Stochastic hybrid modelling with composition of flows

Vashti Galpin
Laboratory for Foundations of Computer Science
University of Edinburgh

Joint work with Jane Hillston (University of Edinburgh) and Luca Bortolussi (University of Trieste)

8 September 2012
Introduction

- stochastic hybrid process algebra
 - discrete behaviour
 - continuous behaviour, expressed as ODEs
 - stochastic behaviour, using exponential distribution
Introduction

- stochastic hybrid process algebra
 - discrete behaviour
 - continuous behaviour, expressed as ODEs
 - stochastic behaviour, using exponential distribution
- why use this process algebra
 - compositionality of flows
 - ODEs generated by model
Introduction

- stochastic hybrid process algebra
 - discrete behaviour
 - continuous behaviour, expressed as ODEs
 - stochastic behaviour, using exponential distribution
- why use this process algebra
 - compositionality of flows
 - ODEs generated by model
- outline
 - stochastic HYPE
 - semantics given by TDSHA
 - assembly system example
 - equivalent behaviour
 - results
Assembly system

pool

machine$_1$

conveyor belt

machine$_2$

continuous variables

items in pool: P

items at start of conveyor belt: B

power consumption of machine i: W_i

timers: T_i, T_V

Vashti Galpin

Stochastic hybrid modelling with composition of flows systems

MLQA 2012
Assembly system

- continuous variables
 - items in pool: P
 - items at start of conveyor belt: B
 - power consumption of machine$_i$: W_i
 - timers: T_i, T

Vashti Galpin
Stochastic hybrid modelling with composition of flows systems
Uncontrolled components

\[Feed_i \overset{def}{=} \text{init} : (p_i, arrivals_i, const).Feed_i + \text{full} : (p_i, 0, const).Feed_i \]
Uncontrolled components

\[
\text{Feed}_i \overset{\text{def}}{=} \text{init} : (p_i, \text{arrivals}_i, \text{const}).\text{Feed}_i + \text{full} : (p_i, 0, \text{const}).\text{Feed}_i
\]
Uncontrolled components

\[
Feed_i \overset{\text{def}}{=} \begin{array}{l}
\text{init} : (p_i, \text{arrivals}_i, \text{const}) . Feed_i \\
\text{full} : (p_i, 0, \text{const}) . Feed_i
\end{array}
\]
Uncontrolled components

\[Feed_i \overset{\text{def}}{=} \text{init} : (p_i, \text{arrivals}_i, \text{const}).Feed_i + \text{full} : (p_i, 0, \text{const}).Feed_i \]

\[Output \overset{\text{def}}{=} \text{init} : (b, \text{departures}, \text{const}).Output + \text{full} : (b, 0, \text{const}).Output \]
Uncontrolled components

\begin{align*}
 \text{Feed}_i \overset{\text{def}}{=} & \text{init} : (p_i, \text{arrivals}_i, \text{const}).\text{Feed}_i + \\
 \text{full} : & (p_i, 0, \text{const}).\text{Feed}_i \\

 \text{Output} \overset{\text{def}}{=} & \text{init} : (b, \text{departures}, \text{const}).\text{Output} + \\
 \text{full} : & (b, 0, \text{const}).\text{Output} \\

 \text{Machine}_i(W_i) \overset{\text{def}}{=} & \text{init} : (w_i, wa_i, \text{linear}(W_i)).\text{Machine}_i(W_i) + \\
 \text{prep} : & (w_i, 0, \text{const}).\text{Machine}_i(W_i) + \\
 \text{take}_i : & (w_i, wt_i, \text{linear}(W_i)).\text{Machine}_i(W_i) + \\
 \text{assem}_i : & (w_i, wa_i, \text{linear}(W_i)).\text{Machine}_i(W_i)
\end{align*}
Uncontrolled components

\[
\text{Feed}_i \overset{\text{def}}{=} \text{init} : (p_i, \text{arrivals}_i, \text{const}).\text{Feed}_i + \\
\text{full} : (p_i, 0, \text{const}).\text{Feed}_i
\]

\[
\text{Output} \overset{\text{def}}{=} \text{init} : (b, \text{departures}, \text{const}).\text{Output} + \\
\text{full} : (b, 0, \text{const}).\text{Output}
\]

\[
\text{Machine}_i(W_i) \overset{\text{def}}{=} \text{init} : (w_i, wa_i, \text{linear}(W_i)).\text{Machine}_i(W_i) + \\
\text{prep} : (w_i, 0, \text{const}).\text{Machine}_i(W_i) + \\
\text{take}_i : (w_i, wt_i, \text{linear}(W_i)).\text{Machine}_i(W_i) + \\
\text{assem}_i : (w_i, wa_i, \text{linear}(W_i)).\text{Machine}_i(W_i)
\]

\[
\text{Timer}_i \overset{\text{def}}{=} \text{init} : (t_i, 0, \text{const}).\text{Timer}_i + \\
\text{take}_i : (t_i, 1, \text{const}).\text{Timer}_i + \\
\text{assem}_i : (t_i, 0, \text{const}).\text{Timer}_i
\]
Uncontrolled components

\[
\begin{align*}
Feed_i & \overset{\text{def}}{=} \text{init} : (p_i, \text{arrivals}_i, \text{const}).Feed_i + \\
& \quad \text{full} : (p_i, 0, \text{const}).Feed_i \\
Output & \overset{\text{def}}{=} \text{init} : (b, \text{departures}, \text{const}).Output + \\
& \quad \text{full} : (b, 0, \text{const}).Output \\
Machine_i(W_i) & \overset{\text{def}}{=} \text{init} : (w_i, wa_i, \text{linear}(W_i)).Machine_i(W_i) + \\
& \quad \text{prep} : (w_i, 0, \text{const}).Machine_i(W_i) + \\
& \quad \text{take}_i : (w_i, wt_i, \text{linear}(W_i)).Machine_i(W_i) + \\
& \quad \text{assem}_i : (w_i, wa_i, \text{linear}(W_i)).Machine_i(W_i) \\
Timer_i & \overset{\text{def}}{=} \text{init} : (t_i, 0, \text{const}).Timer_i + \\
& \quad \text{take}_i : (t_i, 1, \text{const}).Timer_i + \\
& \quad \text{assem}_i : (t_i, 0, \text{const}).Timer_i
\end{align*}
\]
Mapping of influences, event conditions, influence types

\[iv(p_i) = P \quad iv(b) = B \quad iv(w_i) = W_i \quad iv(t_i) = T_i \]
Mapping of influences, event conditions, influence types

\[iv(p_i) = P \quad iv(b) = B \quad iv(w_i) = W_i \quad iv(t_i) = T_i \]

\[ec(init) = (true, \quad P' = P_0 \land T_i' = 0 \land W_i' = 10 \land B' = B_0) \]
Mapping of influences, event conditions, influence types

\[iv(p_i) = P \quad iv(b) = B \quad iv(w_i) = W_i \quad iv(t_i) = T_i \]

\[ec(init) = (true, \quad P' = P_0 \land T'_i = 0 \land W'_i = 10 \land B' = B_0) \]

\[ec(full) = (B \geq B_f, \quad true) \]

\[ec(take_i) = (P \geq n_i, \quad P' = P' - n_i \land T'_i = 0) \]

\[ec(assem_i) = (T_i \geq time_i, \quad B' = B + m_i) \]

Vashti Galpin

Stochastic hybrid modelling with composition of flows systems

MLQA 2012
Mapping of influences, event conditions, influence types

\[iv(p_i) = P \quad iv(b) = B \quad iv(w_i) = W_i \quad iv(t_i) = T_i \]

\[ec(\text{init}) = (true, \quad P' = P_0 \land T_i' = 0 \land W_i' = 10 \land B' = B_0) \]

\[ec(\text{full}) = (B \geq B_f, \quad true) \]

\[ec(\text{take}_i) = (P \geq n_i, \quad P' = P' - n_i \land T_i' = 0) \]

\[ec(\text{assem}_i) = (T_i \geq \text{time}_i, \quad B' = B + m_i) \]

\[ec(\text{prep}) = (\text{prepare}, \quad true) \]
Mapping of influences, event conditions, influence types

\[iv(p_i) = P \quad iv(b) = B \quad iv(w_i) = W_i \quad iv(t_i) = T_i \]

\[ec(init) = (true, \quad P' = P_0 \land T_i' = 0 \land W_i' = 10 \land B' = B_0) \]

\[ec(full) = (B \geq B_f, \quad true) \]

\[ec(take_i) = (P \geq n_i, \quad P' = P' - n_i \land T_i' = 0) \]

\[ec(assem_i) = (T_i \geq time_i, \quad B' = B + m_i) \]

\[ec(prep) = (prepare, \quad true) \]

\[\lbrack\text{const}\rbrack = 1 \quad \lbrack\text{linear}(X)\rbrack = X \]
Uncontrolled system, controlled system, controller example

\[
\text{Sys} \overset{\text{def}}{=} (\text{Feed}_1 \bowtie \text{Feed}_2 \bowtie \text{Feed}_3) \bowtie \text{Output} \\
\quad (\text{Timer}_1 \bowtie \text{Machine}_1(W_1)) \bowtie \text{Output} \\
\quad (\text{Timer}_2 \bowtie \text{Machine}_2(W_2))
\]
Uncontrolled system, controlled system, controller example

\[
Sys \overset{\text{def}}{=} (Feed_1 \bowtie Feed_2 \bowtie Feed_3) \bowtie\bowtie \\
Output \bowtie\bowtie \\
(Timer_1 \bowtie Machine_1(W_1)) \bowtie\bowtie \\
(Timer_2 \bowtie Machine_2(W_2))
\]

\[
Assembler_j \overset{\text{def}}{=} Sys \bowtie init.Con_j
\]
Uncontrolled system, controlled system, controller example

\[\text{Sys} \overset{\text{def}}{=} (\text{Feed}_1 \bowtie \text{Feed}_2 \bowtie \text{Feed}_3) \bowtie \text{Output} \]
\[= (\text{Timer}_1 \bowtie \text{Machine}_1(W_1)) \bowtie (\text{Timer}_2 \bowtie \text{Machine}_2(W_2)) \]

\[\text{Assembler}_j \overset{\text{def}}{=} \text{Sys} \bowtie \text{init}.\text{Con}_j \]

\[\text{AOff}_i \overset{\text{def}}{=} \text{prep}.\text{AOn}_i \]
\[\text{AOn}_i \overset{\text{def}}{=} \text{take}_i.\text{AProc}_i \]
\[\text{AProc}_i \overset{\text{def}}{=} \text{assem}_i.\text{AOff}_i \]

\[\text{FC} \overset{\text{def}}{=} \text{full}.0 \]
Stochastic HYPE semantics

- two equivalent semantics
- TDSHA: transition-driven stochastic hybrid automata
 ⊆ piecewise deterministic Markov processes
Stochastic HYPE semantics

- two equivalent semantics
- TDSHA: transition-driven stochastic hybrid automata \(\subseteq\) piecewise deterministic Markov processes
- first: compositional mapping to TDSHA using product
Stochastic HYPE semantics

- two equivalent semantics
- TDSHA: transition-driven stochastic hybrid automata
 \[\subseteq \text{piecewise deterministic Markov processes} \]
- first: compositional mapping to TDSHA using product
- second: generation of LTS mapped to TDSHA
Stochastic HYPE semantics

- two equivalent semantics
- TDSHA: transition-driven stochastic hybrid automata
 \[\subseteq \text{piecewise deterministic Markov processes} \]
- first: compositional mapping to TDSHA using product
- second: generation of LTS mapped to TDSHA
 - structured operational semantics
 - event labelled transition system over configurations
 - configuration: \(\langle \text{Sys} \, \bowtie \, \text{Con}, \sigma \rangle \)
 - state: \(\sigma : \text{influence} \mapsto (\text{influence strength, influence type}) \)
Stochastic HYPE semantics

- two equivalent semantics
- TDSHA: transition-driven stochastic hybrid automata ⊆ piecewise deterministic Markov processes
- first: compositional mapping to TDSHA using product
- second: generation of LTS mapped to TDSHA
 - structured operational semantics
 - event labelled transition system over configurations
 - configuration: \(\langle \text{Sys} \otimes \text{Con}, \sigma \rangle \)
 - state: \(\sigma : \text{influence} \mapsto (\text{influence strength, influence type}) \)
- configurations are mapped to modes
- states are mapped to continuous transitions giving ODEs

\[
\frac{dV}{dt} = \sum \{ r[I(\vec{W})] \mid \text{iv}(\nu) = V, \sigma_1(\nu) = (r, I(\vec{W})) \}
\]
Simulation of assembly system

Sys \bowtie \text{init.}(A\text{Off}_1 \parallel A\text{Off}_2)

(arrivals_i=20, departures=-0.1, time_i=2, prepare=0.6, n_i=100, m_i=2, wt_i=0.01, wa_i=0.06)
Simulation of assembly system

Sys \downarrow \text{init.}(A\text{Off}_1 \parallel A\text{Off}_2 \parallel FC)

(arrivals_i=20, departures=-0.1, time_i=2, prepare=0.6, n_i=100, m_i=2, wt_i=0.01, wa_i=0.06)
Equivalence semantics for stochastic HYPE

- stochastic system bisimulation with respect to \equiv over states
Equivalence semantics for stochastic HYPE

- stochastic system bisimulation with respect to \equiv over states
 given an equivalence relation $B \subseteq C \times C$
Equivalence semantics for stochastic HYPE

- stochastic system bisimulation with respect to \(\equiv \) over states
 given an equivalence relation \(B \subseteq C \times C \)
 then for all \((P, Q) \in B, \sigma \equiv \tau, C \in (\mathcal{F}/B)/ \equiv, \)
Equivalence semantics for stochastic HYPE

- stochastic system bisimulation with respect to \equiv over states

 given an equivalence relation $B \subseteq C \times C$

then for all $(P, Q) \in B$, $\sigma \equiv \tau$, $C \in (\mathcal{F}/B)/ \equiv$,

1. for all $\overline{a} \in \mathcal{E}_d$, whenever

\[
\langle P, \sigma \rangle \xrightarrow{\overline{a}} \langle P', \sigma' \rangle \in C, \ \exists \langle Q', \tau' \rangle \in C \text{ with } \langle Q, \tau \rangle \xrightarrow{\overline{a}} \langle Q', \tau' \rangle
\]

\[
\langle Q, \tau \rangle \xrightarrow{\overline{a}} \langle Q', \tau' \rangle \in C, \ \exists \langle P', \sigma' \rangle \in C \text{ with } \langle P, \sigma \rangle \xrightarrow{\overline{a}} \langle P', \sigma' \rangle.
\]
Equivalence semantics for stochastic HYPE

- stochastic system bisimulation with respect to \equiv over states

 given an equivalence relation $B \subseteq C \times C$

 then for all $(P, Q) \in B$, $\sigma \equiv \tau$, $C \in (\mathcal{F}/B)/\equiv$,

1. for all $\underline{a} \in \mathcal{E}_d$, whenever

 $\langle P, \sigma \rangle \overset{\underline{a}}{\rightarrow} \langle P', \sigma' \rangle \in C$, $\exists \langle Q', \tau' \rangle \in C$ with $\langle Q, \tau \rangle \overset{\underline{a}}{\rightarrow} \langle Q', \tau' \rangle$

 $\langle Q, \tau \rangle \overset{\underline{a}}{\rightarrow} \langle Q', \tau' \rangle \in C$, $\exists \langle P', \sigma' \rangle \in C$ with $\langle P, \sigma \rangle \overset{\underline{a}}{\rightarrow} \langle P', \sigma' \rangle$.

2. for all $\overline{a} \in \mathcal{E}_s$, $r(\langle P, \sigma \rangle, \overline{a}, C) = r(\langle Q, \tau \rangle, \overline{a}, C)$.

Vashti Galpin
Stochastic hybrid modelling with composition of flows systems
MLQA 2012
Equivalence semantics for stochastic HYPE

- stochastic system bisimulation with respect to \equiv over states

 given an equivalence relation $B \subseteq C \times C$

 then for all $(P, Q) \in B$, $\sigma \equiv \tau$, $C \in (\mathcal{F}/B)/\equiv$,

 1. for all $\bar{a} \in \mathcal{E}_d$, whenever
 $\langle P, \sigma \rangle \xrightarrow{\bar{a}} \langle P', \sigma' \rangle \in C$, $\exists \langle Q', \tau' \rangle \in C$ with $\langle Q, \tau \rangle \xrightarrow{\bar{a}} \langle Q', \tau' \rangle$
 $\langle Q, \tau \rangle \xrightarrow{\bar{a}} \langle Q', \tau' \rangle \in C$, $\exists \langle P', \sigma' \rangle \in C$ with $\langle P, \sigma \rangle \xrightarrow{\bar{a}} \langle P', \sigma' \rangle$.

 2. for all $\bar{a} \in \mathcal{E}_s$, $r(\langle P, \sigma \rangle, \bar{a}, C) = r(\langle Q, \tau \rangle, \bar{a}, C)$.

- notation: $P \sim_{\equiv} Q$
Equivalence semantics for TDSHA

- TDSHA labelled bisimulation
Equivalence semantics for TDSHA

- TDSHA labelled bisimulation

 given a measurable relation \(B \subseteq (Q_1 \times \mathbb{R}^{n_1}) \times (Q_2 \times \mathbb{R}^{n_2}) \)
Equivalence semantics for TDSHA

- TDSHA labelled bisimulation

 given a measurable relation \(B \subseteq (Q_1 \times \mathbb{R}^{n_1}) \times (Q_2 \times \mathbb{R}^{n_2}) \)

 then for all \(((q_1, x_1), (q_2, x_2)) \in B \)
Equivalence semantics for TDSHA

- TDSHA labelled bisimulation

 given a measurable relation \(B \subseteq (Q_1 \times \mathbb{R}^{n_1}) \times (Q_2 \times \mathbb{R}^{n_2}) \)

then for all \(((q_1, x_1), (q_2, x_2)) \in B \)

- \(\text{out}_1(x_1) = \text{out}_2(x_2) \)
- exit rates of \(q_1 \) and \(q_2 \) must be equal
- disjunction of guards must evaluate to the same for \(x_1 \) and \(x_2 \)
- disjunction of guards must become true at the same time
- for all \(a \in \mathcal{E}_d \), one step priorities must match
- for all \(\overline{a} \in \mathcal{E}_s \), one step probabilities must match
Equivalence semantics for TDSHA

- TDSHA labelled bisimulation

 given a measurable relation \(B \subseteq (Q_1 \times \mathbb{R}^{n_1}) \times (Q_2 \times \mathbb{R}^{n_2}) \)

 then for all \(((q_1, x_1), (q_2, x_2)) \in B\)

 - \(\text{out}_1(x_1) = \text{out}_2(x_2)\)
 - exit rates of \(q_1\) and \(q_2\) must be equal
 - disjunction of guards must evaluate to the same for \(x_1\) and \(x_2\)
 - disjunction of guards must become true at the same time
 - for all \(\bar{a} \in \mathcal{E}_d\), one step priorities must match
 - for all \(\bar{a} \in \mathcal{E}_s\), one step probabilities must match

 notation: \(\mathcal{T}_1 \sim_\ell \mathcal{T}_2\)
Results

- $\sim \equiv$ is a congruence (under certain conditions on \equiv)
Results

- \sim^\equiv is a congruence (under certain conditions on \equiv)

- if $Con_1 \sim^\equiv Con_2$ then $Sys \& init.Con_1 \sim^\equiv Sys \& init.Con_2$
Results

- \sim^\equiv is a congruence (under certain conditions on \equiv)
- if $Con_1 \sim^\equiv Con_2$ then $Sys \triangleright\leftarrow init. Con_1 \sim^\equiv Sys \triangleright\leftarrow init. Con_2$
- if $P_1 \sim^\dot\equiv P_2$ then $\mathcal{T}(P_1) \sim^T_{\ell} \mathcal{T}(P_2)$
Results

- \sim_{\equiv} is a congruence (under certain conditions on \equiv)

- if $Con_1 \sim_{\equiv} Con_2$ then $Sys \ast \text{init} . Con_1 \sim_{\equiv} Sys \ast \text{init} . Con_2$

- if $P_1 \sim^\dagger P_2$ then $T(P_1) \sim_T^\ell T(P_2)$

- application to assembly system
Results

- \sim_\equiv is a congruence (under certain conditions on \equiv)
- if $Con_1 \sim_\equiv Con_2$ then $Sys \bowtie \text{init.} Con_1 \sim_\equiv Sys \bowtie \text{init.} Con_2$
- if $P_1 \sim_\hat{\cdot} P_2$ then $\mathcal{T}(P_1) \sim^L_T \mathcal{T}(P_2)$

application to assembly system

- \sim_\equiv: two controllers versus single controller
Results

- $\sim \equiv$ is a congruence (under certain conditions on \equiv)

- if $\text{Con}_1 \sim \equiv \text{Con}_2$ then $\text{Sys} \star \text{init.} \text{Con}_1 \sim \equiv \text{Sys} \star \text{init.} \text{Con}_2$

- if $P_1 \sim \hat{=} P_2$ then $\mathcal{T}(P_1) \sim_T \mathcal{T}(P_2)$

- application to assembly system
 - $\sim \equiv$: two controllers versus single controller
 - $\sim \hat{=}$: multiple feeds versus one feed with sum of rates of feeds
Results

- \sim^\equiv is a congruence (under certain conditions on \equiv)

- if $\text{Con}_1 \sim^\equiv \text{Con}_2$ then $\text{Sys} \oslash \text{init.} \text{Con}_1 \sim^\equiv \text{Sys} \oslash \text{init.} \text{Con}_2$

- if $P_1 \sim^{\ddagger} P_2$ then $\mathcal{T}(P_1) \sim^\ell_T \mathcal{T}(P_2)$

- application to assembly system
 - \sim^\equiv: two controllers versus single controller
 - \sim^{\ddagger}: multiple feeds versus one feed with sum of rates of feeds
 - \ll^{\ddagger}: pair of timers versus a single timer
 - \sim^ℓ_T: pair of timers versus a single timer
Two equivalent controllers

\[\text{Sys} \otimes \text{init.}(A\text{Off}_1 \parallel A\text{Off}_2 \parallel FC) \]

\[\text{Sys} \otimes \text{init.}(A\text{BOff} \parallel FC) \]

(arrivals\(_i=20\), departures\(_i=-0.1\), time\(_i=2\), prepare\(_i=0.6\), n\(_i=100\), m\(_i=2\), wt\(_i=0.01\))
Conclusions

- stochastic HYPE
 - process algebra for stochastic hybrid systems
 - extension of HYPE
 - semantics given by TDSHA
Conclusions

- stochastic HYPE
 - process algebra for stochastic hybrid systems
 - extension of HYPE
 - semantics given by TDSHA

- illustrated through assembly system
Conclusions

- stochastic HYPE
 - process algebra for stochastic hybrid systems
 - extension of HYPE
 - semantics given by TDSHA

- illustrated through assembly system

- equivalent behaviour
 - stochastic HYPE: equivalence with abstraction over states
 - TDSHA: equivalence based on modes and variable values
Conclusions

- stochastic HYPE
 - process algebra for stochastic hybrid systems
 - extension of HYPE
 - semantics given by TDSHA

- illustrated through assembly system

- equivalent behaviour
 - stochastic HYPE: equivalence with abstraction over states
 - TDSHA: equivalence based on modes and variable values

- results
 - congruence and corollary about equivalent controllers
 - relationship between two equivalences
Thank you
Stochastic HYPE model
Stochastic HYPE model

$$\text{components}$$

$$(C_1(\mathcal{V}) \otimes \cdots \otimes C_n(\mathcal{V}))$$
Stochastic HYPE model

components

\((C_1(V) \bowtie \cdots \bowtie C_n(V))\)
Stochastic HYPE model

components

\((C_1(V) \circ \cdots \circ C_n(V))\)

controllers

\((Con_1 \circ \cdots \circ Con_m)\)
Stochastic HYPE model

components

\((C_1(\mathcal{V}) \oslash \cdots \oslash C_n(\mathcal{V})) \oslash (Con_1 \oslash \cdots \oslash Con_m)\)

well-defined component

\[C(\mathcal{V}) \overset{\text{def}}{=} \sum_{j} a_j : \alpha_j \cdot C(\mathcal{V}) + \text{init} : \alpha \cdot C(\mathcal{V}) \]
Stochastic HYPE model

components

\((C_1(V) \bowtie \cdots \bowtie C_n(V))\) \bowtie (Con_1 \bowtie \cdots \bowtie Con_m)\)

well-defined component

\[C(V) \overset{\text{def}}{=} \sum_j a_j : \alpha_j \cdot C(V) + \text{init} : \alpha \cdot C(V) \]

components are parameterised by variables

Vashti Galpin

Stochastic hybrid modelling with composition of flows systems

MLQA 2012
Stochastic HYPE model

components

\[(C_1(\mathcal{V}) \star \cdots \star C_n(\mathcal{V})) \star (\text{Con}_1 \star \cdots \star \text{Con}_m)\]

well-defined component

\[C(\mathcal{V}) \overset{\text{def}}{=} \sum_j a_j : \alpha_j \cdot C(\mathcal{V}) + \text{init} : \alpha \cdot C(\mathcal{V})\]
Stochastic HYPE model

components
\((C_1(\mathcal{V}) \circ \cdots \circ C_n(\mathcal{V}))\)

controllers
\((\text{Con}_1 \circ \cdots \circ \text{Con}_m)\)

well-defined component
\(C(\mathcal{V}) \overset{\text{def}}{=} \sum_j \alpha_j \cdot C(\mathcal{V}) + \text{init} : \alpha \cdot C(\mathcal{V})\)

events have event conditions: guards and resets
Stochastic HYPE model

\[
\begin{align*}
\text{components} & \quad \text{controllers} \\
(C_1(V) \pipe \cdots \pipe C_n(V)) & \quad (Con_1 \pipe \cdots \pipe Con_m)
\end{align*}
\]

well-defined component

\[
C(V) \overset{\text{def}}{=} \sum_j \alpha_j \cdot C(V) + \text{init} : \alpha \cdot C(V)
\]

events have event conditions: guards and resets

\[
ec(\alpha_j) = (f(V), V' = f'(V))
\]

discrete events
Stochastic HYPE model

components

\[
(C_1(\mathcal{V}) \star \cdots \star C_n(\mathcal{V})) \star \quad (\text{Con}_1 \star \cdots \star \text{Con}_m)
\]

well-defined component

\[
C(\mathcal{V}) \overset{\text{def}}{=} \sum_j a_j : \alpha_j \cdot C(\mathcal{V}) + \text{init} : \alpha \cdot C(\mathcal{V})
\]

events have event conditions: guards and resets

\[
ec(\alpha_j) = (f(\mathcal{V}), \mathcal{V}' = f'(\mathcal{V})) \quad \text{discrete events}
\]

\[
ec(\bar{\alpha}_j) = (r, \mathcal{V} = f'(\mathcal{V})) \quad \text{stochastic events}
\]
Stochastic HYPE model

\[
\begin{align*}
\text{components} & \quad \text{controllers} \\
\left(C_1(V) \mathbin{\star} \cdots \mathbin{\star} C_n(V) \right) & \mathbin{\star} \quad \left(Con_1 \mathbin{\star} \cdots \mathbin{\star} Con_m \right)
\end{align*}
\]

well-defined component
\[
C(V) \overset{\text{def}}{=} \sum_j a_j : \alpha_j \cdot C(V) + \text{init} : \alpha \cdot C(V)
\]
Stochastic HYPE model

components

\((C_1(\mathcal{V}) \otimes \cdots \otimes C_n(\mathcal{V}))\)

controllers

\((\text{Con}_1 \otimes \cdots \otimes \text{Con}_m)\)

well-defined component

\[C(\mathcal{V}) \overset{\text{def}}{=} \sum_j a_j : \alpha_j \cdot C(\mathcal{V}) + \text{init} : \alpha \cdot C(\mathcal{V}) \]

influences are defined by a triple
Stochastic HYPE model

components

\((C_1(\mathcal{V}) \oplus \cdots \oplus C_n(\mathcal{V})) \oplus \cdots \oplus (Con_1 \oplus \cdots \oplus Con_m)\)

controllers

well-defined component

\[C(\mathcal{V}) \overset{\text{def}}{=} \sum_{j} a_j : \alpha_j \cdot C(\mathcal{V}) + \text{init} : \alpha \cdot C(\mathcal{V}) \]

influences are defined by a triple

\[\alpha_j = (\iota_j, r_j, I(\mathcal{V})) \]
Stochastic HYPE model

components

\[(C_1(V) \oplus \cdots \oplus C_n(V)) \oplus (Con_1 \oplus \cdots \oplus Con_m)\]

well-defined component

\[C(V) \overset{def}{=} \sum_j a_j : \alpha_j \cdot C(V) + \text{init} : \alpha \cdot C(V)\]

influences are defined by a triple

\[\alpha_j = (\iota_j, r_j, I(V))\]

influence names are mapped to variables

\[iv(\iota_j) \in V\]