

Applying bisimulation and invariants to alternate pathways in a signalling cascade

Vashti Galpin

LFCS, School of Informatics, University of Edinburgh

20 September 2011

Vashti Galpin

Applying bisimulation and invariants to alternate pathways

Outline

Alternate pathways

Bio-PEPA

Weak g-bisimilarity

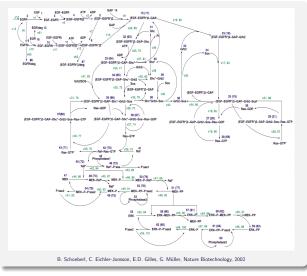
Application

Conclusions

Vashti Galpin

Applying bisimulation and invariants to alternate pathways

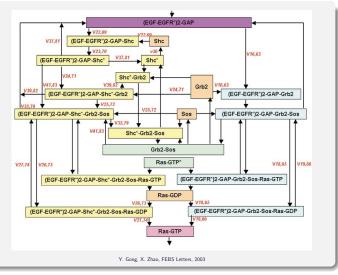
Example: MAPK cascade activated by EGF receptors



Vashti Galpin

Applying bisimulation and invariants to alternate pathways

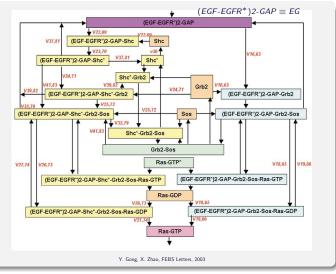
Alternate subpathways in cascade



Vashti Galpin

Applying bisimulation and invariants to alternate pathways

Alternate subpathways in cascade



Vashti Galpin

Applying bisimulation and invariants to alternate pathways

Comparison of pathways

- two subpathways
 - Shc-independent
 - Shc-dependent

Comparison of pathways

- two subpathways
 - Shc-independent
 - Shc-dependent
- Shc-dependent pathway is redundant but dominant (Gong and Zhao, 2003)

Comparison of pathways

- two subpathways
 - Shc-independent
 - Shc-dependent
- Shc-dependent pathway is redundant but dominant (Gong and Zhao, 2003)
- how can this be shown in Bio-PEPA with bisimulation?
 - consider it qualitatively
 - construct two Bio-PEPA models
 - compare with weak g-bisimulation

Ó٦

▶ operational semantics for capability relation \rightarrow_c

- ▶ operational semantics for capability relation \rightarrow_c
- Choice, Cooperation for $\alpha \notin L$, Constant as expected

- ▶ operational semantics for capability relation \rightarrow_c
- Choice, Cooperation for $\alpha \notin L$, Constant as expected
- Prefix rules

- ▶ operational semantics for capability relation \rightarrow_c
- ▶ Choice, Cooperation for $\alpha \notin L$, Constant as expected
- Prefix rules

$$\begin{aligned} &((\alpha,\kappa)\downarrow S)(\ell) \xrightarrow{(\alpha,[S:\downarrow(\ell,\kappa)])}_{c} S(\ell-\kappa) \quad \kappa \leq \ell \leq N_{S} \\ &((\alpha,\kappa)\uparrow S)(\ell) \xrightarrow{(\alpha,[S:\uparrow(\ell,\kappa)])}_{c} S(\ell+\kappa) \quad 0 \leq \ell \leq N_{S} - \kappa \\ &((\alpha,\kappa)\oplus S)(\ell) \xrightarrow{(\alpha,[S:\oplus(\ell,\kappa)])}_{c} S(\ell) \quad \kappa \leq \ell \leq N_{S} \\ &((\alpha,\kappa)\oplus S)(\ell) \xrightarrow{(\alpha,[S:\oplus(\ell,\kappa)])}_{c} S(\ell) \quad 0 \leq \ell \leq N_{S} \\ &((\alpha,\kappa)\oplus S)(\ell) \xrightarrow{(\alpha,[S:\oplus(\ell,\kappa)])}_{c} S(\ell) \quad 0 \leq \ell \leq N_{S} \end{aligned}$$

- ▶ operational semantics for capability relation \rightarrow_c
- ▶ Choice, Cooperation for $\alpha \notin L$, Constant as expected
- Prefix rules

$$\begin{aligned} &((\alpha,\kappa)\downarrow S)(\ell) \xrightarrow{(\alpha,[S:\downarrow(\ell,\kappa)])}_{c} S(\ell-\kappa) \quad \kappa \leq \ell \leq N_{S} \\ &((\alpha,\kappa)\uparrow S)(\ell) \xrightarrow{(\alpha,[S:\uparrow(\ell,\kappa)])}_{c} S(\ell+\kappa) \quad 0 \leq \ell \leq N_{S} - \kappa \\ &((\alpha,\kappa)\oplus S)(\ell) \xrightarrow{(\alpha,[S:\oplus(\ell,\kappa)])}_{c} S(\ell) \quad \kappa \leq \ell \leq N_{S} \\ &((\alpha,\kappa)\oplus S)(\ell) \xrightarrow{(\alpha,[S:\oplus(\ell,\kappa)])}_{c} S(\ell) \quad 0 \leq \ell \leq N_{S} \\ &((\alpha,\kappa)\oplus S)(\ell) \xrightarrow{(\alpha,[S:\oplus(\ell,\kappa)])}_{c} S(\ell) \quad 0 \leq \ell \leq N_{S} \end{aligned}$$

• Cooperation for $\alpha \in L$

$$\frac{P \xrightarrow{(\alpha,v)}_{c} P' \quad Q \xrightarrow{(\alpha,u)}_{c} Q'}{P \bigotimes_{L} Q \xrightarrow{(\alpha,v::u)}_{c} P' \bigotimes_{L} Q'} \qquad \alpha \in L$$

• Cooperation for $\alpha \in L$

$$\frac{P \xrightarrow{(\alpha, \mathbf{v})}_{c} P' \quad Q \xrightarrow{(\alpha, \mathbf{u})}_{c} Q'}{P \bowtie_{L} Q \xrightarrow{(\alpha, \mathbf{v}::\mathbf{u})}_{c} P' \bowtie_{L} Q'} \qquad \alpha \in L$$

 $\blacktriangleright \text{ context of model } \langle \mathcal{T}, P \rangle = \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, \textit{Comp}, P \rangle$

• Cooperation for $\alpha \in L$

$$\frac{P \xrightarrow{(\alpha,\nu)}_{c} P' \quad Q \xrightarrow{(\alpha,u)}_{c} Q'}{P \bowtie_{L} Q \xrightarrow{(\alpha,\nu::u)}_{c} P' \bowtie_{L} Q'} \qquad \alpha \in L$$

- $\blacktriangleright \text{ context of model } \langle \mathcal{T}, P \rangle = \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, \textit{Comp}, P \rangle$
- can define stochastic relation which is quantitative

• Cooperation for $\alpha \in L$

$$\frac{P \xrightarrow{(\alpha,v)}_{c} P' \quad Q \xrightarrow{(\alpha,u)}_{c} Q'}{P \bowtie_{L} Q \xrightarrow{(\alpha,v::u)}_{c} P' \bowtie_{L} Q'} \qquad \alpha \in L$$

- $\blacktriangleright \text{ context of model } \langle \mathcal{T}, P \rangle = \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, \textit{Comp}, P \rangle$
- can define stochastic relation which is quantitative
- work with capability relation and context, well-defined

$$\frac{P \xrightarrow{(\alpha,w)} {}_{c} P'}{\langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, \textit{Comp}, P \rangle \xrightarrow{(\alpha,w)} {}_{c} \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, \textit{Comp}, P \rangle}$$

Vashti Galpin

Applying bisimulation and invariants to alternate pathways

	Bio-PEPA	Weak g-bisimilarity	Application	Conclusions
Weak <i>g</i> -bisii	milarity			

function

 $g: (\mathcal{A} \times \mathcal{W}) \times \tilde{\mathcal{P}} \times \tilde{\mathcal{P}} \to X \cup \{\tau\}$ for arbitrary X

function

 $g: (\mathcal{A} \times \mathcal{W}) \times \tilde{\mathcal{P}} \times \tilde{\mathcal{P}} \to X \cup \{\tau\}$ for arbitrary X

new transitions

$$P \xrightarrow{g((\alpha_1, w_1), P, P_1) \dots g((\alpha_n, w_n), P_{n-1}, P')}_{P \xrightarrow{(\alpha_1, w_1)}_{c} P_1} \xrightarrow{g}_{c} P' \text{ represents} \xrightarrow{(\alpha_{n-1}, w_{n-1})}_{c} P_{n-1} \xrightarrow{(\alpha_n, w_n)}_{c} P'$$

Vashti Galpin

Weak g-bisimilarity

function

 $g: (\mathcal{A} \times \mathcal{W}) \times \tilde{\mathcal{P}} \times \tilde{\mathcal{P}} \to X \cup \{\tau\}$ for arbitrary X

new transitions

$$P \xrightarrow{g((\alpha_{1},w_{1}),P,P_{1})\dots g((\alpha_{n},w_{n}),P_{n-1},P')}_{g} P' \text{ represents}$$

$$P \xrightarrow{(\alpha_{1},w_{1})}_{c} P_{1} \xrightarrow{(\alpha_{2},w_{2})}_{c} \dots \xrightarrow{(\alpha_{n-1},w_{n-1})}_{c} P_{n-1} \xrightarrow{(\alpha_{n},w_{n})}_{c} P'$$

$$P \xrightarrow{\phi_{1}\dots\phi_{n}}_{g} P' \text{ for } \phi_{i} \in X \cup \{\tau\} \text{ represents}$$

$$P (\xrightarrow{\tau}_{g})^{*} \xrightarrow{\phi_{1}}_{g} (\xrightarrow{\tau}_{g})^{*} \dots (\xrightarrow{\tau}_{g})^{*} \xrightarrow{\phi_{n}}_{g} (\xrightarrow{\tau}_{g})^{*} P'$$

Vashti Galpin

Applying bisimulation and invariants to alternate pathways

• weak g-bisimilarity, $P \approx_g Q$ if whenever

Vashti Galpin

• weak g-bisimilarity, $P \approx_g Q$ if whenever

1.
$$P \xrightarrow{\tau}{\rightarrow}_{g} P'$$
 then $Q (\Rightarrow_{g})^{*} Q'$ and $P' \approx_{g} Q'$
2. $Q \xrightarrow{\tau}{\rightarrow}_{g} Q'$ then $P (\Rightarrow_{g})^{*} P'$ and $P' \approx_{g} Q'$

• weak g-bisimilarity, $P \approx_g Q$ if whenever

1.
$$P \xrightarrow{\tau}{\rightarrow}_{g} P'$$
 then $Q (\Rightarrow_{g})^{*} Q'$ and $P' \approx_{g} Q'$
2. $Q \xrightarrow{\tau}{\rightarrow}_{g} Q'$ then $P (\Rightarrow_{g})^{*} P'$ and $P' \approx_{g} Q'$

and for all $\phi \neq \tau$

3.
$$P \xrightarrow{\phi}_{g} P'$$
 then $Q (\Rightarrow_{g})^{*} \xrightarrow{\phi}_{g} (\Rightarrow_{g})^{*} Q'$ and $P' \approx_{g} Q'$
4. $Q \xrightarrow{\phi}_{g} Q'$ then $P (\Rightarrow_{g})^{*} \xrightarrow{\phi}_{g} (\Rightarrow_{g})^{*} P'$ and $P' \approx_{g} Q'$

based on Milner's weak bisimilarity

• weak g-bisimilarity, $P \approx_g Q$ if whenever

1.
$$P \xrightarrow{\tau}{\rightarrow}_{g} P'$$
 then $Q (\Rightarrow_{g})^{*} Q'$ and $P' \approx_{g} Q'$
2. $Q \xrightarrow{\tau}{\rightarrow}_{g} Q'$ then $P (\Rightarrow_{g})^{*} P'$ and $P' \approx_{g} Q'$

and for all $\phi \neq \tau$

3.
$$P \xrightarrow{\phi}_{g} P'$$
 then $Q (\Rightarrow_{g})^{*} \xrightarrow{\phi}_{g} (\Rightarrow_{g})^{*} Q'$ and $P' \approx_{g} Q'$
4. $Q \xrightarrow{\phi}_{g} Q'$ then $P (\Rightarrow_{g})^{*} \xrightarrow{\phi}_{g} (\Rightarrow_{g})^{*} P'$ and $P' \approx_{g} Q'$

- based on Milner's weak bisimilarity
- allows for abstraction from some details of reactions

Ó٦

congruence for cooperation if g set-stable and species-blind

 $P_1 \approx_g P_2 \Rightarrow P_1 \bowtie_l Q \approx_g P_2 \bowtie_l Q$ and $Q \bowtie_l P_1 \approx_g Q \bowtie_l P_2$

congruence for cooperation if g set-stable and species-blind

 $P_1 \approx_g P_2 \Rightarrow P_1 \bowtie_l Q \approx_g P_2 \bowtie_l Q$ and $Q \bowtie_l P_1 \approx_g Q \bowtie_l P_2$

species extension operator, A and B have no shared reactions

congruence for cooperation if g set-stable and species-blind

 $P_1 \approx_g P_2 \ \Rightarrow \ P_1 \bowtie_l Q \approx_g P_2 \bowtie_l Q$ and $Q \bowtie_l P_1 \approx_g Q \bowtie_l P_2$

species extension operator, A and B have no shared reactions

$$A \stackrel{\text{\tiny def}}{=} \sum_{i=1}^{n} (\alpha_i, \kappa_i) \operatorname{op}_i A$$
 and $B \stackrel{\text{\tiny def}}{=} \sum_{j=1}^{m} (\beta_j, \lambda_j) \operatorname{op}_j B$

congruence for cooperation if g set-stable and species-blind

$$P_1 \approx_g P_2 \Rightarrow P_1 \bowtie_l Q \approx_g P_2 \bowtie_l Q$$
 and $Q \bowtie_l P_1 \approx_g Q \bowtie_l P_2$

▶ species extension operator, A and B have no shared reactions

$$A \stackrel{\text{def}}{=} \sum_{i=1}^{n} (\alpha_i, \kappa_i) \operatorname{op}_i A \text{ and } B \stackrel{\text{def}}{=} \sum_{j=1}^{m} (\beta_j, \lambda_j) \operatorname{op}_j B$$
$$A\{B\} \stackrel{\text{def}}{=} \sum_{i=1}^{n} (\alpha_i, \kappa_i) \operatorname{op}_i A\{B\} + \sum_{j=1}^{m} (\beta_j, \lambda_j) \operatorname{op}_j A\{B\}$$

congruence for cooperation if g set-stable and species-blind

$$P_1 \approx_g P_2 \Rightarrow P_1 \bowtie_l Q \approx_g P_2 \bowtie_l Q$$
 and $Q \bowtie_l P_1 \approx_g Q \bowtie_l P_2$

species extension operator, A and B have no shared reactions

$$A \stackrel{\text{def}}{=} \sum_{i=1}^{n} (\alpha_i, \kappa_i) \operatorname{op}_i A \text{ and } B \stackrel{\text{def}}{=} \sum_{j=1}^{m} (\beta_j, \lambda_j) \operatorname{op}_j B$$
$$A\{B\} \stackrel{\text{def}}{=} \sum_{i=1}^{n} (\alpha_i, \kappa_i) \operatorname{op}_i A\{B\} + \sum_{j=1}^{m} (\beta_j, \lambda_j) \operatorname{op}_j A\{B\}$$

congruence for extension operator if g is species-blind

$$A_1 \approx_g A_2 \ \Rightarrow \ A_1\{B\} \approx_g A_2\{B\} \text{ and } B\{A_1\} \approx_g B\{A_2\}$$

Applying bisimulation and invariants to alternate pathways

Ó٦

- construct two Bio-PEPA models
 - Shc-independent model has 11 species
 - Shc-dependent model has 17 species

- construct two Bio-PEPA models
 - Shc-independent model has 11 species
 - Shc-dependent model has 17 species
- how can they be compared?

- construct two Bio-PEPA models
 - Shc-independent model has 11 species
 - Shc-dependent model has 17 species
- how can they be compared?
- 7 species appear in both models

- construct two Bio-PEPA models
 - Shc-independent model has 11 species
 - Shc-dependent model has 17 species
- how can they be compared?
- ▶ 7 species appear in both models
- insufficient just to compare shared species

- construct two Bio-PEPA models
 - Shc-independent model has 11 species
 - Shc-dependent model has 17 species
- how can they be compared?
- ▶ 7 species appear in both models
- insufficient just to compare shared species
- need to consider structural roles of species

Ó٦

- construct two Bio-PEPA models
 - Shc-independent model has 11 species
 - Shc-dependent model has 17 species
- how can they be compared?
- ▶ 7 species appear in both models
- insufficient just to compare shared species
- need to consider structural roles of species
- analysis of models is required

Ó٦

Bio-PEPA Eclipse Plug-in

software for Bio-PEPA

Bio-PEPA Eclipse Plug-in

- software for Bio-PEPA
- dynamic analyses
 - stochastic simulation
 - ODE simulation
 - Markov chains (via PRISM)

Bio-PEPA Eclipse Plug-in

- software for Bio-PEPA
- dynamic analyses
 - stochastic simulation
 - ODE simulation
 - Markov chains (via PRISM)
- static analyses
 - sink/source identification
 - species invariants: constant linear combinations of species
 - reaction invariants: sets of reactions that keep species constant

Vashti Galpin

Applying bisimulation and invariants to alternate pathways

Ó٦

Bio-PEPA Eclipse Plug-in

- software for Bio-PEPA
- dynamic analyses
 - stochastic simulation
 - ODE simulation
 - Markov chains (via PRISM)
- static analyses
 - sink/source identification
 - species invariants: constant linear combinations of species
 - reaction invariants: sets of reactions that keep species constant
- available at www.biopepa.org

Static analysis of models

sink/source

both models have a source, *Ras-GTP** and a sink, *Ras-GTP*

Static analysis of models

sink/source

both models have a source, *Ras-GTP*^{*} and a sink, *Ras-GTP*

reaction invariant analysis - Shc-independent model

4 species invariants involving species present initially 1 reaction invariant involving *EG* and *EG-Grb2-Sos*

4 reactions not involved in a reaction invariant

Static analysis of models

sink/source

both models have a source, *Ras-GTP*^{*} and a sink, *Ras-GTP*

reaction invariant analysis - Shc-independent model

4 species invariants involving species present initially 1 reaction invariant involving *EG* and *EG-Grb2-Sos* 4 reactions not involved in a reaction invariant

reaction invariant analysis - Shc-dependent model

5 species invariants involving species present initially 4 reaction invariants involving EG and EG-Shc*-Grb2-Sos 1 reaction invariant not involving EG or EG-Shc*-Grb2-Sos 4 reactions not involved in a reaction invariant

- original conception
 - pathway from (EGF-EGFR*)2-GAP to Ras-GTP

- original conception
 - pathway from (EGF-EGFR*)2-GAP to Ras-GTP
- reconceptualise

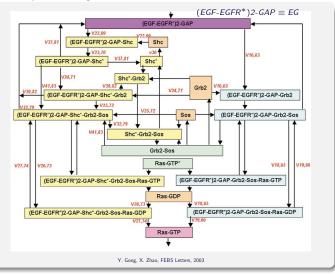
- original conception
 - pathway from (EGF-EGFR*)2-GAP to Ras-GTP
- reconceptualise
 - consider reactions that are not part of invariants
 - transformation of Ras-GTP* to Ras-GTP

- original conception
 - pathway from (EGF-EGFR*)2-GAP to Ras-GTP
- reconceptualise
 - consider reactions that are not part of invariants
 - ▶ transformation of *Ras-GTP*^{*} to *Ras-GTP*
 - consider reactions that are part of invariants
 - ▶ in presence of EG, Ras-GTP*, Sos, Grb2 and Shc

- original conception
 - pathway from (EGF-EGFR*)2-GAP to Ras-GTP
- reconceptualise
 - ▶ transformation of *Ras-GTP*^{*} to *Ras-GTP*
 - ▶ in presence of EG, Ras-GTP*, Sos, Grb2 and Shc

- original conception
 - pathway from (EGF-EGFR*)2-GAP to Ras-GTP
- reconceptualise
 - ▶ transformation of *Ras-GTP*^{*} to *Ras-GTP*
 - ▶ in presence of EG, Ras-GTP*, Sos, Grb2 and Shc
- new diagram to support reconceptualisation

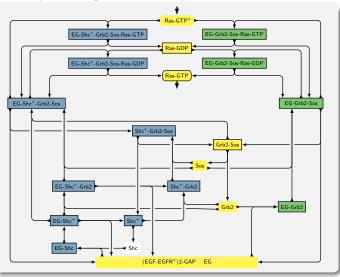
Alternate subpathways in cascade



Vashti Galpin

Applying bisimulation and invariants to alternate pathways

Alternate subpathways, reconceptualised



Vashti Galpin

Applying bisimulation and invariants to alternate pathways

vector notation for well-defined Bio-PEPA models

Shc-independent (Ras-GTP,* Ras-GDP, Ras-GTP, EG-GS-Ras-GTP, EG-GS-Ras-GDP, ...) Shc-dependent (Ras-GTP,* Ras-GDP, Ras-GTP, EG-Shc*-GS-Ras-GTP, EG-Shc*-GS-Ras-GDP, ...)

equivalence relation over vectors, R

 $\left\{\left((k_1, k_2, k_3, k_4, k_5, x_6, \dots, x_{17}), (k_1, k_2, k_3, k_4, k_5, y_6, \dots, y_{11})\right)\right\}$

vector notation for well-defined Bio-PEPA models

Shc-independent (Ras-GTP,* Ras-GDP, Ras-GTP, EG-GS-Ras-GTP, EG-GS-Ras-GDP, ...) Shc-dependent (Ras-GTP,* Ras-GDP, Ras-GTP, EG-Shc*-GS-Ras-GTP, EG-Shc*-GS-Ras-GDP, ...)

equivalence relation over vectors, R

 $\left\{\left((k_1, k_2, k_3, k_4, k_5, x_6, \dots, x_{17}), (k_1, k_2, k_3, k_4, k_5, y_6, \dots, y_{11})\right)\right\}$

vector notation for well-defined Bio-PEPA models

Shc-independent (Ras-GTP,* Ras-GDP, Ras-GTP, EG-GS-Ras-GTP, EG-GS-Ras-GDP, ...) Shc-dependent (Ras-GTP,* Ras-GDP, Ras-GTP, EG-Shc*-GS-Ras-GTP, EG-Shc*-GS-Ras-GDP, ...)

equivalence relation over vectors, R

 $\left\{\left((k_1, k_2, k_3, k_4, k_5, \mathbf{x_6}, \dots, \mathbf{x_{17}}), (k_1, k_2, k_3, k_4, k_5, \mathbf{y_6}, \dots, \mathbf{y_{11}})\right)\right\}$

how to choose g?

Construction of bisimulation (cont.)

generic definition, reusable

Construction of bisimulation (cont.)

- generic definition, reusable
- function to capture change in a species

$$\Delta(A, w) = \begin{cases} \kappa & \text{if } A \uparrow :(I, \kappa) \text{ appears in } w \\ -\kappa & \text{if } A \downarrow :(I, \kappa) \text{ appears in } w \\ 0 & \text{otherwise} \end{cases}$$

Vashti Galpin

Construction of bisimulation (cont.)

- generic definition, reusable
- function to capture change in a species

$$\Delta(A, w) = \begin{cases} \kappa & \text{if } A \uparrow : (I, \kappa) \text{ appears in } w \\ -\kappa & \text{if } A \downarrow : (I, \kappa) \text{ appears in } w \\ 0 & \text{otherwise} \end{cases}$$

function to capture changes for a set of species

$$g_{\{A_1,\dots,A_m\}}((\alpha,w),P,P') = \begin{cases} (\Delta(A_1,w),\dots,\Delta(A_m,w)) \\ \text{if any } A_i \text{ appears in } w \\ \tau \text{ otherwise} \end{cases}$$

Vashti Galpin

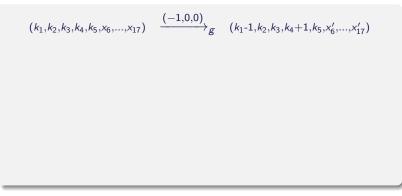
Applying bisimulation and invariants to alternate pathways

Ó٦

▶ show \mathcal{R} is a weak $g_{\{Ras-GTP^*, Ras-GDP, Ras-GTP\}}$ -bisimulation

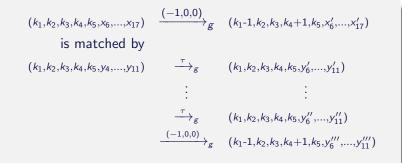
- ▶ show \mathcal{R} is a weak $g_{\{Ras-GTP^*,Ras-GDP,Ras-GTP\}}$ -bisimulation
- 5 cases to consider

- ▶ show \mathcal{R} is a weak $g_{\{Ras-GTP^*,Ras-GDP,Ras-GTP\}}$ -bisimulation
- 5 cases to consider
- example: reaction produces EG-Shc*-GS-Ras-GTP



Ó٦

- ▶ show \mathcal{R} is a weak $g_{\{Ras-GTP^*,Ras-GDP,Ras-GTP\}}$ -bisimulation
- 5 cases to consider
- example: reaction produces EG-Shc*-GS-Ras-GTP



Vashti Galpin

Applying bisimulation and invariants to alternate pathways

▶ pathways are weak g_{{Ras-GTP*,Ras-GDP,Ras-GTP}}-bisimilar

- ▶ pathways are weak g_{Ras-GTP*,Ras-GDP,Ras-GTP}-bisimilar
- pathways have been compared in terms of their main role, production of *Ras-GTP*

- ▶ pathways are weak g_{Ras-GTP*,Ras-GDP,Ras-GTP}-bisimilar
- pathways have been compared in terms of their main role, production of *Ras-GTP*
- they produce the same outputs from the same inputs

- ▶ pathways are weak g_{Ras-GTP*,Ras-GDP,Ras-GTP}-bisimilar
- pathways have been compared in terms of their main role, production of *Ras-GTP*
- they produce the same outputs from the same inputs
- abstraction from unimportant species and reactions

- ▶ pathways are weak g_{Ras-GTP*,Ras-GDP,Ras-GTP}-bisimilar
- pathways have been compared in terms of their main role, production of *Ras-GTP*
- they produce the same outputs from the same inputs
- abstraction from unimportant species and reactions
- identification of species to be present at start

- ▶ pathways are weak g_{Ras-GTP*,Ras-GDP,Ras-GTP}-bisimilar
- pathways have been compared in terms of their main role, production of *Ras-GTP*
- they produce the same outputs from the same inputs
- abstraction from unimportant species and reactions
- identification of species to be present at start
- robust method, generic technique and function

Ó٦

weak equivalence that abstract from reaction details

- weak equivalence that abstract from reaction details
- congruence with respect to composition and extension

- weak equivalence that abstract from reaction details
- congruence with respect to composition and extension
- application to alternate pathways

- weak equivalence that abstract from reaction details
- congruence with respect to composition and extension
- application to alternate pathways
- use of static analysis to construct bisimulation

- weak equivalence that abstract from reaction details
- congruence with respect to composition and extension
- application to alternate pathways
- use of static analysis to construct bisimulation
- comparison with fast-slow bisimilarity as further work

- weak equivalence that abstract from reaction details
- congruence with respect to composition and extension
- application to alternate pathways
- use of static analysis to construct bisimulation
- comparison with fast-slow bisimilarity as further work
- quantitative aspects as further work

- weak equivalence that abstract from reaction details
- congruence with respect to composition and extension
- application to alternate pathways
- use of static analysis to construct bisimulation
- comparison with fast-slow bisimilarity as further work
- quantitative aspects as further work
- investigate application to other process algebras

	Bio-PEPA	Application	Conclusions

Thank you

Vashti Galpin

Applying bisimulation and invariants to alternate pathways

► *M*, detailed model, large state space

- ► *M*, detailed model, large state space
- ► *M*′, reduced model, smaller state space

Vashti Galpin

- ► *M*, detailed model, large state space
- ► *M*′, reduced model, smaller state space
- $M \equiv M'$, capturing some notion of same behaviour

- ► *M*, detailed model, large state space
- M', reduced model, smaller state space
- $M \equiv M'$, capturing some notion of same behaviour
- ► *L*, another model of a related system or supersystem

- ► *M*, detailed model, large state space
- M', reduced model, smaller state space
- $M \equiv M'$, capturing some notion of same behaviour
- ► *L*, another model of a related system or supersystem
- then $L \bowtie M \equiv L \bowtie M'$ by congruence

- ► *M*, detailed model, large state space
- M', reduced model, smaller state space
- $M \equiv M'$, capturing some notion of same behaviour
- ► *L*, another model of a related system or supersystem
- then $L \bowtie M \equiv L \bowtie M'$ by congruence
- can reduce size of overall model by replacing M with M'

- ► *M*, detailed model, large state space
- ► *M*′, reduced model, smaller state space
- $M \equiv M'$, capturing some notion of same behaviour
- ► L, another model of a related system or supersystem
- then $L \bowtie M \equiv L \bowtie M'$ by congruence
- can reduce size of overall model by replacing M with M'
- can understand how L interacts with other systems

Applying bisimulation and invariants to alternate pathways

Ó٦

- ► *M*, detailed model, large state space
- M', reduced model, smaller state space
- $M \equiv M'$, capturing some notion of same behaviour
- ► *L*, another model of a related system or supersystem
- then $L \bowtie M \equiv L \bowtie M'$ by congruence
- can reduce size of overall model by replacing M with M'
- can understand how L interacts with other systems
- use in model checking with appropriate logics

		Bio-PEPA		Application	Conclusions
Bio-P	EPA		<i>.</i>		

 stochastic process algebra for modelling biological systems [Ciocchetta and Hillston 2008]

		Bio-PEPA		Application	Conclusions
Bio-F	PEPA				
			с I II. I .		

- stochastic process algebra for modelling biological systems [Ciocchetta and Hillston 2008]
- different analyses: ODEs, CTMCs, stochastic simulation

	e pathways	Bio-PEPA		Application	Conclusions
Bio-	-PEPA				
	stochastic	process algeb	ra for modelling bio	logical systems	

- stochastic process algebra for modelling biological systems [Ciocchetta and Hillston 2008]
- different analyses: ODEs, CTMCs, stochastic simulation
- semantic equivalences capture notion of same behaviour

	Bio-PEPA		Application	Conclusions		
Bio-PEPA						
stochastic process algebra for modelling biological systems						

different analyses: ODEs, CTMCs, stochastic simulation

- semantic equivalences capture notion of same behaviour
 - can base on ideas from biology

[Ciocchetta and Hillston 2008]

- stochastic process algebra for modelling biological systems [Ciocchetta and Hillston 2008]
- different analyses: ODEs, CTMCs, stochastic simulation
- semantic equivalences capture notion of same behaviour
- can base on ideas from biology
- how to decide which behaviours are the same?
 - 1. different abstractions of the same model discretisation
 - 2. ideas from biology fast/slow reactions, grouping of species
 - 3. existing equivalences PEPA, bisimulation-based

Ó٦

two-level syntax

- two-level syntax
- sequential component, species

$${\mathcal S} ::= (lpha,\kappa) ext{ op } {\mathcal S} \mid {\mathcal S} + {\mathcal S} \qquad ext{ op } \in \{\uparrow,\downarrow,\oplus,\ominus,\odot\}$$

- two-level syntax
- sequential component, species

 $S ::= (\alpha, \kappa) \text{ op } S \mid S + S \quad \text{ op } \in \{\uparrow, \downarrow, \oplus, \ominus, \odot\}$

- $\blacktriangleright~\alpha$ action, reaction name, κ stoichiometric coefficient
- \uparrow product, \downarrow reactant
- \oplus activator, \ominus inhibitor, \odot generic modifier

- two-level syntax
- sequential component, species

 $S ::= (\alpha, \kappa) \text{ op } S \mid S + S \quad \text{ op } \in \{\uparrow, \downarrow, \oplus, \ominus, \odot\}$

- $\blacktriangleright~\alpha$ action, reaction name, κ stoichiometric coefficient
- \uparrow product, \downarrow reactant
- \oplus activator, \ominus inhibitor, \odot generic modifier

- two-level syntax
- sequential component, species

$$S ::= (\alpha, \kappa) \text{ op } S \mid S + S \qquad \text{ op } \in \{\uparrow, \downarrow, \oplus, \ominus, \odot\}$$

- $\blacktriangleright~\alpha$ action, reaction name, κ stoichiometric coefficient
- \uparrow product, \downarrow reactant
- \oplus activator, \ominus inhibitor, \odot generic modifier
- model component, system

$$P ::= S(\ell) \mid P \bowtie_L P$$

- two-level syntax
- sequential component, species

$$S ::= (\alpha, \kappa) \text{ op } S \mid S + S \qquad \text{ op } \in \{\uparrow, \downarrow, \oplus, \ominus, \odot\}$$

- α action, reaction name, κ stoichiometric coefficient
- \uparrow product, \downarrow reactant
- \oplus activator, \ominus inhibitor, \odot generic modifier
- model component, system

 $P ::= S(\ell) \mid P \bowtie_{L} P$

- two-level syntax
- sequential component, species

$$S ::= (\alpha, \kappa) \text{ op } S \mid S + S \qquad \text{ op } \in \{\uparrow, \downarrow, \oplus, \ominus, \odot\}$$

- α action, reaction name, κ stoichiometric coefficient
- \uparrow product, \downarrow reactant
- \oplus activator, \ominus inhibitor, \odot generic modifier
- model component, system

 $P ::= S(\ell) \mid P \bowtie_{L} P$

- two-level syntax
- sequential component, species

$$S ::= (\alpha, \kappa) \text{ op } S \mid S + S \qquad \text{ op } \in \{\uparrow, \downarrow, \oplus, \ominus, \odot\}$$

- α action, reaction name, κ stoichiometric coefficient
- \uparrow product, \downarrow reactant
- \oplus activator, \ominus inhibitor, \odot generic modifier
- model component, system

$$P ::= S(\ell) \mid P \bowtie_L P$$

work with a more constrained form

Vashti Galpin

Applying bisimulation and invariants to alternate pathways

Ó٦

well-defined Bio-PEPA species

$$C \stackrel{\text{\tiny def}}{=} (\alpha_1, \kappa_1) \operatorname{op}_1 C + \ldots + (\alpha_n, \kappa_n) \operatorname{op}_n C \text{ with all } \alpha_i \text{'s distinct}$$

well-defined Bio-PEPA species

$$C \stackrel{\text{\tiny def}}{=} (\alpha_1, \kappa_1) \operatorname{op}_1 C + \ldots + (\alpha_n, \kappa_n) \operatorname{op}_n C \text{ with all } \alpha_i \text{'s distinct}$$

well-defined Bio-PEPA species

$$\mathbf{C} \stackrel{\text{\tiny def}}{=} (\alpha_1, \kappa_1) \operatorname{op}_1 \mathbf{C} + \ldots + (\alpha_n, \kappa_n) \operatorname{op}_n \mathbf{C} \text{ with all } \alpha_i \text{'s distinct}$$

well-defined Bio-PEPA species

 $C \stackrel{\text{\tiny def}}{=} (\alpha_1, \kappa_1) \operatorname{op}_1 C + \ldots + (\alpha_n, \kappa_n) \operatorname{op}_n C \text{ with all } \alpha_i \text{'s distinct}$

well-defined Bio-PEPA model

 $P \stackrel{\text{\tiny def}}{=} C_1(\ell_1) \underset{\mathcal{L}_1}{\bowtie} \ldots \underset{\mathcal{L}_{m-1}}{\bowtie} C_m(\ell_m) \text{ with all } C_i\text{'s distinct}$

well-defined Bio-PEPA species

 $C \stackrel{\text{\tiny def}}{=} (\alpha_1, \kappa_1) \operatorname{op}_1 C + \ldots + (\alpha_n, \kappa_n) \operatorname{op}_n C \text{ with all } \alpha_i \text{'s distinct}$

well-defined Bio-PEPA model

 $P \stackrel{\text{\tiny def}}{=} \frac{C_1}{(\ell_1)} \underset{\mathcal{L}_1}{\bowtie} \ldots \underset{\mathcal{L}_{m-1}}{\bowtie} \frac{C_m}{(\ell_m)} \text{ with all } C_i \text{'s distinct}$

well-defined Bio-PEPA species

 $C \stackrel{\text{\tiny def}}{=} (\alpha_1, \kappa_1) \operatorname{op}_1 C + \ldots + (\alpha_n, \kappa_n) \operatorname{op}_n C \text{ with all } \alpha_i \text{'s distinct}$

well-defined Bio-PEPA model

$$P\stackrel{\scriptscriptstyle{def}}{=} C_1(\ell_1) oxtimes_{\mathcal{L}_1} \ \ldots \ oxtimes_{\mathcal{L}_{m-1}} \ C_m(\ell_m)$$
 with all C_i 's distinct

well-defined Bio-PEPA system

$$\mathcal{P} = \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, \textit{Comp}, \textit{P} \rangle$$

well-defined Bio-PEPA species

 $C \stackrel{\text{\tiny def}}{=} (\alpha_1, \kappa_1) \operatorname{op}_1 C + \ldots + (\alpha_n, \kappa_n) \operatorname{op}_n C \text{ with all } \alpha_i \text{'s distinct}$

well-defined Bio-PEPA model

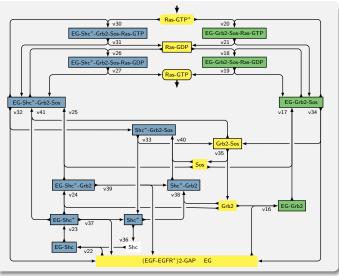
 $P \stackrel{\text{\tiny def}}{=} C_1(\ell_1) \underset{\mathcal{L}_1}{\bowtie} \ldots \underset{\mathcal{L}_{m-1}}{\bowtie} C_m(\ell_m) \text{ with all } C_i\text{'s distinct}$

well-defined Bio-PEPA system

 $\mathcal{P} = \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, \textit{Comp}, \textit{P} \rangle$

- well-defined Bio-PEPA model component with levels
 - minimum and maximum concentrations/number of molecules
 - fix step size, convert to minimum and maximum levels
 - ▶ species S: 0 to N_S levels

Alternate subpathways, reconceptualised



Vashti Galpin

Applying bisimulation and invariants to alternate pathways