
I NTRODUCTION

In this paper, I will describe and critically evaluate the paper Distributed Bisimulations,

by  Ilaria Castellani and Matthew Hennessy [5]. The aim of their paper is to generalise

bisimulation equivalence for a subset of CCS to take into account the distributed nature

of processes and, thus give a noninterleaving semantic theory which has many of the

advantages of the interleaving theory. This theory allows concurrent processes to be

distinguished from nondeterministic sequential processes and preserves more of the

structure of processes. The article deals predominantly with the axiomatisation of the

new equivalences.

Milner’s CCS  (Calculus of Communicating Systems) [11], assumes that the observer

and the processes occur in one locality. The authors assume that processes occur in

independent localities and therefore the observer as ‘an uncomplicated entity’ can be at

either location but not at both. The observer asks for a specific action and will see the

results of this local action. Also the observer will be informed of the global results of

the action. A primitive observation  takes the form  p a→   〈p′, p′′〉. This can be

interpreted as an observer requesting an action of a of process p and performing a

causes the local component to evolve to p′,  and the whole process changes to p′′.

The structure of Castellani and Hennessy’s paper is as follows - they present the

notion of a distributed labelled transition system, and from this define the concepts of

strong distributed bisimulation and weak distributed bisimulation. There is no

communication between processes. The two  distributed bisimulations are axiomatised

in a similar fashion to the approach taken in Chapter 7.4 in Milner [11]. In the final

section a calculus with communication is introduced and suggestions for

axiomatisation are made.

My aim in this paper is to explore the concepts presented in Distributed Bisimulations

by way of examples and explanations with reference to Milner’s work [11]. I will not

discuss all the details of the paper and I will only give an outline of the axiomatisation,

as I feel that the proofs are fully dealt with in the paper. I will describe the concepts

and evaluate the paper as I proceed. As there are some notational differences  that are

significant, I will first introduce basic concepts as they are presented in the paper and

then proceed to new concepts. In the last section, I would like to pose a few questions

without attempting a solution, that relate to Castellani and Hennessy’s argument for a

distributed bisimulation.
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The sections are as follows:

INTRODUCTION

PROCESSES AS LABELLED TRANSITION SYSTEMS

BISIMULATION AND DISTRIBUTED BISIMULATION

ALGEBRAIC CHARACTERISATION OF DISTRIBUTED BISIMULATION

WEAK OBSERVATIONS

WEAK DISTRIBUTED BISIMULATION

ALGEBRAIC CHARACTERISATION OF WEAK DISTRIBUTED BISIMULATION

COMMUNICATION AS MUTUAL OBSERVATION

TOWARDS AN ALGEBRAIC CHARACTERISATION OF WEAK DISTRIBUTED

     BISIMULATION WITH COMMUNICATION

CASTELLANI AND HENNESSY’S CONCLUSIONS

WHY DISTRIBUTED BISIMULATION?

CONCLUSION

NOTE : In general, rules are described using an =, for example p | q = q | p. The

authors then state that a particular equivalence relation, for example ~, satisfies the

rule. This is contrast to Milner’s notation [11]. I will use the authors’ notation as it

allows for rules to numbered for easy reference. The references to CCS all refer to

Milner’s book [11] unless otherwise stated.

PROCESSES AS LABELLED TRANSITION SYSTEMS

This section defines a labelled transition system and Σ1, a signature to generate the

processes in our labelled transition system. The labelled transition system will be a

subset of CCS. After this, the concept of a distributed labelled transition system will

be defined

Definition

A labelled transition system (lts) is a triple (P, A,→) where

    i) P  is a given set of processes

   ii) A is a given set of actions

  iii) → is a relation contained in (P × A × P ) called a transition relation. ❚

(p, a, q) ∈ → is usually written p a→ q  for a ∈ A and p, q ∈ P. Also let x, y represent

process variables.
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Definition
Let Σ1 be the signature consisting of

  i)  NIL, a constant or nullary operator;

 ii)  a. for each a ∈ A  a unary operator called prefixing

iii)  +, a binary infix operator called choice

iv)   |,  a binary infix operator called parallel composition.

The authors suggest abbreviations that I will not use for reasons of clarity. The

precedence of the operators is Prefix, |, +. ❚

Use L to denote the word algebra generated by Σ1

To give L the structure of lts, let

  i) P  the set of processes, be the set of terms in L

 ii) A is the predefined set of actions

iii) → the transition relation, be the least relation satisfying the following axioms, 
�

.

(In the paper, the first rule was written  ‘a:  p a→ p’. This notation was not explained

and I have transcribed it as ‘∀ a ∈ A, a.p a→ p’. This point applies to similar rules

throughout the paper)

  Rules 
�

  (R1)      Rule 1. ∀ a ∈ A,  a.p a→ p

  (R2)      Rule 2.  p a→ p′   implies   p + q  a→  p′      and q + p  a→   p′
  (R3)      Rule 3.  p a→ p′   implies   p  |  q  a→ p′ | q  and q  |  p  a→  q | p′

The elements of P will be referred to as terms and processes. However later on in the

paper,  processes takes on a very specific meaning.

In this lts, the terms involve prefixing, choice, and parallel composition. There is no

restriction, relabelling or constant definition which therefore does not allow recursive

definition of processes. The rules given for the lts above are the same as Act (R1),

Sum2 (R2) and Com1 (R3) and Com2 (R3) as given on page 46 of Milner[11].

However there is no rule to match Com3 - this means that there is no communication

between processes. As would be expected,   p a→ q  is true only if it can be proved by

using the three rules  (R1) - (R3).
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In Milner’s CCS,  p a→ q  can be interpreted as the response of p to an external demand

from an observer for the action a  in which it changes to the state q.  The authors

consider the rule  (R3)  p a→ p′   implies    p | q  a→ p′ | q    and     q | p  a→  q | p′
and state that this rule implies that the observer is ignoring facts that should be obvious

i.e. the facts that different processes can be at different localities and that the local

action is causing a local result.

The authors assume that p | q  represents a process consisting of two independent

processes which are physically separated -  p is at location l1 and q is at location l2.

The assumption is that the observer is an ‘uncomplicated entity’ and therefore can only

be at one location. The observer knows that the request has satisfied by a subprocess

at the observer’s location and (in this simple case where there is no communication)

this has not  affected subprocesses at other localities. The authors have chosen not to

name localities or parameterise observers as being at particular localities.  Each

observer is placed at a definite locality.  Each observer can request an action from the

subprocess at its position, and observe the local result of the action, and

simultaneously the observer is informed of the global result of the action. Local and

global results must be observed together to be meaningful. Intuitively, this concept

captures causality - the local action causes the local result.

A primitive observation  takes the form  p a→  〈p′, p′′〉 . This can be interpreted as (i) an

observer requests an action of a of process p, (ii) satisfying the demand changes the

subprocess local to the point of observation into  p′  and  the whole process evolves to

p′′.

I interpret this as meaning that a process (consisting of a number of subprocesses) can

be viewed as spread over a number of localities with a different ‘observer’ at each

location. When proving two processes are bisimilar, it is required that from each

observer’s point of view (at the equivalent locations in the different processes), the

processes are indistinguishable. I will  demonstrate this concept after the definition of

distributed bisimulation has been presented.

Definition

A distributed labelled transition system (d-lts) is a triple (P, A,→) where

    i) P  is a given set of processes

   ii) A is a given set of actions

  iii) → is a relation contained in (P × A × P × P ) called a transition relation.

(p,a,p′,p′′ ) ∈ → is usually written p a→ 〈 p′, p′′ 〉  for a ∈ A and p, p′, p′′ ∈ P ❚
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As given above, L can be viewed as a d-lts by using the transition relation defined by

the following rules, 
�

′.

  Rules 
�

′
  (R1′)       Rule 1′. ∀ a ∈ A,  a.p a→ 〈p, p 〉
  (R2′)       Rule 2′.  p a→ 〈 p′, p′′ 〉   implies   p + q  a→  〈 p′, p′′ 〉
                                                              and   q + p  a→  〈 p′, p′′ 〉
  (R3′)       Rule 3′.  p a→ 〈 p′, p′′ 〉   implies   p  |  q  a→  〈 p′, p′′ | q  〉
                                                              and   q  |  p  a→  〈 p′, q  | p′′ 〉

The rules (R1′) - (R3′) are similar to (R1) - (R3) and  the first set of rules can be

recovered by ignoring the first component of the residuals. Note that there is no

communication implied by these rules.

Examples

These are all distributed transitions that can be performed by  the process

                        a.b.NIL + (b.(d.NIL + e.NIL) | (e.NIL + f.NIL ))

a.b.NIL + (b.(d.NIL + e.NIL) | (e.NIL + f.NIL ))   a→   〈 b.NIL , b.NIL  〉
a.b.NIL + (b.(d.NIL + e.NIL ) | (e.NIL + f.NIL ))   b→

                                              〈 d.NIL  + e.NIL , (d.NIL  + e.NIL) | (e.NIL + f.NIL ) 〉
a.b.NIL + (b.(d.NIL + e.NIL) | (e.NIL + f.NIL ))   e→

                                               〈 NIL , b.(d.NIL + e.NIL ) | NIL 〉
a.b.NIL+ (b.(d.NIL  + e.NIL ) | (e.NIL+ f.NIL ))   f→

                                               〈 NIL , b.(d.NIL + e.NIL) | NIL 〉 ❚

B ISIMULATIONS AND D ISTRIBUTED BISIMULATIONS

Definition

Let (P, A,→) be an lts. A bisimulation is a symmetric relation R ⊆ P × P that satisfies

for every (p,q) ∈ R, a ∈ A, the following property:

     p a→ p′  implies q a→ q′  for some q’ such that  (p′,q′ ) ∈R

Bisimulation equivalence is defined by

               p ~ q    if  (p,q) ∈R       for some bisimulation R ❚

This definition of bisimulation is the same as Milner’s strong bisimulation, although it

is phrased slightly differently. The second part of the definition can be reformulated as:

~ = ∪ { R : R is a bisimulation }.
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As would be expected, the following results hold.

Lemma

(a)  ~ is an equivalence relation

(b)  ~ is preserved by all operators in  Σ1 - ~ is a Σ1-congruence.  If  p ~ q  then

          a.p ~ a.q,    p + r ~ q + r,    and p | r ~ q | r   ❚

~ satisfies the following laws:

(P1)    p | q = q | p

(P2)    p | ( q | r ) = ( p | q ) | r

(P3)    p | NIL= p

(L1)   a.NIL | b.NIL ~ a.b.NIL + b.a.NIL

(L1) is a limited form of Milner’s expansion law and demonstrates interleaving and the

fact that concurrent processes can be expressed as a nondeterministic, sequential

process.

Definition

Let (P, A,→) be an d-lts. A distributed bisimulation (d-bisimulation) is a symmetric

relation R ⊆ P × P that satisfies  for every (p,q) ∈ R, a ∈ A, the following property:

    p a→ 〈 p′, p′′ 〉  implies q a→ 〈 q′, q′′ 〉  for some q′, q′′
                                                           such that  (p′,q′ ) ∈R  and  (p′′,q′′) ∈R

 d-bisimulation equivalence is defined by

                                  p ~d q    if  (p,q) ∈R   for some d-bisimulation R

This can also be expressed as:    ~d = ∪ { R : R is a d-bisimulation }. ❚

Lemma

(a)  ~d  is an equivalence relation

(b)  ~d   is a Σ1-congruence. If  p ~d q then

                        a.p ~d a.q,    p + r ~d q + r,   and p | r ~d q | r     ❚

 ~d  satisfies the rules (P1)-(P3) as given above. However it does not satisfy (L1)

a.NIL | b.NIL ~ a.b.NIL + b.a.NIL, which means this is not an interleaved semantics.
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Example

In this example, I show  that

                      a.NIL | b.NIL   ~d/    a.b.NIL  + b.a.NIL

Each process can perform an a action

a.NIL | b.NIL  a→  〈 NIL , NIL | b.NIL  〉   whereas

a.b.NIL  + b.a.NIL  a→  〈 b.NIL , b.NIL  〉   and  NIL  ~d/   b.NIL

This means that the two agents cannot be bisimilar ❚

The following proposition relates d-bisimulation to bisimulation. Intuitively,  in the

part (a), the local residual is ignored.

Proposition

(a) If  p ~d q then  p ~ q

(b) If p, q contain no occurrences of |, then  p ~ q  implies p ~d q    ❚

Let ≡  be the congruence on L generated by laws (P1) - (P3) namely equality of terms

modulo associativity and commutativity of |.

Proposition  If  p a→ 〈 q, r 〉,  then ∃ s such that  q | s ≡ r          ❚

Example

I modify the semaphore example given in Chapter 1.4 and Exercise 4.1 of Milner  to

give a very simple example of distributed bisimulation. The modification is required as

there is no recursive definition in the d-lts presented. Consider an counter that has the

following form C = add1.NIL. To count up to n, copies of the process can be

combined as follows. ( In this example, ‘=‘ means syntactically equivalent )

         Cn = C | C | ... | C, so that there are n processes in the composition.

A process Dn could also be defined

         Dn = add1.add1. ... .add1.NIL, where there are n prefixed actions.

Consider a system as follows:

The aim is to count to 4,  by two processes in separate localities counting to 2.

          S1 = C2 | C2   and S2 = D2 | D2

          where  C2  = C | C,    D2 = add1.add1.NIL  from the definitions above

A third system could be defined to do centralised counting to 4

          S3 = D4 = add1.add1.add1.add1.NIL

I will now illustrate (without full proof) that  S1 ~d S2 and  S1 ~ S3,  S2 ~ S3,   but

S1 ~d/   S3,    S2  ~d/    S3
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Consider the set

R1 = { (C2 | C2, D2 | D2 ), ( NIL | C, add1.NIL ), ( NIL, NIL ),

             ( NIL | C | C2, add1.NIL | D2), ( NIL | C2, NIL | D2),

             ( NIL | C | NIL | C , add1.NIL | add1.NIL ) }

R1 is a bisimulation and  S1 ~d S2  since (S1,S2) ∈ R

(The bisimulation has been reduced in size by the use of associativity and

commutativity.)

  When  S1  = C2 | C2 
add1→   〈 NIL | C, NIL | C | C2 〉 then

  S2  = D2 | D2 
add1→  〈 add1.NIL, add1.NIL | D2 〉 and

         (NIL | C, add1.NIL) ∈ R  and (NIL | C | C2, add1.NIL | D2) ∈ R

  When  S2  = D2 | D2 
add1→  〈 add1.NIL, add1.NIL | D2 〉  then

  S1  = C2 | C2 
add1→   〈 NIL | C, NIL | C | C2 〉 and

         (NIL | C, add1.NIL) ∈ R  and (NIL | C | C2, add1.NIL | D2) ∈ R

          This argument could be repeated for each pair in R.

The bisimulation to prove S1 ~ S3 is as follows:

R2 = { (C2 | C2, D4 ), ( NIL | C | C2, add1.add1.add1.NIL ),

             ( NIL | C2, add1.add1.NIL),  ( NIL | C | NIL | C , add1.add1.NIL ),

             ( NIL | C, add1.NIL ) }

A similar bisimulation can be created to prove  S2 ~ S3

To show that  S1 ~d/   S3, consider

NIL | C | C2 
add1→   〈 NIL , NIL | C2 〉

add1.add1.add1.NIL add1→   〈 add1.add1.NIL , add1.add1.NIL  〉
but   add1.add1.NIL ~d/   NIL. ❚

ALGEBRAIC CHARACTERISATION OF DISTRIBUTED BISIMULATION

In this section, the axiomatisation of ~ and  ~d are presented. The axioms for ~, �  are

given below.

 Axiomatisation of ~ :  Axioms �
  (A1)  x + ( y  + z ) = ( x + y ) + z

  (A2)  x + y = y + x

  (A3)  x + NIL  = x

  (A4)  x + x  = x

  (IN)  If  x = Σn
i=1   ai. xi  and  y = Σm

j=1  bj.yj  then

                             x  | y  =  Σn
i=1   ai. ( xi | y ) + Σm

j=1   bj. ( x  | yj )
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 Note that Σn
i=1   ai. xi   will usually be written  Σ ai. xi

Σn
i=1   ai. pi   =  a1. p1 +  ... +  an. pn               if  n > 0

                  =  NIL                                      if  n = 0

The axiom (IN) is a rephrasing of the expansion law excluding communication. It

illustrates the interleaved semantics of ~.

Example

Considering the actions that x can perform

     Σ ai. xi    
ai→   xi  for each i

and y can perform

     Σ bj.yj      
ai→   yj  for each j

By expansion

x | y =   Σ { ai.( xi | y ) : x   
ai→   xi } +  Σ { bj.( x | yj  ) : y   

ai→   yj  } ❚

Theorem  The equivalence ~ is the Σ1 congruence over L generated by the axioms �
This meansthat   p =� q if and only if p ~ q ❚

It is necessary for this type of proof to convert all processes into normal form. In this

case, the normal form will be Σn
i=1   ai. pi

All occurrences of | can be removed using (IN), so that concurrency is reduced to

nondeterminism. The primitive operators are prefixing, choice and NIL.  In Chapter

7.4 of Milner, an axiomatisation is presented for finite serial agents, namely those

agents using the operators finite Summation (choice) and Prefix.  Any agent containing

finite Summation, Composition, Restriction or Relabelling, (but no Constants or

Recursions) can be equated by expansion to a finite serial agent. Since the parallel

operator is therefore excluded, the axioms (A1) - (A4) are used for Milner’s

axiomatisation.

Earlier it was shown that (LP1) is not valid for ~d and hence (IN) is not valid.

Therefore  |  cannot be removed from the axiomatisation of ~d,  as was the case with

~.

Example

This example shows that (IN) is not valid for ~d

Consider x = Σ ai. NIL   and  y = Σ bj.NIL   then

then
x | y  

ai→   〈 NIL , NIL | y  〉
Σn

i=1   ai. ( NIL  | y ) + Σm
j=1   bj. ( x  | NIL)   ai→  〈 NIL | y, NIL | y  〉

and  NIL  ~d/    NIL | y ❚

The   next   issue   is   the   axiomatisation  of  ~d.  Looking  at  this  intuitively,  when

p a→ 〈 q, r 〉, this is because p contains an initial subterm  a.q. In an earlier proposition
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it was shown that ∃ s such that  q | s  ≡ r.   s is a term concurrent to a.q in p called a

coterm of a.q in p. The behaviour of p as seen from a specific locality is determined by

the set of its initial subterms a.q and their coterms, s. Generally coterms are not

subterms.  For example

                              p = (( a.q | r ) + u ) | t

The coterm of a.q in p is r | t  since p a→  q | r | t . Therefore the equality of two terms

cannot be proved by comparing their subterms and respective coterms, because the

coterms are not subterms.

To get around this problem, a new operator  |́ , is introduced which can be viewed as

an asymmetric parallel operator.  p  |́   q  are concurrent, but  p has initial dominance.

p can then be expressed in the explicit form

                     Σi∈I ai. pi  |́  p′i   where for each i ∈ I, p′i   is the coterm of  ai. pi
Intuitively, the ai. pi represent the localities where an action can be requested.

Example

As an example, the process (a.q | b.(c.p + d.r)) + e.s will be given in its explicit form

and all its transitions will be listed.
(a.q | b.(c.p + d.r)) + e.s  =  a.q |́  b.(c.p + d.r)  +  b.(c.p + d.r) |́  a.q +  e.s |́  NIL

(a.q | b.(c.p + d.r)) + e.s  a→  q | b.(c.p + d.r)

(a.q | b.(c.p + d.r)) + e.s  b→  a.q | (c.p + d.r)

(a.q | b.(c.p + d.r)) + e.s  e→  s ❚

The new transition rules for  |́  are as follows:

(R4)         Rule 4.   p a→   p′′           implies   p  |́   q  a→   p′′ | q
(R4′)        Rule 4’.  p a→ 〈 p′, p′′ 〉   implies   p  |́   q  a→  〈 p′, p′′ | q 〉

Example

Taking the explicit form of p given above, the following transitions can occur.

  Σ ai. pi     
ai→   〈 pi ,  pi  〉

  Σ ai. pi  |́  p′i     
ai→   〈 pi ,  pi  | p′i  〉

The initial subterms of the process are the ai. pi   and the coterms are p′i   and the global

state is  pi  | p′i  after an ai transition.
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From the example above, taking the explicit form of (a.q | b.(c.p + d.r)) + e.s, it can

be seen that it has the same transitions.

a.q |́  b.(c.p + d.r)  +  b.(c.p + d.r) |́  a.q +  e.s |́  NIL  a→  q | b.(c.p + d.r)

a.q |́  b.(c.p + d.r)  +  b.(c.p + d.r) |́  a.q +  e.s |́  NIL  b→  a.q | (c.p + d.r)

a.q |́  b.(c.p + d.r)  +  b.(c.p + d.r) |́  a.q +  e.s |́  NIL  e→  s ❚

There are equations involving the new operator.  The law (LP1) relates | to  |́ .
(LP1)     p | q  =   p  |́   q  +   q  |́   p

This is straightforward as the two terms on the right hand side can simulate all that
that the left hand side can do and vice versa, considering the rules for  |  and  |´.

(R3′)   p a→ 〈 p′, p′′ 〉   implies   p |  q  a→  〈 p′, p′′ | q 〉 and q | p  a→   〈 p′, q  | p′′ 〉
(R4′)   p a→ 〈 p′, p′′ 〉   implies   p |́  q  a→  〈 p′, p′′ | q 〉

This new operator does not give an interleaved semantics, since  ~d does not satisfy
(IN) as shown earlier.  There is a new interleaving rule for  |´, (|́ IN) which is satisfied

by ~ but not by  ~d.

(|́ IN)      a.p |́  q =  a.( p | q )

Example
The first part of the example, shows how (|´IN) holds for ~.

When   a.p |́  q    a→   p | q  then   a.( p | q ) a→    p | q  and    p | q ~ p | q . This is the

only action that can be performed by   a.p |́  q.

When  a.( p | q )  a→   p | q  then    a.p |́  q   a→    p | q  and    p | q ~ p | q . This is the

only action that can be performed by   a.( p | q ).
Therefore  a.p |́  q ~  a.( p | q )

It is shown that  (|´IN) does not hold for  ~d

 a.p |́  q    a→   〈  p,  p | q 〉
 a.( p | q ) a→   〈 p | q,  p | q 〉  and  p ~d/    p | q . ❚

|́   satisfies a distributive law as follows which allows syntactic manipulations.

(LP2)   ( p + q )  |́  r  = ( p |́  r ) + ( q |́  r )
(LP3)   ( p  |́  q )  |́   r  =  p  |́   ( q | r )

(LP4)       p  |́  NIL   =  p
(LP5)      NIL   |́   p = NIL
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Examples

This example illustrates (LP2)

(a.NIL + b.NIL )  |́  c.NIL   a→  〈 NIL ,  NIL | c.NIL 〉
(a.NIL + b.NIL )  |́  c.NIL   b→  〈 NIL ,  NIL | c.NIL 〉
(a.NIL  |́  c.NIL  ) +  ( b.NIL  |́  c.NIL  )  a→  〈 NIL ,  NIL | c.NIL 〉
(a.NIL  |́  c.NIL  ) +  ( b.NIL  |́  c.NIL  )  b→  〈 NIL ,  NIL | c.NIL 〉

This example illustrates (LP3)

(a.NIL |́   b.NIL )  |́  c.NIL    a→   〈 NIL ,  NIL | b.NIL  | c.NIL   〉
 a.NIL  |́  ( b.NIL  | c.NIL )   a→   〈 NIL ,  NIL | b.NIL  | c.NIL   〉 ❚

Let  Σ2 be the signature with  |́  included, and EL the extended language generated by

this.

Axiomatisation of  ~d  :  Axioms �
(A1)     x + ( y  + z ) = ( x + y ) + z        (LP1)   p | q  =    p  |́   q  +   q  |́   p

(A2)     x + y = y + x                              (LP2)   ( p + q )  |́  r  = ( p |́  r ) + ( q |́  r )
(A3)     x + NIL  = x                              (LP3)   ( p  |́  q )  |́   r  =  p  |́   ( q | r )

(A4)     x + x  = x                                   (LP4)     p  |́  NIL   =  p
                                                              (LP5)    NIL   |́   p = NIL

Theorem  (Characterisation) The equivalence ~d is the Σ2 congruence over EL

generated by the axioms � , i.e. p =�  q if and only if p ~d q
Proof outline
(⇒) (Soundness)

If  = �   is replaced with  ~d  in each axiom,  they are still  hold.

(⇐) (Completeness)

Definition Σ ai. pi  |́  p′i    is a normal form (nf) whenever all  pi ,  p′i   are nfs. For

n=0, NIL is a normal form. The depth d(p) of p is also defined.

Normalization Lemma  For any p ∈ EL, there exists a nf n such that  p =�  n.

Also

 d(p) = d(n)

Simplification Lemma  For any p,q,r ∈ EL,   p | r  ~d q | r  implies  p ~d q
The proof for completeness is by induction on the sum of the sizes of p and q.

Suppose p ~d q.  p and q can be written as nfs. Then it is shown that  p + q =� q.

To show this it is sufficient to show that   q + ai. pi  |́  p′i    =� q  for each i . This

requires the use of the simplification lemma. By symmetry   p + q =� p from which

the result follows. ❚
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W EAK OBSERVATIONS

The concept of an internal unobservable action is introduced into the calculus. At this

point it is only a distinguished symbol and does not represent communication between

processes.

Assume A contains a distinguished symbol τ representing an internal unobservable

action. Then  A = O ∪ τ. The symbols a,b,c will range over O and µ,ν will range over

A. The observation relation a→ will be replaced with  a⇒, where a⇒ can be viewed as a

number of internal actions (possibly none) followed by an a action followed by more

internal actions (again possibly none).  τ actions are regarded as global actions that can

be localised only indirectly, if it affects the observable behaviour of the component

where it occurs.

Example
In τ.p | q, the τ action can be regarded as global as it does not affect how each

subcomponent acts. However in (τ.p + q) | r, the τ action can pre-empt the actions of q

in the first component and thus can affect the local actions of this component, by

preventing some actions from occurring. ❚

The   definition   of    a⇒   becomes  complicated   using   the   current   notation. When

p a⇒ 〈 q, r 〉,  q is the local residual of the observation, whereas r is the global residual

which includes q. It becomes problematic to maintain the consistency in 〈 q, r 〉
between q and the copy of q in r.  By placing q in a global context C[], this can be

rewritten  p a⇒  〈 q, C[q] 〉,  which  can  be  further  reduced  to  p a⇒  C[q]. In C[],  []

gives the locality of the observation and q the local residual, therefore C[q] represents

the full details of 〈 q, C[q] 〉.

These concepts are defined formally.

Definition  The set of generalised terms are defined by the following grammar
                                   t ::= NIL  t + t  t | t  t  |́  t  []  [t] ❚

The authors state that all elements of EL are generalised terms. The elements in EL will

be called terms, with p,q ∈ EL.  This is the language defined Σ2, defined earlier,

where Σ2 consists of NIL,  a. for each a ∈ A,  +,  |  and  |´.
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I find that this leads to a conflict in definitions as EL allows terms with prefixing, for

example a.NIL, whereas this is not defined for generalized terms. In fact, generalised

terms consist only of the nullary operator NIL combined in different ways. I suggest

that this is a mistake and that generalised terms should be defined by the grammar.
                                   t ::= NIL  t + t  t | t  t  |́  t  []  [t] µ.t ,     µ ∈ A

The grammar for EL  could be written in a similar fashion as:
                                   e::= NIL  e + e e |e  e |́  e µ.e ,     µ ∈ A

Examples

a.(b.NIL  + c.NIL ) | d.NIL  is a term and also a generalised term.

a.([b.NIL]  + c.NIL) | d.NIL  is a generalised term, but not a term. ❚

Definition

A context is a generalised term with no occurrence of a subterm of the form [t] in it and

at most one occurrence of [] (there could be none). Contexts will usually be denoted

C[] ❚

Examples

a.([]  + c.NIL) | d.NIL   and a.(b.NIL  + c.NIL ) | d.NIL  are contexts. ❚

Definition

An instantiated context, C[t], is a generalised term obtained by substituting [t] for the

unique occurrence of [], if it exists. ❚

Examples

The following give examples of instantiated contexts.

If C[] = a.([]  + c.NIL ) | d.NIL  then  C[f.NIL] = a.([f.NIL]  + c.NIL ) | d.NIL

If C[] = a.(b.NIL + c.NIL ) | d.NIL   then C[f.NIL] = a.(b.NIL + c.NIL ) | d.NIL ❚

Definition
A process is an instantiated context of the form C[p], where p ∈ EL. I will refer to the

set of processes as PR. ❚

Examples

If C[] = a.([]  + c.NIL ) | d.NIL    then

      C[f.NIL]  = a.([f.NIL]  + c.NIL ) | d.NIL   is a process since f.NIL  ∈ EL

and

     C[ f.NIL+[a.NIL] ]  = a.([ f.NIL+[a.NIL] ]  + c.NIL ) | d.NIL   is  not a process

since f.NIL+[a.NIL]  ∈/ EL ❚
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 P,Q will  range over processes. All terms in EL are processes, but the reverse is not

true. In C[p], the occurrence of  [p] indicates the locality under observation. Processes

can be viewed as terms in EL by ignoring local details, replacing [p] by p.

Definition
C(p) ∈  EL is the term corresponding to the process C[p] and is obtained by

substituting  p rather than [p], for [] in C[]

Example

If C[] = a.([]  + c.NIL ) | d.NIL    then   C(f.NIL)  = a.( f.NIL  + c.NIL ) | d.NIL  ❚

The authors define weak observation, a⇒,  in terms of  τ→  and  a→ .

 τ→  is taken to be the least relation that satisfies the τ-Rules.

τ-Rules (for General Processes).

(Rτ1)     Rule τ1.  τ.P τ→ P

(Rτ2)     Rule τ2.    P τ→  P′  implies   P + Q  τ→  P′       and Q + P  τ→   P′

(Rτ3)     Rule τ3.    P τ→ P′   implies   P  |  Q  τ→  P′ | Q and Q  |  P  τ→  Q | P′

(Rτ4)     Rule τ4.    P τ→ P′   implies   P  |́   Q τ→  P′ | Q

(Rτ5)     Rule τ5.     p τ→  p′   implies   [p]  τ→  [p′]

Rule τ5 allows the τ action to be localised when necessary. The reason for using

processes in these rules is that τ actions are global actions.

Examples
These are examples of global τ transitions.

[a.NIL] + τ.p  τ→ Ê p

[q] | τ.p  τ→Ê[q] | p ❚

 a→  takes elements of EL and returns processes. They are defined to be least relations

that satisfy the a-Rules. These rules deal with observable actions between terms in EL

and processes.

a-Rules (from Terms to Processes)
(E1)            Rule 1. ∀ a ∈ O,  a.p a→ [p]

(E2)            Rule 2.  p a→ C[p′]   implies   p + q   a→  C[p′]        and q + p  a→  C[p′]
(E3)            Rule 3.  p a→ C[p′]   implies   p  |  q   a→  C[p′] | q   and q  |  p  a→  q | C[p′]
                                                         and   p  |́   q  a→  C[p′] | q
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Examples

These are examples of observable actions by the agent

                         a.b.NIL + (b.(d.NIL  + e.NIL ) | (e.NIL + f.NIL ))

a.b.NIL + (b.(d.NIL  + e.NIL ) | (e.NIL + f.NIL ))   a→   [ b.NIL ]

a.b.NIL + (b.(d.NIL  + e.NIL ) | (e.NIL + f.NIL ))   b→

                                                              [ (d.NIL  + e.NIL ) ] | (e.NIL + f.NIL )

a.b.NIL + (b.(d.NIL + e.NIL ) | (e.NIL + f.NIL))   e→

                                                              b.(d.NIL  + e.NIL ) | [NIL]

a.b.NIL + (b.(d.NIL + e.NIL ) | (e.NIL + f.NIL ))   f→

                                                              b.(d.NIL + e.NIL ) | [NIL] ❚

In combining  a→  and  τ→,  the relation a⇒  from EL to PR can be defined.

  i)   p τ⇒ q         if   p ( τ→)
+

 q

 ii)   p ∈⇒ q         if   p ( τ→)
*
 q

iii)   p a⇒ C[p’]   if   p ( τ→)
*
 q  a→  D[q′]  ( τ→)

*
 C[p’]

where   ( τ→)
+

  denotes the transitive closure of  τ→  (this means that at least one internal

action must be performed), and  (τ→)
*
 its transitive and reflexive closure (this means

that zero or more internal actions can be performed).

Examples

These are examples of   a⇒  observations.  ∈→  is used to denote no τ transitions.

a.p | (q + τ.r )  a⇒  [p] | r

       since   a.p | (q + τ.r ) τ→  a.p | r  a→  [p] | r  ∈→  [p] | r

a.p | (q + τ.r )  a⇒  [p] | (q + τ.r )

       since a.p | (q + τ.r )  ∈→  a.p | (q + τ.r )  a→  [p] | (q + τ.r ) ∈→  [p] | (q + τ.r ) ❚

Let ≡  be the congruence on L generated by laws (P1) - (P3) as previously, namely

equality of terms module associativity and commutativity.

Lemma  If  p a→ C[p′]  then ∃ s such that  [] | s ≡ C[]      ❚

This proposition links the two definitions of distributed transitions.

Proposition  If p contains no occurrences of τ, then  p a⇒ C[q] if and only if ∃ r ≡
C[q]  such that   p a→ 〈 q, r 〉                    ❚
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W EAK DISTRIBUTED BISIMULATION

A behavioural equivalence that abstracts from internal actions is now defined. Both
a⇒  and  ∈⇒  must be considered, since the authors are dealing with the evolution of a

process after a finite amount of time, therefore both cases are possible.

Definition  A symmetric relation R ⊆ (EL×EL) is a weak d-bisimulation if it satisfies

R ⊆ WD(R)  where WD(R) is defined by

(p,q) ∈ WD(R)  if  ∀ a ∈ A:

 i)   p ∈⇒ p′       implies   q ∈⇒ q′       for some q′  such that (p′, q′) ∈ R,

ii)   p a⇒ C[p′]  implies   q a⇒ D[q′]  for some q′  such that (p′, q′) ∈ R

                                                                                       and (C[p′], D[q′]) ∈ R

This can be expressed as  p ≈d q if (p,q) ∈ R,   for some weak d-bisimulation R ❚

I find that there is a major problem with this definition. The instantiated contexts C[p′]
and D[q′] possibly contain subterms of the form [p′] and [q′]  respectively. These

subterms denote the locality of the action a. This means that the ordered pair

                    (C[p′], D[q′]) ∈/  (EL×EL)
since EL is the extended language generated by Σ2 which contains the prefix operator,

the choice operator, the parallel operator and the asymmetric parallel operator; and does

not contain [] and [t].

There are two possible changes that could be made to make this definition more

meaningful. I will state them both, but I will use the second one as it is more complete

and simpler.

If the definition is changed so that  R ⊆_ (PR×PR)  then rules are required to map a

actions from Processes to Processes.  Rules iv) to vi) (on the following page) would

be required in addition to i) - iii). iv) and v) come straight from the τ-Rules given

above. vi) is problematic since a-Rules map from Terms to Processes, and  mappings

from Processes to Processes are required. Rules to map observable actions from

processes to processes are introduced later in the paper, but only for cases where a

new locality is not introduced into the new process.
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 i)   p τ⇒ q         if   p ( τ→)
+

 q

 ii)   p ∈⇒ q         if   p ( τ→)
*
 q

iii)   p a⇒ C[p’]   if   p ( τ→)
*
 q  a→  D[q′]  ( τ→)

*
 C[p’]

iv)  C[p’]  τ⇒  D[q′]     if  C[p’]  ( τ→)
+

 D[q′]

 v)  C[p’]  ∈⇒  D[q′]     if  C[p’]  ( τ→)
*
 D[q′]

vi)  C[p’]  a⇒  ?            if  C[p’]  ( τ→)
*
 D[q′]  a→  ?  ( τ→)

*
 ?

The definition of weak d-bisimulation should also be revised to cater for these new

transitions.

The second option is that the text should read  (C(p′), D(q′)) ∈  R, since by definition

C(p′) and D(q′) are in EL. This solution is simpler, and I will use this one.

Lemma

(a)  ≈d  is an equivalence relation                                                     ❚

The following proposition relates d-bisimulation to weak d-bisimulation.

Proposition

 i)   p ~d q  implies  p ≈d q
 ii)  If p,q contain no occurrences of τ, then  p ≈d q implies  p ~d q ❚

≈d is not preserved by +, therefore it is not a congruence. ≈d  is preserved by all other

operators.

Example

In this example, I will demonstrate that  p + r ≈d q + r, does not necessarily follow

from   p ≈d q.

Consider  b.NIL + τ.a.NIL  and  b.NIL + a.NIL

τ.a.NIL    a⇒  [NIL],  τ.a.NIL    ∈⇒  a.NIL

a.NIL    a⇒  [NIL],  a.NIL   ∈⇒  a.NIL

and NIL ≈d  NIL,   a.NIL   ≈d a.NIL

therefore  τ.a.NIL  ≈d a.NIL

However

b.NIL + τ.a.NIL  ∈⇒  a.NIL

b.NIL + a.NIL    ∈⇒  b.NIL + a.NIL

and  a.NIL  ≈d/    b.NIL + a.NIL

therefore b.NIL + τ.a.NIL  ≈d/    b.NIL + a.NIL ❚
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Definition

p ≈d
c q   if for every context  C[] :  C[p] ≈d  C[q]

This defines the equivalence to be the largest Σ2 congruence generated by  ≈d. ❚

This definition has similar problem as discussed earlier. C[p], C[q] ∈/  EL, and I

suggest that this be rewritten as C(p) ≈d  C(q). This means that all subterms of the form

[t] will be replaced with t.

The crucial part of the definition is that it excludes agents p and q that have the

property that  p ≈d q , but  p + r  ≈d/    q + r for some r.  It does this as follows:

p ≈d
c q  implies  p ≈d q  since C[] =[] is a context. Also for every r ∈ EL,

C[] =[] + r   is a context, so  p + r  ≈d  q + r, therefore the problem case cannot arise.

In general these problematic terms are the one that are  equated by the law τ.p ≈d  p.

Proposition   p ≈d
c q   iff  a + p ≈d  a + q  for some a not in  p,q.  ❚

Property   p ≈d
c q  and  p τ⇒ p′ implies  q τ⇒ q′  for some q′ such that   p′ ≈d q′  ❚

Corollary   p ≈d q  if and only if one of the following holds:

  i)    p ≈d
c q

 ii)    p ≈d
c τq

iii)  τp ≈d
c q  ❚

A LGEBRAIC C HARACTERISATION OF W EAK D I S T R I B U T E D

BISIMULATION

The following axiomatization is presented for   ≈d
c.

Axiomatisation of   ≈d
c

(in the absence of communication)  :    Axioms � � � ∪ τ-laws

(A1)     x + ( y  + z ) = ( x + y ) + z                 (LP1)   x | y  =    x  |́   y  +   y  |́   x

(A2)     x + y = y + x                                       (LP2)   ( x + y )  |́  z = ( x |́  y ) + ( y |́  z

)
(A3)     x + NIL = x                                        (LP3)   ( x  |́  y ) |́   z =  x  |́   ( y | z  )

(A4)     x + x  = x                                            (LP4)     x  |́  NIL   =  x
(I1)       x + τ.x  = τ                                         (LP5)    NIL  |́   x = NIL

(I2)       µ.τ.x  =  µ.x
(I3)       µ.(x + τ.y) + µ.y  = µ.(x + τ.y)

(NI1)    τ.x  |́  y  = τ.(x  |́  y )

(NI2)     x  |́  τ.y  =  x  |́  y
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(NI3)     x  |́  ( y + τ.z ) +  x  |́  z  =  x  |́  ( y + τ.z )

Theorem  (Characterisation) The equivalence ≈d
c is the Σ2 congruence over E L

generated by the axioms � , i.e. p =�  q if and only if p ≈d
c q

Proof outline
(⇒) (Soundness)

It is sufficient to check that a+p ≈d a+q for each instantiation of  p=q in � where a is

not in p or q.

(⇐) (Completeness)

Definition  Σ ai. pi  |́  p′i   + Σ τ.pj  is a weak normal form (wnf) whenever all  pi ,

p′i ,  pj  are wnfs.

The second summation is required in the definition of  wnf  to  cater  for  any  global

τ actions that might occur.

Normalisation Lemma  For any p ∈ EL, there exists a wnf n such that  p =�  n.

Also  d(p) = d(n)

Simplification Lemma  For any p,q,r ∈ P′,  p | r  ≈d q | r  implies  p ≈d q

τ-Absorption Lemma If p is a wnf and p τ⇒ p′, then  p + τ.p′ = �   p

Generalised Absorption Lemma If p is a wnf and p a⇒ C[p′] ≡ [p′] | r, then

 p + a.p′ |́  r = �   p

The proof for completeness is by induction on sum of the sizes of p and q. Suppose

p ≈d
c q.  p and q can be written as wnfs. Then it is shown that  p + q =� q. To show

this it is sufficient to show that   q + ai. pi  |́  p′i    =� q  for each i which requires the

simplification lemma and the general absorption lemma,  and that  q + τ.pj  =� q for

each j  which requires the fact that µ.τ.x  =  µ.x  and the τ-absorption lemma. By

symmetry   p + q  =� p and the result follows. ❚

COMMUNICATION AS MUTUAL OBSERVATION

The authors adopt Milner’s model of communication, which is a standard method.  Let

O, the observable actions be Λ ∪ Λ-, where Λ is a given set of action names and Λ- is

the set of their formal complements, Λ- = { a-  | a ∈ Λ} and a-- = a, ∀ a ∈ O.

Communication is defined as simultaneous occurrence of two complementary actions.

Any communication is treated as an internal action and denoted τ. These are global

actions and therefore global actions that do not produce local residuals, are required.
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The transitions  a→  are extended to general processes. This relationship currently maps

from terms in EL to processes. Since τ actions are taken to be global, a communication

transition will be inferred from ‘global’ transitions  a→ , i.e.  transitions that do not

introduce a locality into the residual. These global transitions will be denoted by  | a→ ,

and the resulting τ transitions by  | τ→

The following rules hold for global actions  |
µ→

Global transitions (for General Processes)

(F1)       Rule F1.   ∀ µ ∈ A,  µ.P |µ→ P

(F2)       Rule F2.    P |µ→  P′  implies   P + Q  |µ→  P′       and Q + P  |µ→  P′

(F3)       Rule F3.    P |µ→ P′   implies   P  |  Q  |µ→  P′ | Q and Q  |  P  |µ→  Q | P′

                                                     and  P  |́   Q |µ→  P′ | Q

(F4)       Rule F4.     p |µ→  p′   implies   [p]  |µ→  [p′]

(F5)       Rule F5.    P  | a→  P′   Q | a→
-
  Q′    implies   P  |  Q  | τ→  P′ | Q′

            (Communication rule)

These are similar to the τ-rules (Rτ1) - (Rτ5) given earlier with an additional rule for

communication between processes. For a process of the form C[p],  |µ→ maintains the

existing locality  in the process without introducing a new one.

The global transitions  | a→  are used for communications. The resulting transitions  |
τ→

are  used  with the distributed transitions a→   to obtain the weak relations  a⇒ and  τ⇒

  i)   p τ⇒ q         if   p ( | τ→  )
+

 q

 ii)   p ∈⇒ q         if   p ( | τ→  )
*
 q

iii)   p a⇒ C[p′]   if   p ( | τ→  )
*
 q  a→  D[q′]  ( | τ→  )

*
 C[p′]

Example

The actions that can be performed by  a.b.NIL | ( c.NIL + a-.NIL )  are the following

a.b.NIL | ( c.NIL + a-.NIL ) a→
-
   a.b.NIL | NIL

a.b.NIL | ( c.NIL + a-.NIL ) a→   [ b.p] | ( c.NIL + a-.NIL )

These two actions a-, a  can be performed because there is no restriction.

a.b.NIL | ( c.NIL + a-.NIL ) b⇒   [ p] | NIL

since  a.b.NIL  | a→  b.NIL  and ( c.NIL + a-.NIL ) |
a→
-
   NIL

therefore a.b.NIL | ( c.NIL + a-.NIL )  | τ→  b.NIL | NIL

and also b.NIL | NIL  b→  [ p] | NIL ❚
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When an action b is requested at a locality and the component satisfies that request, it

could cause a modification of a different component, which in turn  could set off a

chain of changes of other components.

This means now there are concepts of  a⇒  and  ∈⇒ which include communication and

therefore weak d-bisimulation can be redefined (using the second option to correct the

definition). The same notation is used as previously.

Definition  A symmetric relation R ⊆ (EL×EL) is a weak d-bisimulation if it satisfies

R ⊆ WD(R)  where WD(R) is defined by

(p,q) ∈ WD(R)  if  ∀ a ∈ A:

 i)   p ∈⇒ p′       implies   q ∈⇒ q′       for some q′  such that (p′, q′) ∈ R,

ii)   p a⇒ C[p′]  implies   q a⇒ D[q′]  for some q′  such that (p′, q′) ∈ R

                                                                                       and (C(p′), D(q′)) ∈ R

This can be expressed as  p ≈d q if (p,q) ∈ R,   for some weak d-bisimulation R ❚

As previously ≈d is not preserved by +, and the behavioural equivalence is taken as the

closure of ≈d  with respects to contexts,  ≈d
c

Definition

p ≈d
c q   if for every context  C[] :  C(p) ≈d  C(q)

This defines the equivalence to be the largest Σ2 congruence generated by  ≈d. ❚

 ≈d
c is difficult to manipulate,and a similar proposition is required.

Proposition   p ≈d
c q   iff  a + p ≈d  a + q  for some a not in  p,q.        ❚

TOWARDS AN ALGEBRAIC CHARACTERISATION OF W EAK DISTRIBUTED

BISIMULATION WITH COMMUNICATION

Processes cannot  communicate across  |́   and therefore (LP1) no longer holds.

(LP1)     p | q  =      p  |́   q  +   q  |́   p

A new operator  |c   is introduced which enforces communication between components.

The operational semantics of  |c  are as follows. P  |c Q  can only perform τ moves.

(F6)       Rule F6.    P  | a→  P′   Q | a→
-
  Q′    implies   P  |c Q  | τ→  P′ | Q′

(LP1) is replaced by:
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(LP1’)     x | y  =    x  |́   y  +   x  |́   y  +  x  |c y

  |c  can be axiomatised as follows.

Communication Axioms for  ≈d
c

(LP1’)    x | y    =    x  |́   y  +   x  |́   y  +  x  |c y

(CP1)     x  |c ( y + z)  =  x  |c y  + x  |c z

(CP2)     x  |c y  =  y  |c x

(CP3)     x  |c NIL   =  NIL

(CP4)     ( µ.x  |́  x′) |c ( ν.y  |́  y′) = τ.( x | y ) |́  ( x′ | y′ )   if µ = ν-

                                                                                    =  NIL                           otherwise
(CP5)     a.( x | x′ )  |́   ( y | y′ )  +  a.(c.x  |́  x′ + v)  |́   (c-.y  |́  y′ + w) =

               a.(c.x  |́  x′ + v)  |́   (c-.y  |́  y′ + w)

There is no proof presented for completeness, as the simplification lemma has not been

generalised. However the authors refer to a complete axiomatization for a slightly

different formulation of the semantics in [4].

CASTELLANI AND H ENNESSY’ S CONCLUSIONS

They have shown a new ‘noninterleaving’ semantics for simple CCS-like languages

excluding communication which can be completely axiomatised. The authors note that

major omission is treatment of hiding or restriction of channels. and that much work

must be done before this extension be realised. They intend to pursue this line of

research.

The authors also list other work that has been done in obtaining noninterleaving

semantics for CCS.

 i)  Petri nets [9]

ii)  Event structures [1] [4] [13]

The authors comment that the problems with first two approaches is that they give very

concrete models of concurrent computation.

iii) Degano, De Nicola and Montanari [6] follow a similar approach to the authors, but

use it build partially ordered computations for processes. In a later work [9] published

after Castellani and Hennessy’s paper they describe the calculus in terms of partial

orderings, where CCS agents are decomposed into sets of sequential subagents.

iv) Labelled partial orders [1] have been used for concurrent languages. A new

equivalence, pomset (partially ordered multiset) bisimulation has been presented with

an axiomatisation. Pomset bisimulation is coarser then distributed bisimulation.
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W HY DISTRIBUTED BISIMULATIONS ?

In this section, I would like to investigate some questions that relate to Castellani and

Hennessy’s argument for distributed bisimulation. I will not try to answer this

question as it is beyond the scope of this paper.

In their introduction, the authors state they wish to preserve more of the structure of

processes, as compared to more traditional approaches to bisimulation that allow

interleaving semantics which ignores the concurrent structure of systems. The d-lts

allows causality to be distinguished by retaining the local information of a process

when a transition occurs and this d-lts can be used to define a distributed bisimulation

equivalence that is more discriminating than an ordinary bisimulation.

The questions that these statements give rise to are as follows:

Why does causality need to be captured?

What structure of processes is to be retained?

Why is an interleaving semantics not sufficient?

Do distributed bisimulations capture the desired structure?

After surveying the literature, it seems that this is ill-defined area. There are two

general approaches to describing concurrent systems, interleaving or partial  ordering

which is often referred to as ‘true concurrency’. First I will discuss  points relating to

interleaving, secondly those relating to partial orders and other noninterleaving

approaches, and thirdly general points about specifying concurrent systems.

Degano et al [8] claim that the adherents of interleaving use interleaving to express

concurrency by allowing events to occur in any order. They then go on to state that

this imposes ‘a total ordering among spatially separated and causally independent

events’; this approach assumes a global clock and global state. They also state that the

reasons that this approach is advocated is because of the simplicity of the underlying

mathematics.

Degano et al [7] in a different paper, note that temporal/causal dependency plays a

crucial role in defining certain properties and it may be awkward to define

starvation/fairness in interleaving languages. This is also noted in Carchiolo et al [3],

where  limitations of LOTOS (a specification language based on CCS) are discussed.

One of these is the fact that CCS is not suited to the treatment of fairness. Brookes et al
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[2] state that ‘it seems impossible to define a notion of fairness such that a ‘fair’

process can be distinguished from an ‘unfair’ one by any finite observation. This point

is also mentioned by Lamport and Lynch [10] when describing CCS.

Lamport and Lynch [10] describe the Alternating Bit Protocol as an example of an

distributed algorithm. This algorithm been has specified using pure (non-distributed)

CCS by Milner [11].

Pratt [12] gives a concrete situation as an argument against interleaving. He considers

two ships, one in the Pacific and one in the Indian Ocean. Events on the buses of the

computers on the ships take place in nanoseconds whereas communication between the

ships via satellite takes a second or more. He goes on to state that ‘the idea that the

totality of the two events can have a well defined linear ordering can have no practical

status beyond that of a convenient mathematical fiction. Our position is that it is neither

convenient nor mathematically useful. It is just as convenient, and more useful to work

with partial orders.’ Some areas where Pratt claims interleaving gives problems are

where there are nonatomic events or events that are a set of moments.

Degano et al [8]  claim that partial orderings express concurrency as absence of

ordering and no global clock is imposed. The behaviour of a system is expressed in

terms of the causal relationships between subparts. In [7] Degano et al state that partial

orderings explicitly specify the temporal and causal relations between events.

In terms of general comments about concurrent systems, Lamport and Lynch [10] note

that in sequential computing the theory rests on concepts that are independent of any

model and ‘if there is any such fundamental formal concepts underlying distributed

computing, they have yet to be discovered’. They also point out that often it is argued

that if there is no global state in a system, then one should not use a global state in

reasoning about the model. However Lamport and Lynch argue that one can reason

using an arbitrary chosen global state even though there is no unique definition of

global state. Degano et al [7] point out that  the issue of interleaved or partial orders

cannot be resolved until there is a precise definition of ‘what and how to observe’ of

the computations of a model.

This above discussion reveals that there is much conflict over what is required when

modeling concurrent systems. A major problem with CCS (apart from the fact that it

models concurrency with nondeterministic sequentiality)  is that it cannot model

fairness properties. This however is not solved by the introduction of distributed
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transitions and bisimulations as the observations are still finite.  A problem with most

of the literature on this topic is that no examples are given of concrete problems that

require solution by retaining the temporal/causal dependencies, although theoretically

this is an interesting problem.

CONCLUSION

The authors have presented an interesting extension to CCS to take into account the

distributed nature of processes. As yet, the axiomatisation is only developed for simple

CCS-like languages without communication. A simple language with communication

has been developed, but no axiomatisation has been discovered for it.  I found a few

problems with the paper that I attempted to resolve. These occurred in the definition of

weak d-bisimulation. I was also unable to give an example of where it would be

preferable to use this concept instead of ‘pure’ CCS. However since the semantics

were only defined for simple languages, this cannot be a major criticism.

One aspect of this that I find problematic, is that the representation of communication

has become less clear than presented in original CCS. The authors have now created

three different types of transition i) observable local action, ii) global τ action (that

could be localised if the τ action was pre-emptive) and iii) global communication

actions a and a- which combine to form a global  τ action.  The fact that restriction and

relabelling are missing from the description perhaps hinders understanding of how

these different types of transitions interact.

If this theory does become further developed, there will need to be trade-off between

its power to describe distributed systems and the fact that certain issues have become

more complex.

As described in the last section it is difficult to define what is required for a language

for specifying concurrent systems and this is an area that requires better

understanding, before a concept such as distributed bisimulations can be fully

evaluated.
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