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Motivation

� application area: collective adaptive systems (CAS)
� smart transport – buses, bike sharing
� smart grid – electricty generation and consumption

� we want model to quantitative behaviour of these systems and
be able to characterise their performance

� we take a population-based approach where there are a large
number of identical processes

� many processes leads to well-known problem of state space
explosion

� mitigate this problem with approximation techniques

� focus in this talk on a general process algebra approach to
modelling populations, moving beyond application to biology
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Modelling with PEPA

� PEPA [Hillston, 1996]

� two-level grammar, constant definition, C
def
= S

S ::= (a, r).S | S + S

P ::= S | P BC
L
P

multi-way synchronisation (CSP-style)
� operational semantics define labelled multi-transition system

� P1
(a,r)−−−→ P2

� labelled continuous-time Markov chain (CTMC)

� what happens when there are many sequential processes?
� assume n sequential constants: C1, . . . ,Cn

� each constant has a maximum of m states: S1,1, . . . ,S1,m
� CTMC has a maximum of nm states
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Modelling with PEPA

Modelling P C1 BC
L
. . . BC

L
Cn
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Mathematical SCTMC ( S1,j1 , . . . , Sn,jn )
Representation

analysis steady state
technique

Result RCTMC ( p1 , . . . . . . . . . , pnm )
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Quotienting by bisimilarity

� what if many of the sequential processes are the same?
� consider the states

� (S1,1,S1,1,S1,2,S4,j4 , . . . ,Sn,jn)
� (S1,2,S1,1,S1,1,S4,j4 , . . . ,Sn,jn)
� both have the same numbers of S1,1 and S1,2

� numeric vector representation
� (#S1,1,#S1,2 . . .#S1,m; . . . . . . ; #Sn′,1,#Sn′,2, . . .#Sn′,m)
� n′ is number of different types of sequential constants

� introduces functional rates

� stochastically bisimilar
� smaller state space?

� p is the maximum count of any state Si,j
� CTMC has a maximum of (n′ ×m)p+1 states
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Using numeric vector representation

Modelling P C1[x1] BC
L
. . . BC

L
Cn′ [xn′ ]

Language

semantic CTMC
mapping

Mathematical SCTMC (#S1,1, . . . ; . . .#Sn′,m)
Representation

analysis steady state
technique

Result RCTMC ( p1 , . . . . . . , p(n′×m)p+1 )
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Fluid/mean-field approximation

� numeric vector representation can still result in a large number
of states so use a fluid approximation [Hillston, 2005]

� treat subpopulation counts as real rather than integral and
express change over time as ordinary differential equations
(ODEs) giving one equation for each sequential state: n′ ×m

� seldom obtain ODEs with analytical solutions but numerical
ODE solution is generally fast

� ODE behaviour can approximate CTMC behaviour well if
sufficient numbers (together with some other conditions as
shown by Kurtz)
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Fluid/mean-field approximation

Modelling P
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semantic CTMC ODE
mapping

Mathematical SCTMC TODE

Representation

analysis steady state steady state
technique

Result RCTMC ≈ RODE
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Languages for modelling populations

� extensions to PEPA: multiple states per entity
� Grouped PEPA [Hayden, Stefanek and Bradley, 2012]
� Fluid process algebra [Tschaikowski and Tribastone, 2014]

� biological: single state and count per species
� Bio-PEPA [Ciocchetta and Hillston, 2009]
� Bio-PEPA with compartments [Ciocchetta and Guerriero, 2009]

� epidemiological: single state and count per subpopulation
� variant of Bio-PEPA with locations

[Ciocchetta and Hillston, 2010]
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A stochastic population process algebra

� stochastic and deterministic semantics

� aim to be general but elementary

� each entity has a single state and a count

� is there a suitable equivalence?

� compression bisimulation [Galpin and Hillston, 2011]

� start more concretely and then consider more generality

� syntax from epidemiological modelling but different semantics
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A stochastic population process algebra

� subpopulation description

C
def
= (β1, (κ1, λ1))� C + . . . + (βmC

, (κmC
, λmC

))� C

� actions: βi are distinct
� in and out stoichiometries: κi , λi ∈ N

� composition of subpopulations

P
def
= C1(n1,0) BC∗ . . . BC∗ Cp(np,0)

� subpopulations: Cj are distinct,
� initial quantities: nj,0 ∈ N

� minimum and maximum size: MC and NC for each C

� range of a subpopulation is NC −MC + 1

� use C (n) to distinguish subpopulations with different ranges

� P(n) defines a composition whose minimum range is n
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Operational semantics

C (n)
α,{(C ,n)}−−−−−−→c C (n − κk + λk)

C
def
=

nC∑
k=1

(βk , (κk , λk))� C

α ∈ {β1, . . . , βnC }

κk ≤ n ≤ NC − λk
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Operational semantics (continued)

P
α,W−−−→c P ′

P BC∗ Q
α,W−−−→c P ′ BC∗ Q

Q 6α,W
′

−−−→c

Q
α,W−−−→c Q ′

P BC∗ Q
α,W−−−→c P ′ BC∗ Q

P 6α,W
′

−−−→c

P
α,W1−−−→c P ′ Q

α,W2−−−→c Q ′

P BC∗ Q
α,W1∪W2−−−−−−→c P ′ BC∗ Q ′
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Operational semantics (continued)

P
α,W−−−→c P ′

P
α,fα(W )−−−−−→s P ′

� fα : (C → N)→ R≥0 where C is the set of subpopulations

� fα may make reference to MC and NC

� Markov chain semantics are given by
α,r−−→s

� ODE semantics can be derived from C1(n1,0) BC∗ . . . BC∗ Cp(np,0)
� hybrid semantics by mapping to stochastic HYPE [Galpin 2014]

� dynamic switching between stochastic and deterministic
semantics for each action depending on subpopulation size or rate
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Example

A
def
= (α1, (1, 0))� A + (α2, (0, 1))� A + (α3, (2, 0))� A

B
def
= (α3, (0, 1))� B

C
def
= (α1, (0, 1))� C + (α2, (1, 0))� C

� consider A(5) BC∗ B(0) BC∗ C (0) and A(7) BC∗ B(0) BC∗ C (0)

� express as labelled transition systems in numerical vector
representation (nA, nB , nC )
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Example (continued)

(5,0,0) (4,0,1) (3,0,2) (2,0,3) (1,0,4) (0,0,5)

(3,1,0) (2,1,1) (1,1,2) (0,1,3)

(1,2,0) (0,2,1)

α1 α1 α1 α1 α1

α1 α1 α1

α1

α2α2α2α2α2

α2α2α2

α2

α3

α3

α3

α3

α3 α3

what is the equivalence that will identify these two models?

(7,0,0) (6,0,1) (5,0,2) (4,0,3) (3,0,4) (2,0,5) (1,0,6) (0,0,7)

(5,1,0) (4,1,1) (3,1,2) (2,1,3) (1,1,4) (0,1,5)

(3,2,0) (2,2,1) (1,2,2) (0,2,3)

(1,3,0) (0,3,1)

α1 α1 α1 α1 α1 α1 α1

α1 α1 α1 α1 α1

α1 α1 α1

α1

α2α2α2α2α2α2α2

α2α2α2α2α2

α2α2α2

α2

α3 α3 α3 α3 α3 α3

α3

α3

α3

α3

α3 α3
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Single subpopulation

� B
def
= (α, (3, 0))� B + (β, (0, 4))� B + (γ, (0, 1))� B

B(16)

B(21)

0 15

0 20

3 11

3 16

α, β, γ

α, β, γ

β, γ

β, γ

α

α

α, γ

α, γ

OPCT, June 2014 19 / 29



Single subpopulation

� B
def
= (α, (3, 0))� B + (β, (0, 4))� B + (γ, (0, 1))� B

B(16)

B(21)

0 15

0 20

3 11

3 16

α, β, γ

α, β, γ

β, γ

β, γ

α

α

α, γ

α, γ

OPCT, June 2014 19 / 29



Single subpopulation

� B
def
= (α, (3, 0))� B + (β, (0, 4))� B + (γ, (0, 1))� B

B(16)

B(21)

0 15

0 20

3 11

3 16

α, β, γ

α, β, γ

β, γ

β, γ

α

α

α, γ

α, γ

︷ ︸︸ ︷

︸ ︷︷ ︸

OPCT, June 2014 19 / 29



Single subpopulation

� B
def
= (α, (3, 0))� B + (β, (0, 4))� B + (γ, (0, 1))� B

B(16)

B(21)

0 15

0 20

3 11

3 16

α, β, γ

α, β, γ

β, γ

β, γ

α

α

α, γ

α, γ

︷ ︸︸ ︷

︸ ︷︷ ︸

︷ ︸︸ ︷

︸ ︷︷ ︸

OPCT, June 2014 19 / 29



Single subpopulation

� B
def
= (α, (3, 0))� B + (β, (0, 4))� B + (γ, (0, 1))� B

B(16)

B(21)

0 15

0 20

3 11

3 16

α, β, γ

α, β, γ

β, γ

β, γ

α

α

α, γ

α, γ

︷ ︸︸ ︷

︸ ︷︷ ︸

︷ ︸︸ ︷

︸ ︷︷ ︸

OPCT, June 2014 19 / 29



Single subpopulation

� B
def
= (α, (3, 0))� B + (β, (0, 4))� B + (γ, (0, 1))� B

B(16)

B(21)

0 15

0 20

3 11

3 16

α, β, γ

α, β, γ

β, γ

β, γ

α

α

α, γ

α, γ

︷ ︸︸ ︷

︸ ︷︷ ︸

︷ ︸︸ ︷

︸ ︷︷ ︸

︷ ︸︸ ︷

︸ ︷︷ ︸

OPCT, June 2014 19 / 29



Single subpopulation

� B
def
= (α, (3, 0))� B + (β, (0, 4))� B + (γ, (0, 1))� B

B(16)

B(21)

3 11

3 16

α, β, γ

α, β, γ

β, γ

β, γ

α

α

α, γ

α, γ

︷ ︸︸ ︷

︸ ︷︷ ︸

︷ ︸︸ ︷

︸ ︷︷ ︸

︷ ︸︸ ︷

︸ ︷︷ ︸

OPCT, June 2014 19 / 29



Single subpopulation

� B
def
= (α, (3, 0))� B + (β, (0, 4))� B + (γ, (0, 1))� B

B(16)

B(21)

3 11

3 16

α, β, γ

α, β, γ

β, γ

β, γ

α

α

α, γ

α, γ

︷ ︸︸ ︷

︸ ︷︷ ︸

︷ ︸︸ ︷

︸ ︷︷ ︸

︷ ︸︸ ︷

︸ ︷︷ ︸
?

OPCT, June 2014 19 / 29



Single subpopulation

� B
def
= (α, (3, 0))� B + (β, (0, 4))� B + (γ, (0, 1))� B

B(16)

B(21)

3 11

3 16

α, β, γ

α, β, γ

β, γ

β, γ

α

α

α, γ

α, γ

OPCT, June 2014 19 / 29



Compression bisimilarity

� (P,Q) ∈ H if they have same actions,

� define labelled transition system over equivalence classes of H

[P]
α
↪−→ [Q] if P

(α,v)−−−→c Q

� compression bisimilarity, P l Q if [P] ∼ [Q], namely whenever

1. [P]
α
↪−→ [P ′], then [Q]

α
↪−→ [Q ′] and [P ′] ∼ [Q ′]

2. [Q]
α
↪−→ [Q ′], then [P]

α
↪−→ [P ′] and [P ′] ∼ [Q ′]

� results are given in terms of ranges

OPCT, June 2014 20 / 29



Results

� to show the full behaviour of a system P(n), n must be greater
than the sum of

� the maximum out-stoichiometry,
� the maximum in-stoichiometry, and
� the maximum in- or out-stoichiometry

� C (n) l C (m) if n and m are large enough

� P(n) l P(m) if n and m are large enough together with a
technical condition required for stoichiometries larger than 1

� l is a congruence for BC∗ if technical condition holds

OPCT, June 2014 21 / 29



Example (revisited)

(5,0,0) (4,0,1) (3,0,2) (2,0,3) (1,0,4) (0,0,5)

(3,1,0) (2,1,1) (1,1,2) (0,1,3)

(1,2,0) (0,2,1)

α1 α1 α1 α1 α1

α1 α1 α1

α1

α2α2α2α2α2

α2α2α2

α2

α3

α3

α3

α3

α3 α3

these are not compression bisimilar

(6,0,0) (5,0,1) (4,0,2) (3,0,3) (2,0,4) (1,0,5) (0,0,6)

(4,1,0) (3,1,1) (2,1,2) (1,1,3) (0,1,4)

(2,2,0) (1,2,1) (0,2,2)

(0,3,0)

α1 α1 α1 α1 α1 α1

α1 α1 α1 α1

α1 α1

α2α2α2α2α2α2

α2α2α2α2

α2α2

α3 α3 α3 α3 α3

α3

α3

α3 α3
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Open problems

� hypothesis: if T is the lcm for all stoichiometric coefficients,
n = m + cT for c ∈ N and n,m large enough, then Pn l Pm

can this be proved?

� can compression bisimulation be extended to an (approximate)
quantitative equivalence?

� are there other operators of interest?
� can two subpopulations, C and D, be combined?
� define a new operator C � D
� must the actions of C and D be disjoint?
� can a single subpopulation have repeated actions?
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Open problems (continued)

� how can the notion of a stochastic population process algebra
be made more general?

� what are the important aspects?

� can these be expressed by parameterising functions?

� choice of functions instantiates population process algebra

� provide meta-results with respect to these functions

� not as general as a SOS format

OPCT, June 2014 24 / 29



More generally

C (n)
α,νCα(n)−−−−−→c C (µCα (n))

C
def
=

nC∑
k=1

βk � C

α ∈ {β1, . . . , βnC }

µCα (n) and νCα (n) are defined

� stoichiometric information and conditions no longer appear in
the prefix but are embedded in the definition of the function µCα

� only local information about C can be used in µCα and νCα
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More generally (continued)

P
α,S−−→c P ′

P BC∗ Q
α,S−−→c P ′ BC∗ Q

Q 6α,S
′

−−→c

Q
α,S−−→c Q ′

P BC∗ Q
α,S−−→c P ′ BC∗ Q

P 6α,S
′

−−→c

P
α,S1−−→c P ′ Q

α,S2−−→c Q ′

P BC∗ Q
α,ρα(S1,S2)−−−−−−−→c P ′ BC∗ Q ′

if ρα(S1,S2) is defined
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More generally (continued)

P
α,S−−→c P ′

P
α,fα(S)−−−−→s P ′

� fα : S → R≥0
� Markov chain semantics are given by

α,r−−→s

� ODEs can be derived from C1(n1,0) BC∗ . . . BC∗ Cp(np,0)

� unspecified functions: νCα , µCα , ρα, fα
� what are sensible choices in the context of population modelling?
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Open problems (continued)

� how can modelling of space in the context of smart transport
and smart grids be combined with population modelling?
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Open problems (continued)

� how can modelling of space in the context of smart transport
and smart grids be combined with population modelling?
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Thank you
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