

Formal modelling of biological systems

Vashti Galpin

Laboratory for Foundations of Computer Science School of Informatics University of Edinburgh

(Joint work with Jane Hillston)

5 March 2013

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

Outline

Process algebras

Bio-PEPA

Semantics

Enzyme example

Hybrid approach

Src trafficking

Conclusions

 developed to model concurrent computing/behaviour in mid 1980's

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

- developed to model concurrent computing/behaviour in mid 1980's
- three distinct approaches
 - ▶ Robin Milner: CCS, operational
 - ▶ Tony Hoare: CSP, denotational
 - ▶ Bergstra and Klop: ACP, equational and algebraic

- developed to model concurrent computing/behaviour in mid 1980's
- three distinct approaches
 - Robin Milner: CCS, operational
 - ▶ Tony Hoare: CSP, denotational
 - ▶ Bergstra and Klop: ACP, equational and algebraic
- similar ideas, all compositional

- developed to model concurrent computing/behaviour in mid 1980's
- three distinct approaches
 - Robin Milner: CCS, operational
 - ▶ Tony Hoare: CSP, denotational
 - ▶ Bergstra and Klop: ACP, equational and algebraic
- similar ideas, all compositional
- compact, elegant formal language

Prefix a.P Choice $P_1 + P_2$ Parallel $P_1 \parallel P_2 \ldots$

Process algebras – history (continued)

operational semantics gives labelled transition system

$$a.P \xrightarrow{a} P$$

Vashti Galpin

Formal modelling of biological systems

Process algebras – history (continued)

operational semantics gives labelled transition system

$$a.P \xrightarrow{a} P$$

 $P_1 + P_2 \xrightarrow{a} Q$ whenever $P_1 \xrightarrow{a} Q$

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

Process algebras – history (continued)

operational semantics gives labelled transition system

$$a.P \xrightarrow{a} P$$

 $P_1 + P_2 \xrightarrow{a} Q$ whenever $P_1 \xrightarrow{a} Q$
 $P_1 \parallel P_2 \xrightarrow{a} Q \parallel P_2$ whenever $P_1 \xrightarrow{a} Q$

Vashti Galpin

Formal modelling of biological systems

Process algebras – history (continued)

operational semantics gives labelled transition system

$$\begin{array}{c} a.P \xrightarrow{a} P \\ P_1 + P_2 \xrightarrow{a} Q & \text{whenever} & P_1 \xrightarrow{a} Q \\ P_1 \parallel P_2 \xrightarrow{a} Q \parallel P_2 & \text{whenever} & P_1 \xrightarrow{a} Q \\ P_1 \parallel P_2 \xrightarrow{f(a_1,a_2)} Q_1 \parallel Q_2 & \text{whenever} & P_1 \xrightarrow{a_1} Q_1, P_2 \xrightarrow{a_2} Q_2 \end{array}$$

Vashti Galpin

Formal modelling of biological systems

Process algebras – history (continued)

operational semantics gives labelled transition system

$$\begin{array}{c} a.P \xrightarrow{a} P \\ P_1 + P_2 \xrightarrow{a} Q & \text{whenever} \quad P_1 \xrightarrow{a} Q \\ P_1 \parallel P_2 \xrightarrow{a} Q \parallel P_2 & \text{whenever} \quad P_1 \xrightarrow{a} Q \\ P_1 \parallel P_2 \xrightarrow{f(a_1,a_2)} Q_1 \parallel Q_2 & \text{whenever} \quad P_1 \xrightarrow{a_1} Q_1, P_2 \xrightarrow{a_2} Q_2 \end{array}$$

▶ equivalences such as trace equivalence and bisimulation a.b.0 + b.a.0 ~ a.0 || b.0

Formal modelling of biological systems

Process algebras – history (continued)

operational semantics gives labelled transition system

$$\begin{array}{c} a.P \xrightarrow{a} P \\ P_1 + P_2 \xrightarrow{a} Q & \text{whenever} \quad P_1 \xrightarrow{a} Q \\ P_1 \parallel P_2 \xrightarrow{a} Q \parallel P_2 & \text{whenever} \quad P_1 \xrightarrow{a} Q \\ P_1 \parallel P_2 \xrightarrow{f(a_1,a_2)} Q_1 \parallel Q_2 & \text{whenever} \quad P_1 \xrightarrow{a_1} Q_1, P_2 \xrightarrow{a_2} Q_2 \end{array}$$

equivalences such as trace equivalence and bisimulation
 a.b.0 + b.a.0 ~ a.0 || b.0

► congruence results support compositionality $P_1 \sim P_2$ implies $P_1 \parallel R \sim P_2 \parallel R$

Vashti Galpin

Formal modelling of biological systems

Process algebras – history (continued)

operational semantics gives labelled transition system

$$\begin{array}{c} a.P \xrightarrow{a} P \\ P_1 + P_2 \xrightarrow{a} Q & \text{whenever} \quad P_1 \xrightarrow{a} Q \\ P_1 \parallel P_2 \xrightarrow{a} Q \parallel P_2 & \text{whenever} \quad P_1 \xrightarrow{a} Q \\ P_1 \parallel P_2 \xrightarrow{f(a_1,a_2)} Q_1 \parallel Q_2 & \text{whenever} \quad P_1 \xrightarrow{a_1} Q_1, P_2 \xrightarrow{a_2} Q_2 \end{array}$$

- ► equivalences such as trace equivalence and bisimulation a.b.0 + b.a.0 ~ a.0 || b.0
- congruence results support compositionality

 $P_1 \sim P_2$ implies $P_1 \parallel R \sim P_2 \parallel R$

▶ no notion of time, only ordering, so various extensions

Vashti Galpin

- addition of random time
 - interleaved with actions
 - ▶ associated with actions: Prefix (a, r).P

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

- addition of random time
 - ▶ interleaved with actions
 - ▶ associated with actions: Prefix (*a*, *r*).*P*
- ▶ PEPA: developed by Hillston (1996)

- addition of random time
 - interleaved with actions
 - ▶ associated with actions: Prefix (a, r).P
- ▶ PEPA: developed by Hillston (1996)
- semantics given as continuous-time Markov chain

- addition of random time
 - ▶ interleaved with actions
 - ▶ associated with actions: Prefix (a, r).P
- ▶ PEPA: developed by Hillston (1996)
- semantics given as continuous-time Markov chain
- ▶ fluid dynamics: semantics as ordinary differential equations

- addition of random time
 - ▶ interleaved with actions
 - ▶ associated with actions: Prefix (a, r).P
- ▶ PEPA: developed by Hillston (1996)
- semantics given as continuous-time Markov chain
- ▶ fluid dynamics: semantics as ordinary differential equations
- applied to biological modelling
 - reagent-centric and reaction-centric styles
 - Imitations: stoichiometry, functional rates
- ▶ Bio-PEPA: developed by Ciocchetta and Hillston (2009)

Vashti Galpin

general approach (Regev, Silverman, Shapiro)

Concurrency	Molecular	Metabolism	Signal
	biology		transduction
Concurrent	molecules	enzymes and	interacting
computational processes		metabolites	proteins
Synchronous	molecular	binding and	binding and
communication	interaction	catalysis	catalysis

Vashti Galpin

Formal modelling of biological systems

general approach (Regev, Silverman, Shapiro)

Concurrency	Molecular	Metabolism	Signal
	biology		transduction
Concurrent	molecules	enzymes and	interacting
computational processes		metabolites	proteins
Synchronous	molecular	binding and	binding and
communication	interaction	catalysis	catalysis

molecules as processes or species as processes?

▶ general approach (Regev, Silverman, Shapiro)

Concurrency	Molecular	Metabolism	Signal
	biology		transduction
Concurrent	molecules	enzymes and	interacting
computational processes		metabolites	proteins
Synchronous	molecular	binding and	binding and
communication	interaction	catalysis	catalysis

- molecules as processes or species as processes?
- stochastic model or deterministic model?

▶ general approach (Regev, Silverman, Shapiro)

Concurrency	Molecular	Metabolism	Signal
	biology		transduction
Concurrent	molecules	enzymes and	interacting
computational processes		metabolites	proteins
Synchronous	molecular	binding and	binding and
communication	interaction	catalysis	catalysis

- molecules as processes or species as processes?
- stochastic model or deterministic model?
- ▶ aims of modelling: good enough and practical enough

Vashti Galpin

a

$$S@L \stackrel{def}{=} (\alpha_1, \kappa_1) \operatorname{op}_1 S@L + \ldots + (\alpha_n, \kappa_n) \operatorname{op}_n S@L$$

where $\operatorname{op}_i \in \{ \downarrow, \uparrow, \oplus, \ominus, \odot \}$

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

$$S@L \stackrel{def}{=} (\alpha_1, \kappa_1) \operatorname{op}_1 S@L + \ldots + (\alpha_n, \kappa_n) \operatorname{op}_n S@L$$

where $\operatorname{op}_i \in \{ \downarrow, \uparrow, \oplus, \ominus, \odot \}$

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

$$S@L \stackrel{def}{=} (\alpha_1, \kappa_1) \operatorname{op}_1 S@L + \ldots + (\alpha_n, \kappa_n) \operatorname{op}_n S@L$$

where $\operatorname{op}_i \in \{ \downarrow, \uparrow, \oplus, \ominus, \odot \}$

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

$$S@L \stackrel{\text{\tiny def}}{=} (\alpha_1, \kappa_1) \operatorname{op}_1 S@L + \ldots + (\alpha_n, \kappa_n) \operatorname{op}_n S@L$$

where $\operatorname{op}_i \in \{ \downarrow, \uparrow, \oplus, \ominus, \odot \}$

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

species: reactions, stoichiometry, locations

$$S@L \stackrel{def}{=} (\alpha_1, \kappa_1) \operatorname{op}_1 S@L + \ldots + (\alpha_n, \kappa_n) \operatorname{op}_n S@L$$

where $\operatorname{op}_i \in \{ \downarrow, \uparrow, \oplus, \ominus, \odot \}$

model: quantities of species, interaction between species

$$P \stackrel{\text{\tiny def}}{=} S_1 @L_1(x_1) \bowtie_* \ldots \bowtie_* S_p @L_p(x_p)$$

Vashti Galpin

species: reactions, stoichiometry, locations

$$S@L \stackrel{def}{=} (\alpha_1, \kappa_1) \operatorname{op}_1 S@L + \ldots + (\alpha_n, \kappa_n) \operatorname{op}_n S@L$$

where $\operatorname{op}_i \in \{ \downarrow, \uparrow, \oplus, \ominus, \odot \}$

model: quantities of species, interaction between species

$$P \stackrel{\text{\tiny def}}{=} S_1 @L_1(x_1) \bowtie_* \ldots \bowtie_* S_p @L_p(x_p)$$

▶ species: reactions, stoichiometry, locations

 $S@L \stackrel{\text{\tiny def}}{=} (\alpha_1, \kappa_1) \operatorname{op}_1 S@L + \ldots + (\alpha_n, \kappa_n) \operatorname{op}_n S@L$ where $\operatorname{op}_i \in \{ \downarrow, \uparrow, \oplus, \ominus, \odot \}$

model: quantities of species, interaction between species

$$P \stackrel{\text{\tiny def}}{=} S_1 @L_1(x_1) \bowtie \dots \bowtie S_p @L_p(x_p)$$

- system: includes other information required for modelling
 - ${\cal L}$ compartments and locations, dimensionality, sizes
 - ${\cal N}$ species quantities, minimums, maximums, step size
 - \mathcal{K} parameter definitions
 - ${\cal F}$ functional rates for reactions, definition of f_{lpha}

Vashti Galpin

▶ species: reactions, stoichiometry, locations

 $S@L \stackrel{\text{\tiny def}}{=} (\alpha_1, \kappa_1) \operatorname{op}_1 S@L + \ldots + (\alpha_n, \kappa_n) \operatorname{op}_n S@L$ where $\operatorname{op}_i \in \{ \downarrow, \uparrow, \oplus, \ominus, \odot \}$

model: quantities of species, interaction between species

$$P \stackrel{\text{\tiny def}}{=} S_1 @L_1(x_1) \bowtie \dots \bowtie S_p @L_p(x_p)$$

- system: includes other information required for modelling
 - ${\cal L}$ compartments and locations, dimensionality, sizes
 - ${\cal N}$ species quantities, minimums, maximums, step size
 - \mathcal{K} parameter definitions
 - ${\cal F}$ functional rates for reactions, definition of f_{lpha}
 - process-as-species rather than process-as-molecules

Vashti Galpin

Example: reaction with enzyme

$$\blacktriangleright S + E \iff C \implies P + E$$

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

Example: reaction with enzyme

$$\blacktriangleright S + E \iff C \longrightarrow P + E$$

►
$$S(\ell_S) \bowtie E(\ell_E) \bowtie C(\ell_C) \bowtie P(\ell_P)$$
 where
 $S \stackrel{\text{def}}{=} (\alpha, 1) \downarrow S + (\beta, 1) \uparrow S$
 $E \stackrel{\text{def}}{=} (\alpha, 1) \downarrow E + (\beta, 1) \uparrow E + (\gamma, 1) \uparrow E$
 $C \stackrel{\text{def}}{=} (\alpha, 1) \uparrow C + (\beta, 1) \downarrow C + (\gamma, 1) \downarrow C$
 $P \stackrel{\text{def}}{=} (\gamma, 1) \uparrow P$

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

Example: reaction with enzyme

$$\blacktriangleright S + E \iff C \implies P + E$$

►
$$S(\ell_S) \bowtie E(\ell_E) \bowtie C(\ell_C) \bowtie P(\ell_P)$$
 where
 $S \stackrel{\text{def}}{=} (\alpha, 1) \downarrow S + (\beta, 1) \uparrow S$
 $E \stackrel{\text{def}}{=} (\alpha, 1) \downarrow E + (\beta, 1) \uparrow E + (\gamma, 1) \uparrow E$
 $C \stackrel{\text{def}}{=} (\alpha, 1) \uparrow C + (\beta, 1) \downarrow C + (\gamma, 1) \downarrow C$
 $P \stackrel{\text{def}}{=} (\gamma, 1) \uparrow P$

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

Example: reaction with enzyme

$$\blacktriangleright S + E \stackrel{\longrightarrow}{\longleftarrow} C \longrightarrow P + E$$

►
$$S(\ell_S) \bowtie E(\ell_E) \bowtie C(\ell_C) \bowtie P(\ell_P)$$
 where
 $S \stackrel{def}{=} (\alpha, 1) \downarrow S + (\beta, 1) \uparrow S$
 $E \stackrel{def}{=} (\alpha, 1) \downarrow E + (\beta, 1) \uparrow E + (\gamma, 1) \uparrow E$
 $C \stackrel{def}{=} (\alpha, 1) \uparrow C + (\beta, 1) \downarrow C + (\gamma, 1) \downarrow C$
 $P \stackrel{def}{=} (\gamma, 1) \uparrow P$

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

Example: reaction with enzyme

$$\blacktriangleright S + E \iff C \longrightarrow P + E$$

►
$$S(\ell_S) \bowtie E(\ell_E) \bowtie C(\ell_C) \bowtie P(\ell_P)$$
 where
 $S \stackrel{def}{=} (\alpha, 1) \downarrow S + (\beta, 1) \uparrow S$
 $E \stackrel{def}{=} (\alpha, 1) \downarrow E + (\beta, 1) \uparrow E + (\gamma, 1) \uparrow E$
 $C \stackrel{def}{=} (\alpha, 1) \uparrow C + (\beta, 1) \downarrow C + (\gamma, 1) \downarrow C$
 $P \stackrel{def}{=} (\gamma, 1) \uparrow P$

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

Example: reaction with enzyme

$$\blacktriangleright S + E \iff C \longrightarrow P + E$$

►
$$S(\ell_S) \bowtie_* E(\ell_E) \bowtie_* C(\ell_C) \bowtie_* P(\ell_P)$$
 where
 $S \stackrel{def}{=} (\alpha, 1) \downarrow S + (\beta, 1) \uparrow S$
 $E \stackrel{def}{=} (\alpha, 1) \downarrow E + (\beta, 1) \uparrow E + (\gamma, 1) \uparrow E$
 $C \stackrel{def}{=} (\alpha, 1) \uparrow C + (\beta, 1) \downarrow C + (\gamma, 1) \downarrow C$
 $P \stackrel{def}{=} (\gamma, 1) \uparrow P$

$$\triangleright S \xrightarrow{E} P$$

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

Example: reaction with enzyme

$$\blacktriangleright S + E \iff C \longrightarrow P + E$$

►
$$S(\ell_S) \bowtie_* E(\ell_E) \bowtie_* C(\ell_C) \bowtie_* P(\ell_P)$$
 where
 $S \stackrel{\text{def}}{=} (\alpha, 1) \downarrow S + (\beta, 1) \uparrow S$
 $E \stackrel{\text{def}}{=} (\alpha, 1) \downarrow E + (\beta, 1) \uparrow E + (\gamma, 1) \uparrow E$
 $C \stackrel{\text{def}}{=} (\alpha, 1) \uparrow C + (\beta, 1) \downarrow C + (\gamma, 1) \downarrow C$
 $P \stackrel{\text{def}}{=} (\gamma, 1) \uparrow P$

$$\triangleright S \xrightarrow{E} P$$

• $S'(\ell_{S'}) \bowtie E'(\ell_{E'}) \bowtie P'(\ell_{P'})$ where

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

Example: reaction with enzyme

$$\blacktriangleright S + E \iff C \longrightarrow P + E$$

►
$$S(\ell_S) \bowtie_* E(\ell_E) \bowtie_* C(\ell_C) \bowtie_* P(\ell_P)$$
 where
 $S \stackrel{\text{def}}{=} (\alpha, 1) \downarrow S + (\beta, 1) \uparrow S$
 $E \stackrel{\text{def}}{=} (\alpha, 1) \downarrow E + (\beta, 1) \uparrow E + (\gamma, 1) \uparrow E$
 $C \stackrel{\text{def}}{=} (\alpha, 1) \uparrow C + (\beta, 1) \downarrow C + (\gamma, 1) \downarrow C$
 $P \stackrel{\text{def}}{=} (\gamma, 1) \uparrow P$

$$\triangleright S \xrightarrow{E} P$$

►
$$S'(\ell_{S'}) \bowtie E'(\ell_{E'}) \bowtie P'(\ell_{P'})$$
 where
 $S' \stackrel{\text{def}}{=} (\gamma, 1) \downarrow S' \quad E' \stackrel{\text{def}}{=} (\gamma, 1) \oplus E' \quad P' \stackrel{\text{def}}{=} (\gamma, 1) \uparrow P'$

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

Example: reaction with enzyme

$$\blacktriangleright S + E \iff C \longrightarrow P + E$$

►
$$S(\ell_S) \bowtie_* E(\ell_E) \bowtie_* C(\ell_C) \bowtie_* P(\ell_P)$$
 where
 $S \stackrel{def}{=} (\alpha, 1) \downarrow S + (\beta, 1) \uparrow S$
 $E \stackrel{def}{=} (\alpha, 1) \downarrow E + (\beta, 1) \uparrow E + (\gamma, 1) \uparrow E$
 $C \stackrel{def}{=} (\alpha, 1) \uparrow C + (\beta, 1) \downarrow C + (\gamma, 1) \downarrow C$
 $P \stackrel{def}{=} (\gamma, 1) \uparrow P$

$$\triangleright S \xrightarrow{E} P$$

•
$$S'(\ell_{S'}) \bowtie E'(\ell_{E'}) \bowtie P'(\ell_{P'})$$
 where
 $S' \stackrel{\text{def}}{=} (\gamma, 1) \downarrow S' \quad E' \stackrel{\text{def}}{=} (\gamma, 1) \oplus E' \quad P' \stackrel{\text{def}}{=} (\gamma, 1) \uparrow P'$

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

Example: reaction with enzyme

$$\blacktriangleright S + E \iff C \longrightarrow P + E$$

►
$$S(\ell_S) \bowtie_* E(\ell_E) \bowtie_* C(\ell_C) \bowtie_* P(\ell_P)$$
 where
 $S \stackrel{\text{def}}{=} (\alpha, 1) \downarrow S + (\beta, 1) \uparrow S$
 $E \stackrel{\text{def}}{=} (\alpha, 1) \downarrow E + (\beta, 1) \uparrow E + (\gamma, 1) \uparrow E$
 $C \stackrel{\text{def}}{=} (\alpha, 1) \uparrow C + (\beta, 1) \downarrow C + (\gamma, 1) \downarrow C$
 $P \stackrel{\text{def}}{=} (\gamma, 1) \uparrow P$

$$\triangleright S \xrightarrow{E} P$$

►
$$S'(\ell_{S'}) \bowtie E'(\ell_{E'}) \bowtie P'(\ell_{P'})$$
 where
 $S' \stackrel{\text{def}}{=} (\gamma, 1) \downarrow S' \quad E' \stackrel{\text{def}}{=} (\gamma, 1) \oplus E' \quad P' \stackrel{\text{def}}{=} (\gamma, 1) \uparrow P'$

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

 \blacktriangleright operational semantics for capability relation \rightarrow_c

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

- \blacktriangleright operational semantics for capability relation \rightarrow_c
- Prefix rules

 $\begin{aligned} &((\alpha,\kappa)\downarrow S@L)(\ell) \xrightarrow{(\alpha,[S@L:\downarrow(\ell,\kappa)])}_{c} S@L(\ell-\kappa) \quad \kappa \leq \ell \leq N_{S@L} \\ &((\alpha,\kappa)\uparrow S@L)(\ell) \xrightarrow{(\alpha,[S@L:\uparrow(\ell,\kappa)])}_{c} S@L(\ell+\kappa) \quad 0 \leq \ell \leq N_{S@L}-\kappa \\ &((\alpha,\kappa)\oplus S@L)(\ell) \xrightarrow{(\alpha,[S@L:\oplus(\ell,\kappa)])}_{c} S@L(\ell) \quad \kappa \leq \ell \leq N_{S@L} \\ &((\alpha,\kappa)\oplus S@L)(\ell) \xrightarrow{(\alpha,[S@L:\oplus(\ell,\kappa)])}_{c} S@L(\ell) \quad 0 \leq \ell \leq N_{S@L} \\ &((\alpha,\kappa)\oplus S@L)(\ell) \xrightarrow{(\alpha,[S@L:\oplus(\ell,\kappa)])}_{c} S@L(\ell) \quad 0 \leq \ell \leq N_{S@L} \end{aligned}$

Vashti Galpin

- \blacktriangleright operational semantics for capability relation \rightarrow_c
- Prefix rules

 $\begin{aligned} &((\alpha,\kappa)\downarrow S@L)(\ell) \xrightarrow{(\alpha,[S@L:\downarrow(\ell,\kappa)])}_{c} S@L(\ell-\kappa) \quad \kappa \leq \ell \leq N_{S@L} \\ &((\alpha,\kappa)\uparrow S@L)(\ell) \xrightarrow{(\alpha,[S@L:\uparrow(\ell,\kappa)])}_{c} S@L(\ell+\kappa) \quad 0 \leq \ell \leq N_{S@L}-\kappa \\ &((\alpha,\kappa)\oplus S@L)(\ell) \xrightarrow{(\alpha,[S@L:\oplus(\ell,\kappa)])}_{c} S@L(\ell) \quad \kappa \leq \ell \leq N_{S@L} \\ &((\alpha,\kappa)\oplus S@L)(\ell) \xrightarrow{(\alpha,[S@L:\oplus(\ell,\kappa)])}_{c} S@L(\ell) \quad 0 \leq \ell \leq N_{S@L} \\ &((\alpha,\kappa)\oplus S@L)(\ell) \xrightarrow{(\alpha,[S@L:\oplus(\ell,\kappa)])}_{c} S@L(\ell) \quad 0 \leq \ell \leq N_{S@L} \end{aligned}$

Vashti Galpin

- \blacktriangleright operational semantics for capability relation \rightarrow_c
- Prefix rules

 $\begin{aligned} &((\alpha,\kappa) \downarrow S@L)(\ell) \xrightarrow{(\alpha,[S@L:\downarrow(\ell,\kappa)])}_{c} S@L(\ell-\kappa) \quad \kappa \leq \ell \leq N_{S@L} \\ &((\alpha,\kappa) \uparrow S@L)(\ell) \xrightarrow{(\alpha,[S@L:\uparrow(\ell,\kappa)])}_{c} S@L(\ell+\kappa) \quad 0 \leq \ell \leq N_{S@L} - \kappa \\ &((\alpha,\kappa) \oplus S@L)(\ell) \xrightarrow{(\alpha,[S@L:\oplus(\ell,\kappa)])}_{c} S@L(\ell) \quad \kappa \leq \ell \leq N_{S@L} \\ &((\alpha,\kappa) \oplus S@L)(\ell) \xrightarrow{(\alpha,[S@L:\oplus(\ell,\kappa)])}_{c} S@L(\ell) \quad 0 \leq \ell \leq N_{S@L} \\ &((\alpha,\kappa) \odot S@L)(\ell) \xrightarrow{(\alpha,[S@L:\oplus(\ell,\kappa)])}_{c} S@L(\ell) \quad 0 \leq \ell \leq N_{S@L} \end{aligned}$

Vashti Galpin

Bio-PEPA semantics (continued)

• Cooperation for $\alpha \in M$

$$\frac{P \xrightarrow{(\alpha, \mathbf{v})} c P' \quad Q \xrightarrow{(\alpha, u)} c Q'}{P \bigotimes_{M} Q \xrightarrow{(\alpha, \mathbf{v}:: u)} c P' \bigotimes_{M} Q'} \quad \alpha \in M$$

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

Bio-PEPA semantics (continued)

• Cooperation for $\alpha \in M$

$$\frac{P \xrightarrow{(\alpha,\nu)} c P' \quad Q \xrightarrow{(\alpha,u)} c Q'}{P \bigotimes_{M} Q \xrightarrow{(\alpha,\nu::u)} c P' \bigotimes_{M} Q'} \quad \alpha \in M$$

 \blacktriangleright operational semantics for stochastic relation \rightarrow_s

$$P \xrightarrow{(\alpha, \mathbf{v})} c P'$$

 $\langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, \textit{Comp}, P \rangle \xrightarrow{(\alpha, f_{\alpha}(v, \mathcal{V}, \mathcal{N}, \mathcal{K})/h)} s \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, \textit{Comp}, P' \rangle$

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

Bio-PEPA semantics (continued)

• Cooperation for $\alpha \in M$

$$\frac{P \xrightarrow{(\alpha,\nu)}_{c} P' \quad Q \xrightarrow{(\alpha,u)}_{c} Q'}{P \bowtie_{M} Q \xrightarrow{(\alpha,\nu::u)}_{c} P' \bowtie_{M} Q'} \quad \alpha \in M$$

• operational semantics for stochastic relation \rightarrow_s

$$P \xrightarrow{(\alpha, \mathbf{v})} {c} P$$

 $\langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, \textit{Comp}, P \rangle \xrightarrow{(\alpha, f_{\alpha}(\mathbf{v}, \mathcal{V}, \mathcal{N}, \mathcal{K})/h)} s \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, \textit{Comp}, P' \rangle$

rate function f_α uses information about the species and locations in the string v, together with the species and location information and rate parameters in calculating the actual rate of the reaction

Vashti Galpin

Example: reaction with enzyme, max level 3

▶ state vector (S, E, C, P) and $N_S = N_E = N_C = N_P = 3$

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

Example: reaction with enzyme, max level 3

▶ state vector (S, E, C, P) and $N_S = N_E = N_C = N_P = 3$

$$(3,3,0,0) \xrightarrow{\alpha} (2,2,1,0) \xrightarrow{\alpha} (1,1,2,0) \xrightarrow{\alpha} (0,0,3,0)$$

$$\gamma \downarrow \qquad \gamma \downarrow \qquad \gamma \downarrow \qquad \gamma \downarrow$$

$$(2,3,0,1) \xrightarrow{\alpha} (1,2,1,1) \xrightarrow{\alpha} (0,1,2,1)$$

$$\gamma \downarrow \qquad \gamma \downarrow \qquad \gamma \downarrow$$

$$(1,3,0,2) \xrightarrow{\alpha} (0,2,1,2)$$

$$\gamma \downarrow \qquad (0,3,0,3)$$

Vashti Galpin

Formal modelling of biological systems

Example: reaction with enzyme, max level 7

▶ state vector $S \in C P$ and $N_S = N_E = N_C = N_P = 7$

ð

Vashti Galpin

Formal modelling of biological systems

Different types of analysis

Formal modelling of biological systems

deterministic trace single stochastic trace

Vashti Galpin

deterministic trace average of 10 stochastic traces

$$S(30) \Join E(10) \Join C(0) \Join P(0) \ k_{lpha} = 10 \quad k_{eta} = 100 \quad k_{\gamma} = 0.1$$

Vashti Galpin

Formal modelling of biological systems

deterministic trace

average of 100 stochastic traces

$$S(30) \Join E(10) \Join C(0) \Join P(0) \ k_lpha = 10 \quad k_eta = 100 \quad k_\gamma = 0.1$$

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

 $S(30) \bowtie E(10) \bowtie C(0) \bowtie P(0)$ $k_{lpha} = 10$ $k_{eta} = 100$ $k_{\gamma} = 0.1$

Vashti Galpin

Formal modelling of biological systems

Bio-PEPA Eclipse Plug-in

software tool for Bio-PEPA modelling

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

Bio-PEPA Eclipse Plug-in

- software tool for Bio-PEPA modelling
- Eclipse front-end and separate back-end library

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

Bio-PEPA Eclipse Plug-in

- software tool for Bio-PEPA modelling
- Eclipse front-end and separate back-end library

- available for download at www.biopepa.org
- case studies, publications, manuals

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

Bio-PEPA Eclipse Plug-in (continued)

Bio-PEPA - tutorial/cell-cycleBIOMD04.	1.biopepa – Eclipse – /Users/va	ashti/eclipse-workspace	
3• 🔛 👜] 💁 +] 🖨 🛷 •] 🖗 + 河 + 🏷 + 🗇 +		ES DEPEPA DE BIO-PI	PA 🐉 Java
Navigator 🜒 Invariants 🔡 Outline 😫 👘 👻	- D M mapk-BIOMD10.biopep	pa DC cell-cycleBIOMD04.biopepa 22 DC template.biopepa	- 0
5 Species 9 A 9 A 9 A 9 A 9 A 9 A 9 A 9 A	// Functional role kineticado cont kineticado cont kineticado cont kineticado est kineticado	$ \begin{array}{l} \begin{array}{l} (z \in (C + A^{\prime}))_{1} \\ M_{1}^{\prime} \\ M_{2}^{\prime} \\ \end{array} \\ \begin{array}{l} (z \in (C + A^{\prime}))_{2} \\ (z \in (C $	÷

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

stochastic HYPE: stochastic hybrid process algebra

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

- stochastic HYPE: stochastic hybrid process algebra
- ▶ map Bio-PEPA model to stochastic HYPE model
 - combine stochastic and deterministic elements
 - dynamic modelling of these elements
 - extend to Bio-PEPA with events
 - provide well-structured process algebra model
 - provide framework for modelling in stochastic HYPE

- stochastic HYPE: stochastic hybrid process algebra
- ▶ map Bio-PEPA model to stochastic HYPE model
 - combine stochastic and deterministic elements
 - dynamic modelling of these elements
 - extend to Bio-PEPA with events
 - provide well-structured process algebra model
 - provide framework for modelling in stochastic HYPE
- provides benefits of both stochastic simulation and deterministic simulation

- stochastic HYPE: stochastic hybrid process algebra
- ▶ map Bio-PEPA model to stochastic HYPE model
 - combine stochastic and deterministic elements
 - dynamic modelling of these elements
 - extend to Bio-PEPA with events
 - provide well-structured process algebra model
 - provide framework for modelling in stochastic HYPE
- provides benefits of both stochastic simulation and deterministic simulation
- requires specification of thresholds to determine switching of reaction simulation

Vashti Galpin

Deterministic and stochastic simulation

trace: γ slow

trace: low quantities of C

 $S(30) \Join E(10) \Join C(0) \Join P(0) \ k_{lpha} = 10 \ k_{eta} = 100 \ k_{\gamma} = 0.1$

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

non-receptor protein tyrosine kinase, member of Src family

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

- non-receptor protein tyrosine kinase, member of Src family
- ▶ in either inactive or active configuration

Src protein: inactive and active

Nature Reviews | Molecular Cell Biology

(Martin, Nature Rev. Mol. Cell Biol. 2, 2001)

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

- non-receptor protein tyrosine kinase, member of Src family
- ▶ in either inactive or active configuration

- non-receptor protein tyrosine kinase, member of Src family
- ▶ in either inactive or active configuration
- active Src at membrane implicated in cancer

- non-receptor protein tyrosine kinase, member of Src family
- ▶ in either inactive or active configuration
- active Src at membrane implicated in cancer
- ▶ location in normal cell without growth factor (FGF) addition
 - ▶ inactive pool near nucleus, little active on membrane

- non-receptor protein tyrosine kinase, member of Src family
- ▶ in either inactive or active configuration
- active Src at membrane implicated in cancer
- ▶ location in normal cell without growth factor (FGF) addition
 - ▶ inactive pool near nucleus, little active on membrane
- ▶ location in normal cell after FGF addition
 - inactive pool near nucleus, increase in active on membrane

- non-receptor protein tyrosine kinase, member of Src family
- ▶ in either inactive or active configuration
- active Src at membrane implicated in cancer
- ▶ location in normal cell without growth factor (FGF) addition
 - ▶ inactive pool near nucleus, little active on membrane
- Iocation in normal cell after FGF addition
 - inactive pool near nucleus, increase in active on membrane
- endosomes: membrane-bound compartments within cells
- move along microfilaments or microtubules in one direction

Vashti Galpin

a

Mechanisms

experimental research from the Frame laboratory has shown

After stimulation with FGF, Src is found in endosomes throughout the cytoplasm. There is a gradient of inactive Src to active Src from perinuclear region to membrane. Src activation takes place in endosomes. (Sandilands *et al*, 2004)

Mechanisms

experimental research from the Frame laboratory has shown

After stimulation with FGF, Src is found in endosomes throughout the cytoplasm. There is a gradient of inactive Src to active Src from perinuclear region to membrane. Src activation takes place in endosomes. (Sandilands *et al*, 2004)

The persistence of active Src at the membrane is inversely related to the quantity of FGF added. (Sandilands *et al*, 2007)

Mechanisms: persistence of response to FGF

(Sandilands et al, EMBO Reports 8, 2007)

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

Modelling protein trafficking

- modelling aspects
 - dynamic: behaviour over time, addition of FGF
 - spatial: movement of molecules, endosomes

Vashti Galpin

Formal modelling of biological systems

Modelling protein trafficking

- modelling aspects
 - dynamic: behaviour over time, addition of FGF
 - spatial: movement of molecules, endosomes
- modelling challenges
 - concrete enough and abstract enough
 - data: very limited

Modelling protein trafficking

- modelling aspects
 - dynamic: behaviour over time, addition of FGF
 - spatial: movement of molecules, endosomes
- modelling challenges
 - concrete enough and abstract enough
 - data: very limited
- data
 - qualitative: gradient, recycling loops
 - quantitative: response to addition, endosome data

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

Formal modelling of biological systems

Formal modelling of biological systems

Formal modelling of biological systems

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

Formal modelling of biological systems

Formal modelling of biological systems

Formal modelling of biological systems

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

Formal modelling of biological systems

Generic recycling loop

modelling of endosome trafficking

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

Process algebras Bio-PEPA Semantics Enzyme example Hybrid approach Src trafficking Conclusions

Two loop trafficking model – results

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

- ▶ when do two Bio-PEPA models have the same behaviour?
- when do congruence results apply?

Formal modelling of biological systems

Equivalences

- when do two Bio-PEPA models have the same behaviour?
- when do congruence results apply?
- compression bisimulation, qualitative
 - compares behaviour of a system with different levels of discretisation
 - results and hypothesis about congruence

Equivalences

- when do two Bio-PEPA models have the same behaviour?
- when do congruence results apply?
- compression bisimulation, qualitative
 - compares behaviour of a system with different levels of discretisation
 - results and hypothesis about congruence
- ▶ *g*-bisimulation, can be quantitative
 - ▶ g is a function over labels of capability relation

Equivalences

- when do two Bio-PEPA models have the same behaviour?
- when do congruence results apply?
- compression bisimulation, qualitative
 - compares behaviour of a system with different levels of discretisation
 - results and hypothesis about congruence
- ▶ *g*-bisimulation, can be quantitative
 - ▶ g is a function over labels of capability relation
- fast-slow bisimulation, qualitative
 - based on quasi-steady-state assumption (QSSA), identifies species to be abstracted

Vashti Galpin

Formal modelling of biological systems

 process algebras are compact mathematical languages to describe concurrent behaviour

- process algebras are compact mathematical languages to describe concurrent behaviour
- ▶ Bio-PEPA: process algebra for modelling biological systems

Conclusions

- process algebras are compact mathematical languages to describe concurrent behaviour
- ▶ Bio-PEPA: process algebra for modelling biological systems
- Bio-PEPA permists multiple analysis techniques

- process algebras are compact mathematical languages to describe concurrent behaviour
 - ▶ Bio-PEPA: process algebra for modelling biological systems
 - Bio-PEPA permists multiple analysis techniques
 - new mapping to stochastic HYPE adds new technique

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

Conclusions

- process algebras are compact mathematical languages to describe concurrent behaviour
- ▶ Bio-PEPA: process algebra for modelling biological systems
- Bio-PEPA permists multiple analysis techniques
- new mapping to stochastic HYPE adds new technique
- Bio-PEPA can be applied to complex examples with limited data

Acknowledgements

PEPA Group

University of Edinburgh Jane Hillston Stephen Gilmore Allan Clark Maria Luisa Guerriero Federica Ciocchetta Adam Duguid

DMG University of Trieste Luca Bortolussi

Cancer Research UK Edinburgh Margaret Frame Emma Sandilands

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University

Thank you

Vashti Galpin

Formal modelling of biological systems

Informatics/Systems Biology Colloquium, Masaryck University