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l Modelling collective adaptive systems quantitatively
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l Motivation

® application area: collective adaptive systems (CAS)

® smart transport — buses, bike sharing
® smart grid — electricty generation and consumption

® we want model to quantitative behaviour of these systems and
be able to characterise their performance

® we take a population-based approach where there are a large
number of identical processes

B many processes leads to well-known problem of state space
explosion

B mitigate this problem with approximation techniques

® focus in this talk on a general process algebra approach to
modelling populations, moving beyond application to biology
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l Modelling with PEPA

= PEPA [Hillston, 1996]

= two-level grammar, constant definition, C *'s
S == (a,r)S|S+S
P = S[PBIP

multi-way synchronisation (CSP-style)
operational semantics define labelled multi-transition system

= P1 (a,r) P2

® |abelled continuous-time Markov chain (CTMC)

® what happens when there are many sequential processes?
B assume n sequential constants: Cy,...,C,
B each constant has a maximum of m states: S11,...,51,m

® CTMC has a maximum of n™ states
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l Quotienting by bisimilarity

® what if many of the sequential processes are the same?
® consider the states
u (51,17 51,17 51,2’ 54,_1'47 R S"’jn)

B (512,51,1,511,5,--55n,)
® both have the same numbers of S;; and 512

B numeric vector representation
B (#S11,#S12- - #S1mieeen s #Sw 1, #Sn 25 - F#Sw m)

B ' is number of different types of sequential constants
® introduces functional rates
® stochastically bisimilar

® smaller state space?

® pis the maximum count of any state S; ;
® CTMC has a maximum of (n’ x m)P*! states
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Using numeric vector representation
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l Fluid/mean-field approximation

® numeric vector representation can still result in a large number
of states so use a fluid approximation [Hillston, 2005]

® treat subpopulation counts as real rather than integral and
express change over time as ordinary differential equations
(ODEs) giving one equation for each sequential state: n’ x m

® seldom obtain ODEs with analytical solutions but numerical
ODE solution is generally fast

® ODE behaviour can approximate CTMC behaviour well if
sufficient numbers (together with some other conditions as
shown by Kurtz)
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l Fluid/mean-field approximation
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l Languages for modelling populations

® extensions to PEPA: multiple states per entity

® Grouped PEPA [Hayden, Stefanek and Bradley, 2012]
B Fluid process algebra [Tschaikowski and Tribastone, 2014]

B biological: single state and count per species

= Bio-PEPA [Ciocchetta and Hillston, 2009]
= Bio-PEPA with compartments [Ciocchetta and Guerriero, 2009]

® epidemiological: single state and count per subpopulation

B variant of Bio-PEPA with locations
[Ciocchetta and Hillston, 2010]
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A stochastic population process algebra

® stochastic and deterministic semantics

® aim to be general but elementary

® each entity has a single state and a count

B is there a suitable equivalence?

® compression bisimulation [Galpin and Hillston, 2011]

® start more concretely and then consider more generality

® syntax from epidemiological modelling but different semantics
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A stochastic population process algebra

® subpopulation description

def

¢ = (517(517)‘1))® C+ ...+ (ﬁmm(’fmc’)‘mc))@ C

B actions: [; are distinct
® in and out stoichiometries: k;, \; € N

B composition of subpopulations

def

P = Cl(n;[,o) D;ﬂ - D*Q Cp(np,o)
® subpopulations: C; are distinct,
B initial quantities: njo € N
® minimum and maximum size: M¢ and N¢ for each C
® range of a subpopulation is N¢ — M¢c + 1
® use C(" to distinguish subpopulations with different ranges

= P(") defines a composition whose minimum range is n
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Operational semantics

C(n) a{(¢,n)}

c C(n— Kk + k)

CED> (B (ki M) © C

k=1
a€{B1,...,Bnc}

ki < n < N¢c— X\
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Operational semantics (continued)
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Operational semantics (continued)

a,W
P—=—=_.FP

p a,fo (W) . pr

fo o (C = N) — R>¢ where C is the set of subpopulations

f, may make reference to M¢ and N¢
. . . a,r
Markov chain semantics are given by ——
ODE semantics can be derived from Cy(n10) 1 ... B Cp(np o)

hybrid semantics by mapping to stochastic HYPE [Galpin 2014]

® dynamic switching between stochastic and deterministic
semantics for each action depending on subpopulation size or rate
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l Example

A (a1,(1,0)OA + (02,(0,1)®A + (a3,(2,0)6A

B ¥ (a3,(0,1))© B

C % (a1,(0,1)®C + (a2 (1,0))0C
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l Example

A (a1,(1,0)OA + (02,(0,1)®A + (a3,(2,0)6A

B & (a3,(0,1)) © B
C % (a1,(0,1)®C + (a2 (1,0))0C
= consider A(5) 1 B(0) >1 C(0) and A(7) <1 B(0) 1 C(0)

B express as labelled transition systems in numerical vector
representation (na, ng, nc)
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Example (continued)

(5,0,0) = (i (4,01) = 3 (3,0,2) 2 (203) (104) (005)
o )
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3] gl gl g el
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a (e %) [e %
o] aa
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Example (continued)

(5,0,0) = = (401) = 3 (302) = = 2, 03) (1 04) 2 3 (0,0,5)

a a [e%] an
azl a1a3l a1a3l o 3l
(3,1,0) = (2.1,1) = (1,1,2) = (0,1,3)
a l (0% a l a2 (8%
3 o @

(17270) : (0’271)
a2

a1 aq o751 aq aq Oél al

(7,0,0) = (6,0,1) = (5,0,2) = (4,0,3) = (3,0,4) = (2,0,5) = (1,0 6) (0 0,7)
o a2 o a2 o l a2 o l a2 o l a2 a l O42
3 l o 3 l o 3 o 3 a 3 a 3

(51,0) = (41,1) = (3.1,2) 2 (2,1,3) = (1,1,4) = (0,1,5)
2 0% (e

2 ) o 2 2
[ [0} Q.

sl gl gl g0l

(37270) — (27271) — (17272) — (07273)
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Example (continued)

(401)a (302)a (203) (104) (005)
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=
(6% Q [0
ol gres| Pes| :
(3.10) 2 (211) = (112) = (013)
a2

a2 a2
l l
aq

(1,2,0) 2 (0,2,1)
a2

(5,0,0) =

what is the equivalence that will identify these two models?

a1 a1 a1 a1 a1 Oél 051
(7,0,0) = (6,0,1) = (5,0,2) = (4,0,3) = (3,0,4) = (2,05) = (1,0 6) (0 0,7)
2

—
an e % ap an an a
P N N A R Y
(5,1,0) = (4,1,1) = (3,1,2) = (2,1,3) = (1,1,4) = (0,1,5)
a2 a3l a2 a3l a2 a3l (%] (%]
a1 e
(3.2,0) = (221) =2 (1,2 2) = (0,2.3)

(6%

ag g
a3 l a3 l
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l Single subpopulation

" B £ (a,(3,0) @B + (8,(0,4) ©B + (7,(0,1)) © B

B(16) |———————+—+———+——+—+—
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0 20
8(21) I 1 I
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l Single subpopulation
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Single subpopulation

" B £ (a,(3,0) @B + (8,(0,4) ©B + (7,(0,1)) © B

[a,ﬁ,v
B(16)  —————————+——+——+—+—
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Single subpopulation

" B £ (a,(3,0) @B + (8,(0,4) ©B + (7,(0,1)) © B

Iﬂ?’y [a7ﬁ77

—N— %
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Single subpopulation

= B (0,(3,0)®B + (5,(0,4)®B + (7,(0,1)) ® B

4
=
=2

+ >—)
—
Q

—N—
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l Single subpopulation

" B £ (a,(3,0) @B + (8,(0,4) ©B + (7,(0,1)) © B
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Single subpopulation

def

"B = (o,(3,0)©B + (8,(0,4)©B + (7,(0,1)) ©®B

Iﬂa’y A‘AawB?V TQ’VTO[

B(16) F=—=p<—=—F—F—F+—F+—+F—F=><—F—p<p
/:\ ’:.'. (...".. r..."..
B(21) . «—F - — ’
Tttt

lﬁﬁ Jvaaﬂvry Jva”vaa
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l Compression bisimilarity

® (P,Q) € H if they have same actions,
® define labelled transition system over equivalence classes of H

[P <% [qQ] if P L2

—c Q

® compression bisimilarity, P = Q if [P] ~ [Q], namely whenever

1. [P] <% [P], then [Q] < [Q'] and [P] ~ [Q']
2. [Q] <= [Q'], then [P] < [P'] and [P"] ~ [Q']

B results are given in terms of ranges
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l Results

to show the full behaviour of a system P("), n must be greater
than the sum of

® the maximum out-stoichiometry,

B the maximum in-stoichiometry, and

® the maximum in- or out-stoichiometry

s C(M =~ (M if n and m are large enough

m P() =~ pP(m) if n and m are large enough together with a
technical condition required for stoichiometries larger than 1

® = is a congruence for D if technical condition holds
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Example (revisited)

Qg aq (€3] Qi aq

(5,0,0) = (4,0,1) = (3,0,2) = (2,0,3) = (1,0,4) == (0,0,5)
(0% [o%] o l (6%] a3l (0% [0%]

as | o | o O o

(3.1,0) = (2,1,1) = (1,1,2) = (0,1,3)

g g an
a3 l a3 l
aq
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Example (revisited)

aq aq (o751 aq aq
(5,0,0) = (4,0,1) = (3,0,2) = (2,0,3) = (1,0,4) == (0,0,5)
o ap o [e %} o l [e% o l [e%} a2
3l o 31 o 3 o 3
(3,1,0) = (2,1,1) = (1,1,2) = (0,1,3)
(0%} ap a
as l L3 l
(17270) (:) (07271)
2
[e%% [e%} [e%1 aq a1 aq
(6,0,0) = (5,0,1) = (40,2) 2 (3,03) = & (2,04) = = (1,0,5) = (0,0,6)
« ap
o] sl Cas| Paa| Pea| P i
aq aq aq
(47170) : (37171) (27172) (— (171»3) (0’174)
as| s a2 S | a2
a1
(220) = (121) = (0.22)
a3l (e %] az
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Example (revisited)

a ay al a ayl
(5,0,0) = (4,0,1) = (3,0,2) = (2,0,3) = (1,0,4) == (0,0,5)

an (0% a2 (0% [0%]
a3l a1 a3l o1 Oé3l a1 O!3l
(31,0) = (21,1) = (1,1,2) = (0,1.3)

(e %] [e %
a3 l

a2
a1

(17270) : (07271)
a2

these are not compression bisimilar

[e%% [e%} [e%1 [e%1 a1 a1

(6,0,0) = (5,0,1) = (4,0,2) = (3,0,3) = (2,0,4) = (1,0,5) = (0,0,6)
o ozgal aZO‘l azal azal a2 a2

3l a1 3 a 3 a1 3 a 3

(47170) : (37171) : (27172) : (171’3) : (0’174)
o (%] o l %) o l (e %] (%]

3l a 3 a 3

(2,2,0) = (1,2,1) = (0,2,2)

a2 a
as l

(0,3,0)
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l Open problems

® hypothesis: if T is the lcm for all stoichiometric coefficients,
n=m+ cT for c € N and n, m large enough, then P" = P™

can this be proved?
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l Open problems

® hypothesis: if T is the lcm for all stoichiometric coefficients,
n=m+ cT for c € N and n, m large enough, then P" = P™

can this be proved?

® can compression bisimulation be extended to an (approximate)
quantitative equivalence?

B are there other operators of interest?

® can two subpopulations, C and D, be combined?
® define a new operator C H D

® must the actions of C and D be disjoint?

¥ can a single subpopulation have repeated actions?
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Open problems (continued)

® how can the notion of a stochastic population process algebra
be made more general?

® what are the important aspects?

B can these be expressed by parameterising functions?

® choice of functions instantiates population process algebra
® provide meta-results with respect to these functions

® not as general as a SOS format
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More generally

nc

CEY poc
k=1

OS {ﬁl?"'aﬁnc}

v§ (n)
C(n) == C(S(n)
1 (n) and v&(n) are defined

B stoichiometric information and conditions no longer appear in
the prefix but are embedded in the definition of the function S

= only local information about C can be used in xS and v
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More generally (continued)

a,S

P—=.P S
—< Q2.
PDIQ ¢ P aQ

a,S
Q_’__> Q/ a,s’
ozSC P ¢
PpaQ 5 PoaQ

,S ,S:
P P2 @

P Q o), prpg g

if pa(S1,S2) is defined
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More generally (continued)

a,S

P—=. P
p a,fo(S) P
mf,:S5— RZO
® Markov chain semantics are given by 2

ODEs can be derived from Ci(n10) B ... B3 Cp(npo)

unspecified functions: v$, uS, pa, fa

® what are sensible choices in the context of population modelling?
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l Open problems (continued)

® how can modelling of space in the context of smart transport
and smart grids be combined with population modelling?
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Open problems (continued)

® how can modelling of space in the context of smart transport
and smart grids be combined with population modelling?
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Thank you
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