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Assembly system

pool conveyor belt

machine1

machine2

I continuous variables
I items in pool: P
I items at start of conveyor belt: B
I power consumption of machinei : Wi

I timers: Ti , T
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Uncontrolled components

Feed i
def
= init : (pi , arrivals i , const).Feed i +

full : (pi , 0, const).Feed i

Output
def
= init : (b, departures, const).Output +

full : (b, 0, const).Output

Machine i (Wi )
def
= init : (wi ,wai , linear(Wi )).Machine i (Wi ) +

prep : (wi , 0, const).Machine i (Wi ) +
takei : (wi ,wt i , linear(Wi )).Machine i (Wi ) +
assemi : (wi ,wai , linear(Wi )).Machine i (Wi )

Timer i
def
= init : (ti , 0, const).Timer i +

takei : (ti , 1, const).Timeri +
assemi : (ti , 0, const).Timer i
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Mapping of influences, event conditions, influence types

iv(pi ) = P iv(b) = B iv(wi ) = Wi iv(ti ) = Ti

ec(init) = (true, P ′=P0 ∧ T ′i =0 ∧W ′
i =10 ∧ B ′=B0)

ec(full) = (B ≥ Bf , true)
ec(takei ) = (P ≥ ni , P ′ = P ′ − ni ∧ T ′i = 0)

ec(assemi ) = (Ti ≥ time i , B ′ = B + mi )

ec(prep) = (prepare, true)

JconstK = 1 Jlinear(X )K = X
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Uncontrolled system, controlled system, controller example

Sys
def
= (Feed1 BC∗ Feed2 BC∗ Feed3) BC∗

Output BC∗
(Timer 1 BC∗ Machine1(W1)) BC∗
(Timer 2 BC∗ Machine2(W2))

Assembler j
def
= Sys BC∗ init.Conj

AOff i
def
= prep.AOni

AOni
def
= takei .AProc i

AProc i
def
= assemi .AOff i

FC
def
= full.0
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Stochastic HYPE semantics

I two equivalent semantics

I TDSHA: transition-driven stochastic hybrid automata
⊆ piecewise determinstic Markov processes

I first: compositional mapping to TDSHA using product
I second: generation of LTS mapped to TDSHA

I structured operational semantics
I event labelled transition system over configurations
I configuration: 〈Sys BC∗ Con, σ〉
I state: σ : influence 7→ (influence strength, influence type)

I configurations are mapped to modes
I states are mapped to continuous transitions giving ODEs

dV

dt
=
∑{

rJI (
−→
W )K

∣∣ iv(ι) = V , σ1(ι) = (r , I (
−→
W ))

}
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Simulation of assembly system
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Sys BC∗ init.(AOff1 ‖ AOff2)

(arrivals i=20, departures=−0.1, time i=2, prepare=0.6, ni=100, mi=2, wt i=0.01, wai=0.06)
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Simulation of assembly system
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Equivalence semantics for stochastic HYPE

I stochastic system bisimulation with respect to ≡ over states

given an equivalence relation B ⊆ C × C
then for all (P,Q) ∈ B, σ ≡ τ , C ∈ (F/B)/ ≡,

1. for all a ∈ Ed , whenever

〈P, σ〉 a−→ 〈P ′, σ′〉 ∈ C , ∃ 〈Q ′, τ ′〉 ∈ C with 〈Q, τ〉 a−→ 〈Q ′, τ ′〉
〈Q, τ〉 a−→ 〈Q ′, τ ′〉 ∈ C , ∃ 〈P ′, σ′〉 ∈ C with 〈P, σ〉 a−→ 〈P ′, σ′〉.

2. for all a ∈ Es , r(〈P, σ〉, a,C ) = r(〈Q, τ〉, a,C ).

I notation: P ∼≡ Q
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Equivalence semantics for TDSHA

I TDSHA labelled bisimulation

given a measurable relation B ⊆ (Q1 × Rn1)× (Q2 × Rn2)

then for all ((q1, x1), (q2, x2)) ∈ B

I out1(x1) = out2(x2)

I exit rates of q1 and q2 must be equal

I disjunction of guards must evaluate to the same for x1 and x2

I disjunction of guards must become true at the same time

I for all a ∈ Ed , one step priorities must match

I for all a ∈ Es , one step probabilities must match

I notation: T1 ∼`
T T2
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Two equivalent controllers
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I stochastic HYPE
I process algebra for stochastic hybrid systems
I extension of HYPE
I semantics given by TDSHA

I illustrated through assembly system

I equivalent behaviour
I stochastic HYPE: equivalence with abstraction over states
I TDSHA: equivalence based on modes and variable values

I results
I congruence and corollary about equivalent controllers
I relationship between two equivalences
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Thank you
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Stochastic HYPE model

components controllers(
C1(V) BC∗ · · · BC∗ Cn(V)

)
BC∗

(
Con1 BC∗ · · · BC∗ Conm

)
well-defined component

C (V)
def
=
∑
j

aj : αj .C (V) + init : α .C (V)
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)
BC∗

(
Con1 BC∗ · · · BC∗ Conm

)
well-defined component

C (V)
def
=
∑
j

aj : αj .C (V) + init : α .C (V)

components are parameterised by variables

Vashti Galpin

Stochastic hybrid modelling with composition of flows systems MLQA 2012



Introduction Assembly system Model Semantics Results Conclusions

Stochastic HYPE model

components controllers(
C1(V) BC∗ · · · BC∗ Cn(V)

)
BC∗

(
Con1 BC∗ · · · BC∗ Conm

)
well-defined component

C (V)
def
=
∑
j

aj : αj .C (V) + init : α .C (V)

Vashti Galpin

Stochastic hybrid modelling with composition of flows systems MLQA 2012



Introduction Assembly system Model Semantics Results Conclusions

Stochastic HYPE model

components controllers(
C1(V) BC∗ · · · BC∗ Cn(V)

)
BC∗

(
Con1 BC∗ · · · BC∗ Conm

)
well-defined component

C (V)
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events have event conditions: guards and resets
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Stochastic HYPE model

components controllers(
C1(V) BC∗ · · · BC∗ Cn(V)

)
BC∗

(
Con1 BC∗ · · · BC∗ Conm

)
well-defined component

C (V)
def
=
∑
j

aj : αj .C (V) + init : α .C (V)

influences are defined by a triple

αj = (ιj , rj , I (V))

influence names are mapped to variables

iv(ιj) ∈ V
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