Assembly system	Model	Results	Conclusions

Stochastic hybrid modelling with composition of flows

Vashti Galpin Laboratory for Foundations of Computer Science University of Edinburgh

Joint work with Jane Hillston (University of Edinburgh) and Luca Bortolussi (University of Trieste)

8 September 2012

Stochastic hybrid modelling with composition of flows systems

Introduction	Assembly system	Model	Results	Conclusions

Introduction

- stochastic hybrid process algebra
 - discrete behaviour
 - continuous behaviour, expressed as ODEs
 - stochastic behaviour, using exponential distribution

Introduction	Assembly system	Model	Results	Conclusions

Introduction

- stochastic hybrid process algebra
 - discrete behaviour
 - continuous behaviour, expressed as ODEs
 - stochastic behaviour, using exponential distribution
- why use this process algebra
 - compositionality of flows
 - ODEs generated by model

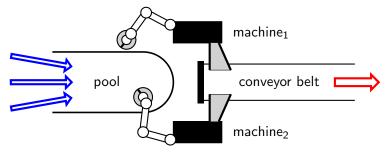
Introduction	Assembly system	Model	Results	Conclusions

Introduction

- stochastic hybrid process algebra
 - discrete behaviour
 - continuous behaviour, expressed as ODEs
 - stochastic behaviour, using exponential distribution
- why use this process algebra
 - compositionality of flows
 - ODEs generated by model
- outline
 - stochastic HYPE
 - semantics given by TDSHA
 - assembly system example
 - equivalent behaviour
 - results

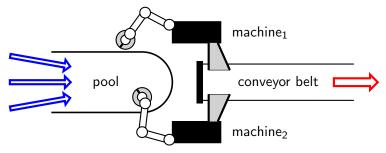
Assembly system	Model	Results	Conclusions

Assembly system



Assembly system	Model	Results	Conclusions

Assembly system



continuous variables

- items in pool: P
- items at start of conveyor belt: B
- power consumption of machine_i: W_i
- timers: T_i , T

Vashti Galpin

Stochastic hybrid modelling with composition of flows systems

Assembly system	Model	Results	Conclusions

$$Feed_i \stackrel{\text{def}}{=} \underbrace{\text{init}}_{i}: (p_i, arrivals_i, const). Feed_i + \underbrace{\text{full}}_{i}: (p_i, 0, const). Feed_i$$

Assembly system	Model	Results	Conclusions

Feed_i
$$\stackrel{\text{def}}{=}$$
 $\underline{\text{init}}: (p_i, arrivals_i, const).Feed_i + \underline{\text{full}}: (p_i, 0, const).Feed_i$

Assembly system	Model	Results	Conclusions

$$Feed_i \stackrel{\text{def}}{=} \underbrace{\text{init}}_{i}: (p_i, arrivals_i, const). Feed_i + \underbrace{\text{full}}_{i}: (p_i, 0, const). Feed_i$$

Assembly system	Model	Results	Conclusions

$$Feed_i \stackrel{\text{def}}{=} \underline{init}: (p_i, arrivals_i, const).Feed_i + \underline{full}: (p_i, 0, const).Feed_i$$

$$Output \stackrel{\text{def}}{=} \underline{\text{init}}: (b, departures, const). Output + \underline{\text{full}}: (b, 0, const). Output$$

			Model			Conclusions					
Uncontrolled components											
	Feed _i	def —	$\underline{\operatorname{init}}:(p_i,\operatorname{arriva})$ $\underline{\operatorname{full}}:(p_i,0,\operatorname{con})$		$eed_i +$						
	Output	def =	$\underline{\operatorname{init}}$: (b, depar $\underline{\operatorname{full}}$: (b, 0, con		Output +						
Machi	ne;(W;)	def ==	$\frac{\text{init}:(w_i, wa_i, \frac{w_i}{\text{prep}})}{\frac{1}{2} (w_i, 0, c)}$ $\frac{\text{take}_i:(w_i, wt_i)}{\text{assem}_i:(w_i, wt_i)}$	onst).Machir ;, linear(W _i))	ne _i (W _i) + .Machine _i (N	, V _i) +					

ð

			Model			Conclusions				
Uncontrolled components										
	Feed _i	<i>def</i> ₩	$\underline{\operatorname{init}}:(p_i,\operatorname{arriva})$ $\underline{\operatorname{full}}:(p_i,0,\operatorname{con})$		$eed_i +$					
	Output	<i>def</i> <u></u>	$\underline{\text{init}}$: (b, depar $\underline{\text{full}}$: (b, 0, con	,	Output +					
Machii	ne;(Wi)	def <u> </u>	$\frac{\text{init}}{\text{prep}}: (w_i, w_{a_i}, w_{a_i}, 0, c_i)$ $\frac{\text{take}_i: (w_i, w_{a_i}, w_{a_i}, w_{a_i}, w_{a_i}, w_{a_i}, w_{a_i}, w_{a_i})$	onst).Machin , linear(W _i))	e _i (W _i) + .Machine _i (W	∕;) +				
	Timer _i	def =	$\underline{\text{init}}: (t_i, 0, con$ $\underline{\text{take}}_i: (t_i, 1, con$ $\underline{\text{assem}}_i: (t_i, 0, n)$	onst). Timer _i	+					
Vashti Galpin										

Stochastic hybrid modelling with composition of flows systems

			Model			Conclusions		
Uncontrolled components								
	Feed _i	def ₩	$\frac{\text{init}}{\text{full}}: (p_i, \text{arriva})$ $\frac{\text{full}}{\text{full}}: (p_i, 0, \text{corr})$		$eed_i +$			
	Output	def ==	<u>init</u> : (b , depart <u>full</u> : (b , 0, con		Output +			
Machi	ne;(W;)	def 	$\frac{\text{init}:(w_i, wa_i, \dots, \dots,$	onst).Machin , linear(W _i))	$e_i(W_i) + Machine_i(W_i)$	/ _i) +		
	Timer _i	def =	$\underline{\text{init}}: (t_i, 0, continue) \\ \underline{\text{take}}_i: (t_i, 1, continue) \\ \underline{\text{assem}}_i: (t_i, 0, continue) \\ \underline{\text{assem}}_i: (t_i, 0, continue) \\ \underline{\text{take}}_i: $	onst). Timer _i	+			
Vashti Galpin								

Vashti Galpin

Stochastic hybrid modelling with composition of flows systems

Assembly system	Model	Results	Conclusions

$$iv(p_i) = P$$
 $iv(b) = B$ $iv(w_i) = W_i$ $iv(t_i) = T_i$

Assembly system	Model	Results	Conclusions

$$iv(p_i) = P$$
 $iv(b) = B$ $iv(w_i) = W_i$ $iv(t_i) = T_i$

$$ec(\underline{init}) = (true, P' = P_0 \land T'_i = 0 \land W'_i = 10 \land B' = B_0)$$

Vashti Galpin

Assembly system	Model	Results	Conclusions

$$iv(p_i) = P$$
 $iv(b) = B$ $iv(w_i) = W_i$ $iv(t_i) = T_i$

$$ec(\underline{init}) = (true, P' = P_0 \land T'_i = 0 \land W'_i = 10 \land B' = B_0)$$

$$\begin{array}{ll} ec(\underline{\operatorname{full}}) &= (B \geq B_f, & true) \\ ec(\underline{\operatorname{take}}_i) &= (P \geq n_i, & P' = P' - n_i \wedge T'_i = 0) \\ ec(\underline{\operatorname{assem}}_i) &= (T_i \geq time_i, & B' = B + m_i) \end{array}$$

Vashti Galpin

Stochastic hybrid modelling with composition of flows systems

Assembly system	Model	Results	Conclusions

$$iv(p_i) = P$$
 $iv(b) = B$ $iv(w_i) = W_i$ $iv(t_i) = T_i$

$$ec(\underline{init}) = (true, P' = P_0 \land T'_i = 0 \land W'_i = 10 \land B' = B_0)$$

$$\begin{array}{ll} ec(\underline{\operatorname{full}}) &= (B \geq B_f, & true) \\ ec(\underline{\operatorname{take}}_i) &= (P \geq n_i, & P' = P' - n_i \wedge T'_i = 0) \\ ec(\underline{\operatorname{assem}}_i) &= (T_i \geq time_i, & B' = B + m_i) \end{array}$$

 $ec(\overline{prep}) = (prepare, true)$

Vashti Galpin

Stochastic hybrid modelling with composition of flows systems

ð

	Assembly system	Model		Results	Conclusions
Mapping	of influences,	event	conditions,	influence	types

$$iv(p_i) = P$$
 $iv(b) = B$ $iv(w_i) = W_i$ $iv(t_i) = T_i$

$$ec(\underline{init}) = (true, \qquad P' = P_0 \land T'_i = 0 \land W'_i = 10 \land B' = B_0)$$

$$ec(\underline{full}) = (B \ge B_f, \qquad true)$$

$$ec(\underline{take}_i) = (P \ge n_i, \qquad P' = P' - n_i \land T'_i = 0)$$

$$(T \ge n_i) \qquad P' = P' - n_i \land T'_i = 0$$

$$\begin{array}{ll} ec(\underline{\mathrm{full}}) &= (B \ge B_f, & true) \\ ec(\underline{\mathrm{take}}_i) &= (P \ge n_i, & P' = P' - n_i \wedge T'_i = 0 \\ ec(\underline{\mathrm{assem}}_i) &= (T_i \ge time_i, & B' = B + m_i) \end{array}$$

$$ec(\overline{prep}) = (prepare, true)$$

 $[const] = 1$ $[linear(X)] = X$

Stochastic hybrid modelling with composition of flows systems

ð

Assembly system	Model	Results	Conclusions

Uncontrolled system, controlled system, controller example

$$\begin{array}{rcl} Sys & \stackrel{\text{\tiny def}}{=} & (Feed_1 \Join Feed_2 \Join Feed_3) & \Join \\ & Output & & \Join \\ & (Timer_1 \Join Machine_1(W_1)) & & \Join \\ & (Timer_2 \Join Machine_2(W_2)) & & \end{array}$$

Assembly system	Model	Results	Conclusions

Uncontrolled system, controlled system, controller example

$$\begin{array}{rcl} Sys & \stackrel{\tiny def}{=} & (Feed_1 \Join Feed_2 \Join Feed_3) & \Join \\ & Output & & \Join \\ & (Timer_1 \Join Machine_1(W_1)) & & \Join \\ & (Timer_2 \Join Machine_2(W_2)) & & \end{array}$$

Assembler_j
$$\stackrel{\text{\tiny def}}{=}$$
 Sys \bowtie $\underline{\text{init}}$. Con_j

Stochastic hybrid modelling with composition of flows systems

Assembly system	Model	Results	Conclusions

Uncontrolled system, controlled system, controller example

$$\begin{array}{rcl} Sys & \stackrel{\text{\tiny def}}{=} & (Feed_1 \Join Feed_2 \Join Feed_3) & \Join \\ & Output & & \Join \\ & (Timer_1 \Join Machine_1(W_1)) & & \Join \\ & (Timer_2 \Join Machine_2(W_2)) & & \end{array}$$

Assembler_j
$$\stackrel{\text{\tiny def}}{=}$$
 Sys 🔀 $\underline{\text{init}}$. Con_j

$$\begin{array}{rcl} AOff_{i} & \stackrel{def}{=} & \overline{\mathrm{prep}}.AOn_{i} \\ AOn_{i} & \stackrel{def}{=} & \underline{\mathrm{take}}_{i}.AProc_{i} \\ AProc_{i} & \stackrel{def}{=} & \underline{\mathrm{assem}}_{i}.AOff_{i} \end{array}$$

$$FC \stackrel{def}{=} \underline{\mathrm{full}}.0$$

Vashti Galpin

Stochastic hybrid modelling with composition of flows systems

ð

		Assembly system	Model	Semantics	Results	Conclusions
			_			
<u><u> </u></u>	1 C C C C					

- two equivalent semantics
- > TDSHA: transition-driven stochastic hybrid automata
 - \subseteq piecewise determinstic Markov processes

	Assembly system	Model	Semantics	Results	Conclusions
-		_			

- two equivalent semantics
- ► TDSHA: transition-driven stochastic hybrid automata ⊆ piecewise determinstic Markov processes
- first: compositional mapping to TDSHA using product

	Assembly system	Model	Semantics	Results	Conclusions
		_			

- two equivalent semantics
- ► TDSHA: transition-driven stochastic hybrid automata ⊆ piecewise determinstic Markov processes
- first: compositional mapping to TDSHA using product
- second: generation of LTS mapped to TDSHA

Assembly system	Model	Semantics	Results	Conclusions

- two equivalent semantics
- ► TDSHA: transition-driven stochastic hybrid automata ⊆ piecewise determinstic Markov processes
- first: compositional mapping to TDSHA using product
- second: generation of LTS mapped to TDSHA
 - structured operational semantics
 - event labelled transition system over configurations
 - configuration: $\langle Sys \Join Con, \sigma \rangle$
 - ▶ state: σ : influence \mapsto (influence strength, influence type)

Ó٦

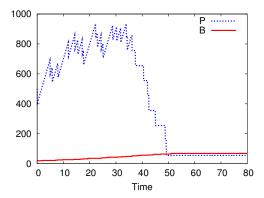
Assembly system	Model	Semantics	Results	Conclusions

- two equivalent semantics
- ► TDSHA: transition-driven stochastic hybrid automata ⊆ piecewise determinstic Markov processes
- first: compositional mapping to TDSHA using product
- second: generation of LTS mapped to TDSHA
 - structured operational semantics
 - event labelled transition system over configurations
 - configuration: $\langle Sys \Join Con, \sigma \rangle$
 - ▶ state: σ : influence \mapsto (influence strength, influence type)
 - configurations are mapped to modes
 - states are mapped to continuous transitions giving ODEs

$$\frac{dV}{dt} = \sum \left\{ r \llbracket I(\overrightarrow{W}) \rrbracket \mid iv(\iota) = V, \sigma_1(\iota) = (r, I(\overrightarrow{W})) \right\}$$

Assembly system	Model	Semantics	Results	Conclusions

Simulation of assembly system



Sys \bowtie init.(AOff₁ || AOff₂)

 $(arrivals_i=20, departures=-0.1, time_i=2, prepare=0.6, n_i=100, m_i=2, wt_i=0.01, wa_i=0.06)$

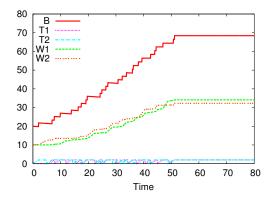
Vashti Galpin

Stochastic hybrid modelling with composition of flows systems

ð

Assembly system	Model	Semantics	Results	Conclusions

Simulation of assembly system



Sys \bowtie init.(AOff $_1 \parallel AOff _2 \parallel FC$)

 $(arrivals_i=20, departures=-0.1, time_i=2, prepare=0.6, n_i=100, m_i=2, wt_i=0.01, wa_i=0.06)$

Vashti Galpin

Stochastic hybrid modelling with composition of flows systems

ð

Assembly system	Model	Semantics	Results	Conclusions

• stochastic system bisimulation with respect to \equiv over states

	Assembly system	Model	Semantics	Results	Conclusions

► stochastic system bisimulation with respect to ≡ over states given an equivalence relation B ⊆ C × C

	Assembly system	Model	Semantics	Results	Conclusions

stochastic system bisimulation with respect to ≡ over states given an equivalence relation B ⊆ C × C then for all (P, Q) ∈ B, σ ≡ τ, C ∈ (F/B)/≡,

Assembly system	Model	Semantics	Results	Conclusions

- stochastic system bisimulation with respect to ≡ over states given an equivalence relation B ⊆ C × C then for all (P, Q) ∈ B, σ ≡ τ, C ∈ (F/B)/ ≡,
 - 1. for all $\underline{\underline{a}} \in \mathcal{E}_d$, whenever $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle \in C$, $\exists \langle Q', \tau' \rangle \in C$ with $\langle Q, \tau \rangle \xrightarrow{\underline{a}} \langle Q', \tau' \rangle$ $\langle Q, \tau \rangle \xrightarrow{\underline{a}} \langle Q', \tau' \rangle \in C$, $\exists \langle P', \sigma' \rangle \in C$ with $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle$.

	Assembly system	Model	Semantics	Results	Conclusions

- stochastic system bisimulation with respect to ≡ over states given an equivalence relation B ⊆ C × C then for all (P, Q) ∈ B, σ ≡ τ, C ∈ (F/B)/ ≡,
 - 1. for all $\underline{\mathbf{a}} \in \mathcal{E}_d$, whenever $\langle P, \sigma \rangle \xrightarrow{\underline{\mathbf{a}}} \langle P', \sigma' \rangle \in C$, $\exists \langle Q', \tau' \rangle \in C$ with $\langle Q, \tau \rangle \xrightarrow{\underline{\mathbf{a}}} \langle Q', \tau' \rangle$ $\langle Q, \tau \rangle \xrightarrow{\underline{\mathbf{a}}} \langle Q', \tau' \rangle \in C$, $\exists \langle P', \sigma' \rangle \in C$ with $\langle P, \sigma \rangle \xrightarrow{\underline{\mathbf{a}}} \langle P', \sigma' \rangle$.
 - 2. for all $\overline{\mathbf{a}} \in \mathcal{E}_s$, $r(\langle P, \sigma \rangle, \overline{\mathbf{a}}, C) = r(\langle Q, \tau \rangle, \overline{\mathbf{a}}, C)$.

Ó٦

Assembly system	Model	Semantics	Results	Conclusions

- stochastic system bisimulation with respect to ≡ over states given an equivalence relation B ⊆ C × C then for all (P, Q) ∈ B, σ ≡ τ, C ∈ (F/B)/ ≡,
 - 1. for all $\underline{\mathbf{a}} \in \mathcal{E}_{d}$, whenever $\langle P, \sigma \rangle \xrightarrow{\underline{\mathbf{a}}} \langle P', \sigma' \rangle \in C$, $\exists \langle Q', \tau' \rangle \in C$ with $\langle Q, \tau \rangle \xrightarrow{\underline{\mathbf{a}}} \langle Q', \tau' \rangle$ $\langle Q, \tau \rangle \xrightarrow{\underline{\mathbf{a}}} \langle Q', \tau' \rangle \in C$, $\exists \langle P', \sigma' \rangle \in C$ with $\langle P, \sigma \rangle \xrightarrow{\underline{\mathbf{a}}} \langle P', \sigma' \rangle$.

2. for all
$$\overline{a} \in \mathcal{E}_s$$
, $r(\langle P, \sigma \rangle, \overline{a}, C) = r(\langle Q, \tau \rangle, \overline{a}, C)$.

▶ notation: $P \sim^{\equiv} Q$

Assembly system	Model	Semantics	Results	Conclusions

Equivalence semantics for TDSHA

TDSHA labelled bisimulation

Assembly system	Model	Semantics	Results	Conclusions

Equivalence semantics for TDSHA

TDSHA labelled bisimulation

given a measurable relation $B \subseteq (Q_1 \times \mathbb{R}^{n_1}) \times (Q_2 \times \mathbb{R}^{n_2})$

Assembly system	Model	Semantics	Results	Conclusions

Equivalence semantics for TDSHA

TDSHA labelled bisimulation

given a measurable relation $B \subseteq (Q_1 \times \mathbb{R}^{n_1}) \times (Q_2 \times \mathbb{R}^{n_2})$ then for all $((q_1, \mathbf{x}_1), (q_2, \mathbf{x}_2)) \in B$

ð

Assembly system	Model	Semantics	Results	Conclusions

Equivalence semantics for TDSHA

TDSHA labelled bisimulation

given a measurable relation $B \subseteq (Q_1 imes \mathbb{R}^{n_1}) imes (Q_2 imes \mathbb{R}^{n_2})$

then for all $((q_1, {\sf x}_1), (q_2, {\sf x}_2)) \in B$

- $\operatorname{out}_1(x_1) = \operatorname{out}_2(x_2)$
- exit rates of q_1 and q_2 must be equal
- disjunction of guards must evaluate to the same for x₁ and x₂
- disjunction of guards must become true at the same time
- for all $\underline{a} \in \mathcal{E}_d$, one step priorities must match
- ▶ for all $\overline{a} \in \mathcal{E}_s$, one step probabilities must match

Assembly system	Model	Semantics	Results	Conclusions

Equivalence semantics for TDSHA

TDSHA labelled bisimulation

given a measurable relation $B \subseteq (Q_1 imes \mathbb{R}^{n_1}) imes (Q_2 imes \mathbb{R}^{n_2})$

then for all $((q_1, {\sf x}_1), (q_2, {\sf x}_2)) \in B$

- $\operatorname{out}_1(x_1) = \operatorname{out}_2(x_2)$
- exit rates of q_1 and q_2 must be equal
- disjunction of guards must evaluate to the same for x_1 and x_2
- disjunction of guards must become true at the same time
- ▶ for all $\underline{a} \in \mathcal{E}_d$, one step priorities must match
- ▶ for all $\overline{a} \in \mathcal{E}_s$, one step probabilities must match
- notation: $\mathcal{T}_1 \sim_{\mathcal{T}}^{\ell} \mathcal{T}_2$

	Assembly system	Model	Results	Conclusions
Results				

	Assembly system	Model	Results	Conclusions
Results				

- ▶ \sim^{\equiv} is a congruence (under certain conditions on \equiv)
- ▶ if $Con_1 \sim^{\equiv} Con_2$ then $Sys \Join init.Con_1 \sim^{\equiv} Sys \Join init.Con_2$

	Assembly system	Model	Results	Conclusions
Results				

▶ if $Con_1 \sim^{\equiv} Con_2$ then $Sys \Join init.Con_1 \sim^{\equiv} Sys \Join init.Con_2$

• if
$$P_1 \sim^{\doteq} P_2$$
 then $\mathcal{T}(P_1) \sim^{\ell}_{\mathcal{T}} \mathcal{T}(P_2)$

	Assembly system	Model	Results	Conclusions
Results				

- \sim^{\equiv} is a congruence (under certain conditions on \equiv)
- ▶ if $Con_1 \sim^{\equiv} Con_2$ then $Sys \Join init.Con_1 \sim^{\equiv} Sys \Join init.Con_2$
- if $P_1 \sim^{\doteq} P_2$ then $\mathcal{T}(P_1) \sim^{\ell}_{\mathcal{T}} \mathcal{T}(P_2)$
- application to assembly system

	Assembly system	Model	Results	Conclusions
Results				

▶ if $Con_1 \sim^{\equiv} Con_2$ then $Sys \Join init.Con_1 \sim^{\equiv} Sys \Join init.Con_2$

• if
$$P_1 \sim^{\doteq} P_2$$
 then $\mathcal{T}(P_1) \sim^{\ell}_{\mathcal{T}} \mathcal{T}(P_2)$

application to assembly system

 \blacktriangleright $\sim^{=}$: two controllers versus single controller

	Assembly system	Model	Results	Conclusions
Results				

▶ if $Con_1 \sim^{\equiv} Con_2$ then $Sys \Join init.Con_1 \sim^{\equiv} Sys \Join init.Con_2$

• if
$$P_1 \sim^{\doteq} P_2$$
 then $\mathcal{T}(P_1) \sim^{\ell}_{\mathcal{T}} \mathcal{T}(P_2)$

- application to assembly system
 - \blacktriangleright $\sim^{=}$: two controllers versus single controller
 - $\blacktriangleright ~\sim^{\doteq}:$ multiple feeds versus one feed with sum of rates of feeds

Stochastic hybrid modelling with composition of flows systems

Ó٦

	Assembly system	Model	Results	Conclusions
Results				

▶ if $Con_1 \sim^{\equiv} Con_2$ then $Sys \Join init.Con_1 \sim^{\equiv} Sys \Join init.Con_2$

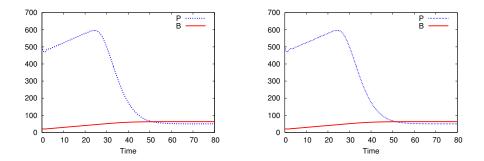
• if
$$P_1 \sim^{\doteq} P_2$$
 then $\mathcal{T}(P_1) \sim^{\ell}_{\mathcal{T}} \mathcal{T}(P_2)$

- application to assembly system
 - \blacktriangleright $\sim^{=}$: two controllers versus single controller
 - \blacktriangleright $\sim^{\pm}:$ multiple feeds versus one feed with sum of rates of feeds
 - $\not\sim^{\doteq}$: pair of timers versus a single timer
 - \sim_T^{ℓ} : pair of timers versus a single timer

Ó٦

Assembly system	Model	Results	Conclusions

Two equivalent controllers



 $Sys \bowtie \underline{init}.((AOff_1 \parallel AOff_2 \parallel FC) \qquad Sys \bowtie \underline{init}.(ABOff \parallel FC)$

 $(arrivals_i=20, departures=-0.1, time_i=2, prepare=0.6, n_i=100, m_i=2, wt_i=0.01)$

Stochastic hybrid modelling with composition of flows systems

Assembly system	Model	Results	Conclusions

- stochastic HYPE
 - process algebra for stochastic hybrid systems
 - extension of HYPE
 - semantics given by TDSHA

	on Assembly s	system Model	Results	Conclusions
_				

- stochastic HYPE
 - process algebra for stochastic hybrid systems
 - extension of HYPE
 - semantics given by TDSHA
- illustrated through assembly system

	Assembly system	Model	Results	Conclusions
_				

- stochastic HYPE
 - process algebra for stochastic hybrid systems
 - extension of HYPE
 - semantics given by TDSHA
- illustrated through assembly system
- equivalent behaviour
 - stochastic HYPE: equivalence with abstraction over states
 - TDSHA: equivalence based on modes and variable values

	Assembly system	Model	Results	Conclusions
_				

- stochastic HYPE
 - process algebra for stochastic hybrid systems
 - extension of HYPE
 - semantics given by TDSHA
- illustrated through assembly system
- equivalent behaviour
 - stochastic HYPE: equivalence with abstraction over states
 - TDSHA: equivalence based on modes and variable values
- results
 - congruence and corollary about equivalent controllers
 - relationship between two equivalences

Ó٦

Assembly system	Model	Results	Conclusions

Thank you

Assembly system	Model	Results	Conclusions

Assembly system	Model	Results	Conclusions

components

 $(C_1(\mathcal{V}) \Join \cdots \Join C_n(\mathcal{V}))$

Assembly system	Model	Results	Conclusions

$(C_1(\mathcal{V}) \Join \cdots \Join C_n(\mathcal{V})) \quad \Join$

	Assembly system	Model	Results	Conclusions
Stachast	LIVDE mod			

components

controllers

 $(C_1(\mathcal{V}) \Join \cdots \Join C_n(\mathcal{V}))$ \Join $(Con_1 \Join \cdots \Join Con_m)$

Assembly system	Model		Results	Conclusions			
Charles at a LIV/DE was del							

 $\begin{array}{cc} \text{components} & \text{controllers} \\ \left(\begin{array}{c} C_1(\mathcal{V}) \Join \cdots \Join C_n(\mathcal{V}) \end{array} \right) & \Join & \left(\begin{array}{c} \text{Con}_1 \Join \cdots \Join Con_m \end{array} \right) \end{array}$

well-defined component $C(\mathcal{V}) \stackrel{\text{def}}{=} \sum_{j} a_{j} : \alpha_{j} . C(\mathcal{V}) + \underline{\text{init}} : \alpha . C(\mathcal{V})$

 $\begin{array}{c} \text{components} & \text{controllers} \\ \begin{pmatrix} C_1(\mathcal{V}) \Join \cdots \Join C_n(\mathcal{V}) \end{pmatrix} & \Join & \begin{pmatrix} Con_1 \Join \cdots \Join Con_m \end{pmatrix} \\ \end{array}$

well-defined component

$$C(\mathcal{V}) \stackrel{\text{def}}{=} \sum_{j} a_{j} : \alpha_{j} . C(\mathcal{V}) + \underline{\text{init}} : \alpha . C(\mathcal{V})$$

components are parameterised by variables

Assembly system	Model		Results	Conclusions			
Charles at a LIV/DE was del							

 $\begin{array}{cc} \text{components} & \text{controllers} \\ \left(\begin{array}{c} C_1(\mathcal{V}) \Join \cdots \Join C_n(\mathcal{V}) \end{array} \right) & \Join & \left(\begin{array}{c} \text{Con}_1 \Join \cdots \Join Con_m \end{array} \right) \end{array}$

well-defined component $C(\mathcal{V}) \stackrel{\text{def}}{=} \sum_{j} \mathbf{a}_{j} : \alpha_{j} . C(\mathcal{V}) + \underline{\mathrm{init}} : \alpha . C(\mathcal{V})$

 $\begin{array}{c} \text{components} & \text{controllers} \\ \begin{pmatrix} C_1(\mathcal{V}) \Join \cdots \Join C_n(\mathcal{V}) \end{pmatrix} & \Join & \begin{pmatrix} Con_1 \Join \cdots \Join Con_m \end{pmatrix} \\ \end{array}$

well-defined component

$$C(\mathcal{V}) \stackrel{\text{def}}{=} \sum_{j} \mathbf{a}_{j} : \alpha_{j} . C(\mathcal{V}) + \underline{\mathrm{init}} : \alpha . C(\mathcal{V})$$

events have event conditions: guards and resets

 $\begin{array}{c} \mathsf{components} & \mathsf{controllers} \\ \begin{pmatrix} \mathsf{C}_1(\mathcal{V}) \Join \cdots \Join \mathsf{C}_n(\mathcal{V}) \end{pmatrix} & \Join & \begin{pmatrix} \mathsf{Con}_1 \Join \cdots \Join \mathsf{Con}_m \end{pmatrix} \end{array}$

well-defined component

$$C(\mathcal{V}) \stackrel{\text{def}}{=} \sum_{j} \mathbf{a}_{j} : \alpha_{j} \cdot C(\mathcal{V}) + \underline{\text{init}} : \alpha \cdot C(\mathcal{V})$$
where a constant condition of a conductive con

events have event conditions: guards and resets $ec(\underline{a}_i) = (f(\mathcal{V}), \mathcal{V}' = f'(\mathcal{V}))$ discrete events

Stochastic hybrid modelling with composition of flows systems

 $\begin{array}{cc} \text{components} & \text{controllers} \\ \left(\textit{C}_1(\textit{V}) \Join \cdots \Join \textit{C}_n(\textit{V}) \right) & \Join & \left(\textit{Con}_1 \Join \cdots \Join \textit{Con}_m \right) \end{array}$

well-defined component

$$C(\mathcal{V}) \stackrel{\text{def}}{=} \sum_{j} \mathbf{a}_{j} : \alpha_{j} . C(\mathcal{V}) + \underline{\mathrm{init}} : \alpha . C(\mathcal{V})$$

events have event conditions: guards and resets

 $ec(\underline{a}_j) = (f(\mathcal{V}), \mathcal{V}' = f'(\mathcal{V}))$ discrete events $ec(\overline{a}_j) = (r, \mathcal{V} = f'(\mathcal{V}))$ stochastic events

Vashti Galpin

Stochastic hybrid modelling with composition of flows systems

Assembly system	Model		Results	Conclusions			
Charles at a LIV/DE was del							

 $\begin{array}{cc} \text{components} & \text{controllers} \\ \left(\begin{array}{c} C_1(\mathcal{V}) \Join \cdots \Join C_n(\mathcal{V}) \end{array} \right) & \Join & \left(\begin{array}{c} \text{Con}_1 \Join \cdots \Join Con_m \end{array} \right) \end{array}$

well-defined component $C(\mathcal{V}) \stackrel{\text{def}}{=} \sum_{j} a_{j} : \alpha_{j} . C(\mathcal{V}) + \underline{\text{init}} : \alpha . C(\mathcal{V})$

 $\begin{array}{cc} \mathsf{components} & \mathsf{controllers} \\ \begin{pmatrix} \mathsf{C}_1(\mathcal{V}) \Join \cdots \Join \mathsf{C}_n(\mathcal{V}) \end{pmatrix} & \Join & \begin{pmatrix} \mathsf{Con}_1 \Join \cdots \Join \mathsf{Con}_m \end{pmatrix} \end{array}$

well-defined component

$$C(\mathcal{V}) \stackrel{\text{def}}{=} \sum_{j} a_{j} : \alpha_{j} \cdot C(\mathcal{V}) + \underline{\text{init}} : \alpha \cdot C(\mathcal{V})$$
influences are defined by a triple

 $\begin{array}{cc} \text{components} & \text{controllers} \\ \left(\textit{C}_1(\textit{V}) \Join \cdots \Join \textit{C}_n(\textit{V}) \right) & \Join & \left(\textit{Con}_1 \Join \cdots \Join \textit{Con}_m \right) \end{array}$

well-defined component

$$C(\mathcal{V}) \stackrel{\text{def}}{=} \sum_{j} a_{j} : \alpha_{j} \cdot C(\mathcal{V}) + \underline{\text{init}} : \alpha \cdot C(\mathcal{V})$$
influences are defined by a triple
$$\alpha_{i} = (\iota_{i}, r_{i}, I(\mathcal{V}))$$

Vashti Galpin

Stochastic hybrid modelling with composition of flows systems

 $\begin{array}{c} \mathsf{components} & \mathsf{controllers} \\ \begin{pmatrix} \mathsf{C}_1(\mathcal{V}) \Join \cdots \Join \mathsf{C}_n(\mathcal{V}) \end{pmatrix} & \Join & \begin{pmatrix} \mathsf{Con}_1 \Join \cdots \Join \mathsf{Con}_m \end{pmatrix} \end{array}$

well-defined component

$$C(\mathcal{V}) \stackrel{\text{def}}{=} \sum_{j} a_{j} : \alpha_{j} \cdot C(\mathcal{V}) + \underline{\text{init}} : \alpha \cdot C(\mathcal{V})$$
influences are defined by a triple
$$\alpha_{i} = (\iota_{i}, r_{i}, I(\mathcal{V}))$$

influence names are mapped to variables $\mathit{iv}(\iota_j) \in \mathcal{V}$

Vashti Galpin

Stochastic hybrid modelling with composition of flows systems