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Introduction

I behaviours to be included

I discrete behaviour: instantaneous events

I continuous behaviour: ordinary differentials equations (ODEs)

I stochastic behaviour: exponentially-distributed durations

I process algebra approach

I formal languages for expressing concurrency

I compositional semantics

I notions of equivalence

I lift properties to language level: well-behaved HYPE models

I extension of HYPE process algebra

I only instantaneous and continuous behaviour
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Motivation

I why?

I why not . . .

I use hybrid PEPA?

I no instantaneous transitions

I use stochastic hybrid automata?

I not a compositional language (in the process algebra sense)

I limited compositionality with respect to continuous variables

I add stochastic behaviour to existing hybrid process algebras?

I monolithic ODEs in the syntax

I limited compositionality with respect to continuous variables
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Language considerations: ODEs versus flows

I notation: V, a set of continuous variables

I monolithic ODEs in existing hybrid process algebras

A
def
= . . . [dVdt = f (V)] . . .

I flows in stochastic HYPE (Wj ⊆ V)

A1
def
= . . . (ι1, r1, I1(W1)) . . .

...
...

...

An
def
= . . . (ιn, rn, In(Wn)) . . .

and
dV

dt
=
∑
{rj .Ij(Wj) | iv(ιj) = V , . . . }
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Assembly system

pool conveyor belt

machine1

machine2

I continuous variables
I individual items in pool: P
I assembled items at start of conveyor belt: B
I power consumption of machinei : Wi

I timers: Ti , T
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Stochastic HYPE model

uncontrolled system controllers/sequencers(
C1(V) BC∗ · · · BC∗ Cn(V)

)
BC∗ init.

(
Con1 BC

L2
· · · BC

Lm
Conm

)
well-defined subcomponent

C (V)
def
=
∑
j

aj : αj .C (V) + init : α .C (V)

events can be instantaneous: aj
events can be stochastic: aj
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Stochastic HYPE model

uncontrolled system controllers/sequencers(
C1(V) BC∗ · · · BC∗ Cn(V)

)
BC∗ init.

(
Con1 BC
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Lm
Conm

)
well-defined subcomponent

C (V)
def
=
∑
j

aj : αj .C (V) + init : α .C (V)

events can be instantaneous: aj
events can be stochastic: aj

initial event and influence required
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Uncontrolled system

Machine i (Wi )
def
= init : (wi ,wai , linear(Wi )).Machine i (Wi ) +

prepi : (wi , 0, const).Machine i (Wi ) +
takei : (wi ,wt i , linear(Wi )).Machine i (Wi ) +
assemi : (wi ,wai , linear(Wi )).Machine i (Wi )

Timer i
def
= init : (ti , 0, const).Timer i +

takei : (ti , 1, const).Timeri +
assemi : (ti , 0, const).Timer i
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Uncontrolled system (continued)

Feed i
def
= init : (pi , arrivals, const).Feed i +

full : (pi , 0, const).Feed i

Output
def
= init : (b, departures, const).Output +

full : (b, 0, const).Output

Sys
def
= (Feed1 BC∗ Feed2 BC∗ Feed3) BC∗

Output BC∗
(Timer1 BC∗ Machine1(W1)) BC∗
(Timer2 BC∗ Machine2(W2))
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Stochastic HYPE model

uncontrolled system controllers/sequencers(
C1(V) BC∗ · · · BC∗ Cn(V)

)
BC∗ init.

(
Con1 BC

L2
· · · BC

Lm
Conm

)
well-defined subcomponent

C (V)
def
=
∑
j

aj : αj .C (V) + init : α .C (V)

events have event conditions: guards/durations and resets

ec(aj) = (g(V),V ′ = g ′(V)) with g : R|V| → {true, false} instantaneous

ec(aj) = (f (V),V ′ = f ′(V)) with f : R|V| → [0,>) stochastic
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Mapping of influences, event conditions, influence types

ec(init) = (true, P ′=P0 ∧ T ′i =0 ∧W ′
i =10 ∧ B ′=B0)

ec(full) = (B ≥ Bf , true)
ec(takei ) = (P ≥ ni , P ′ = P − ni ∧ T ′i = 0)

ec(assemi ) = (Ti ≥ atime i , B ′ = B + mi )

ec(prepi ) = (prepare, true)

iv(pi ) = P iv(b) = B iv(wi ) = Wi iv(ti ) = Ti

JconstK = 1 Jlinear(X )K = X

Vashti Galpin

Modelling in Stochastic HYPE SICSA Workshop on Cyber-Physical Systems



Introduction Models Semantics Well-behaved Equivalences Conclusions

Mapping of influences, event conditions, influence types

ec(init) = (true, P ′=P0 ∧ T ′i =0 ∧W ′
i =10 ∧ B ′=B0)

ec(full) = (B ≥ Bf , true)
ec(takei ) = (P ≥ ni , P ′ = P − ni ∧ T ′i = 0)

ec(assemi ) = (Ti ≥ atime i , B ′ = B + mi )

ec(prepi ) = (prepare, true)

iv(pi ) = P iv(b) = B iv(wi ) = Wi iv(ti ) = Ti

JconstK = 1 Jlinear(X )K = X

Vashti Galpin

Modelling in Stochastic HYPE SICSA Workshop on Cyber-Physical Systems



Introduction Models Semantics Well-behaved Equivalences Conclusions

Mapping of influences, event conditions, influence types

ec(init) = (true, P ′=P0 ∧ T ′i =0 ∧W ′
i =10 ∧ B ′=B0)

ec(full) = (B ≥ Bf , true)
ec(takei ) = (P ≥ ni , P ′ = P − ni ∧ T ′i = 0)

ec(assemi ) = (Ti ≥ atime i , B ′ = B + mi )

ec(prepi ) = (prepare, true)

iv(pi ) = P iv(b) = B iv(wi ) = Wi iv(ti ) = Ti

JconstK = 1 Jlinear(X )K = X

Vashti Galpin

Modelling in Stochastic HYPE SICSA Workshop on Cyber-Physical Systems



Introduction Models Semantics Well-behaved Equivalences Conclusions

Mapping of influences, event conditions, influence types

ec(init) = (true, P ′=P0 ∧ T ′i =0 ∧W ′
i =10 ∧ B ′=B0)

ec(full) = (B ≥ Bf , true)
ec(takei ) = (P ≥ ni , P ′ = P − ni ∧ T ′i = 0)

ec(assemi ) = (Ti ≥ atime i , B ′ = B + mi )

ec(prepi ) = (prepare, true)

iv(pi ) = P iv(b) = B iv(wi ) = Wi iv(ti ) = Ti

JconstK = 1 Jlinear(X )K = X

Vashti Galpin

Modelling in Stochastic HYPE SICSA Workshop on Cyber-Physical Systems



Introduction Models Semantics Well-behaved Equivalences Conclusions

Mapping of influences, event conditions, influence types

ec(init) = (true, P ′=P0 ∧ T ′i =0 ∧W ′
i =10 ∧ B ′=B0)

ec(full) = (B ≥ Bf , true)
ec(takei ) = (P ≥ ni , P ′ = P − ni ∧ T ′i = 0)

ec(assemi ) = (Ti ≥ atime i , B ′ = B + mi )

ec(prepi ) = (prepare, true)

iv(pi ) = P iv(b) = B iv(wi ) = Wi iv(ti ) = Ti

JconstK = 1 Jlinear(X )K = X

Vashti Galpin

Modelling in Stochastic HYPE SICSA Workshop on Cyber-Physical Systems



Introduction Models Semantics Well-behaved Equivalences Conclusions

Stochastic HYPE model

uncontrolled system controllers/sequencers(
C1(V) BC∗ · · · BC∗ Cn(V)

)
BC∗ init.

(
Con1 BC

L2
· · · BC

Lm
Conm

)

controller grammar

M ::= a.M | 0 | M + M

Con ::= M | Con BC∗ Con
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Controllers and controlled system

AOff i
def
= prepi .AOni

AOni
def
= takei .AProc i

AProc i
def
= assemi .AOff i

FC
def
= full.0

Assembler
def
= Sys BC∗ init.(Con1 ‖ Con2 ‖ FC )
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Semantics for stochastic HYPE models

I target: transition-driven stochastic hybrid automata (TDSHA)

I two approaches to defining semantics
I mapping from subcomponents and controllers to TDSHA that

are then composed using TDSHA product

I structural operational semantics define labelled transition
system which is mapped TDSHA(dV

dt

)
σ

=
∑{

r · JI (
−→
W )K

∣∣ iv(ι) = V , σ(ι) = (r , I (
−→
W ))

}
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Operational semantics

Prefix with
influence: 〈

a : (ι, r , I ).E , σ
〉 a−→

〈
E , σ[ι 7→ (r , I )]

〉
Prefix without
influence: 〈

a.E , σ
〉 a−→

〈
E , σ

〉
Choice:

〈
E , σ

〉 a−→
〈
E ′, σ′

〉〈
E + F , σ

〉 a−→
〈
E ′, σ′

〉 〈
F , σ

〉 a−→
〈
F ′, σ′

〉〈
E + F , σ

〉 a−→
〈
F ′, σ′

〉
Constant:

〈
E , σ

〉 a−→
〈
E ′, σ′

〉〈
A, σ

〉 a−→
〈
E ′, σ′

〉 (A
def
= E )
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Operational semantics (continued)

Parallel without
synchronisation:

〈
E , σ

〉 a−→
〈
E ′, σ′

〉〈
E BC

M
F , σ

〉 a−→
〈
E ′ BC

M
F , σ′

〉 a 6∈ M

〈
F , σ

〉 a−→
〈
F ′, σ′

〉〈
E BC

M
F , σ

〉 a−→
〈
E BC

M
F ′, σ′

〉 a 6∈ M

Parallel with
synchronisation:

〈
E , σ

〉 a−→
〈
E ′, τ

〉 〈
F , σ

〉 a−→
〈
F ′, τ ′

〉〈
E BC

M
F , σ

〉 a−→
〈
E ′ BC

M
F ′, Γ(σ, τ, τ ′)

〉
a ∈ M, Γ defined
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Operational semantics (continued)

I updating function: σ[ι 7→ (r , I )]

σ[ι 7→ (r , I )](x) =

{
(r , I ) if x = ι

σ(x) otherwise

I change identifying function: Γ : S × S × S → S

(Γ(σ, τ, τ ′))(ι) =


τ(ι) if σ(ι) = τ ′(ι)

τ ′(ι) if σ(ι) = τ(ι)

undefined otherwise

I Γ is defined for all well-defined stochastic HYPE models
I syntactic restrictions on influences and events
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Simulation of assembly system using SimHyA
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B

Sys BC∗ init.(AOff1 ‖ AOff2 ‖ FC )

(arrivals i=20, departures=−0.1, atime i=2, prepare=0.6, ni=100, mi=2, wt i=0.01, wai=0.06)
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Well-behaved stochastic HYPE models

I PDMP definition only allow jumps to interiors of regions

I finite sequences of instantaneous events in TDSHA can be
combined and mapped to a jump to an interior

I avoid instantaneous Zeno behaviour: infinite sequences of
instantaneous events occurring at a time point

I finite sequence of instantaneous events is delimited by
stochastic event or period of continuous evolution

I when is a stochastic HYPE model well-behaved?

I construct I-graph (instantaneous activation graph)

I check for cycles in I-graph

I can be done without simulating the model

I well-behaved results for overapproximations and compositions
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I can be done without simulating the model

I well-behaved results for overapproximations and compositions
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I-graph construction

I use guards to define Ga = {x | ga(x) is true}

I use resets to define Ra = g ′a(Ga)

I enabled events are those whose guards can be satisfied

I keep track of enabled and inhibited events

I consider each sequence of a and b that the controller allows

I if Ra ∩ Gb = ∅, event b is inhibited, so there no arc in I-graph

I if Ra ∩Gb 6= ∅, event b is enabled, so there is an arc in I-graph

I initially assume every instantaneous event is enabled

I no cycle implies no instantaneous Zeno behaviour

I I-graph construction is not always necessary
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Well-behavedness of assembly system

I controller that checks for full belt has only one event

FC
def
= full.0 well-behaved

I machine controllers are cycles with a stochastic event

AOff i
def
= prepi .takei .assemi .AOff i well-behaved

I AOff 1 ‖ AOff2 is well-behaved

I neither take1 or assem1 enable take2 or assem2 or vice versa

I AOff 1 ‖ AOff2 ‖ FC is well-behaved

I none of takei or assemi enable full or vice versa

I Sys BC∗ init.(AOff 1 ‖ AOff2 ‖ FC ) is well-behaved
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Equivalence semantics for stochastic HYPE

I stochastic system bisimulation with respect to ≡ over states

given an equivalence relation B ⊆ C × C
then for all (P,Q) ∈ B, σ ≡ τ , C ∈ (F/B)/ ≡,

1. for all a ∈ Ed , whenever

〈P, σ〉 a−→ 〈P ′, σ′〉 ∈ C , ∃ 〈Q ′, τ ′〉 ∈ C with 〈Q, τ〉 a−→ 〈Q ′, τ ′〉
〈Q, τ〉 a−→ 〈Q ′, τ ′〉 ∈ C , ∃ 〈P ′, σ′〉 ∈ C with 〈P, σ〉 a−→ 〈P ′, σ′〉.

2. for all a ∈ Es , r(〈P, σ〉, a,C ) = r(〈Q, τ〉, a,C ).

I notation: P ∼≡ Q

I equivalence defined in terms of labelled transition system and
without reference to variable values

I ∼≡ is a congruence (under certain conditions on ≡)
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Results applied to assembly system

I ABOff : single controller of two machines

I can prove that AOff 1 ‖ AOff 2 ∼= ABOff

I hence using congruence

Sys BC∗ init.(AOff 1 ‖ AOff2 ‖ FC ) ∼= Sys BC∗ init.(ABOff ‖ FC )

I let
.

= be an equivalence over states that ensures that sums
over influences that map to the same variable are equal

I for all V ∈ V,
∑
{r · JI (

−→
W )K | iv(ι) =V , σ(ι) = (r , I (

−→
W ))}

=
∑
{r · JI (

−→
W )K | iv(ι) =V , τ(ι) = (r , I (

−→
W ))}

I define a single feed subcomponent with an influence rate three
times the rate of an original feed subcomponent

I Sys BC∗ init.Con ∼
.
= SysSF BC∗ init.Con
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Two equivalent controllers
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averages of 5000 simulations

(arrivals i=20, departures=−0.1, atime i=2, prepare=0.6, ni=100, mi=2, wt i=0.01)
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Other applications of stochastic HYPE

I biological systems

I Repressilator: 3 gene system with inhibition

I circadian clock of Ostreococcus tauri

I human-constructed systems

I planetary orbiter

I railway crossing (train gate)

I Zebranet simulation: MSc dissertation of Cheng Feng

I opportunistic networking based on animal movement

I syntactic extension for repeated components/controllers

I two-dimensional movement and energy consumption
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Conclusions

I stochastic HYPE

I process algebra for stochastic hybrid systems

I semantics given by TDSHA and PDMPs

I illustrated through assembly system model

I well-behaved stochastic HYPE models

I contain no instantaneous Zeno behaviour

I can be checked without model simulation

I semantic equivalences
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Thank you
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Data collected by protocol

Chapter 5. Simulation and Analysis 40

power consumption. Due to the limitation of the simulation software, we only put

5 zebras in our simulation. Therefore, the zebras get very low possibility to transfer

data to peer zebras, the influence of peer flooding protocol on the success rate of data

returned to the base station should be very small. Figure 5.4 shows the success rate

of data returned to the base station with peer flooding and direct transfer protocol2.

As can be seen from the figure, although the influence of peer flooding protocol on

data collection in our simulation is not obvious, we can still find that the success rate

with direct transfer protocol is slightly lower than the success rate with peer flooding

protocol in our simulation result, which proves the correctness of our assumption.

Figure 5.4: Success rate with peer flooding protocol and direct transfer protocol

We next study the influence of peer flooding protocol on collars’ battery power

consumption. In this experiment, we intentionally put the zebras on 5 fixed initial

positions, and record their average battery power trajectory over one month with and

without peer flooding protocol. Figure 5.5 shows the result of our simulation. From

the figure, we find that the peer flooding protocol will cost the collar about 10,000,000

mAmpere-second battery power in the 5 days’ recharging interval. Most importantly,

we find that the collar has a risk to use up its battery power before next recharging if

the peer flooding protocol is used. To deal with this problem, we can either decrease

the peer transfer bandwidth to save battery power or increase the capacity of the collar

battery.

2which means that the zebras can only transfer data to the base station directly
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Transition-driven stochastic hybrid automata

I semantics of stochastic HYPE models

I TDSHA: transition-driven stochastic hybrid automata
⊆ PDMP: piecewise deterministic Markov processes

I set of modes, Q and set of continuous variables, X

I instantaneous transitions
I source mode, target mode, event name
I guard: activation condition over variables
I reset: function determining new values of variables
I priority/weight: to resolve non-determinism

I stochastic transitions
I source mode, target mode, event name
I rate: function defining speed of transition
I guard: activation condition over variables
I reset: function determining new values of variables
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Transition-driven stochastic hybrid automata (continued)

I continuous transitions (flows)
I source mode
I vector specifying variables involved
I Lipschitz continuous function

I continuous behaviour in a mode
I consider all continuous transitions in that mode
I trajectory is given by solution of dX/dt =

∑
s · f (X)

I instantaneous behaviour: fire when guard becomes true

I stochastic behaviour: fire according to rate

I product of TDSHAs
I pairs of modes and union of variables
I combining transitions

(with conditions on resets and initial values)

Vashti Galpin

Modelling in Stochastic HYPE SICSA Workshop on Cyber-Physical Systems



Introduction Models Semantics Well-behaved Equivalences Conclusions

Piecewise deterministic Markov processes

I class of stochastic processes

I continuous trajectories over subsets of R|X|

I instantaneous jumps at boundaries of regions

I stochastic jumps when guards are true

I jumps to boundaries are prohibited
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Two equivalent semantics

I compositional mapping to TDSHA
I define TDSHA for each subcomponent (no event conditions)
I define TDSHA for each sequential controller
I use TDSHA product to compose into TDSHA of whole model

I mapping from LTS to TDSHA
I event labelled transition system over configurations
I configuration: 〈Sys BC∗ Con, σ〉
I state: σ : influence 7→ (influence strength, influence type)
I configurations are mapped to modes
I states giving ODEs which become continuous transitions(dV

dt

)
σ

=
∑{

r · JI (
−→
W )K

∣∣ iv(ι) =V , σ(ι) = (r , I (
−→
W ))

}
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Equivalence semantics for stochastic HYPE

I stochastic system bisimulation with respect to ≡ over states
(for models that only differ in their controlled systems)

given an equivalence relation B ⊆ C × C
then for all (P,Q) ∈ B, σ ≡ τ , C ∈ (F/B)/ ≡,

1. for all a ∈ Ed , whenever

〈P, σ〉 a−→ 〈P ′, σ′〉 ∈ C , ∃ 〈Q ′, τ ′〉 ∈ C with 〈Q, τ〉 a−→ 〈Q ′, τ ′〉
〈Q, τ〉 a−→ 〈Q ′, τ ′〉 ∈ C , ∃ 〈P ′, σ′〉 ∈ C with 〈P, σ〉 a−→ 〈P ′, σ′〉.

2. for all a ∈ Es , r(〈P, σ〉, a,C ) = r(〈Q, τ〉, a,C ).

I notation: P ∼≡ Q

I equivalence defined in terms of labelled transition system and
without reference to variable values
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Equivalence semantics for TDSHA

I TDSHA labelled bisimulation

given a measurable relation B ⊆ (Q1 × Rn1)× (Q2 × Rn2)

then for all ((q1, x1), (q2, x2)) ∈ B

I out1(x1) = out2(x2)

I exit rates of q1 and q2 must be equal

I disjunction of guards must evaluate to the same for x1 and x2

I disjunction of guards must become true at the same time

I for all a ∈ Ed , one step priorities must match

I for all a ∈ Es , one step probabilities must match

I notation: T1 ∼`
T T2
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Results

I ∼≡ is a congruence (under certain conditions on ≡)

I if Con1 ∼≡ Con2 then Sys BC∗ init.Con1 ∼≡ Sys BC∗ init.Con2

I additively equivalent: σ
.

= τ iff for all V ∈ V and f (W)

sum(σ,V , f (W)) = sum(τ,V , f (W))

where sum(σ,V , f (W )) =∑
{| r | iv(ι) = V , σ(ι) = (r , I (W )), f (W) = JI (W )K |}

I P1 ∼
.
= P2 implies T(P1) ∼`

T T(P2)
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Results applied to assembly system

I ABOff : single controller of two machines

I can prove that AOff 1 ‖ AOff 2 ∼= ABOff

I hence using congruence

Sys BC∗ init.(AOff 1 ‖ AOff2 ‖ FC ) ∼= Sys BC∗ init.(ABOff ‖ FC )

I define a single feed subcomponent with iv(p) = P

SFeed
def
= init : (p,

∑3
k=1 arrivals i , const).SFeed +

full : (p, 0, const).SFeed

I SysSF has (Feed1 BC∗ Feed2 BC∗ Feed3) replaced with SFeed

I then Sys BC∗ init.Con ∼
.
= SysSF BC∗ init.Con
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Two equivalent controllers
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averages of 5000 simulations

(arrivals i=20, departures=−0.1, atime i=2, prepare=0.6, ni=100, mi=2, wt i=0.01)
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Results applied to assembly system (continued)

I does T(P1) ∼`
T T(P2) imply P1 ∼

.
= P2?

I no, consider two different assembly system models

I M: individual timers Ti that are set to zero as assembly
starts, with guards to check whether Ti ≥ atime i

I M ′: single timer T whose value is stored in Si as assembly
starts, with guards to check whether T ≥ Si + atime i

I can show that at the TDSHA level, T(M) ∼`
T T(M ′)

I but M 6∼
.
= M ′ since takei and assemi have different event

conditions in M1 and M2 so definition does not apply

I correct definition of bisimilarity?
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