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Abstract

This paper investigates Bio-PEPA, the stochastic process algebra for biological mod-

elling developed by Ciocchetta and Hillston. It focusses on Bio-PEPA with levels

where molecular counts are grouped or concentrations are discretised into a finite num-

ber of levels. Basic properties of well-defined Bio-PEPA systems are established after

which equivalences used for the stochastic process algebra PEPA are considered for

Bio-PEPA, and are shown to be identical for well-defined Bio-PEPA systems. Two

new semantic equivalences parameterised by functions, called g-bisimilarity and weak

g-bisimilarity are introduced. Different functions lead to different equivalences for

Bio-PEPA. Congruence is shown for both forms of g-bisimilarity under certain rea-

sonable conditions on the function and the use of these equivalences are demonstrated

with a biologically-motivated example where two similar species are treated as a single

species, and modelling of alternative pathways in the MAPK kinase signalling cascade.

Key words: process algebra, biological modelling, discretisation, semantic

equivalence, parameterised bisimulation, congruence

1. Introduction

Biological modelling has an important role in systems biology since it can be used

both to model the behaviour seen in the laboratory and to make predictions of be-

haviours which can then lead to new experimental hypotheses.
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Recently, computer science modelling techniques have been applied to the mod-

elling of biological systems [1]. A specific computer science approach that has been

applied is that of process algebra [2, 3, 4, 5, 6]. It is an ongoing experiment to determine

the worth of process algebra techniques for systems biology modelling [9]. The two

biological modelling examples, one related to grouping of species and the other about

alternative signalling pathways, presented here are further evidence that this approach

is beneficial.

The process algebra considered in this paper, Bio-PEPA [7], is based on the stochas-

tic process algebra PEPA [8]. Stochastic behaviour allows for quantitative models.

These models are important in biology since often in understanding what happens, it is

necessary to understand how fast or when it happens. Bio-PEPA is used in a reagent-

centric way employing the process-as-species metaphor, whereas many other process

algebras take the process-as-molecule approach [9]. Bio-PEPA has been used success-

fully to model and analyse Goldbeter’s model of cyclin oscillation [11, 12], the Re-

pressilator [13], the NF-κB signalling pathway [14], the MAPK model [15], circadian

clocks [16, 17] and the gp130/JAK/STAT pathway [18].

A strength of Bio-PEPA is that it supports various methods of modelling analysis

including ordinary differential equations, stochastic simulation and continuous time

Markov chains (CTMCs). To obtain CTMCs, the molecular counts are stratified or

concentrations are discretised, resulting in a finite number of levels and a finite labelled

transition system. Thus a biological system described as a Bio-PEPA system with levels

can be expressed as a finite CTMC, giving access to the many analysis techniques

available for this mathematical structure.

Much of the biological modelling done under the framework of process algebras

has been focussed on mapping to stochastic simulation and ordinary differential equa-

tions (ODEs) and often the labelled transition system and its properties have been over-

looked. This paper is an opportunity to consider an approach to biological modelling

that uses a stochastic process algebra as a process algebra, rather than as a language

front-end to an existing technique. This is achieved by developing an understanding of

the labelled transition systems generated by a model and their relationship to other tran-

sition systems by comparing behaviour based on the standard process algebra notion
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of semantic equivalence.

This raises the question of what constitutes the same behaviour in a biological

setting. When modelling, it may be convenient (either for model size or because the

underlying details are not known) to group some species together. If one can show that

a model without the grouping has the same behaviour as the model with the grouping,

then there is an argument for working with the simpler model of the two. Likewise,

if there are two different sequences of reactions that produce the same species, then

to simplify modelling it can be useful to view them as having similar behaviour. This

requires the ability to abstract away from the details of some reactions and through this

abstraction, be able to focus on the reactions that are relevant. The examples in this

paper will illustrate both of these techniques.

To motivate this direction of research, there are at least three (overlapping) ap-

proaches to developing equivalences for a biological process algebra:

1. consider equivalences that are useful in Computer Science;

2. investigate how abstraction is used by biologists and develop equivalences based

on this; and

3. find different abstractions of a biological model and develop an equivalence that

identifies the behaviour found in the two different abstractions.

The second approach is work-in-progress, and currently focusses on abstracting from

fast reactions in the style of the Quasi-Steady-State Assumption [20]. The third ap-

proach has been taken in the development of compression bisimilarity [21, 22] where

two discretisations (both with a sufficient number of levels) of the same Bio-PEPA

model are viewed as embodying the same behaviour. Both of these approaches overlap

with the first approach since bisimulation-style equivalences are used.

This paper also provides an opportunity to consider Bio-PEPA as a process algebra

with levels, rather than specifically as a modelling language for biological examples.

Well-defined Bio-PEPA systems have a restricted form and it is important to understand

the impact on the labelled transition systems that are obtained.

The structure of this article is as follows: first Bio-PEPA is introduced, and illus-

trated with a running example. After this presentation, some basic properties of the
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labelled transition systems obtained from well-defined Bio-PEPA models are proved

and motivated. Next, the equivalences defined for PEPA are considered for Bio-PEPA,

and it is proved using the properties from the previous section, that some of these

equivalences coincide. A new equivalence is defined for Bio-PEPA and it is shown

how other equivalences can be expressed in the new equivalence. The conditions un-

der which congruence is obtained for the new equivalence are described and proved.

Additionally a weak variant of the equivalence is defined and investigated. Then two

examples will be given, after which related work and conclusions will be presented.

2. Bio-PEPA

This section presents Bio-PEPA [7]. The main components of a Bio-PEPA sys-

tem are the sequential or species components describing the behaviour of each of the

chemical species and the model component which combines the species components

and hence models the interactions between the species. Additionally, a context is de-

fined to store information such as functional rates, compartments and parameters. The

syntax of the sequential/species components is defined by

S ::= (α, κ) op S | S + S | C op ::= ↓ | ↑ | ⊕ | 	 | �.

In the prefix term (α, κ) op S , α is an action name from a set of action names A and

can be viewed as the name or label of a reaction, κ is the stoichiometric coefficient1

of the species and the prefix combinator op represents the role of the element in the

reaction. If a species is a reactant in the reaction then ↓ is used, if a product then ↑, if

an activator then ⊕, if an inhibitor then 	, and � is used for a generic modifier. The

operator + expresses the choice between two sequential components. Constants, which

are species names, are defined to be a specific sequential component using the notation

1The stoichiometry/stoichiometric coefficient of a species with respect to a specific reaction is the relative

quantity of that species involved in the reaction compared to other species in the reaction. At the molecule

level, it decsribes the exact number of molecules. In the reaction A + 3B → 2C + D, three times as much B

as A is consumed to produce as much D as A and twice as much C as A.
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Figure 1: Example reactions

C
def
= S where C is the species name and S is the sequential component. The set of

sequential components is S.

A running example is now presented to illustrate the concepts presented here. This

example will also be used later in the paper to demonstrate the new equivalence that

will be defined.

Example 1. Consider the reactions defined in Figure 1. There are four species A, I1,

I2, B, and the reaction rates are given as R1, R2, S 1 and S 2. In Bio-PEPA, the species

are defined as follows.

A
def
= (α1, 1) ↓ A + (α2, 1) ↓ A

I1
def
= (α1, 1) ↑ I1 + (β1, 1) ↓ I1

I2
def
= (α2, 1) ↑ I2 + (β2, 1) ↓ I2

B
def
= (β1, 1) ↑ B + (β2, 1) ↑ B

Here, reactions have been given names, so that the reactions in which A becomes Ii is

called αi and the reactions in which Ii becomes B are called βi.

The syntax of model components is given by the grammar

P ::= PBC
L

P | S (x)

The process PBC
L

Q denotes the synchronisation between components P and Q and

the set L ⊆ A specifies those activities on which the components must synchronise.

In the model component S (x), the parameter x ∈ R represents the molecular count or

concentration. The conversion of amounts to discrete levels will be described later. The

set of all Bio-PEPA model components is P.
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Example 2. The model component for the system described in Figure 1 is

M
def
= A(n) BC

{α1 ,α2 }
((I1(0)BC

∅
I2(0)) BC

{β1 ,β2 }
B(0))

where the initial quantity of A is n, and all other species are absent.

To obtain well-behaved systems, a constrained set of Bio-PEPA model components

called well-defined is considered. This ensures that a species is defined as a choice

between reactions, and that no reaction name is repeated for a species. At the model

level, there can only be one species component for each species. The components

defined in Examples 1 and 2 are well-defined.

Definition 1. A Bio-PEPA sequential component C is well-defined if it has the form

C
def
= (α1, κ1) op1 C + . . . + (αn, κn) opn C written as C

def
=

n∑
i=1

(αi, κi) opi C

where αi , α j for i , j. A model component P is well-defined if it has the form

P
def
= C1(x1)BC

L1
. . . BC

Lp−1
Cp(xp),

each Ci is a well-defined sequential component, the elements of each L j appear in P

and if i , j then Ci , C j.

A full Bio-PEPA system, consisting of a set of well-defined sequential components, a

well-defined model component and context, is defined as follows.

Definition 2. A Bio-PEPA system P is a 6-tuple 〈V,N ,K ,F ,Comp, P〉, where V is

the set of compartments,N is the set of quantities describing each species,K is the set

of parameters, F is the set of functional rates, Comp is the set of well-defined sequential

components and P is a well-defined model component. The Bio-PEPA model of P is

denoted by π(P) = P.

Elements ofN have the form C : H = h,N = n,M = m,V = v, unit = u where C is

a species name that is defined in Comp, H = h defines the step size, N = n defines the

maximum number of levels for C, M = m defines the maximum molecular counts or

maximum concentration for C, V = v names the compartment in which C appears and

unit = u defines the measurement unit of the concentration.
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The context of a Bio-PEPA system is the collection of definition sets V, N , K , F

and Comp and these are denoted by T , giving the notation 〈T , P〉.

The set of well-defined Bio-PEPA systems is P̃. The set of well-defined contexts is

defined by T̃.

For details of the other elements of the context and the definition of a well-defined

Bio-PEPA context and system, see [7, 11].

This definition allows for many compartments in V but in this paper, the assump-

tions are only one compartment and a single step size for all species. This ensures that

mass is conserved. For a presentation of Bio-PEPA with compartments and membranes

(together called locations) and the constraints imposed due to conservation of mass on

the step size of a location by its size and the sizes of other locations, see [23]2.

The model component is typically defined in terms of molecular counts. These

can be converted to molar concentrations by dividing by the Avogadro constant and

the volume. Depending on the kinetic law, reaction rates may need to be scaled. For

a more detailed explanation, see [7, 11]. Both molecular counts and concentrations

can be expressed discretised and expressed as levels by definition of a step size. The

following definition is based on concentration.

Definition 3. Given a Bio-PEPA system 〈V,N ,K ,F ,Comp, P〉with Bio-PEPA model

P
def
= C1(x1)BC

L1
. . . BC

Lp−1
Cp(xp) where each x j is a concentration, then the Bio-PEPA sys-

tem with levels is the Bio-PEPA system 〈V,N ,K ,F ,Comp, P′〉 with Bio-PEPA model

P′
def
= C1(l1)BC

L1
. . . BC

Lp−1
Cp(lp) where for each species C j and associated level l j

• C j : H = h,N = n,M = m,V = v, unit = u appears in N .

• the number of levels for the species is defined in terms of the maximum concen-

tration and step size, namely N = dM/He.

• C j has levels, 0, . . . ,N, giving N + 1 levels.

• l j = dx j/He.

2In the Bio-PEPA Eclipse Plug-in (www.biopepa.org), step size is associated with location, not species

[24].
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As mentioned above, the step size H is assumed to be the same for all species to ensure

conservation of mass. A well-defined context for the running example is now given.

Example 3. A well-defined context for the Bio-PEPA model M is

T = V,K ,F ,N ,Comp where V = {v} K = ∅

F = { fα1 = fMA(r1), fα2 = fMA(r2), fβ1 = fMA(s1), fβ2 = fMA(s2) }

N = {A : H=h,N=n,V=v; I1 : H=h,N=n,V=v; I2 : H=h,N=n,V=v;

B : H=h,N=n,V=v; }

Comp = { model definitions for A, I1, I2, B, from Example 1 }.

Every species has the same step size h and also the same maximum level n. The set

of constants K is empty since the constants ri and si, i = 1, 2 have not been defined.

Since all reactions are mass action and hence the amount of product is dependent on the

amount of reactant, the following definition for the mass action function can be used3.

fMA(c)[w,N ,K] = c
∏
{ lh | C:↓(l, 1) appears in w }

Here, l is the level of species C and w is the list obtained from the transition which

describes the behaviour of the system.

To describe the behaviour of a Bio-PEPA system, semantics must be defined in

terms of the operators of the algebra. The operational semantics for Bio-PEPA systems

with levels is given in Figure 2 where NS is the the maximum number of levels for

the species S . These operational semantics define three distinct labelled transition

systems. The first, the capability relation, has labels that capture the information about

the species that take part in a reaction. The label consists of a reaction name α and a

list w that records all the species that took part in the reaction, their current amount and

their stoichiometry in the reaction.

Definition 4. Given a Bio-PEPA system, the capability relation is

−→c ⊆ P × Θ × P

3This definition only applies in the case that there is at least one reactant and no modifiers, and the

stoichiometry of all reactants is 1 but it is sufficient for the example.
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prefixReac

(α, κ)↓S (l)
(α,[S :↓(l,κ)])
−−−−−−−−−→c S (l − κ)

κ ≤ l ≤ NS

prefixProd

(α, κ)↑S (l)
(α,[S :↑(l,κ)])
−−−−−−−−−→c S (l + κ)

0 ≤ l ≤ NS − κ

prefixMod

(α, κ) op S (l)
(α,[S :op(l,κ)])
−−−−−−−−−−→c S (l)

κ ≤ l ≤ NS if op = ⊕

0 ≤ l ≤ NS if op ∈ {	,�}

choice1
S 1(l)

(α,w)
−−−−→c S ′1(l′)

(S 1 + S 2)(l)
(α,w)
−−−−→c S ′1(l′)

choice2
S 2(l)

(α,w)
−−−−→c S ′2(l′)

(S 1 + S 2)(l)
(α,w)
−−−−→c S ′2(l′)

constant
S (l)

(α,[S : op (l,κ)])
−−−−−−−−−−−→c S ′(l′)

C(l)
(α,[C: op (l,κ)])
−−−−−−−−−−−→c S ′(l′)

C
def
= S

coop1
P1

(α,w)
−−−−→c P′1

P1 BC
L

P2
(α,w)
−−−−→c P′1 BCL P2

α < L

coop2
P2

(α,w)
−−−−→c P′2

P1 BC
L

P2
(α,w)
−−−−→c P1 BC

L
P′2

α < L

coop3
P1

(α,w1)
−−−−→c P′1 P2

(α,w2)
−−−−→c P′2

P1 BC
L

P2
(α,w1::w2)
−−−−−−−→c P′1 BCL P′2

α ∈ L

Final
P

(α,w)
−−−−→c P′

〈V,N ,K ,F ,Comp, P〉
(α,rα[w,N ,K])
−−−−−−−−−−→s 〈V,N ,K ,F ,Comp, P′〉

Enrich
P

(α,w)
−−−−→c P′

〈V,N ,K ,F ,Comp, P〉
(α,w)
−−−−→sc 〈V,N ,K ,F ,Comp, P′〉

Figure 2: Operational semantics of Bio-PEPA
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where P is the set of Bio-PEPA model components and where θ ∈ Θ is defined by

θ = (α,w) with α ∈ A, the set of action types and the list w defined by

w ::= [ S : op (l, κ) ] | w :: w

with S ∈ S, l ∈ N, l ≥ 0 the level, and κ ∈ N, κ ≥ 1 the stoichiometry coefficient.

It is the smallest relation defined by the first nine rules (rules starting with lower case

letters) in Figure 2, and an element of the transition system is written P
(α,w)
−−−−→c P′.

Note that although w is defined as a list, the order of elements is not important and

hence it can be considered as a multiset when convenient.

Example 4. For the example, the following transition is obtained

A(n) BC
{α1 ,α2 }

((I1(0)BC
∅

I2(0)) BC
{β1 ,β2 }

B(0))
(α1, A:↓(n,1)::I1:↑(0,1))
−−−−−−−−−−−−−−−−→c

A(n−1) BC
{α1 ,α2 }

((I1(1)BC
∅

I2(0)) BC
{β1 ,β2 }

B(0)).

Since this is a well-defined Bio-PEPA model, it is only the levels of each species that

change, and vector notation can be used instead to describe models. Hence, the above

transition can be written as

(n, 0, 0, 0)
(α1, A:↓(n,1)::I1:↑(0,1))
−−−−−−−−−−−−−−−−→c (n−1, 1, 0, 0)

where the vectors represent the quantities of each species in the order that they appear in

the composition. Note that transitions are only possible if there are sufficient quantities

of the reactants available. For example, (n−3, 0, 3, 0) does not have a β1 transition since

there is no I1.

The second transition system, whose transitions are inferred from those of the capa-

bility relation, are labelled with the reaction name and a value which describes the

exponential distribution from which the rate of reaction is drawn.

Definition 5. Given a Bio-PEPA system, the stochastic relation is

−→s ⊆ P̃ × Γ × P̃
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where P̃ is the set of well-defined Bio-PEPA systems and where γ ∈ Γ has the form

(α, r) with α ∈ A the set of action types and r ∈ R with r > 0. It is the smallest relation

defined by the rule Final in Figure 2 and an element of the transition system is written

P
(α,r)
−−−→s P

′. In the rule Final, rα[w,N ,K] = fα[w,N ,K]/H ∈ (0,∞) where fα is the

functional rate for the reaction α from F and H is the step size.

This transition system includes the context and the rate at which the reaction takes

place. This rate is functional in the sense that it is specified as a function which takes

various arguments both from the context (such as step size and constants) and from the

string w which contains information about the current amount of each species involved

in the reaction and their stoichiometries for the reaction. The current concentration for

a species can be calculated as l × H where l is the level of the species and H is the step

size. For full details of rate derivation, refer to [7, 13].

Example 5. Considering the transition from the previous example,

(n, 0, 0, 0)
(α1, A:↓(n,1)::I1:↑(0,1))
−−−−−−−−−−−−−−−−→c (n−1, 1, 0, 0)

and applying the rule Final, the following is obtained

〈V,N ,K ,F ,Comp, (n, 0, 0, 0)〉
(α1, fMA(r1)[A:↓(n,1)::I1:↑(0,1)),N ,K]/h)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→s

〈V,N ,K ,F ,Comp, (n−1, 1, 0, 0)〉.

Using the definition of fMA, this gives the transition

〈V,N ,K ,F ,Comp, (n, 0, 0, 0)〉
(α1,r1n)
−−−−−→s 〈V,N ,K ,F ,Comp, (n−1, 1, 0, 0)〉.

The last transition system to be defined is the system-capability relation. Note that −→c

includes the list w which contains information about the reaction that has occurred and

the species involved in it and their levels, whereas −→s contains the context information

but no longer has the information from w. The system-capability relation ensures that

all information is available in a single relation.

Definition 6. Given a Bio-PEPA system, the system-capability relation is

−→sc ⊆ P̃ × Θ × P̃.
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It is the smallest relation defined by the rule Enrich in Figure 2 and an element of the

transition system is written P
(α,r)
−−−→sc P

′.

Example 6. By applying the rule Enrich to the transition from Example 4, the fol-

lowing transition is derived

〈V,N,K ,F,Comp, (n, 0, 0, 0)〉
(α1, A:↓(n,1)::I1:↑(0,1))
−−−−−−−−−−−−−−−−→sc 〈V,N,K ,F,Comp, (n−1, 1, 0, 0)〉.

The following two definitions describe the derivative set and the derivative graph for

any of the relations. The derivative set is the set of all Bio-PEPA systems that appear

in a transition system and the derivative graph is a graph over this set with an edge for

every transition in the transition system.

Definition 7. The derivative set dsx(E) (or ds(E) if not ambiguous) is the smallest set

such that E ∈ dsx(E) and if E′ ∈ ds(E) and E′
(α,r)
−−−→x E′′ then E′′ ∈ dsx(E).

Definition 8. The derivative graph Dx(E) (or D(E) if not ambiguous) is the labelled

directed graph whose nodes are dsx(E) and whose set of edges are the elements of −→x.

The next definition captures the reactions that are immediately possible with respect

to the operational semantics. This means it takes into account the stoichiometry of a

reaction as well as the current level of a species4.

4Note that this definition is slightly different to that in [7] since it takes into account the stoichiometry

and current level.
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Definition 9. The set of current actions enabled in 〈T , P〉 is defined as A(〈T , P〉) =

A(P) where NS is the maximum number of levels for species component S .

A(((α, κ) ↓ S )(l)) = {α} if κ ≤ l ≤ NS otherwise ∅

A(((α, κ) ↑ S )(l)) = {α} if 0 ≤ l ≤ NS − κ otherwise ∅

A(((α, κ) ⊕ S )(l)) = {α} if κ ≤ l ≤ NS otherwise ∅

A(((α, κ) 	 S )(l)) = {α} if 0 ≤ l ≤ NS

A(((α, κ) � S )(l)) = {α} if 0 ≤ l ≤ NS

A((S 1 + S 2)(l)) = A(S 1(l)) ∪A(S 2(l))

A(C(l)) = A(S (l)) where C
def
= S

A(P1 BC
L

P2) = A(P1) \ L ∪A(P2) \ L ∪ (A(P1) ∩A(P2) ∩ L)

The stoichiometry plays a role in defining the set of current actions. A species defi-

nition specifies a set of actions (reactions), but the current action set may be a proper

subset of this if the current level is insufficient to satisfy the constraints imposed by the

stoichiometry.

Example 7.

A(A(n) BC
{α1 ,α2 }

((I1(0)BC
∅

I2(0)) BC
{β1 ,β2 }

B(0)) = {α1, α2}

Finally, definitions are required to reason about the contents of the structure (α,w) that

appears on the −→c and −→sc transitions.

Definition 10. For θ ∈ Θ with θ = (α,w), action(θ) = α, list(θ) = w and

reacts(θ) = {S | S ↓(l, κ) appears in w } #reacts(θ) = | reacts(θ) |

prods(θ) = {S | S ↑(l, κ) appears in w} #prods(θ) = | prods(θ) |

mods(θ) = {S | S � (l, κ) appears in w} #mods(θ) = | mods(θ) |

enzs(θ) = {S | S ⊕ (l, κ) appears in w} #enzs(θ) = | enzs(θ) |

inhibs(θ) = {S | S 	 (l, κ) appears in w} #inhibs(θ) = | inhibs(θ) |

totMods(θ) = mods(θ) ∪ enzs(θ) ∪ inhibs(θ) #totMods(θ) = | totMods(θ) |

This section has defined Bio-PEPA syntax and semantics for Bio-PEPA systems with

levels, as well as some auxiliary definitions. The next section considers differences

between PEPA and Bio-PEPA plus basic results about Bio-PEPA systems
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3. Results about well-defined Bio-PEPA systems

First, it is important to note that the operational semantics define labelled transition

systems and not labelled multi-transition systems as in PEPA. Hence if two different

derivation trees generate the same transition in Bio-PEPA, there is only one transition

and not two as there would be in PEPA. In PEPA, the multiplicity of transitions was

required to obtain the correct rate. Since rates are calculated by a different mechanism

in Bio-PEPA, this is not a concern. Hence multisets are not required when considering

transitions or other definitions in Bio-PEPA.

Second, the operational semantics do not define any transitions for sequential com-

ponents that have no level suffix – hence the components (α, κ) op S , S 1 + S 2 and C

cannot perform any transitions whereas the components ((α, κ) op S )(l), (S 1 + S 2)(l)

and C(l) may be able to. In effect, transitions are only defined for model components.

Next, results about Bio-PEPA models and systems are presented. The first result

shows that well-definedness is preserved by transitions.

Lemma 1. Let P be a Bio-PEPA model such that P
(α,w)
−−−−→c P′. Then if P is well-defined

then so is P′.

Proof. At the species level, any transition has the form C(l)
(α,w)
−−−−→c C(l′). This means

that at the model level a transition has the form

C1(l1)BC
L1

. . . BC
Lp−1

Cp(lp)
(α,w)
−−−−→c C1(l′1)BC

L1
. . . BC

Lp−1
Cp(l′p)

showing that well-definedness is preserved. �

This result can clearly be repeated for Bio-PEPA systems with respect to the two transi-

tion relations −→s and −→sc since T is not changed in a transition. In the previous section,

the object w appearing on the capability relation was defined to be a list or a multiset

(since order was not important). The next lemma shows that for well-defined systems,

it is a set.

Proposition 1. Let P be a well-defined Bio-PEPA model. If P
(α,w)
−−−−→c P′ then w is a set.
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Proof. Consider P
(α,w)
−−−−→c P′ with w a multiset and not a set. Then there exists an

S : op(l, κ) that appears twice (or more) in w. Hence by inspection of the operational

semantics, at some point of the derivation of the transition, there exists a transition

Q1 BC
L

Q2
α,w1::w2
−−−−−−→c Q′ with S : op(l, k) in both w1 and w2. Hence in Q1 there is a

Ci
def
= . . . + (α, κ) op S + . . . and in Q2 there is a C j

def
= . . . + (α, κ) op S + . . .. By

definition of well-definedness, S is Ci and S is C j hence i = j. But this contradicts

well-definedness, since a sequential component can only appear once in P. �

Next, the impossibility of two transitions from the same model labelled with the same

reaction name is shown.

Proposition 2. Let P be a well-defined Bio-PEPA model. If P
(α,w1)
−−−−→c P′ and P

(α,w2)
−−−−→c

P′′ are two transitions, then w1 = w2 and P′ = P′′.

Proof. Consider P
def
= C1(l1)BC

L1
. . . BC

Lm−1
Cm(lm) with P′

def
= C1(l′1)BC

L1
. . . BC

Lm−1
Cm(l′m) and

P′′
def
= C1(l′′1 )BC

L1
. . . BC

Lm−1
Cm(l′′m). Consider any Ci involved in the transition. By well-

definedness Ci has exactly one subterm of the form (α, κ).Ci and hence only one tran-

sition is possible for Ci, namely Ci(li)
(α,[Ci:op(li,κi)])
−−−−−−−−−−−→c Ci(l) so l = l′i = l′′i and therefore

P′ = P′′. This transition appears in the derivation tree of the final transition and con-

tributes Ci: op(li, κi) to w1 and w2 hence, considering every species that takes part in

the reaction, w1 = w2. �

If it is not possible to have two transitions with the same reaction name, under what

conditions is it possible to have two transitions between the same two processes with

different reaction names?

Proposition 3. Let P be a well-defined Bio-PEPA model. If P
(α1,w1)
−−−−−→c P′ and P

(α2,w2)
−−−−−→c P′

with α1 , α2 then reacts((α1,w1)) = reacts((α2,w2)) and prods((α1,w1)) = prods((α2,w2)).

Proof. P is well-defined and can be written as P
def
= C1(l1)BC

L1
. . . BC

Lm−1
Cm(lm). Since

P
(α1,w1)
−−−−−→c P′ by the operational semantics, P′

def
= C′1(l′1)BC

L1
. . . BC

Lm−1
C′m(l′m). Each Ci is

well-defined, so Ci = C′i , however li and l′i may differ.

Let Ci ∈ reacts((α1,w1)), hence Ci:↓(li, κ) ∈ w1, so in the derivation of P
(α1,w1)
−−−−−→c P′,

there is a transition Ci(li)
(α1,[Ci:↓(li,κ)])
−−−−−−−−−−→c Ci(li − κ) with κ > 0. Both transitions result in
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P′, so there must be a similar transition Ci(li)
(α2,[Ci:↓(li,κ)])
−−−−−−−−−−→c Ci(li − κ) in the derivation

tree of P
(α2,w2)
−−−−−→c P′, since this is the only way for the level to increase from li to li − κ.

Hence Ci ∈ reacts((α2,w2)). Likewise prods((α1,w1)) = prods((α2,w2)) can be proved

in a similar fashion. �

It is not possible to obtain a similar result for mods, enzs, inhibs and totMods since

the level of a modifier does not change and hence it is not possible to determine which

modifiers (if any) have been involved in obtaining P′.

By Proposition 2, it is not possible to have two distinct transitions P
(α,w1)
−−−−→c P′

and P
(α,w2)
−−−−→c P′ and this fact can be used to reason about the stochastic relation. If,

in a model, it is necessary to have two reactions with the same reactants and the same

product but where one involves in a modifier, these reactions must have different names.

This is a result of the way in which the cooperation operator is defined. If a reaction

name appears in the cooperation set, all species capable of that reaction must take part

in the reaction.

Proposition 4. LetP be a well-defined Bio-PEPA system. IfP
(α,r1)
−−−−→s P1 andP

(α,r2)
−−−−→s P2

are two transitions then r1 = r2 and P1 = P2

Proof. If P is well-defined, then π(P), the model in the system P, is a well-defined

model component. By Proposition 2 and application of the rule Final, the result fol-

lows. �

Since equivalences are the focus of this paper, pairs of Bio-PEPA systems will be com-

pared. It is convenient to consider contexts that include all the definitions for both

systems.

Without going into too much tedious syntactic detail, the following can be stated

where “name” refers to the part of a definition before the “=” symbol for any definition

appearing in the context.

Definition 11. The context, V, N , K , F and Comp, of a Bio-PEPA system is well-

defined with respect to names if each name only appears once within the context.
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Definition 12. 〈V1,N1,K1,F1,Comp1, P1〉 and 〈V2,N2,K2,F2,Comp2, P2〉 are com-

patible ifV1 ∪V2, N1 ∪N2, K1 ∪K2, F1 ∪ F2 and Comp1 ∪ Comp2 are well-defined

with respect to names.

Definition 13. Given two compatible systems P1 = 〈V1,N1,K1,F1,Comp1, P1〉 and

P2 = 〈V2,N2,K2,F2,Comp2, P2〉, then V, N , K , F and Comp forms a covering

context for P1 and P2 if V1 ∪ V2 ⊆ V, N1 ∪ N2 ⊆ N , K1 ∪ K2 ⊆ K , F1 ∪ F2 ⊆ F

and Comp1 ∪ Comp2 ⊆ Comp.

Given two Bio-PEPA systems 〈T1, P1〉 and 〈T2, P2〉 which are not compatible, then by

modifying names in 〈T2, P2〉 giving 〈T ′2 , P
′
2〉 it is possible to make them compatible.

For the rest of the document, compatibility is assumed without explicit modification of

names.

The notation T (P) will be used for {P | P = 〈T , P〉 and P ∈ P̃}, namely any

well-defined Bio-PEPA system with covering context T .

To consider these results in a biological context, first note that the definition of well-

defined imposes conditions on species and models to make them biologically realistic.

For example, reaction names in species must be distinct to reflect the fact that for a

specific reaction, there is only one way for a species to be involved in that reaction.

Moreover, species syntax is constrained so that species can be involved in reactions but

cannot suddenly become another species. The results in this section come from these

basic principles and capture the idea that we do not distinguish specific molecules or

concentrations within a species. Hence in both transition systems, there is exactly

one transition for a specific reaction capturing the idea that it is not necessary to care

about the identity of the individual items that make up a species. This abstraction

is beneficial for modelling biological systems because it avoids something that can

lead to exponential blow-up of the transition system. The last part of this section has

considered formally how to name the various components in a Bio-PEPA model to

remove possible conflicts in naming and this aids in building well-behaved models

which can be combined together, thereby supporting an important aspect of systems

biology.

This section has covered the basic results that will be used in the rest of the paper.
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Next, the issue of equivalences is considered. For the rest of the paper, unless explicitly

mentioned, Bio-PEPA models and system will be assumed to be well-defined.

4. Equivalences for Bio-PEPA based on PEPA equivalences

In PEPA, there are three distinct equivalences [8]. Isomorphism is a very strict

equivalence that requires the structure of transition systems to be identical. Strong

bisimilarity considers actions and rates based on the standard definition of bisimilarity.

Strong equivalence considers actions and rates to equivalence classes in the style of

Larsen and Skou [25].

In the following subsections, equivalences over both the stochastic and capability

relation as well as equivalences induced from Bio-PEPA models to Bio-PEPA equiva-

lences are considered.

4.1. Equivalences over the stochastic relation

In this section, three equivalences over the stochastic relation are considered and

applied to Bio-PEPA since the stochastic relation is most similar to the transition rela-

tion of PEPA (the difference is whether multi-transitions are used). For the remainder

of this section, consider two Bio-PEPA systems with a covering context,

P1 = 〈V,N ,K ,F ,Comp, P1〉 and P2 = 〈V,N ,K ,F ,Comp, P2〉.

Hence π(P1) = P1 and π(P2) = P2.

In the definitions of these equivalences for PEPA, two auxiliary definitions are used.

One is the multiset of the current activities. As mentioned above, there is no multiplic-

ity of transitions in Bio-PEPA and hence A(.) is suitable to describe the current set of

activities. The other definition is the apparent rate5 for a particular action. By Propo-

sition 4, in well-defined Bio-PEPA systems there is only one transition from a system

with a specific action name, and hence only one way in which that action can occur.

Hence, apparent rate calculations are not necessary.

5The apparent rate is a calculation of the rate for an action α taking into account all possible ways in

which this action can occur, and is dependent on the syntax of the model performing α. See [8] for details.
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The first equivalence to be defined is isomorphism6.

Definition 14. A function F : ds(P1) −→ ds(P2) is a system isomorphism between

Bio-PEPA systems P1 and P2 if F is an injective function and for any system P′1,

A(P′1) = A(F (P′1)) and for all (α, r) ∈ Γ

{P′2 | F (P′1)
(α,r)
−−−→s P

′
2} = {F (P′′1 ) | P′1

(α,r)
−−−→s P

′′
1 }

Definition 15. Two components, P1 and P2 are system isomorphic, P1 =s P2, if there

exists a system isomorphism F between them such thatD(F (P1)) = D(P2).

Strong bisimilarity is defined for PEPA, and this definition is now given in terms of

the stochastic relation. In the PEPA definition of this equivalence, there is a clause

requiring that the apparent rates of the two components be equal. For the same reason

as given above, because there is at most one transition from a model with a given action

name, this is not required.

Definition 16. A binary relation R over systems is a system bisimulation if (P1,P2) ∈

R implies that for all α ∈ A

1. whenever P1
(α,r)
−−−→s P

′
1 then for some P′2, P2

(α,r)
−−−→s P

′
2 and (P′1,P

′
2) ∈ R

2. whenever P2
(α,r)
−−−→s P

′
2 then for some P′1, P1

(α,r)
−−−→s P

′
1 and (P′1,P

′
2) ∈ R

As is standard, it can be shown that a system bisimulation is an equivalence relation.

The semantic equivalence is defined to be the largest system bisimulation, in the usual

manner.

Definition 17. P1 and P2 are system bisimilar, P1 ∼s P2, if (P1,P2) ∈ R for some

system bisimulation R. ∼s =
⋃
{R | R is a system bisimulation}.

Finally, a definition based on the strong equivalence of PEPA can be made.

6The names of these equivalences are the same as those in [7] although the definitions differ. This is

addressed in Section 4.4.
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Definition 18. An equivalence relation R over P̃ is a system equivalence if whenever

(P1,P2) ∈ R then for α ∈ A and for all S ∈ P̃/R,∑
{r | P1

(α,r)
−−−→ P′1,P

′
1 ∈ S } =

∑
{s | P2

(α,s)
−−−→ P′2,P

′
2 ∈ S }.

Definition 19. P1 and P2 are system equivalent, P �s P2, if (P1,P2) ∈ R for some

system equivalence R. �s =
⋃
{R | R is a system equivalence}.

This definition is the most interesting of the three equivalences defined for PEPA since

it induces a (strongly or ordinarily) lumpable partition on the underlying CTMC [8].

Hence, it would be desirable to prove some properties such as congruence. However,

before doing this, a comparison of the three equivalences is necessary and due to the

constrained nature of a well-defined Bio-PEPA component, it can be shown that all of

the above semantic equivalences are identical.

Theorem 1. Let P1 and P2 be two well-defined Bio-PEPA systems, then

P1 =s P2 ⇔ P1 ∼s P2 ⇔ P1 �s P2.

Proof. Using Proposition 4 there is exactly one transition of the form P
(α,r)
−−−→ for a

given P. This fact can be used to show that a system bisimulation and a system equiv-

alence can be transformed into an isomorphism. �

With this result, congruence would need only to be proved for one of these semantic

equivalences.

4.2. Equivalences over the capability relation

The labels of the capability relation have a more complex structure than those of

the stochastic relation and hence there are more possibilities for equivalences since

it is possible to ignore parts of the structure when defining an equivalence, as will

be demonstrated in Section 5. The step taken in the current section is to consider

equivalences over the capability relation, matching the first three defined above based

on PEPA equivalences, and these consider the full label.

Capability isomorphism is defined in the same manner as system isomorphism, but

instead of requiring a match on (α, r), the match is required on (α,w) since this is the
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form the labels take in the capability relation. Moreover, it is defined over Bio-PEPA

models rather than Bio-PEPA systems.

Definition 20. A function F : ds(P1) −→ ds(P2) is a capability isomorphism between

P1 and P2 if F is an injective function and for any component P′, A(P′) = A(F (P′))

and for all (α,w),

{P′2 | F (P′)
(α,w)
−−−−→c P′2} = {F (P′′) | P′

(α,w)
−−−−→c P′′}

Definition 21. Two components, P1 and P2 are capability isomorphic, P1 =c P2, if

there exists a capability isomorphism F between them such thatD(F (P1)) = D(P2).

Again, capability bisimulation has a similar definition to system bisimulation except

for the label structure and the use of Bio-PEPA models instead of systems.

Definition 22. A binary relationR over systems is a capability bisimulation if (P1, P2) ∈

R implies that for all α ∈ A

1. whenever P1
(α,w)
−−−−→c P′1 then for some P′2, P2

(α,w)
−−−−→c P′2 and (P′1, P

′
2) ∈ R

2. whenever P2
(α,w)
−−−−→c P′2 then for some P′1, P1

(α,w)
−−−−→c P′1 and (P′1, P

′
2) ∈ R

Definition 23. P1 and P2 are capability bisimilar, P1 ∼c P2, is (P1, P2) ∈ R for some

capability bisimulation R. ∼c =
⋃
{R | R a capability bisimulation}.

This has been defined without reference to rates since rate values cannot be calculated

in this context. It is not clear how to define an equivalence like the system equivalence

in the previous section as there is no obvious way to calculate rates, hence there is

no reason to proceed with this. The two equivalences that have been defined can be

compared.

Theorem 2. Let P1 and P2 be two well-defined Bio-PEPA components. Then

P1 =c P2 ⇔ P1 ∼c P2.

Proof. By Proposition 2 there is at most one α-labelled transition between any two

components, and hence one can translate a bisimulation to the appropriate isomor-

phism. �
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These two equivalences are very strict, and require an exact match of the list w. Con-

sidering the example from Section 2, and the system

I1(0) BC
{α1 ,β1 }

((A(n)BC
{α2 }

I2(0))BC
{β2 }

B(0))

it can be shown that they are not capability bisimilar since the label on the only tran-

sition from this new model is (α1, I1:↑(0, 1)::A:↓(n, 1)) which differs from the label on

the transition in the original example. If w is treated as a set, then this removes this

problem (and allows some standard properties such as commutativity to be proved).

However, it is still a strict equivalence because it requires the same species names to

appear, with the same prefix, the same level and the same stoichiometry.

It is difficult to think of a non-pathological example where systems of different

species might be equated by this equivalence. At best, there are equations such as

M ∼c M BC
∅

D(0) where D is a species which can only act as a reactant, and shares no

reaction names with any of the species in M. In light of this strictness, in Section 5 less

strict equivalences are considered over the capability relation by introducing a function

over the labels of the transitions.

4.3. Induced equivalences

There are two transition relations for which equivalences are defined in the style

of Bio-PEPA. An equivalence over model components can lead to one over Bio-PEPA

systems in the following way.

Definition 24. Let ≡ be an equivalence over model components. Let P1 and P2 be two

Bio-PEPA systems with a covering context T . The induced equivalence ≡I is defined

as P1 ≡
I P2 if π(P1) ≡ π(P2)

Since there is a covering context T , results can be proved that relate the induced equiv-

alences with those directly defined on the stochastic relation.

Proposition 5. Let Pi = 〈Vi,Ni,Ki,Fi,Comp, Pi〉, i = 1, 2 be two well-defined Bio-

PEPA systems with a covering contextV,N ,K ,F ,Comp. Then

P1 =s P2 ⇔ P1 =I
c P2
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Proof. Consider two systems 〈T , P1〉 and 〈T , P2〉 with P1 =c P2 and consider a tran-

sition P1
(α,w)
−−−−→ P′1 whose image under the isomorphism is the transition P2

(α,w)
−−−−→ P′2.

The use of the rule Final gives two transitionsP1
(α,r1)
−−−−→ P′1 andP2

(α,r2)
−−−−→ P′2 where

Pi = 〈T , Pi〉 and P′i = 〈T , P′i〉. Then

r1 = rα[w,N ,K] = fα[w,N ,K]/h1 and r2 = rα[w,N ,K] = fα[w,N ,K]/h2.

Expanding this by using the definition of fα,

r1 = fα(k1, . . . , km,C1, . . . ,Cn)[w,N ,K]/h1 = fα(k1, . . . , km, (l1h1)κ1 , . . . , (lnh1)κn )/h1

r2 = fα(k1, . . . , km,C1, . . . ,Cn)[w,N ,K]/h2 = fα(k1, . . . , km, (l1h2)κ1 , . . . , (lnh2)κn )/h2

Note that it must be the case that {C1, . . . ,Cn} ⊆ component(P1) ∩ component(P2)

otherwise the function will not be defined. The same constant values from K are used

for both r1 and r2. Since the values li and κi for each component Ci come from the

string w and this is the same for r1 and r2, these are identical, so the only difference

can occur is between h1 and h2. All components in P1 have the same step size, and

all components in P2 have the same step size so it remains to show that h1 = h2. By

the definition of a covering context, the two contexts must be compatible, so names are

unique, therefore the definitions of h1 and h2 which use the same name (in fact names,

because step size is recorded for all components) must be the same value.

Therefore r1 = r2, hence there is a one-to-one correspondence between transitions

under −→c and −→s giving the result. �

Proposition 6. Let Pi = 〈V,N ,K ,F ,Comp, Pi〉, i = 1, 2 be two Bio-PEPA systems

with the step size h the same across all components. Then

P1 ∼s P2 ⇔ P1 ∼
I
c P2

Proof. Similar to previous proof. �

Corollary 1. Let Pi = 〈V,N ,K ,F ,Comp, Pi〉, i = 1, 2 be two Bio-PEPA systems

with the step size h the same across all components. Then

P1 =I
c P2 ⇔ P1 ∼

I
c P2
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Note that transitions that match on the reaction name α will use the same fα which

will obviously constrain how the rate can vary. Later in this document, an equivalence

will be defined where this is not the case.

4.4. Existing equivalences defined for Bio-PEPA

Equivalences are defined in the original Bio-PEPA paper [7]. These differ from

those defined here and this section discusses these differences.

First consider the two isomorphisms in [7]. They both contain a condition of

the form A(X) = A(F (X)) which refers to a different definition of A(.) to the one

given in this current paper, and the definition in [7] does not take the current level

into account. This means that all actions (whether possible or not) must appear in

both systems. In the definition in the current paper, only actions that are possible

with respect to the current level are considered. This makes the isomorphisms in the

current paper more general in the sense that they equate slightly more models and

systems in a more standard manner. For the definition of A(.) given here, when ap-

plied to A(0) BC
{α1 ,α2 }

((I1(n1)BC
∅

I2(n2)) BC
{β1 ,β2 }

B(0)), {β1, β2} is obtained. Using the defini-

tion from [7], it would give {α1, α2, β1, β2}. This means that under the definition from

[7], A(0) BC
{α1 ,α2 }

((I1(n1)BC
∅

I2(n2)) BC
{β1 ,β2 }

B(0)) and (I1(n1)BC
∅

I2(n2)) BC
{β1 ,β2 }

B(0) would not

be system isomorphic although it is reasonable to expect them to be.

Additionally, in the definition of component isomorphism in [7], the isomorphism

function is applied to the string w but this is not necessary for a reasonable or standard

definition of isomorphism, as is given by capability isomorphism in the current paper.

Moreover, this application of the isomorphism to w requires it to be extended so that it

is defined over components, although this is not done in [7]. Later in this paper, it will

be shown how it is possible to map between components in equivalence definitions.

The two strong capability bisimilarity definitions in the original Bio-PEPA paper

abstract away from the details of the string w, either by ignoring it altogether or by

matching on the counts of reactants, products, enzymes, inhibitors and other modifiers,

each totalled separately. In the current paper, the definition of capability bisimilarity

is the more natural and standard definition of matching on (α,w). Both of the strong

capability bisimilarities can be expressed in the more general equivalence that defined

24



in Section 5. The strong stochastic bisimilarity in the original paper is identical to the

one here.

5. A more general definition of bisimilarity

In the previous three sections, equivalences based on those defined for PEPA have

been considered. It has been demonstrated that for the stochastic relation, all three

equivalences equate the same Bio-PEPA systems, and for the capability relation, both

equivalences defined equate the same Bio-PEPA models. Moreover, the equivalences

on the capability relation induce those on the stochastic relation. This means, essen-

tially that there is one equivalence, and a strict one at that. It is strict in the sense that

exact matching is required and also because the limited branching in Bio-PEPA models

means that there is limited scope for variations in behaviour.

In this section, a different definition is introduced based on bisimilarity. This equiv-

alence is defined over the −→sc relation since it contains all relevant information. A

function is introduced into the definition of bisimulation to allow for different interpre-

tations of the transition label (α,w) as well as information in the target model and the

source model. This function may also refer to the information given by the covering

context since this is fixed.

This function takes three arguments: the transition label and two Bio-PEPA models.

In the following, let P1 = 〈T , P1〉 and P2 = 〈T , P2〉 be Bio-PEPA systems with T a

covering context.

Definition 25. Let g : Θ × P × P → X be a function with arbitrary non-empty range

X. A binary relation R over T (P) is a g-bisimulation if (〈T , P1〉, 〈T , P2〉) ∈ R implies

that for all θ1 ∈ Θ

1. whenever 〈T , P1〉
θ1
−→sc 〈T , P′1〉 then for some 〈T , P′2〉 and θ2, 〈T , P2〉

θ2
−→sc 〈T , P′2〉,

g(θ1, P1, P′1) = g(θ2, P2, P′2) and (〈T , P′1〉, 〈T , P
′
2〉) ∈ R

2. whenever 〈T , P2〉
θ2
−→sc 〈T , P′2〉 then for some 〈T , P′1〉 and θ1, 〈T , P1〉

θ1
−→sc 〈T , P′1〉,

g(θ1, P1, P′1) = g(θ2, P2, P′2) and (〈T , P′1〉, 〈T , P
′
2〉) ∈ R

Definition 26. P1 and P2 are g-bisimilar, P1 ∼g P2, if (P1,P2) ∈ R for some g-

bisimulation R. ∼g =
⋃
{R | R a g-bisimulation}.
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A number of functions can be defined to give us equivalences of interest. Let θ = (α,w)

be the transition label, P the source model and P′ the target model.

It is straightforward to express the bisimilarities defined earlier in this paper.

System bisimilarity (Definition 17): gs(θ, P, P′) = (action(θ), raction(θ)[list(θ),N ,K])

Capability bisimilarity (Definition 23): gc(θ, P, P′) = θ = (α,w)

The bisimilarities defined in the original Bio-PEPA paper [7] can be expressed in the

following manner.

Strong stochastic bisimilarity:

gssb(θ, P, P′) = (action(θ), raction(θ)[list(θ),N ,K]) = gs(θ, P, P′)

Strong capability bisimilarity:

gscb(θ, P, P′) = (action(θ), #reacts(θ), #prods(θ), #enzs(θ), #inhibs(θ), #mods(θ))

Strong capability bisimilarity (2):

gscb2(θ, P, P′) = action(θ)

An alternative name for the last equivalence is qualitative bisimilarity since all quanti-

tative aspects of the transitions are ignored. By Theorems 1 and 2, the isomorphisms

from the original Bio-PEPA paper can also be expressed as g-bisimilarities.

System isomorphism: gsi(θ, P, P′) = gs(θ, P, P′)

Component isomorphism: gci(θ, P, P′) = gc(θ, P, P′)

A question of interest is whether system equivalence (as given in Definition 18) can be

expressed as g-bisimilarity by finding suitable g. System equivalence is defined in the

style of Larsen and Skou [25] and requires summation of rates. Assuming R ⊆ P̃ × P̃

is an equivalence relation then the following definition can be made.

System equivalence: gse(θ, P, P′) = Σ {r | 〈T , P〉
(action(θ),r)
−−−−−−−−→ 〈T ,Q〉,Q ∈ [P′]R}

where [P′]R is the equivalence class of P′ with respect to R. In the specific case of well-

defined Bio-PEPA systems, by Proposition 4, there is only one transition from P for
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a specific α and this definition is unnecessary. However, if an equivalence definition

requires the summation over the rates on many transitions with targets in the same

equivalence class, this definition illustrates that the Larsen and Skou style is possible.

Finally, it is possible to use additional functions to define g. For example, it may be

desirable to link together the names of species. Given a function G which maps from

component names to N, let any components which are to be regarded as the same, be

mapped to the same number. Alternatively G could map to a set of component names

that do not appear in T . The following g-bisimilarity can be defined.

Reactant-product bisimilarity: grp(θ, P, P′) = (action(θ),G(reacts(θ)),G(prods(θ)))

It may also be of interest to relate action names. These are simply tags for identifying

reactions and have no inherent meaning. Using the same approach to defining G as

above, the following quantitative equivalence illustrates how this can be done.

Action-relabelling bisimilarity gal(θ, P, P′) = G(action(θ))

6. Congruence of g-bisimilarity

As always, congruence with respect to the operators of a process algebra is impor-

tant to establish, as this allows various manipulations. For this type of parameterised

bisimilarity, it is important to consider which functions allow the bisimilarity to be a

congruence. The following definitions are useful. In the next definition, Proposition 1

is used to treat w as a set.

Definition 27. A function g : Θ × P × P→ X is set-stable if for any valid w,

g((α1,w1), P1, P′1) = g((α2,w2), P2, P′2)

⇒ g((α1,w1 ∪ w), P1, P′1) = g((α2,w2 ∪ w), P2, P′2).

Definition 28. A function g : Θ × P × P→ X is species-blind if g ignores the species/

component names that appear in w.

Three results will be proved about congruence. Species-blindness is not necessary as

long as there is a suitable mapping from component names for S 1 to those for S 2, so

that species name is not used as a way to distinguish transition labels.
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Theorem 3. Let S 1, S 2 and S be Bio-PEPA sequential components and g be species-

blind. If 〈T , S 1(l1)〉 ∼g 〈T , S 2(l2)〉 then

1. 〈T , (S 1 + S )(l1)〉 ∼g 〈T , (S 2 + S )(l2)〉 and 〈T , (S + S 1)(l1)〉 ∼g 〈T , (S + S 2)(l2)〉

2. 〈T ,C1(l1)〉 ∼g 〈T ,C2(l2)〉 where Ci
def
= S i for i = 1, 2

Proof.

Choice: The proof proceeds by induction on the height of the transition derivation.

Since the rule Enrich can only be applied as the last step of the derivation tree, the sec-

ond last step is considered. Only one case will be considered here; the other case is sim-

ilar. It must be shown that for any transition 〈T , (S 1 + S )(l1)〉
θ1
−→sc 〈T , S ′1(l′1)〉, there

exists a transition 〈T , (S 2 + S )(l2)〉
θ2
−→sc 〈T , S ′2(l′2)〉 with g(θ1, (S 1 + S )(l1), S ′1(l′1)) =

g(θ2, (S 2 + S )(l2), S ′2(l′2)) and 〈T , S ′1(l′1)〉 ∼g 〈T , S ′2(l′2)〉.

Consider the first transition. By a one-step shorter inference, (S 1 + S )(l1)
θ1
−→c S ′1(l′1),

and by a two-step shorter inference S 1(l1)
θ1
−→c S ′1(l′1). By applying Enrich to this tran-

sition, the transition 〈T , S 1(l1)〉
θ1
−→sc 〈T , S ′1(l′1)〉 is obtained.

Since 〈T , S 1(l1)〉 ∼g 〈T , S 2(l2)〉 there exists the transition 〈T , S 2(l2)〉
θ2
−→sc 〈T , S ′2(l′2)〉

with g(θ1, S 1(l1), S ′1(l′1)) = g(θ2, S 2(l2), S ′1(l′2)) and 〈T , S ′1(l′1)〉 ∼g 〈T , S ′2(l′2)〉. There-

fore by a shorter inference S 2(l2)
θ2
−→sc S ′2(l′2) and by an application of Choice followed

by an application of Enrich, 〈T , (S 2 + S )(l2)〉
θ2
−→sc 〈T , S ′2(l′2)〉. Since g is species-

blind, g(θ1, (S 1 + S )(l1), S ′1(l′1)) = g(θ2, (S 2 + S )(l2), S ′2(l′2)). Hence all conditions for

g-bisimilarity are fulfilled.

Constant: Similar to previous case. �

Next, the prefixes are considered. There are various ways in which this theorem can be

stated but here the most minimal statement has been chosen. The corollary illustrates

a more general condition.

Theorem 4. Let S 1, S 2 and S be Bio-PEPA sequential agents and g a species-blind

function. Then

1. 〈T , ((α, κ) op S 1)(l)〉 ∼g 〈T , ((α, κ) op S 2)(l)〉 for op ∈ {⊕,	,�} if 〈T , S 1(l)〉 ∼g

〈T , S 2(l)〉

2. 〈T , ((α, κ)↑S 1)(l)〉 ∼g 〈T , ((α, κ)↑S 2)(l)〉 if 〈T , S 1(l + κ)〉 ∼g 〈T , S 2(l + κ)〉
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3. 〈T , ((α, κ)↓S 1)(l)〉 ∼g 〈T , ((α, κ)↓S 2)(l)〉 if 〈T , S 1(l − κ)〉 ∼g 〈T , S 2(l − κ)〉

Proof.

Modifier prefix: There are three cases to consider here but they can be covered by the

rule

((α, k) op S )(l)
(α,[S : op (l,k)])
−−−−−−−−−−−→c S (l).

Using this rule, assuming l is large enough,

((α, κ) op S 1)(l)
(α,[S 1: op (l,κ)])
−−−−−−−−−−−−→c S 1(l) and ((α, κ) op S 2)(l)

(α,[S 2: op (l,κ)])
−−−−−−−−−−−−→c S 2(l)

and using Enrich

〈T , ((α, κ) op S 1)(l)〉
(α,[S 1: op (l,κ)])
−−−−−−−−−−−−→sc 〈T , S 1(l)〉 and

〈T , ((α, κ) op S 2)(l)〉
(α,[S 2: op (l,κ)])
−−−−−−−−−−−−→sc 〈T , S 2(l)〉

and the result follows since g is species-blind.

Product prefix: Consider the rule ((α, k)↑S )(l)
(α,[S :↑(l,k)])
−−−−−−−−−→c S (l + k) with 0 ≥ κ ≥ N − κ.

Using this rule,

((α, κ)↑S 1)(l)
(α,[S 1:↑(l,κ)])
−−−−−−−−−−→c S 1(l + k) and ((α, κ)↑S 2)(l)

(α,[S 2:↑(l,κ)])
−−−−−−−−−−→c S 2(l + k)

and using Enrich

〈T , ((α, κ)↑S 1)(l)〉
(α,[S 1:↑(l,κ)])
−−−−−−−−−−→sc 〈T , S 1(l + k)〉 and

〈T , ((α, κ)↑S 2)(l)〉
(α,[S 2:↑(l,κ)])
−−−−−−−−−−→sc 〈T , S 2(l + k)〉.

Since 〈T , S 1(l + k)〉 ∼g 〈T , S 2(l + k)〉 the conclusion is that 〈T , ((α, κ)↑S 1)(l)〉 ∼g

〈T , ((α, κ)↑S 2)(l)〉 as long as g does not refer to species names S 1 and S 2.

Reactant prefix: This case can be proved similarly to the previous one. �

Corollary 2. Given two Bio-PEPA sequential components S 1 and S 2 with the same

maximum level N such that 〈T , S 1(l)〉 ∼g 〈T , S 2(l)〉 for all 0 ≤ l ≤ N and g a species-

blind function then

1. 〈T , ((α, κ)↓S 1)(l)〉 ∼g 〈T , ((α, κ)↓S 2)(l)〉
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2. 〈T , ((α, κ)↑S 1)(l)〉 ∼g 〈T , ((α, κ)↑S 2)(l)〉

Finally, the cooperation case can be considered. This requires a condition on the func-

tion g, namely that adding the same information about reactions preserves equality

under g.

Theorem 5. Let P1, P2 and Q be Bio-PEPA model components. If 〈T , P1〉 ∼g 〈T , P2〉

with g both set-stable and species-blind, then 〈T , P1 BC
L

Q〉 ∼g 〈T , P2 BC
L

Q〉 and

〈T ,QBC
L

P1〉 ∼g 〈T ,QBC
L

P2〉

Proof. There are three rules to consider and a suitable bisimulation needs to be con-

structed. Let R = {(〈T , P1 BC
L

Q〉, 〈T , P2 BC
L

Q〉) | 〈T , P1〉 ∼g 〈T , P2〉}. There are

three cases but only the case of synchronisation, namely α ∈ L, will be proved. The

other cases are similar but simpler.

Consider a transition 〈T , P1 BC
L

Q〉
(α1,w1)
−−−−−→sc 〈T , P′1 BCL Q′〉. If a second transition

〈T , P2 BC
L

Q〉
(α2,w2)
−−−−−→sc 〈T , P′2 BCL Q′〉 such that g((α1,w1), P1, P′1) = g((α2,w2), P2, P′2)

and 〈T , P′1〉 ∼g 〈T , P′2〉 can be found, then R is a g-bisimulation.

Considering the first transition above, by a two-step shorter inference P1
(α1,w′1)
−−−−−→c P′1

and Q
(α1,w′′)
−−−−−→c Q′ with w1 = w′1 ∪ w′′.

By applying Enrich to the transition from P1, using the fact that 〈T , P1〉 ∼g

〈T , P2〉 to obtain the matching transition, g((α1,w′1), P1, P′1) = g((α2,w′2), P2, P′2) and

〈T , P′1〉 ∼g 〈T , P′2〉 and considering a one-step shorter inference on the derivation of

the matching transition, hence P2
(α2,w′2)
−−−−−→c P′2.

Combining this and the transition for Q, and applying the rule Enrich, gives the

transition 〈T , P2 BC
L

Q〉
(α2,w′2∪w′′)
−−−−−−−−→sc 〈T , P′2 BCL Q′〉. Since g is set-stable and species-

blind g((α1,w′1 ∪ w′′), P1 BC
L

Q, P′1 BCL Q) = g((α2,w′2 ∪ w′′), P2 BC
L

Q, P′2 BCL Q) and

the result follows. �

Note that the set-stability condition imposed on g is reasonable. One way in which

to break it is for g to count the number of elements in the set, and to return 0 if this

number is less than or equal to a value x, and 1 if this number is greater than x. Then if

|w′1| = x − 1 and |w′2| = x, set-stability would not hold. It seems unlikely that this type

of function would return an equivalence of interest.
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7. Weak g-bisimilarity

In this section, a weak form of g-bisimulation is considered where it is possible

to abstract from certain actions. This type of equivalence has not been considered for

Bio-PEPA although weak isomorphism has been defined for PEPA [8].

By allowing the function g to map to a special value τ, it is possible to abstract

away from such reactions that are mapped to τ in the style of weak CCS as defined by

Milner [19]. To start, new transition notation is required.

Definition 29. Let g : Θ × P × P → X ∪ {τ} be a function where X is a non-empty,

arbitrary set. Then

1. P
g(θ1,P,P1) ... g(θn,Pn−1,P′)
−−−−−−−−−−−−−−−−−−−→g P′ represents P

θ1
−−→c P1

θ2
−−→c . . .

θn−1
−−−→c Pn−1

θn
−−→c P′.

2. P
φ1...φn

=====⇒g P′ represents P (
τ
−→g)∗

φ1
−−→g (

τ
−→g)∗ . . . (

τ
−→g)∗

φn
−−→g (

τ
−→g)∗ P′ for

φi ∈ X ∪ {τ}, i = 1, . . . , n.

Note that P =⇒g P′ allows for none, one or more τ transitions, hence P =⇒g P.

This notation can be extended to Bio-PEPA systems in the obvious manner. It is

then possible to define the following equivalence in the style of weak bisimulation

equivalence.

Definition 30. Let g : Θ×P×P→ X∪{τ} be a function where X is a non-empty, arbi-

trary set. A binary relation R over T (P) is a weak g-bisimulation if (〈T , P1〉, 〈T , P2〉)∈

R implies that for all φ , τ,

1. whenever 〈T , P1〉
φ
−−→g 〈T , P′1〉 then for some 〈T , P′2〉, 〈T , P2〉

φ
=⇒g 〈T , P′2〉, and

(〈T , P′1〉, 〈T , P
′
2〉) ∈ R

2. whenever 〈T , P2〉
φ
−−→g 〈T , P′2〉 then for some 〈T , P′1〉, 〈T , P1〉

φ
=⇒g 〈T , P′1〉, and

(〈T , P′1〉, 〈T , P
′
2〉)∈R

3. whenever 〈T , P1〉
τ
−→g 〈T , P′1〉 then for some 〈T , P′2〉, 〈T , P2〉 =⇒g 〈T , P′2〉, and

(〈T , P′1〉, 〈T , P
′
2〉) ∈ R

4. whenever 〈T , P2〉
τ
−→g 〈T , P′2〉 then for some 〈T , P′1〉, 〈T , P1〉 =⇒g 〈T , P′1〉, and

(〈T , P′1〉, 〈T , P
′
2〉)∈R
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Definition 31. P1 and P2 are weakly g-bisimilar, P1 ≈g P2, if (P1,P2) ∈ R for some

weak g-bisimulation R. ≈g =
⋃
{R | R is a weak g-bisimulation}.

As before, congruence is of interest for this equivalence.

Theorem 6. Let S 1, S 2 and S be Bio-PEPA sequential components and let g be species-

blind. If 〈T , S 1(l1)〉 ≈g 〈T , S 2(l2)〉 then 〈T ,C1(l1)〉 ≈g 〈T ,C2(l2)〉 where Ci
def
= S i for

i = 1, 2.

Proof. For 〈T ,C1(l1)〉
φ
−−→g 〈T , S ′1(l′1)〉, the transition 〈T , S 2(l2)〉

φ
=⇒g 〈T , S ′2(l′2)〉 can

be obtained in the standard manner. This transition is a sequence of transitions of

the form 〈T , S 2(l2)〉
τ
−→g 〈T , S ′′(l′′)〉 (

τ
−→g)∗

φ
−−→g (

τ
−→g)∗ 〈T , S ′2(l′2)〉. A shorter inference

for first transition followed by application of rules constant and then Enrich gives

〈T ,C2(l2)〉
τ
−→g 〈T , S ′′(l′′)〉 since g is species-blind, hence 〈T ,C2(l2)〉

φ
=⇒g 〈T , S ′2(l′2)〉

as required. �

Theorem 7. Let S 1, S 2 and S be Bio-PEPA sequential components and g a species-

blind function. Then

1. 〈T , ((α, κ) op S 1)(l)〉 ≈g 〈T , ((α, κ) op S 2)(l)〉 for op ∈ {⊕,	,�} if 〈T , S 1(l)〉 ≈g

〈T , S 2(l)〉

2. 〈T , ((α, κ)↑S 1)(l)〉 ≈g 〈T , ((α, κ)↑S 2)(l)〉 if 〈T , S 1(l + κ)〉 ≈g 〈T , S 2(l + κ)〉

3. 〈T , ((α, κ)↓S 1)(l)〉 ≈g 〈T , ((α, κ)↓S 2)(l)〉 if 〈T , S 1(l − κ)〉 ≈g 〈T , S 2(l − κ)〉

Proof. In each case, there are both 〈T , ((α, κ) op S 1)(l)〉
(α,[S 1: op (l,κ)])
−−−−−−−−−−−−→sc 〈T , S 1(l′)〉

and 〈T , ((α, κ) op S 2)(l)〉
(α,[S 2: op (l,κ)])
−−−−−−−−−−−−→sc 〈T , S 2(l′)〉 where l′ has the appropriate arith-

metic relationship with l. The equality g((α, [S 1 : op (l, κ)]), ((α, κ) op S 1)(l), S 1(l′))

= g((α, [S 2 : op (l, κ)]), ((α, κ) op S 2)(l), S 2(l′)) holds since g is species-blind and the

results follow. �

Corollary 3. Given two Bio-PEPA sequential components S 1 and S 2 with the same

maximum level N such that 〈T , S 1(l)〉 ≈g 〈T , S 2(l)〉 for all 0 ≤ l ≤ N and g a species-

blind function then

1. 〈T , ((α, κ)↓S 1)(l)〉 ≈g 〈T , ((α, κ)↓S 2)(l)〉
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2. 〈T , ((α, κ)↑S 1)(l)〉 ≈g 〈T , ((α, κ)↑S 2)(l)〉

Next, the cooperation case can be considered.

Theorem 8. Let P1, P2 and Q be Bio-PEPA model components. If 〈T , P1〉 ≈g 〈T , P2〉

with g set-stable and species-blind, then both 〈T , P1 BC
L

Q〉 ≈g 〈T , P2 BC
L

Q〉 and

〈T ,QBC
L

P1〉 ≈g 〈T ,QBC
L

P2〉.

Proof. Let R = {(〈T , P1 BC
L

Q〉, 〈T , P2 BC
L

Q〉) | 〈T , P1〉 ≈g 〈T , P2〉}. Considering

synchronisation, namely α ∈ L, let 〈T , P1 BC
L

Q〉
φ
−−→g 〈T , P′1 BCL Q′〉. By a two-step

shorter inference, P1
(α1,w′1)
−−−−−→c P′1 and Q

(α1,w′′)
−−−−−→c Q′ with w1 = w′1 ∪ w′′, and φ =

g((α1,w1), P1 BC
L

Q, P′1 BCL Q′).

By applying Enrich to the transition from P1 and using 〈T , P1〉 ≈g 〈T , P2〉, then

〈T , P2〉 (
τ
−→g)∗ P

φ′

−−→g P′ (
τ
−→g)∗ 〈T , P′2〉 and φ′ = g((α1,w′1), P1, P′1) = g((α2,w′2), P, P′),

with 〈T , P′1〉 ≈g 〈T , P′2〉.

Considering a shorter inference for each transition, applying coop3 then Enrich,

the result is 〈T , P2 BC
L

Q〉 (
τ
−→g)∗ PBC

L
Q

φ′′

−−→g P′ BC
L

Q′ (
τ
−→g)∗ 〈T , P′2 BCL Q′〉 where

φ′′ = g((α2,w′2 ∪w′′), PBC
L

Q, P′ BC
L

Q′). Since g is set-stable and species-blind, φ′′ =

φ as required. Likewise, because g is species-blind, all other labels evaluate to τ. The

other two cases are similar. �

In general, weak bisimulations are not congruences for choice between sequential com-

ponents because a transition of the form P
τ
−→ P′ can be matched by Q =⇒g Q Hence

P + R
τ
−→ P′ where P′ may not have the same actions as R whereas Q + R =⇒g Q + R

which obviously has the actions of R. However, in the context of Bio-PEPA, well-

defined sequential components have a restricted form and it is possible to define an

extension operator involving choice for which weak g-bisimulation is a congruence.

Definition 32. Let A and B be two well-defined species

A
def
=

n∑
i=1

(αi, κi) opi A and B
def
=

m∑
j=1

(β j, λ j) op j B

the extension of A by B is defined by

A{B}
def
=

n∑
i=1

(αi, κi) opi A{B} +
m∑

j=1

(β j, λ j) op j A{B}
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Figure 3: Species I1 and I2 modelled explicitly, and modelled as a single species I

This permits A to take on additional reaction capabilities, specifically those of B. For

A{B} to be well-defined, there must be no overlap in the reaction names of A and B,

and for both A and B to be well-defined. A{B} and B{A} are isomorphic since their

transition systems are structurally identical with matching actions.

Theorem 9. Let g be species-blind and let 〈T ,C1(l)〉 ≈g 〈T ,C2(l)〉 for sequential Bio-

PEPA components C1 and C2. If C1{C} and C2{C} are well-defined for C a sequential

Bio-PEPA component and all species have maximum level n then 〈T , (C1{C})(l)〉 ≈g

〈T , (C2{C})(l)〉 and 〈T , (C{C1})(l)〉 ≈g 〈T , (C{C2})(l)〉.

Proof. Consider a transition 〈T , (C1{C})(l)〉
φ
−−→g 〈T , (C1{C}(l′))〉 where it is the case

that φ = g((α,w), (C1{C})(l), (C1{C})(l′)). If α appears in C, then there exists the transi-

tion 〈T , (C2{C})(l)〉
φ
−−→g 〈T , (C2{C})(l′)〉 with φ = g((α,w), (C2{C})(l), (C2{C})(l′)) and

hence 〈T , (C2{C})(l)〉
φ

=⇒g 〈T , (C2{C})(l′)〉.

If α appears in C1 and C2 then 〈T ,C1(l)〉
φ
−−→g 〈T ,C1(l′)〉 and since C1(l) ≈g C2(l),

then 〈T ,C2(l)〉
φ

=⇒g 〈T ,C2(l′′)〉 and 〈T , (C2{C})(l)〉
φ

=⇒g 〈T , (C2{C})(l′′)〉 as required.

The other cases are shown similarly. �

Note that these results require g to be species-blind. As with the earlier forms of equiva-

lence, as long as g maps species that appear in transitions that should match, to identical

values, these congruence results will still hold.

In Section 9, weak g-bisimulation will be applied to a biological system.

8. Example: grouping of species

A specific aim of investigating equivalences in the context of modelling biological

systems is to capture the ways in which biologists might choose to abstract informa-

34



A
def
= (α1, 1) ↓ A + (α2, 1) ↓ A

I1
def
= (α1, 1) ↑ I1 + (β1, 1) ↓ I1

I2
def
= (α2, 1) ↑ I2 + (β2, 1) ↓ I2

B
def
= (β1, 1) ↑ B + (β2, 1) ↑ B

M
def
= A(n) BC

{α1 ,α2 }
((I1(0)BC

∅
I2(0)) BC

{β1 ,β2 }
B(0))

A′
def
= (α, 1) ↓ A′

I′
def
= (α, 1) ↑ I′ + (β, 1) ↓ I′

B′
def
= (β, 1) ↑ B′

M′
def
= A′(n)BC

{α}
(I′(0)BC

{β}
B′(0))

Table 1: Bio-PEPA model definitions

tion. Equivalences developed will capture these abstractions formally and the example

illustrates this process. It considers the case where a number of species that play a

similar role in a set of reactions are modelled as a single species as illustrated in Fig-

ure 3. The species I1 and I2 are known to have similar functions and for modelling

simplicity, they can be grouped together simply as I. The labels on the reaction arrows

give the rates for the reactions. Assuming mass action as the reaction kinetics for all

reactions, then it is expected that R = R1 + R2 and S = (S 1[I1] + S 2[I2])/[I] where

[C] denotes the concentration of a species C. Biologically, this can be motivated in the

way that extracellular regulated kinase (ERK) is considered both in experiments and

modelling. ERK actually refers to two different kinases ERK1 and ERK2, and in some

experiments they can be identified separately and in others, together [26]. Hence, they

are frequently modelled together as a single species [27, 10] but could be modelled

separately as current research shows that they have distinct functions within the cell

[28].

These two different models can be expressed in Bio-PEPA as given in Table 1. The

first model is the running example from Section 2. Although A′ and B′ are the same

species as A and B, they have different definitions and hence it is necessary to give

them different names as a way to distinguish them. For the models, the initial levels

are the maximum for A and A′ and zero for the other components.

A covering context T is required and is given in Table 2. It is chosen to be minimal

(in the sense that only the information needed for the example is included, for example,

no constants ki are used and the rates remain symbolic). All reactions use mass action
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T = V,K ,F ,N ,Comp where V = {v} K = ∅

F = { fα1 = fMA(r1), fα2 = fMA(r2), fα = fMA(r),

fβ1 = fMA(s1), fβ2 = fMA(s2), fβ = fMA(s) }

N = {A : H=h,N=n,V=v; I1 : H=h,N=n,V=v; I2 : H=h,N=n,V=v;

B : H=h,N=n,V=v;

A′ : H=h,N=n,V=v; I′ : H=h,N=n,V=v; B′ : H=h,N=n,V=v }

Comp = { model definitions for A, I1, I2, B, A′, I′, B′ from Table 1 }

Table 2: Bio-PEPA context definitions

kinetics, hence the use of fMA (which is defined in Section 2). The two Bio-PEPA

systems are then P′ = 〈T ,M′〉 and P = 〈T ,M〉.

All species have the same step size h because of the necessity for conservation of

mass. The same maximum concentration is assumed for all species.

To define the appropriate bisimulation, note that the reaction α is the analog of

reactions α1 and α2, likewise for β with β1 and β2. Hence, a function is required to

capture this.

h1(γ) =


α if γ = αi i = 1, 2

β if γ = βi i = 1, 2

γ otherwise

A function h2 for rate calculation is required as well.

h2((γ,w), P) =
∑{

fγ′ [w′,N ,K]/h | P
(γ′,w′)
−−−−→ and h1(γ) = h1(γ′)

}
Together these will be used to define g from which a g-bisimulation can be constructed.

g(θ, P, P′) = (h1(action(θ)), h2(θ, P)).

For the rest of this example, vector notation will be used instead of Bio-PEPA model

notation. For model M, states will be represented by (lA, lI1 , lI2 , lB) where the order of

species is given by the subscripts, and for M′, vectors of the form (lA′ , lI′ , lB′ ) will be

used.
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To show these two models are g-bisimilar, it is necessary to show that the following

relation is a g-bisimulation.

R = {(k − ( j + l), j, l, n − k), (k − ( j + l), j + l, n − k) | 0 ≤ k ≤ n, 0 ≤ j + l ≤ k}

The rates will be considered symbolically in describing transitions after which the re-

lationship necessary between the rates of the different models to obtain g-bisimilarity

is considered. There are eight distinct cases and these are considered in Appendix A.

For R to be a g-bisimulation, it is then necessary that r = r1 +r2 and s = s1 = s2 (which

implies s = (s1 j + s2l)/( j + l)).

Hence, this bisimulation captures the original idea of grouping which includes the

relationship between the rates, namely R = R1 + R2 and S = (S 1[I1] + S 2[I2])/[I].

However, to obtain g-bisimilarity correctly, it is also necessary that S 1 = S 2 = S

which is not a feature of the original abstraction, although it does guarantee the correct

relationship between rates. This requires further investigation.

The function defined above g is species-blind and set-stable (if all reactions are

mass-action-based) and so the congruence results of the previous section apply. Hence,

given another Bio-PEPA model P, PBC
L

M ∼g PBC
L

M′. This introduces the possibil-

ity that other species might synchronise on the existing reactions. Of more interest, is

the case where A and A′ are modified to add the capability for the same new reactions,

for example, adding (γ, 2) ↑ A and (γ, 2) ↑ A′, and B and B′ are modified to add capa-

bility for the same new reactions (but not necessarily the same new reactions as A and

A′). Call the new model components M1 and M′1. These are still g-bisimilar, since the

same transitions are possible in each case, and congruence can be used again, to give

PBC
L

M1 ∼g PBC
L

M′1. In this cooperation, it is now possible for shared reactions be-

tween P and the second operand that do not involve the grouped species to take place.

In both cases where congruence is used, there is the opportunity to replace the more

complex system with more states (M or M1) with the simpler one (M′ or M′1) to obtain

a smaller state space to work with.
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v16 EG + Grb2 → EG−Grb2

v17 Sos + EG−Grb2 → EG−Grb2−Sos

v18 Ras−GDP + EG−Grb2−Sos → EG−Grb2−Sos−Ras−GDP

v19 EG−Grb2−Sos−Ras−GDP → Ras−GTP + EG−Grb2−Sos

v20 Ras−GTP∗ + EG−Grb2−Sos → EG−Grb2−Sos−Ras−GTP

v21 EG−Grb2−Sos−Ras−GTP → Ras−GDP + EG−Grb2−Sos

v22 EG + Shc → EG−Shc

v23 EG−Shc → EG−Shc∗

v24 Grb2 + EG−Shc∗ → EG−Shc∗−Grb2

v25 Sos + EG−Shc∗−Grb2 → EG−Shc∗−Grb2−Sos

v26 Ras−GDP + EG−Shc∗−Grb2−Sos → EG−Shc∗−Grb2−Sos−Ras−GDP

v27 EG−Shc∗−Grb2−Sos−Ras−GDP → Ras−GTP + EG−Shc∗−Grb2−Sos

v30 Ras−GTP∗ + EG−Shc∗−Grb2−Sos → EG−Shc∗−Grb2−Sos−Ras−GTP

v31 EG−Shc∗−Grb2−Sos−Ras−GTP → Ras−GDP + EG−Shc∗−Grb2−Sos

v32 EG−Shc∗−Grb2−Sos → EG + Shc∗−Grb2−Sos

v33 Shc∗−Grb2−Sos → Shc∗ + Grb2−Sos

v34 EG−Grb2−Sos → EG + Grb2−Sos

v35 Grb2−Sos → Grb2 + Sos

v36 Shc∗ → Shc

v37 EG−Shc∗ → EG + Shc∗

v38 Shc∗ + Grb2 → Shc∗−Grb2

v39 EG−Shc∗−Grb2 → EG + Shc∗−Grb2

v40 Shc∗−Grb2 + Sos → Shc∗−Grb2−Sos

v41 EG−Shc∗ + Grb2−Sos → EG−Shc∗−Grb2−Sos

Figure 4: Alternative signalling pathways from the MAPK cascade activated from EGF receptors (EG is an

abbreviation for (EGF−EGFR∗)2−GAP and the reaction names are taken from the original paper [29]).
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Ras-GTP∗

EG-Shc∗-Grb2 -Sos-Ras-GTP EG-Grb2 -Sos-Ras-GTP

Ras-GDP

EG-Shc∗-Grb2 -Sos-Ras-GDP EG-Grb2 -Sos-Ras-GDP

Ras-GTP

EG-Shc∗-Grb2 -Sos EG-Grb2 -Sos

Shc∗-Grb2 -Sos

Grb2 -Sos

Sos

Shc∗-Grb2EG-Shc∗-Grb2

Grb2 EG-Grb2

EG-Shc∗ Shc∗

EG-Shc Shc

(EGF -EGFR∗)2 -GAP [EG]

v26

v27

v30

v31

v18

v19

v20

v21

v16

v17 v34

v35

v22

v24

v23

v25v32

v33

v36

v37

v38
v39

v40

v41

Figure 5: Diagrammatic representation of the reactions in Figure 4 (after [31]). Species in dark boxes

with white text are present initially. Rounded rectangles show the sink and the source. The Shc-dependent

pathway is on the left of the figure and the Shc-independent pathway is on the right. Species that are used in

both pathways (EG, Grb2, Sos and Grb2-Sos) are to the right of the middle

.
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9. Example: alternative signalling pathways

Biological research has shown that there can be distinct signalling pathways with

the same function within cells [30]. This confers a benefit to an organism since failure

of one pathway may reduce function but not totally remove it, mitigating the effect.

In this section, an example of alternative pathways is considered in the MAPK ki-

nase signalling cascade which is triggered by EGF binding to receptors on the cell’s

external surface [29]. Schoeberl et al developed an ODE-based model which was fur-

ther investigated by Gong and Zhang [31]. For reasons of space, the whole model will

not be considered but rather a small fragment that captures the two alternative path-

ways is considered. Additionally, only reactions originating from the cell-surface will

be considered, although internalised reactions are considered in the full model.

In the model, there are two pathways, one independent of the protein Shc and one

dependent on Shc. Both pathways start with the presence of a complex which consists

of a GAP protein and a phosphorylated dimer of EGF bound to the receptor EGFR.

They both end with the activation of Ras-GTP which leads to the activation of the

MAP kinase cascade. By experimentation with the model of Schoeberl et al, Gong and

Zhang have shown that the Shc-dependent pathway is redundant but dominant [31].

The reactions of interest are given in Figure 4 and these are shown diagrammatically

in Figure 5. The aim here is to consider the model at a structural level only (ignoring

rates) to show that the pathways are redundant, in the sense that either pathway has

the same output. This requires the construction of two Bio-PEPA models, one for

each pathway, and the construction of a semantic equivalence to show that in terms of

features of interest, the pathways are the same. The two Bio-PEPA models are given in

the appendix.

The states of the labelled transition systems of the Bio-PEPA models can be viewed

as vectors. The Shc-dependent model has 17 species and hence a state t ∈ N17. The

Shc-dependent model has 11 species and hence a state u ∈ N11. The ordering of these

vectors will be discussed later in this section.

A function is required for the equivalence definition. First, an auxiliary function is
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defined to determine the current change in levels for a species from the string w. Let

∆(A,w) =


κ if A ↑ :(l, κ) appears in w

−κ if A ↓ :(l, κ) appears in w

0 otherwise

Then, the following generic definition can be made

g{A1,...,Am}((α,w), P, P′) =


(∆(A1,w), . . . ,∆(Am,w)) if any Ai appears in w

τ otherwise

which provides a list of change values for the species listed only if one of them changes.

This can now be used as the basis of the equivalence that will be used to compare the

two pathways.

In considering which are the crucial species of the example, it would appear that

one could start with the species at the start of the pathway EG and that at the end

Ras-GTP. However, by use of the Bio-PEPA Eclipse Plugin7, in both models, we can

identify a single source Ras-GTP∗ and a single sink Ras-GTP. These are indicated by

the rounded rectangles in Figure 5.

Further investigation using the Infer Invariants option in the Bio-PEPA Plugin [32,

33] shows that the Shc-independent model has a single loop involving reactions that

decrease and increase EG (v16 and v34, respectively) that returns the system to the

same state. Similarly, the Shc-dependent model has four loops of this type and one

other loop that does not affect EG. Both models have four reactions that are not part of

loops and these are the reactions that involve the three Ras proteins and the complexes

they form. Furthermore, the Shc-independent model has 4 invariants over species, all

of which involve EG-Grb2-Sos-Ras-GTP and EG-Grb2-Sos-Ras-GDP. Each invariant

involves one of the species that is initially present, and hence the invariant has the

value of the quantity of that species. The Shc-independent model has 5 invariants,

again where each involves one of the species that is initially present. All five invariants

involve both EG-Shc∗-Grb2-Sos-Ras-GTP and EG-Shc∗-Grb2-Sos-Ras-GDP.

7www.biopepa.org
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t Shc-dependent u Shc-independent
t1 Ras-GTP∗ u1 Ras-GTP∗

t2 Ras-GDP u2 Ras-GDP

t3 Ras-GTP u3 Ras-GTP

t4 EG-Shc∗-Grb2-Sos-Ras-GTP u4 EG-Grb2-Sos-Ras-GTP

t5 EG-Shc∗-Grb2-Sos-Ras-GDP u5 EG-Grb2-Sos-Ras-GDP

t6 EG u6 EG

t7 Grb2 u7 Grb2

t8 Sos u8 Sos

t9 Grb2-Sos u9 Grb2-Sos

t10 EG-Shc∗-Grb2 u10 EG-Grb2

t11 EG-Shc∗-Grb2-Sos u11 EG-Grb2-Sos

t12 Shc

t13 Shc∗

t14 EG-Shc

t15 EG-Shc∗

t16 Shc∗-Grb2

t17 Shc∗-Grb2-Sos

Figure 6: Ordering of vectors for Shc-dependent and Shc-independent models

From this, it is possible to obtain an alternative view of the pathways. Each pathway

takes a quantity of Ras-GTP∗ and through a sequence of reactions involving a fixed

amount of EG, Grb2, Sos, and in the case of the Shc-dependent pathway, Shc, turns the

Ras-GTP∗ into the same amount of Ras-GTP without losing any EG, Grb2, Sos (and

Shc). This is the viewpoint that will be taken here in formally identifying the structural

similarities in the two models.

A suitable relation must be constructed with pairs of state vectors from each model.

The ordering of vectors is given in Figure 6. Hence t1 is the count for Ras-GTP∗ and

t17 the count for Shc∗-Grb2-Sos in the state vector t.

The relation over which the semantic equivalence will be checked is defined over

{0, . . . ,N}17 × {0, . . . ,N}11 and specified as R = {(t,u) | ti = ui for i = 1, . . . , 5}.

This relation matches states with the same level of Ras-GTP∗, Ras-GDP, Ras-GTP, as

well as where EG-Shc∗-Grb2-Sos-Ras-GTP and EG-Grb2-Sos-Ras-GTP are the same,

and EG-Shc∗-Grb2-Sos-Ras-GDP and EG-Grb2-Sos-Ras-GDP are the same, for the

reasons described above. Let E = {Ras-GTP∗,Ras-GDP,Ras-GTP}.
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To show that R is a weak gE-bisimulation, case analysis is required. A maximum

level of N is assumed for all species, and at the start of the system EG, Grb2, Sos,

Shc (in the Shc-dependent model) are at this level and all other species are at 0. For

convenience, transitions will be labelled with gE(θ) rather than θ. There is an invariant

involving the first 5 elements of the vector for both models. Hence t1 + t2 + t3 + t4 + t5 =

N = u1 + u2 + u3 + u4 + u5. The first transitions to consider are where the vectors have

the form (k1, k2, k3, k4, k5, . . .) for 1 ≤ ki ≤ N − 1, i = 1, . . . , 5

1. (k1, k2, k3, k4, k5, x6, . . . , x17)
(−1,0,0)
−−−−−→g (k1-1, k2, k3, k4+1, k5, x′6, . . . , x

′
17) which

occurs when reaction v30 is triggered and a similar transition is required for

(k1, k2, k3, k4, k5, y6, . . . , y11). The matching reaction for the Shc-independent

model is v20. However, it requires that there is at least one level of EG-Grb2-Sos

available. By an analysis of the invariants, it can be shown that if no EG-Grb2-Sos

is available then it is possible through a sequence of τ actions to obtain at least

one level of this species. The reactions that are involved are v35, v16 and v17.

This gives the transitions of the form

(k1, k2, k3, k4, k5, y4, . . . , y11)
τ
−→g (k1, k2, k3, k4, k5, y′6, . . . , y

′
11)

...
...

τ
−→g (k1, k2, k3, k4, k5, y′′6 , . . . , y

′′
11)

(−1,0,0)
−−−−−→g (k1-1, k2, k3, k4+1, k5, y′′′6 , . . . , y

′′′
11)

with between none and three intermediate transitions, and these transition pro-

vide a suitable match.

For (k1, k2, k3, k4, k5, y6, . . . , y11)
(−1,0,0)
−−−−−→g (k1-1, k2, k3, k4+1, k5, y′6, . . . , y

′
11), a

similar argument can be made in terms of the invariants of the system that even-

tually EG-Shc∗-Grb2-Sos will be produced and reaction v30 will occur.

(k1, k2, k3, k4, k5, x6, . . . , x17)
τ...τ
−−−→g (k1, k2, k3, k4, k5, x′6, . . . , x

′
17)

(−1,0,0)
−−−−−→g (k1-1, k2, k3, k4+1, k5, x′′6 , . . . , x

′′
17)

2. (k1, k2, k3, k4, k5, x6, . . . , x17)
(0,1,0)
−−−−→g (k1, k2+1, k3, k4-1, k5, x′6, . . . , x

′
17) which oc-

curs when reaction v31 is triggered and a similar transition is required for the
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state (k1, k2, k3, k4, k5, y6, . . . , y11). The matching reaction for the Shc-independent

model is v21. Since there is at least one level of k4 the reaction is possible and

hence a matching transition can be found. The symmetric case is proved simi-

larly.

3. (k1, k2, k3, k4, k5, x6, . . . , x17)
(0,−1,0)
−−−−−→g (k1, k2-1, k3, k4, k5+1, x′6, . . . , x

′
17). This is

proved in a similar fashion to the first case, considering reactions v26 and v18

and arguing that through a sequence of τ actions, the required reactant species

will be formed if it was not already present.

4. (k1, k2, k3, k4, k5, x6, . . . , x17)
(0,0,1)
−−−−→g (k1, k2, k3+1, k4, k5-1, x′6, . . . , x

′
17). This is

proved in a similar fashion to the second case.

5. (k1, k2, k3, k4, k5, x6, . . . , x17)
τ
−→g (k1, k2, k3, k4, k5, x′6, . . . , x

′
17). This transition

can be matched by (k1, k2, k3, k4, k5, y6, . . . , y11) =⇒g (k1, k2, k3, k4, k5, y6, . . . , y11).

For the cases where some of the ki are zero or N, reactions will not be possible but

they will not be possible in both models so this does not violate the conditions of the

bisimulation.

Hence, R is a weak gE-bisimulation. This means that the two models have been

compared in terms of the main role of the pathways, and it has been shown that they

produce the same outputs from the same inputs. This was achieved by being able to

abstract from the reactions that played a similar role in both systems, namely form-

ing complexes that could then be used in the production of Ras-GTP. Although this

approach was applied to a single system (where it was known that there were redun-

dant pathways), it appears robust enough to be used in other situations to establish the

presence of such alternative pathways,

10. Related work

The use of process algebras for modelling systems biology has increased rapidly

since the first paper proposed their use [34]. Approaches include the κ-calculus [3],

stochastic π-calculus [4, 2], Beta-binders [5] and Bio-Ambients [6]. Most of these

approaches use stochastic simulation as their analysis tool, and few approaches have

considered the use of semantic equivalences.
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In the case where equivalences have been used, these are mostly qualitative, in

the sense that they do not consider stochastic aspects of the systems that are being

modelled. Note that g-bisimilarity and its weak variant can be either qualitative or

quantitative depending on whether rates are calculated by g.

Quantitative equivalences are defined for Bio-PEPA [7] (as discussed in Section 4.4)

and an example is given showing strong stochastic bisimilarity between a system with

enzymes and the Michaelis-Menten abstraction of the system. In both systems, species

have two levels only.

Most of the qualitative equivalences that appear in the literature are based on Mil-

ner’s (strong) bisimulation or weak bisimulation [19]. Weak bisimulation is shown

to be a congruence for the bio-κ-calculus as is a context bisimulation which allows

for the modelling of cell interaction [35]. Weak bisimulation has also been used to

show that CCS specifications of elements of lactose operon regulation have the same

behaviour as more detailed models [36]. In an example of biological modelling using

hybrid systems, bisimulation is used to quotient the state space with respect to a subset

of variables as a technique for state space reduction [37]. Bisimulation has also been

used in the comparison of ambient-style models and membrane-style models [38] and

the comparison of a term-rewriting calculus, the Calculus of Looping Systems and a

simple brane calculus, PEP [39].

Compression bisimilarity has been defined over Bio-PEPA systems [22]. It is based

on the idea that different discretisations of a system should have the same behaviour as-

suming sufficient levels. Conditions for congruence are identified and the equivalence

is illustrated via a substrate-enzyme example.

Another equivalence defined for Bio-PEPA is fast-slow bisimilarity which abstracts

from those reactions that are considered to be fast, taking inspiration from the Quasi-

Steady-State Assumption [20]. Comparison of fast-slow bisimilarity with weak g-

bisimilarity is future work but it seems likely that fast-slow bisimilarity or a variant

will be expressible as weak g-bsimilarity with the choice of appropriate function.
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11. Conclusion

This paper has presented an investigation of Bio-PEPA with levels; first considering

the structure of the transitions obtained for well-defined Bio-PEPA systems and then

considering the equivalences defined for PEPA and applying them to Bio-PEPA. The

conclusions that can be drawn here are that Bio-PEPA systems have limited branching

behaviour and as a result of this, these equivalences are the same. Additionally the

equivalences are very fine, and are too strict to be of interest in most biological settings.

A new parameterised bisimilarity, g-bisimilarity is introduced which allows the

use of a function over the context, models and transition labels to identify aspects

of the same behaviour. It is possible to express strong bisimulation using the new

bisimilarity, as well as other equivalences that focus on biological aspects of behaviour.

It is shown that g-bisimilarity is a congruence for all operators of Bio-PEPA under

certain conditions on the function g and these conditions are not unreasonably strong.

Congruence allows the exploitation of the inherent compositionality of the process

algebra, since a model can be replaced by one with equivalent behaviour ensuring that

the behaviour of the whole system remains unchanged. A weak variant of g-bisimilarity

is also presented. This equivalence allows for abstraction from reactions. Congruence

is proved for all operators except choice. A new operator that allows the addition of

reaction capabilities is defined, and weak g-bisimilarity is shown to be a congruence

with respect to this operator.

Two examples are presented. In the first, it is demonstrated how g-bisimilarity

can be applied to a real biological modelling example, where two similar species are

grouped as one species. It is possible to identify a function that will identify these

systems as having the same behaviour using a renaming function and a rate-summing

function. The state space can be quotiented into different cases and each case can be

proved generally for n elements of the initial species, and none of the other species.

Using congruence, it then becomes possible to use the system with the smaller state

space (the one where species are grouped) in place of the larger one without changing

the behaviour of a larger system containing them. The second example shows how

weak g-bisimulation can be used to obtain a technique to compare alternative signalling
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pathways by taking into account the important species in the pathways.

To summarise, the contribution of this paper is to further our understanding of a

stochastic process algebra for biological modelling and as a result of this to develop

biologically-meaningful equivalences that can be used to capture when two different

systems have the same behaviour.

Acknowledgements: The author thanks Jane Hillston for her comments. Vashti Galpin

is supported by EPSRC Grants EP/E031439/1 and EP/C54370X/01.

References

[1] J. Fisher, T. A. Henzinger, Executable cell biology, Nature Biotechnology 25

(2007) 1239–1249.

[2] R. Blossey, L. Cardelli, A. Phillips, A compositional approach to the stochastic

dynamics of gene networks, in: C. Priami, L. Cardelli, S. Emmott (Eds.), Trans-

actions on Computational Systems Biology IV, LNCS 3939, Springer, 2006, pp.

99–122.

[3] V. Danos, C. Laneve, Formal molecular biology, Theoretical Computer Science

325 (2004) 69–110.

[4] C. Priami, A. Regev, E. Shapiro, W. Silverman, Application of a stochastic name-

passing calculus to representation and simulation of molecular processes, Infor-

mation Processing Letters 80 (2001) 25–31.

[5] C. Priami, P. Quaglia, Beta binders for biological interactions, in: V. Danos,
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A. Example: grouping of species

Let R = {(k − ( j + l), j, l, n − k), (k − ( j + l), j + l, n − k) | 0 ≤ k ≤ n, 0 ≤ j + l ≤

k}. The rates are considered symbolically in describing transitions after which the

relationship necessary between the rates of the different models to obtain g-bisimilarity

is considered. Compression bisimilarity [22] is a useful tool to identify the different

cases to be considered in the proof. It quotients the state space into classes which have

the same actions available, and it has been applied to the larger model M to determine

these classes, and leads to the conclusion that there are eight distinct cases necessary

to prove that R is a g-bisimulation. These are illustrated in the table below. Each row

under a case heading represents a group of transitions, specified by the constraints in

the case heading. Context and angle brackets are omitted. The left hand column is the

source of the transition and has been written as simply as possible. The next column

represents the label on the transition in the stochastic relation so that it is clear to see

how g is calculated. The third column represents the target of the transition, and is

written to make it immediate to check that the resulting pairs are in R. The last column

gives the value of g. The change/jump vectors for the actions are as follows.

α1 : (−1,+1, 0, 0) β1 : (0,−1, 0,+1)

α1 : (−1, 0,+1, 0) β2 : (0, 0,−1,+1)

α : (−1,+1, 0) β : (0,−1,+1)

Transitions with four-element vectors are from M and those with three-element vec-

tors from M′. Hence the table makes it straightforward to check which transitions are

potential matches and from this the relationships between the rates in the two models

can be established.

From Cases A, B, C and D, it can be seen that for R to be a g-bisimulation, it is

necessary that r = r1 + r2. From Cases B and G, s1 = s is required, and from C and H,

s2 = s. Furthermore, Cases A and E illustrate the requirement for s1 j + s2l = s( j + l).

This is already implied by s1 = s2 = s since (s1 j + s2l)/( j + l) = (s j + sl)/( j + l) = s.

Hence under these constraints, R is a g-bisimulation and 〈T ,M′〉 ∼g 〈T ,M〉.
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Source Label Target g(θ,P,P′)

Case A: 2 ≤ k ≤ n, 2 ≤ j+l ≤ k−1

(k−( j+l), j, l, n−k) (α1, r1(k− j+l)) (k−(( j+1)+l), j+1, l, n−k) (α, (r1+r2)k)
(k−( j+l), j, l, n−k) (α2, r2(k− j+l)) (k−( j+(l+1)), j, l+1, n−k) (α, (r1+r2)k)
(k−( j+l), j, l, n−k) (β1, s1 j) ((k−1)−(( j−1)+l), j−1, l, n−(k−1)) (β, s1 j)
(k−( j+l), j, l, n−k) (β2, s2l) ((k−1)−( j+(l−1)), j, l−1, n−(k−1)) (β, s2l)

(k−( j+l), j+l, n−k) (α, r(k− j+l)) (k−( j+l+1), j+l+1, n−k) (α, rk)
(k−( j+l), j+l, n−k) (β, s( j+l)) ((k−1)−( j+l−1), j+l−1, n−(k−1)) (β, s( j+l))

Case B: 2 ≤ k ≤ n, 1 ≤ j ≤ k−1, l = 0

(k− j, j, 0, n−k) (α1, r1(k− j)) (k−( j+1), j+1, 0, n−k) (α, (r1+r2)(k− j))
(k− j, j, 0, n−k) (α2, r2(k− j)) (k−( j+1), j, 1, n−k) (α, (r1+r2)(k− j))
(k− j, j, 0, n−k) (β1, s1 j) ((k−1)−( j−1), j−1, 0, n−(k−1)) (β, s1 j)

(k− j, j, n−k) (α, r(k− j)) (k−( j+1), j+1, n−k) (α, r(k− j))
(k− j, j, n−k) (β, s j) ((k−1)−( j−1), j−1, n−(k−1)) (β, s j)

Case C: 2 ≤ k ≤ n, 1 ≤ l ≤ k−1, j = 0

(k−l, 0, l, n−k) (α1, r1(k−l)) (k−(l+1), 1, l, n−k) (α, (r1+r2)(k−l))
(k−l, 0, l, n−k) (α2, r2(k−l)) (k−(l+1), 0, l+1, n−k) (α, (r1+r2)(k−l))
(k−l, 0, l, n−k) (β2, s2l) ((k−1)−(l−1), 0, l−1, n−(k−1)) (β, s2l)

(k−l, l, n−k) (α, r(k−l)) (k−(l+1), l+1, n−k) (α, r(k−l))
(k−l, l, n−k) (β, sl) ((k−1)−(l−1), l−1, n−(k−1)) (β, sl)

Case D: 1 ≤ k ≤ n, j = 0, l = 0

(k, 0, 0, n−k) (α1, r1k) (k−1, 1, 0, n−k) (α, (r1+r2)k)
(k, 0, 0, n−k) (α1, r2k) (k−1, 0, 1, n−k) (α, (r1+r2)k)

(k, 0, n−k) (α, rk) (k−1, 1, n−k) (α, rk)

Case E: 2 ≤ k ≤ n, j+l = k, j ≥ 1, l ≥ 1

(0, j, l, n−k) (β1, s1 j) ((k−1)− j−1)+l), j−1, l, n−k−1)) (β, s1 j)
(0, j, l, n−k) (β2, s2l) ((k−1)− j+(l−1)), j, l−1, n−k−1)) (β, s2l)

(0, j+l, n−k) (β, s( j+l)) ((k−1)− j+l−1), j+l−1, n−k−1)) (β, s( j+l))

Case F: 2 ≤ k ≤ n, j = k, l = 0

(0, j, 0, n−k) (β1, s1 j) ((k−1)− j−1), j−1, 0, n−k−1)) (β, s1 j)

(0, j, n−k) (β, s j) ((k−1)− j−1), j−1, n−k−1)) (β, s j)

Case G: 2 ≤ k ≤ n, l = k, j = 0

(0, 0, l, n−k) (β2, s2l) ((k−1)−l−1), 0, l−1, n−k−1)) (β, s2l)

(0, l, n−k) (β, sl) ((k−1)−l−1), l−1, n−k−1)) (β, sl)

Case H: k = 0, j = 0, l = 0

(0, 0, 0, n) − − −

(0, 0, n) − − −
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B. Example: alternative signalling pathways

These are presented using the style of component description that is used in the Bio-

PEPA Eclipse Plug-in [24]. As before, EG is an abbreviation for (EGF−EGFR∗)2−GAP.

Additionally, p is used instead of a superscript asterisk to indicate phosphorylation, <*>

indicates cooperation on all shared reactions, << indicates the role of reactant and >>

the role of product.

B.1. Shc-independent pathway

EG = v16 << + v34 >>;

Grb2 = v16 << + v35 >>;

Sos = v17 << + v35 >>;

Ras_GTPp = v20 <<;

Ras_GDP = v18 << + v21 >>;

Ras_GTP = v19 >>;

EG_Grb2 = v17 << + v16 >>;

EG_Grb2_Sos = v18 << + v34 << + v20 << + v17 >> + v19 >>

+ v21 >>;

Grb2_Sos = v35 << + v34 >>;

EG_Grb2_Sos_Ras_GTP = v21 << + v20 >>;

EG_Grb2_Sos_Ras_GDP = v19 << + v18 >>;

EG[0] <*> Grb2[0] <*> Sos[0] <*>

Ras_GTPp[0] <*> Ras_GDP[0] <*> Ras_GTP[0] <*>

EG_Grb2[0] <*> EG_Grb2_Sos[0] <*> Grb2_Sos[0] <*>

EG_Grb2_Sos_Ras_GTP[0] <*> EG_Grb2_Sos_Ras_GDP[0]
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B.2. Shc-dependent pathway

EG = v22 << + v32 >> + v37 >> + v39 >>;

Shc = v22 << + v36 >>;

Shcp = v36 << + v38 << + v33 >> + v37 >>;

Grb2 = v38 << + v24 << + v35 >>;

Sos = v25 << + v40 << + v35 >>;

Ras_GTPp = v30 <<;

Ras_GDP = v26 << + v31 >>;

Ras_GTP = v27 >>;

Grb2_Sos = v35 << + v41 << + v33 >>;

EG_Shc = v23 << + v22 >>;

EG_Shcp = v24 << + v37 << + v23 >>

+ v41 <<;

Shcp_Grb2 = v40 << + v38 >> + v39 >>;

Shcp_Grb2_Sos = v33 << + v32 >> + v40 >>;

EG_Shcp_Grb2 = v25 << + v39 << + v24 >>;

EG_Shcp_Grb2_Sos = v26 << + v30 << + v25 >> + v27 >>

+ v32 << + v31 >> + v41 >>;

EG_Shcp_Grb2_Sos_Ras_GTP = v31 << + v30 >>;

EG_Shcp_Grb2_Sos_Ras_GDP = v27 << + v26 >>;

EG[0] <*> Shc[0] <*> Shcp[0] <*>

Grb2[0] <*> Sos[0] <*>

Ras_GTPp[0] <*> Ras_GDP[0] <*> Ras_GTP[0] <*>

Grb2_Sos[0] <*> EG_Shc[0] <*> EG_Shcp[0] <*>

Shcp_Grb2[0] <*> Shcp_Grb2_Sos[0] <*>

EG_Shcp_Grb2[0] <*> EG_Shcp_Grb2_Sos[0] <*>

EG_Shcp_Grb2_Sos_Ras_GTP[0] <*> EG_Shcp_Grb2_Sos_Ras_GDP[0]
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