Train gate system

- standard example for hybrid systems modelling
- railway track with guarded crossing
- model track and train from 1500m before to 100m after gate

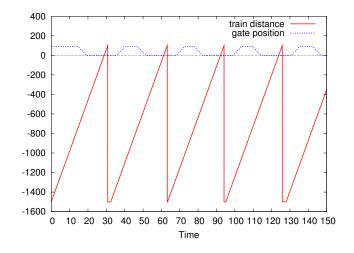
- standard example for hybrid systems modelling
- railway track with guarded crossing
- model track and train from 1500m before to 100m after gate
- random delay between trains

- standard example for hybrid systems modelling
- railway track with guarded crossing
- model track and train from 1500m before to 100m after gate
- random delay between trains
- two sensors
 - ▶ first: 1000m before crossing sends *approach* signal to controller
 - second: 100m after crossing sends exit signal to controller

- standard example for hybrid systems modelling
- railway track with guarded crossing
- model track and train from 1500m before to 100m after gate
- random delay between trains
- two sensors
 - ▶ first: 1000m before crossing sends *approach* signal to controller
 - second: 100m after crossing sends exit signal to controller
- gate controller takes time to respond to signals

- standard example for hybrid systems modelling
- railway track with guarded crossing
- model track and train from 1500m before to 100m after gate
- random delay between trains
- two sensors
 - ▶ first: 1000m before crossing sends *approach* signal to controller
 - second: 100m after crossing sends exit signal to controller
- gate controller takes time to respond to signals
- gate opens and closes at fixed speed

- standard example for hybrid systems modelling
- railway track with guarded crossing
- model track and train from 1500m before to 100m after gate
- random delay between trains
- two sensors
 - ▶ first: 1000m before crossing sends *approach* signal to controller
 - second: 100m after crossing sends exit signal to controller
- gate controller takes time to respond to signals
- gate opens and closes at fixed speed
- safety property
 - when the train is 100m before the gate, the gate is closed



Vashti Galpin

want to ensure certain types of behaviour do not occur

- want to ensure certain types of behaviour do not occur
- Zeno behaviour
 - infinite number of events in a finite time period
 - very hard to check

- want to ensure certain types of behaviour do not occur
- Zeno behaviour
 - infinite number of events in a finite time period
 - very hard to check
- instantaneous Zeno behaviour
 - infinite number of events in a time instant
 - no continuous behaviour between events
 - not representative of reality
 - not permitted in piecewise deterministic Markov processes

- want to ensure certain types of behaviour do not occur
- Zeno behaviour
 - infinite number of events in a finite time period
 - very hard to check
- instantaneous Zeno behaviour
 - infinite number of events in a time instant
 - no continuous behaviour between events
 - not representative of reality
 - not permitted in piecewise deterministic Markov processes
- want to check for this behaviour abstractly
 - without investigating the full behaviour of a model
 - consider controller and event conditions
 - combine these and ignore continuous behaviour

basic idea

Vashti Galpin

Stochastic HYPE: modelling stochastic hybrid systems

- basic idea
 - how does the guard and reset of one event affect whether another event can occur immediately that event

- basic idea
 - how does the guard and reset of one event affect whether another event can occur immediately that event
 - capture this information in a finite graph using controller info

- basic idea
 - how does the guard and reset of one event affect whether another event can occur immediately that event
 - capture this information in a finite graph using controller info
 - if acyclic then no infinite sequences of events

- basic idea
 - how does the guard and reset of one event affect whether another event can occur immediately that event
 - capture this information in a finite graph using controller info
 - if acyclic then no infinite sequences of events
- I-graph construction

- basic idea
 - how does the guard and reset of one event affect whether another event can occur immediately that event
 - capture this information in a finite graph using controller info
 - if acyclic then no infinite sequences of events
- I-graph construction
 - node: controller state, event, binary activation vector for events, b₁... b_n for n events

- basic idea
 - how does the guard and reset of one event affect whether another event can occur immediately that event
 - capture this information in a finite graph using controller info
 - if acyclic then no infinite sequences of events
- I-graph construction
 - node: controller state, event, binary activation vector for events, b₁... b_n for n events
 - edge: if transition in LTS with that event and event is enabled and after vector is an update by event of before vector

- basic idea
 - how does the guard and reset of one event affect whether another event can occur immediately that event
 - capture this information in a finite graph using controller info
 - if acyclic then no infinite sequences of events
- I-graph construction
 - node: controller state, event, binary activation vector for events, b₁... b_n for n events
 - edge: if transition in LTS with that event and event is enabled and after vector is an update by event of before vector
 - update of vector by event determines which other events have been activated or disabled by this event

向

- basic idea
 - how does the guard and reset of one event affect whether another event can occur immediately that event
 - capture this information in a finite graph using controller info
 - if acyclic then no infinite sequences of events
- I-graph construction
 - node: controller state, event, binary activation vector for events, b₁... b_n for n events
 - edge: if transition in LTS with that event and event is enabled and after vector is an update by event of before vector
 - update of vector by event determines which other events have been activated or disabled by this event
 - include all controller states, all events, activation vector of 1's

- basic idea
 - how does the guard and reset of one event affect whether another event can occur immediately that event
 - capture this information in a finite graph using controller info
 - if acyclic then no infinite sequences of events
- I-graph construction
 - node: controller state, event, binary activation vector for events, b₁... b_n for n events
 - edge: if transition in LTS with that event and event is enabled and after vector is an update by event of before vector
 - update of vector by event determines which other events have been activated or disabled by this event
 - include all controller states, all events, activation vector of 1's
- gives an overapproximation, ignores initial conditions

Vashti Galpin

- system controller
 - $Con_a \stackrel{\text{\tiny def}}{=} \underline{appr}.Con_l + \underline{exit}.Con_a$
 - $Con_I \stackrel{def}{=} \underline{appr}.Con_I + \underline{exit}.Con_I + \underline{lower}.Con_e$
 - $Con_e \stackrel{def}{=} \underline{appr}.Con_e + \underline{exit}.Con_r$
 - $Con_r \stackrel{\text{def}}{=} \underline{appr}.Con_l + \underline{exit}.Con_r + \underline{raise}.Con_a$

system controller

gate internal controller

$$\begin{array}{rcl} GC_o & \stackrel{\text{def}}{=} & \underline{\text{raise.}} & GC_o + \underline{\text{lower.}} & GC_I \\ GC_I & \stackrel{\text{def}}{=} & \underline{\text{raise.}} & GC_r + \underline{\text{lower.}} & GC_I + \underline{\text{closed.}} & GC_c \\ GC_c & \stackrel{\text{def}}{=} & \underline{\text{raise.}} & GC_r + \underline{\text{lower.}} & GC_c \\ GC_r & \stackrel{\text{def}}{=} & \underline{\text{raise.}} & GC_r + \underline{\text{lower.}} & GC_I + \underline{\text{open.}} & GC_o \end{array}$$

- sequencing of train travel
 - $\begin{array}{lll} Seq_{a} \stackrel{\text{\tiny def}}{=} & \underline{\operatorname{appr}}.Seq_{p} & Seq_{p} \stackrel{\text{\tiny def}}{=} & \underline{\operatorname{pass}}.Seq_{e} \\ Seq_{e} \stackrel{\text{\tiny def}}{=} & \underline{\operatorname{exit}}.Seq_{f} & Seq_{f} \stackrel{\text{\tiny def}}{=} & \overline{\operatorname{wait}}.Seq_{a} \end{array}$

- sequencing of train travel
 - $\begin{array}{lll} Seq_{a} \stackrel{\text{\tiny def}}{=} \underline{\operatorname{appr}}.Seq_{p} & Seq_{p} \stackrel{\text{\tiny def}}{=} \underline{\operatorname{pass}}.Seq_{e} \\ Seq_{e} \stackrel{\text{\tiny def}}{=} \underline{\operatorname{exit}}.Seq_{f} & Seq_{f} \stackrel{\text{\tiny def}}{=} \overline{\operatorname{wait}}.Seq_{a} \end{array}$
- controller states

 $Con_x \Join GC_y \Join Seq_z$ will be written as CxGySz

- sequencing of train travel
- controller states

 $Con_x \Join GC_y \Join Seq_z$ will be written as CxGySz

▶ continuous part of the system is
 Gate I Train I Timer_L I Timer_R
 and remains unchanged by the occurrence of events
 because of form of well-defined components

	Stochastic HYPE	Train gate	Infinite instantaneous behaviour	Conclusions				
Event conditions								
8 events (other then <u>init</u>)								
	ec(appr) =	(D = -1000,	$T'_{L} = 0)$					
	ec(pass) =	(D = 0,	true)					
	$ec(\underline{exit}) =$	(D = 100,	$T_R^\prime = 0 \wedge D^\prime = -1500)$					
	$ec(\overline{wait}) =$	(delay,	true)					
6	ec(lower) =	$(T_L = 5,$	$T'_{L} = 0)$					
	ec(raise) =	$(T_R = 5$	$T_{R}^{\prime} = 0)$					
ee	c(closed) =	(G = 0,	true)					
	ec(open) =	(G = 90,	true)					

	Stochastic HYPE	Train gate	Infinite instantaneous behaviour	Conclusions				
Event conditions								
▶ 8 events (other then <u>init</u>)								
	ec(appr) =	(D = -1000,	$T'_{L} = 0)$					
	ec(pass) =	(D = 0,	true)					
	$ec(\underline{exit}) =$	(D = 100,	$T_R^\prime = 0 \wedge D^\prime = -1500)$					
	$ec(\overline{wait}) =$	(delay,	true)					
(ec(lower) =	$(T_L = 5,$	$T'_{L} = 0)$					
	ec(raise) =	$(T_R = 5$	$T_{R}^{\prime} = 0)$					
e	$c(\underline{closed}) =$	(G = 0,	true)					
	ec(<u>open</u>) =	(G = 90,	true)					

let b₁... b₈ be a binary vector where each element is associated with an event using the above ordering

- ▶ $(CeGlSp, \underline{closed}, 11110111) \rightarrow (CeGcSp, \underline{pass}, 11110110)$
 - transition in controller, $CeGlSp \xrightarrow{closed} CeGcSp$
 - ▶ in source node, all events are enabled except lower
 - ▶ in target node, lower and open are disabled

- ▶ $(CeGlSp, \underline{closed}, 11110111) \rightarrow (CeGcSp, \underline{pass}, 11110110)$
 - transition in controller, $CeGlSp \xrightarrow{closed} CeGcSp$
 - in source node, all events are enabled except <u>lower</u>
 - in target node, <u>lower</u> and <u>open</u> are disabled
- <u>closed</u> disables <u>open</u>
 - <u>closed</u> occurs when G = 0 and G is not reset by <u>closed</u>
 - ▶ hence immediately after <u>closed</u>, G = 0
 - <u>open</u> occurs when G = 90 so disabled immediately after <u>closed</u>

- ▶ $(CeGlSp, \underline{closed}, 11110111) \rightarrow (CeGcSp, \underline{pass}, 11110110)$
 - transition in controller, $CeGlSp \xrightarrow{closed} CeGcSp$
 - in source node, all events are enabled except <u>lower</u>
 - in target node, <u>lower</u> and <u>open</u> are disabled
- <u>closed</u> disables <u>open</u>
 - <u>closed</u> occurs when G = 0 and G is not reset by <u>closed</u>
 - ▶ hence immediately after <u>closed</u>, G = 0
 - <u>open</u> occurs when G = 90 so disabled immediately after <u>closed</u>
- <u>closed</u> does not enable <u>lower</u>

- ▶ $(CeGlSp, \underline{closed}, 11110111) \rightarrow (CeGcSp, \underline{pass}, 11110110)$
 - ▶ transition in controller, $CeGlSp \xrightarrow{closed} CeGcSp$
 - in source node, all events are enabled except <u>lower</u>
 - in target node, <u>lower</u> and <u>open</u> are disabled
- <u>closed</u> disables <u>open</u>
 - <u>closed</u> occurs when G = 0 and G is not reset by <u>closed</u>
 - ▶ hence immediately after <u>closed</u>, G = 0
 - <u>open</u> occurs when G = 90 so disabled immediately after <u>closed</u>
- <u>closed</u> does not enable <u>lower</u>
- <u>lower</u> disables itself: $ec(lower) = (T_L = 5, T'_L = 0)$

- ▶ $(CeGlSp, \underline{closed}, 11110111) \rightarrow (CeGcSp, \underline{pass}, 11110110)$
 - ▶ transition in controller, $CeGlSp \xrightarrow{closed} CeGcSp$
 - in source node, all events are enabled except <u>lower</u>
 - in target node, <u>lower</u> and <u>open</u> are disabled
- <u>closed</u> disables <u>open</u>
 - <u>closed</u> occurs when G = 0 and G is not reset by <u>closed</u>
 - ▶ hence immediately after <u>closed</u>, G = 0
 - <u>open</u> occurs when G = 90 so disabled immediately after <u>closed</u>
- <u>closed</u> does not enable <u>lower</u>
- lower disables itself: $ec(lower) = (T_L = 5, T'_L = 0)$
- wait disables all events because it has duration

- ▶ $(CeGlSp, \underline{closed}, 11110111) \rightarrow (CeGcSp, \underline{pass}, 11110110)$
 - ▶ transition in controller, $CeGlSp \xrightarrow{closed} CeGcSp$
 - in source node, all events are enabled except <u>lower</u>
 - in target node, <u>lower</u> and <u>open</u> are disabled
- <u>closed</u> disables <u>open</u>
 - <u>closed</u> occurs when G = 0 and G is not reset by <u>closed</u>
 - ▶ hence immediately after <u>closed</u>, G = 0
 - <u>open</u> occurs when G = 90 so disabled immediately after <u>closed</u>
- <u>closed</u> does not enable <u>lower</u>
- lower disables itself: $ec(lower) = (T_L = 5, T'_L = 0)$
- wait disables all events because it has duration
- straightforward to determine event updates

Vashti Galpin

Stochastic HYPE: modelling stochastic hybrid systems

Well-behaved stochastic HYPE models

well-behaved: no infinite sequence of simultaneous events

Vashti Galpin

Well-behaved stochastic HYPE models

- well-behaved: no infinite sequence of simultaneous events
- ▶ theorem: HYPE model with an acyclic I-graph is well-behaved

- well-behaved: no infinite sequence of simultaneous events
- ► theorem: HYPE model with an acyclic I-graph is well-behaved
- results for simple sequential controllers

- well-behaved: no infinite sequence of simultaneous events
- ► theorem: HYPE model with an acyclic I-graph is well-behaved
- results for simple sequential controllers
- two well-behaved controllers with independent events have well-behaved cooperation

- well-behaved: no infinite sequence of simultaneous events
- ▶ theorem: HYPE model with an acyclic I-graph is well-behaved
- results for simple sequential controllers
- two well-behaved controllers with independent events have well-behaved cooperation
- two well-behaved controllers whose unshared events do not activate events of the other controller have well-behaved cooperation
 - assuming all shared events appear in the cooperation set

- well-behaved: no infinite sequence of simultaneous events
- ► theorem: HYPE model with an acyclic I-graph is well-behaved
- results for simple sequential controllers
- two well-behaved controllers with independent events have well-behaved cooperation
- two well-behaved controllers whose unshared events do not activate events of the other controller have well-behaved cooperation
 - assuming all shared events appear in the cooperation set
- apply results to train gate controller

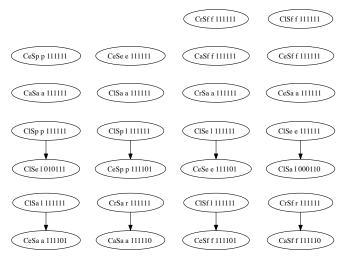
- well-behaved: no infinite sequence of simultaneous events
- ▶ theorem: HYPE model with an acyclic I-graph is well-behaved
- results for simple sequential controllers
- two well-behaved controllers with independent events have well-behaved cooperation
- two well-behaved controllers whose unshared events do not activate events of the other controller have well-behaved cooperation
 - assuming all shared events appear in the cooperation set
- apply results to train gate controller
- use compositional results rather than working with all controllers

- Seq_a is well-behaved
 - simple sequential controller
 - one event is stochastic and inhibits all other events
 - also <u>exit</u> inhibits itself and nothing activates it

- Seq_a is well-behaved
 - simple sequential controller
 - one event is stochastic and inhibits all other events
 - also <u>exit</u> inhibits itself and nothing activates it
- Con_a is not well-behaved
 - $Con_l \stackrel{\text{def}}{=} \underline{appr}. Con_l + \underline{exit}. Con_r$
 - appr does not inhibit itself
 - $(Con_I, \underline{appr}, 10001) \rightarrow (Con_I, \underline{appr}, 10001)$

- Seq_a is well-behaved
 - simple sequential controller
 - one event is stochastic and inhibits all other events
 - also <u>exit</u> inhibits itself and nothing activates it
- Con_a is not well-behaved
 - $Con_l \stackrel{\text{def}}{=} \underline{appr}. Con_l + \underline{exit}. Con_r$
 - <u>appr</u> does not inhibit itself
 - $(Con_I, \underline{appr}, 10001) \rightarrow (Con_I, \underline{appr}, 10001)$
- ► consider I-graphs of Con_a ⋈ Seq_a and Gate_a

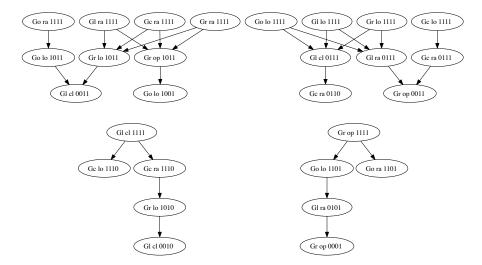
I-graph of system controller and sequencer



Vashti Galpin

Stochastic HYPE: modelling stochastic hybrid systems

I-graph of gate controller



Vashti Galpin

Stochastic HYPE: modelling stochastic hybrid systems

ð

Con_a \approx Seq_a is well-behaved

ð

- ► Con_a ⋈ Seq_a is well-behaved
- ► GC_o is well-behaved

- Con_a \vee Seq_a is well-behaved
- ► GC_o is well-behaved
- no event activates another event

- Con_a \vee Seq_a is well-behaved
- ► GC_o is well-behaved
- no event activates another event
- all shared events are synchronised on

- Con_a \vee Seq_a is well-behaved
- ► GC_o is well-behaved
- no event activates another event
- all shared events are synchronised on
- hence $Con_a \Join Seq_a \Join GC_o$ is well-behaved

- Con_a \vee Seq_a is well-behaved
- ► GC_o is well-behaved
- no event activates another event
- all shared events are synchronised on
- hence $Con_a \Join Seq_a \Join GC_o$ is well-behaved
- hence train gate model can be mapped successfully to a piecewise deterministic Markov process

Stochastic HYPE	Train gate	Infinite instantaneous behaviour	Conclusions

Conclusions

- stochastic HYPE
 - process algebra for stochastic hybrid systems
 - extension of HYPE
 - different underlying semantic model

Conclusions

- stochastic HYPE
 - process algebra for stochastic hybrid systems
 - extension of HYPE
 - different underlying semantic model
- illustrated through a railway gate system

Conclusions

- stochastic HYPE
 - process algebra for stochastic hybrid systems
 - extension of HYPE
 - different underlying semantic model
- illustrated through a railway gate system
- exclusion of infinite behaviour at a time instant
 - instantaneous Zeno behaviour
 - well-behaved stochastic HYPE models
 - construct I-graph from controller and event conditions
 - overapproximation of behaviour
 - check for acyclicity
 - abstract from continuous behaviour

Stochastic HYPE	Train gate	Infinite instantaneous behaviour	Conclusions

Thank you