Measuring Concurrency in CCS

Vashti Christina Galpin

September 1993



Measuring Concurrency in CCS

Vashti Christina Galpin

A research report submitted to the Faculty of Science,
University of the Witwatersrand, Johannesburg,
in partial fulfilment of the requirements for

the degree of Master of Science

September 1993



Abstract

This research report investigates the application of Charron-Bost’s measure of con-
currency m to Milner’s Calculus of Communicating Systems (CCS). The aim of this
is twofold: first to evaluate the measure m in terms of criteria gathered from the
literature; and second to determine the feasibility of measuring concurrency in CCS
and hence provide a new tool for understanding concurrency using CCS. The ap-
proach taken is to identify the differences between the message-passing formalism in
which the measure m is defined, and CCS; and to modify this formalism to enable
the mapping of CCS agents to it. A software tool, the Concurrency Measurement
Tool, is developed to permit experimentation with chosen CCS agents. These ex-
periments show that the measure m, although intuitively appealing, is defined by an
algebraic expression that is ill-behaved. A new measure is defined and it is shown
that it matches the evaluation criteria better than m, although it is still not ideal.
This work demonstrates that it is feasible to measure concurrency in CCS and that

a methodology has been developed for evaluating concurrency measures.
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1. Introduction

As Hoare has noted ‘Concurrency remains one of the major challenges facing Com-
puter Science, both in theory and in practice’ [50, Foreword]. For this reason, the
investigation of issues that relate to concurrency is an important area of research,

as such investigations can further our understanding of concurrency.

1.1 Problem motivation and analysis

Algebraic calculi of processes provide an approach to modelling communication and
concurrency by describing the behaviour of concurrent communicating systems in
terms of an operational semantics. Robin Milner’s CCS (Calculus of Communicat-
ing Systems) is an example of this type of calculus. CCS provides for the definition
of agents using a small number of operators and allows for the description and spec-
ification of concurrent systems, and hence for an understanding of the behaviour of
such systems and the comparison of different systems. CCS also allows for speci-
fications that abstract from the internal details; and for partial specifications that
use agent variables. Any new tools developed for use with CCS will further the
understanding of concurrent systems.

In the literature, there are a number of approaches to analysing the behaviour
and performance of concurrent systems. Lamport and Lynch [47] note that there
are two basic complexity measures for distributed algorithms: time complexity and
message complexity. Time complexity measures the amount of time taken by mes-
sage passing in a particular algorithm, since the time taken for message passing is
assumed to be much longer than that required for computation. Message complexity
is based on the number of messages transmitted during a computation, although it
can also be based on the total number of bits transmitted. Often with distributed
algorithms there is a tradeofl between time and message complexity—an algorithm
can be ‘improved’ by decreasing its message complexity with a resulting increase in
time complexity. Parallel programs also exhibit concurrency and their performance
can be measured by speedup; the ratio of time taken to execute the program on one
processor and the time taken on n processors [57].

However, as Bernadette Charron-Bost has noted [15], none of these measures
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assess the structure of the computation. She gives the example of a multibroadcast
problem with two solutions—the solution with the lower number of messages works
in an essentially less concurrent manner and is less resistant to failure than the
solution with the higher number of messages. She also notes that message complexity
can be misleading since the length of messages is not taken into account, although
this can be ameliorated by using bit complexity.

The issue of message and time complexity in distributed systems will not be
discussed further in this document; however, speed-up in parallel systems will be
discussed in Chapter 2 because this gives an indirect indication of the amount of
parallelism present in a computation.

Recently in the literature, the notion of a concurrency measure has been proposed
by a number of authors [2, 3, 4, 5, 14, 15, 32, 36, 38, 44, 45, 59]. This notion is
based on the concept of a quantitative measure of the amount of concurrency in
a computation or algorithm. These measures are defined either on [0, 1] or [0, 00),
and they are usually based on an intuitively appealing feature of the theoretical
framework within which they are defined.

Although there have been a number of different measures proposed, there has
been a lack of experimental results for these measures, and the majority require
further evaluation. Generally, it appears that researchers present measures but
little further research is done to evaluate the usefulness of the defined measures for
dealing with concurrency in more practical situations. One aspect of this research
is to remedy this situation by first investigating one specific measure, and second
by proposing a general approach for evaluating measures.

To evaluate measures of concurrency, it is necessary to determine which features
or characteristics are generally desirable. Dispersed throughout the literature are
a number of different criteria for evaluating measures of concurrency. These dif-
ferent approaches will be drawn together in this research and used to evaluate the
measure of concurrency to be investigated. Evaluation criteria can be divided into
two categories—those that are subjective and those that are objective. The three
objective criteria are those that relate to the performance of the algorithm used
to calculate the measure, to whether a measure of concurrency can be determined
for a specific event, and to the stability of the measure with respect to granularity.
(These terms will be defined and explained in Chapter 2.)

The remaining criteria can be described as subjective. The intuitive understand-

ability of the measure and its behaviour on small examples are subjective because
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they relate to individuals’ perceptions of concurrency. These two criteria are often
used in the original design of the measure.

Another important criterion is that of compatibility with operators. Operators
on concurrent computations allow computations to be ‘joined’ in some sense. Ex-
amples of such operators are parallel concatenation and sequential concatenation.
When two computations are combined by an operator, it would be desirable that the
measure of concurrency for the combined computations can be explained in terms of
the type of operator. For example, when computations are combined in parallel, it is
reasonable to expect the measure to increase as the computation has in some sense
become more parallel. There are a number of different approaches to operators in
the literature which will be discussed in this document. Compatibility with opera-
tors is an important criterion as it relates to the different levels of abstraction that
are used in specifications, and to partial specifications. If the effect of an operator
can be explained, then the effect on the amount of concurrency when exchanging
components or instantiating variables can be determined. This will lead to a better
understanding of concurrent systems.

Finally there are two further criteria, which are also subjective, that relate to
the functionality of the measure—usability in analysing distributed algorithms and
applicability to real situations. These last two criteria obviously are important in

determining the usefulness of the measure.

1.2 Statement of problem and objectives of the re-

search

CCS is a formalism for the investigation of concurrency that provides an understand-
ing of concurrent behaviour and any tools that can be used with CCS will advance
this understanding. An example of this type of tool for investigating concurrency
is the concept of a measure of concurrency. A number of these measures are pre-
sented in the literature; however, most of these have not been fully evaluated. The
objective of this research is to address these issues by using CCS as a framework in
which to evaluate measures of concurrency.

The focus of this research therefore will be to apply a measure of concurrency
to CCS. As will be shown in Chapter 2, Charron-Bost’s measure of concurrency
m [14] has been chosen as the measure to be studied in this research, as it is one

of a number appearing in the literature that require investigation. This measure
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of concurrency is based on the concept that ‘the less the stopping of one of the
processes blocks the other processes, the more concurrent is the computation’ [14,
p. 45].

By applying a measure to CCS, a new approach to investigating aspects of con-
currency will be gained and a new methodology for evaluating concurrency measures
in CCS will be defined, although in this research only one measure will be investi-

gated.

The main objectives of this research are to:

1. Evaluate m as a measure of concurrency by applying it to CCS and using the

evaluation criteria that are found in the literature.
2. Investigate the feasibility of measuring concurrency in CCS.

3. Develop and evaluate a tool to measure the concurrency of CCS agents.

The outcome of achieving these objectives will be:

1. A measure of concurrency defined for CCS will provide a new tool for the inves-

tigation of concurrency and a framework for the measurement of concurrency

in CCS.

2. The measure of concurrency m will be evaluated, first in terms of its applica-

bility and second in terms of its validity as a measure.

3. An approach to evaluating measures of concurrency will be developed.

1.3 Method of investigation
The research will be conducted in the following manner:

1. A literature survey of evaluation criteria for measures of concurrency, measures
of concurrency and relevant issues in CCS will be presented and the choice of

the measure m will be justified.

2. The differences between the message-passing formalism in which the measure

is defined, and CCS will be identified.
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3. The message-passing formalism will be redefined so that CCS agents can be
translated into this formalism while ensuring that the justification for the
measure of concurrency remains the same. It will be shown that the existing

results still hold in the redefined model.

4. A translation algorithm will be developed to map CCS agents into the message-
passing formalism. The algorithm will deal only with a subset of CCS and this

subset will be chosen and motivated.

5. An algorithm will be developed to calculate the measure and a theoretical

analysis of this algorithm will be presented.

6. The Concurrency Measurement Tool will be implemented to automate the
calculation of the measure for CCS agents. The Concurrency Measurement

Tool will be used to experiment on chosen CCS agents.

7. The results of the experiments will be used to evaluate of the measure in
terms of the criteria presented in the literature survey and to investigate the

feasibility of measuring concurrency in CCS

1.4 Organisation of the research report

The report will be structured as follows:
Chapter 1. Introduction

Chapter 2. Concurrency : measures and formalisms This chapter will
present the background literature that relates to concurrency measures. Ways to
evaluate measures of concurrency will be presented first to set the scene for the
discussion of measures of concurrency. These criteria will be described in detail, and
a framework will be developed to discuss the interpretation of compatibility with
operators. Measures will be grouped in terms of the frameworks within which they
are defined. Lamport’s message-passing formalism that defines a partial ordering
model of a distributed system will be discussed in some detail, as a number of
measures including the measure to be evaluated in this research, are defined in this
formalism. A discussion of relevant issues in CCS, such as partial ordering, time
and a measure of maximum parallelism will also be presented. The justification of

m as the measure for consideration will be given in the final section.
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Chapter 3. Applying the measure to CCS In this chapter, the differences
between the message-passing formalism that describes a distributed system and CCS
will be identified and discussed. After this, the message-passing formalism will be
redefined to take into account these differences. This redefinition will be done so
that the justification for the measure still holds in the new formalism. A number of
results are required to define the measure, and it will be shown that these results are
valid in the redefined formalism. Finally, issues relating to the translation procedure
for mapping CCS agents into the message-passing formalism will be discussed and

the translation algorithm will be presented.

Chapter 4. Concurrency Measurement Tool This chapter will discuss the
program written to perform the experiments on CCS agents. The main focus of the
chapter will be on the algorithm for counting the number of consistent cuts although
other algorithms and an overview of the program will be presented. An analysis of
the algorithm for counting consistent cuts will be presented and the performance of
the Concurrency Measurement Tool will be related to the theoretical results for the

algorithm. Other algorithms will be suggested and analysed.

Chapter 5. Results and evaluation The experiments that were performed
using the Concurrency Measurement Tool will be detailed, including a description
of the aim of each experiment and the agents used in the experiment. The results
of each experiment will be presented and will be used to investigate the measure of
concurrency in terms of the criteria presented in Chapter 2. These results will show
that m does not meet all the criteria and a modified measure myew will be presented
and evaluated. This evaluation will show that mpew is better behaved than m. It
will be argued that the measurement of concurrency in CCS is feasible and that a

methodology has been developed to evaluate concurrency measures.

Chapter 6. Further research and conclusions In this chapter, a summary of

the research and the conclusions will be presented. Further research will be outlined.



2. Concurrency : measures and

formalisms

2.1 Introduction

In this chapter, background literature will be presented, relating to both measures
of concurrency and CCS. Criteria for the evaluation of measures of concurrency will
be detailed, and a new framework for the discussion of compatibility with operators
will be developed. This will facilitate the discussion of measures of concurrency
that will follow. The majority of the measures to be discussed in this chapter are
defined in the message-passing model of a distributed system defined by Lamport.
This formalism will be described and then the relevant measures will be presented,
including Charron-Bost’s measure m which is the focus of the research. In the
section on CCS, the components of an algebraic calculus will be presented, and
partial orders and time in CCS will be discussed (an overview of CCS is presented
in Appendix A). A measure of maximum parallelism defined for CCS will also be
presented. In the final section, the justification for the choice of Charron-Bost’s

measure m will be given.

2.2 Evaluation criteria for measures of concurrency

The idea behind a measure of concurrency/parallelism is to obtain a numerical
value to indicate the amount of concurrency there may be in a computation or
an algorithm. This value will then allow for the comparison of computations or
algorithms in terms of the amount of concurrency.

In general, measures of concurrency® fall into two distinct groups with respect
to the range of values that the measure can obtain. Measures in the first group give
a value in the interval [0, 1], indicating the amount of concurrency present with 0
indicating no concurrency and 1 indicating some maximum amount of concurrency.

Those in the second group return a value in the interval [0, c0) giving some indication

!In the rest of this research report, the term ‘measure of concurrency’ will be used to indicate
both a measure of concurrency and a measure of parallelism.
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of the number of concurrent processes.

It is necessary when developing a new tool to perform experiments to ensure
that the tool behaves correctly. In most of the literature dealing with measures of
concurrency, this experimentation is not present, except for a few small examples.
For a measure of concurrency to become useful, experiments and experiences with
the measure need to be reported.

The process of defining a measure of concurrency presents difficulties as there
is no single objective way to determine if the measure is performing as desired.
Consider the following example. If a new technique is being developed for measuring
short distances, it can be evaluated and checked for consistency against methods
proven to work, for example, tape measures. However, in this situation, there is no
well-defined method with which to compare a concurrency measure to determine its
correctness. This means that it is necessary to determine a number of criteria that
can be used to evaluate the measure. This is complicated by the fact is that some of
these criteria are also used in the definition of the measure. For example, a measure
can be defined by finding an intuitively appealing explanation for using a particular
feature of a formal model, and by using the measure on small examples and with
operators.

The criteria that are found in the literature are as follows:

1. Intuitive understanding of the measure [14].
2. Being well behaved for simple examples [14, 15].
3. Compatibility with operators on computations [15, 18, 32].

4. Usability for comparison and analysis of distributed algorithms and applica-

bility to real situations [15, 45].

5. Ability to calculate measure during the computation for a specific event [32,

59].
6. Lack of expense of computation in terms of both time and space. [32, 38, 59].

7. Stability with respect to granularity [16].

These criteria are open to criticism because although they can show that a measure
is poor, the process of showing whether a measure is good is more difficult as there

is no objective way to do this.
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In following sections, each criterion will be explained. The first four items are
very subjective criteria although they may not all seem so at first. The next three
are more objective and it is possible to check objectively whether a measure of
concurrency satisfies them, although there is some debate about whether the final
criterion is applicable to all measures.

This section is presented before the review of concurrency measures because the
concepts given here are required to discuss the measures. However, some material
in Section 2.2.3 relies on definitions that occur later in this chapter, and the reader

is advised to read that section briefly at first.

2.2.1 Intuitive understanding of the measure

This criterion relates to being able to understand why the definition of the measure
is sensible [14]. For example, Charron-Bost’s measure m, produces a value in the
range [0,1], where 0 represents total sequentiality and 1 total concurrency. The
concepts that are being used to define the measure, namely consistent cuts, are
explained as a way of measuring the tolerance of the computation to stopping. This
explanation appears to give a good approach to measuring concurrency.

This criterion is, of course, subjective as one cannot objectively determine the
intuitive appeal of a definition. It is also conceivable, however, that a measure could
be defined in such a way that its definition is non-intuitive or even counter-intuitive,

and still satisfy all other criteria.

2.2.2 Being well behaved for small examples

It is desirable that a measure of concurrency will work in a reasonable way on small
examples [15]. In fact, as described above, this is often used in defining a measure.
Charron-Bost [14] uses these grounds to reject the measure w. She presents two
examples that have the same measure under w. However, the space-time diagrams
of the examples show that one appears more concurrent. This means that this is a
subjective criterion, since it involves perceptions of concurrency. In small examples,
it would seem fairly easy to obtain some sort of consensus in the area; however,

when dealing with larger computations, it becomes more difficult to decide.

2.2.3 Compatibility with operators on computations

Compatibility with operators means that when computations are ‘joined’ by opera-

tors, the amount of concurrency will change in a way that can be explained by the
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actions of the operators. This issue is discussed both by Charron-Bost [15, 16, 18]
and Fidge [32] in their papers on measures of concurrency. This section will be
organised as follows: first, the approaches taken in the literature will be discussed
in detail, then a framework will be developed to generalise the work that has been
presented. The explanation of the operators relies on definitions to be presented
later in the chapter and it is suggested that the reader give this section a brief
reading at first, returning after the completion of Section 2.3.

Charron-Bost [15] defines two operators—concatenation and fusion. Concatena-
tion is essentially the joining of one computation after another where the computa-
tions have the same number of processes? (see Figure 2.1a). Fusion occurs when two
computations have some process sequences with common prefixes. The processes are
merged to obtain the longest computations for each process® (see Figure 2.1b). The
effect is to obtain a computation from the two computations that is more parallel
than either of the component computations.

Charron-Bost’s measure of parallelism p is evaluated in terms of these two op-
erators [15]. If C' is the concatenation of C' and C”, with measures p, p’ and p”

respectively, then p can be expressed as

n._n

p=wp +w'p" where v’ +w"” =1

where w’ and w"” correspond to the relative sizes of the computations C’ and C”.

This implies that

p > min(p', p") and

p < max(p’, p").

Since for p, 0 represents a totally concurrent computation and 1 a totally serial com-
putation, this shows that the computation formed by concatenation cannot become
more parallel than its more parallel component, nor can it become less parallel than

its less parallel component.

2Consider the computations

C  ={C1,Cs,C:} with Ci=ab Cs=cde Cs = fghijk
¢’ ={C|,Ci,cl} with O =1 Ch =mn Ch = opq
then
¢’ ={Cy,cy,C)} with Cy =abl Cj =cdemn Cj = fghjkopg.

is the concatenation of C and C’.
®Consider the computations

C = {Cl,CQ, Cg} Wlth C1 = abcde CQ = fgh Cg = ]k

¢’ ={Ci,C, 0} with Cf =ab Ch = fgh Ci=jklmno
then

¢’ ={cy,cy,C}y with Cy = abede C3 = fgh C3 = jklmno.

is defined as the fusion of C and C’. Note that C] is a prefix of C; and Cs is a prefix of Cj.
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Figure 2.1: (a) Concatenation. (b) Fusion.

Also, if C'"™ is the concatenation of C' m times with measure p™, then

p=p
Charron-Bost argues that this shows the behaviour of the measure p is correct.

If C' is the fusion of C’ and C", with measures p, p’ and p” respectively, then it

can be shown that

p < max(p’, p").
Since for p, 0 represents a totally concurrent computation and 1 a totally serial
computation, this shows that the computation formed by fusion is more parallel
than the lesser of two computations combined to form the fusion.
Fidge [32] has defined a measure § with range [0, 1] with 0 representing total
sequentiality and 1 representing total concurrency. The following relationship holds

for the computations Cq,...,C,

where ; represents the serial concatenation of computations and | represents the

parallel concatenation of computations*. Also

B(Cr;...;Cp) < max B(C5)

= 1<i<n

*The definition of ; and | are simpler in Fidge’s formalism since nested parallelism is allowed.



CHAPTER 2. CONCURRENCY : MEASURES AND FORMALISMS 12

B(Cy|...|Cp)> min B(C;).

1<j<n
When computations are concatenated serially then the amount of concurrency can-
not become greater than the most concurrent component computation; similarly
when computations are concatenated in parallel then the amount of concurrency
cannot become smaller than the least concurrent component computation. He also

notes that

B(Cy;...;Cp) = max B(C;) when B(C;)=0Vie{l,...,n}
1<5<n

although in the general case, § is significantly reduced.

Generalisation

To write these concepts in a generalised form, let ] represent some generic form
of parallel concatenation, ~» some generic form of serial concatenation and MC a
generic concurrency measure, defined on [0, 1] with 0 representing a totally sequential
computation and 1 a totally concurrent computation.

I have chosen the following rules to describe compatibility with operators in the

general case for measures defined on [0, 1]:

MC(C'~C") < max(mc(C'), mc(C"))
Mc(CNC") > min(mc(C"), mc(C")).

They can be described as follows:

e when dealing with serial concatenation the concurrency cannot become greater

than the amount occurring in any component computation;

e when dealing with parallel concatenation the concurrency cannot become less

than the amount occurring in any component computation.

These rules have been chosen because they appeal to an intuitive understanding
of the application of operators to computations, they are not dependent on any
particular measure as both hold for p and 3, and although they are general, they
are not so general as to be meaningless.

Both Charron-Bost® and Fidge state that sequential composition should make

the resulting computation no more concurrent than its more concurrent component

®As the work done by Charron-Bost relates to a measure defined so that 1 represents total
sequentiality and 0 represents totally concurrency, it is necessary to ‘invert’ the results with respect
to the generic concurrency measure that is defined so that 1 represents total concurrency and 0
represents total sequentiality, as are most measures presented in the literature.
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computation; and that parallel concatenation should make the resulting computa-
tion no less concurrent than its least concurrent component computation.
However, they differ with respect to sequential concatenation on two results.
First with respect to the condition under which equality should occur; Fidge states
that equality only happens when both component computations are sequential and
therefore have measure 0, whereas for Charron-Bost equality occurs when the two
component computations are the same. Second, they differ on whether the resulting
computation can become less concurrent than the component computations; it can
be shown from Charron-Bost’s work that the resulting computation cannot become
less concurrent than the less concurrent of the component computations, whereas
Fidge does not draw this conclusion. In the rules given above, I have taken a more

general approach that does not exclude any of these interpretations.

2.2.4 Usability and applicability

A measure of concurrency must be usable for comparing and analysing real dis-
tributed algorithms [15, 45]. This can be tested by performing the measurement
and investigating the results. As noted earlier, it is difficult to have an objective
or even intuitive idea about the amount of concurrency present in an algorithm, so
this presents problems for evaluating the results of the experiment.

An issue that can also be raised under this heading is the issue of the distribution
of values in the range of the measure. If the values obtained for algorithms being

measured tend to fall in a small subrange, there are a number of possible reasons:

e The algorithms that are being investigated have some particular characteristic;

other algorithms will have different measures.

e The measure is poor and all ‘real’” algorithms will have a similar measure that

does not differentiate between them.

e The measure is in a sense ‘non-linear’ and all ‘real’ algorithms will fall into a
very small subrange; however the difference in the values of the measures is

significant.

Although the last two items have very different implications, it is difficult to deter-

mine which one actually holds for a particular measure.
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2.2.5 Ability to calculate measure for a specific event

The measure can be calculated for a specific event if it has been defined so that for
any given event, a value can be calculated for the computation up to and including
this event [32, 59]. This allows for an understanding of how the concurrency changes
during the computation, and an indication of where bottlenecks are occurring. An-
other advantage occurs when these values can be determined during the running of

the computation, as opposed to afterwards. This is obviously an objective criterion.

2.2.6 Expense of computation in terms of both time and space

This relates to the algorithm for the calculation of the measure [32, 38, 59]. The

questions that need to be asked are as follows:
e Does the algorithm require exponential time?

o If the algorithm is exponential, does it allow the calculation of the measure

for reasonably sized examples? What are the constants involved?

o If the algorithm is exponential, are there any algorithms that will allow for an

approximate solution?

Again, this criterion can be classed among those that can be objectively determined.

2.2.7 Stability with respect to granularity

For some measures, it is necessary to count events that have occurred in specific
processes. Therefore the definition of what constitutes an event becomes important,
and as this definition becomes finer or coarser, there is an increase or decrease in
the number of events. Charron-Bost [16] defines this as granularity. However, she
expresses reservations about whether it is necessarily desirable for all measures to

be stable with respect to granularity.

2.3 Measures of concurrency

Under this heading, the measures of concurrency found in the literature will be
presented. It is only relatively recently that the concept of a measure of concurrency
has been proposed, and discussed in detail. In some references, the concept is
developed as minor part of a broader topic, and in others, the focus of the article

is on a particular measure of concurrency. The different approaches that appear in
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the literature have not yet been compared, related or fully evaluated and the aim of

this research is to contribute towards this.

2.3.1 The message-passing formalism

The measures of concurrency described in the following sections are defined in the
framework of space-time diagrams of Lamport [46], also referred to as the message-
passing formalism. These diagrams define a formal model of a distributed system
and allow for the definition of a partial ordering on the events in the distributed
system, called the ‘happened before’ relation. These measures of concurrency rely
on the definitions of logical clocks that capture the partial ordering of events in the

distributed computations.

The ‘happened before’ relation

Lamport [46] introduced the ‘happened before’ relation that gives a partial order
of events in a distributed computation. This framework has been formalised by
Charron-Bost [14] as follows:

A distributed system consists of a finite set of sequential processes { Py, ..., P,}.
A process P; is characterised by a set of sequences of events. Each set P; is prefix
closed, namely for any sequence in F;, all prefixes of the sequence are also in P;.

Events fall into three classes:
1. an internal event,
2. the sending of a message to another process,
3. the receipt of a message from another process.

All events and messages are different and can be distinguished from each other by
some means, for example unique subscripts. Messages are sent from one process
P; and received by another process P;, so a message cannot be sent by multiple
processes or received by multiple processes.

For each i, let C; be one of the sequences defining P;. The relation < is defined
on the set of events obtained from the set of sequences® C;U---UC,, as the smallest
transitive relation satisfying the following: (1) if @ and b occur in the same process
and a comes before b, then a<b, (2) if a is a sending of a message m, and b is

the receipt of m, then a<b. This relation, known as the ‘happened before’ relation

®In [16], a sequence of events is defined as a totally ordered set of events.
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7
. 7

Figure 2.2: A distributed computation expressed as a space-time diagram.

forms a partial order on the set of events, and was first defined by Lamport [46]. It
captures the causal relationship between events.

C =CyU---UC, is called a computation of {Py,..., P,} if it satisfies the
following: (1) (C, <) contains no cycles (2) for every receipt of the message m, there
is a single sending of m.

< is defined as: @ < b iff a<b or a = b. Events a and b are concurrent (a co b) if
=(a < b) and —(b < a). Concurrent events are those that are causally independent
of each other.

The happened-before relationship can be captured in the space-time diagrams
introduced by Lamport [46] (see Figure 2.2) and such diagrams entirely define the
computation [14]. In Figure 2.2, the horizontal lines represent processes, the time
axis runs from left to right, and send and receive events are joined by a directed

line.

Logical clocks

The reason for defining clocks on a distributed computation is to provide a tool
to determine if two events are concurrent with respect to the partial order defined
above [14]. This can be done by assigning a timestamp or date to each event, and
comparing these dates to see if two events are concurrent.

There are three different approaches to logical clocks as surveyed by Raynal [58]:
1. linear logical time — each date is represented by a single integer,

2. vector logical time — each date is represented by an n-dimensional vector,

3. matrix logical time — each date is represented by an n X n matrix.

Only the first and second have been used for measures of concurrency and they will

be described here.
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Py / . /
P, 1 3 4 5,

Figure 2.3: A distributed computation with linear logical clocks.

Linear logical time Linear logical time was defined by Lamport [46] in 1978. A
clock ¢; is defined for each process P; which assigns a number ¢;(a) to each event a.
The entire system of clocks is defined by ¢ which assigns to event b the number ¢(b)
where ¢(b) = ¢;(b) if b is in process P;. The implementation rules for the clocks are

as follows:
1. each clock ¢; is initialised to 0,
2. when process P; executes an internal event ¢; is incremented by 1,

3. when process P; executes a send event, ¢; is incremented by 1 and the message

m contains a timestamp T, = ¢;(a),

4. if event b is the receipt of a message m by process P;, then c; is set to

max(7y,,c;(b)) and incremented by 1.
These clocks satisfy the condition
a<b=c(a)<c(d).

Note that the converse implication cannot hold, as it would imply that c¢(a) = ¢(b)
if @ and b are concurrent [14]. Therefore the relationship between events cannot
be determined from the dates of events. Linear vector clocks, however, give a total
ordering of the events and the time at any event gives the number of events (including
that event) in the longest causal chain preceding it.

In Figure 2.3, the distributed computation of Figure 2.2 is shown with linear

logical clocks.

Vector logical time Vector logical time was developed independently in 1988 by
Fidge [30, 33], Mattern [49] and Schmuck [62]".

"[30, 62] are cited in Raynal’s survey article on logical time [58].
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Partially ordered logical clocks are represented as vectors in N™:

o If v € N™ then v[i] represents the ith component of v.
e N is partially ordered by <; a < b iff a[i] < b[i] for each index 1.

o If u,v € N”, then w = sup(u,v) is defined as follows: for each index ¢, w[i] =

max(ulz], v[i]).

Intuitively, the ith position in the vector clock of process P; represents the time in
P; and the jth position (j # 7) represents the most recent knowledge that P; has of

the time in process P;. Clocks are applied to processes as follows:

1. the initial value of the clock ©; is (0,...,0),
2. when process P; executes an internal event, ;7] is incremented by 1,

3. when process p; executes a send event, O;[i] is incremented by 1 and the

message m contains a timestamp 7, = 0;(a),

4. if event b is the receipt of a message m by process P;, O; is set to sup(7,, 09;),

and O;[j] is incremented by 1.

Note that this last rule is equivalent to saying increment ©;[j] by one and
set ©; to sup(Ty,, 0;), since ©;[j] always contains the most recent knowledge
about the logical time in process P;. So a more general rule for vector clocks
states increment ©;[¢] by 1 before any event in process P;. This is the formu-
lation that Charron-Bost uses in her work. However, this cannot be applied
to linear logical time if the logical clock time is to represent the length of the
longest causal chain of events before a given event (as is required for two of

the concurrency measures presented below).

For any event a that occurs in process P;, its vector time is O(a) = 0;(a).

These clocks satisfy the condition
a<b<scla)<c(d).

This means that vector clocks characterise concurrency—from the dates of two

events it is possible to determine whether the events are concurrent®. It has been

8There are other ways to characterise concurrency. For example, the absence of a path between
two events in the directed graph formed by the space-time diagram [44].
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Figure 2.4: A distributed computation with vector logical clocks.

shown by Charron-Bost that for n processes, clocks of size n are optimal—the partial
ordering of events cannot be captured with smaller clocks [17].

In Figure 2.4, the distributed computation of Figure 2.2 is shown with vector
logical clocks.

Fidge [31]° extends vector clocks to deal with nested parallelism where processes

can be dynamically created and terminated.

In the following sections, I will present the five measures of concurrency defined in
the above described framework. Each measure is defined for a specific computation
of an algorithm, where a computation is defined to be a specific execution of an
algorithm. Charron-Bost notes [15, 16] that to obtain a measure for an algorithm
the average of the measures of all the computations with a certain probability must
be calculated. This is not explicitly stated for all measures defined in this framework,
but is taken as given. At the end of each section, any existing work on the evaluation

of each measure will be presented.

2.3.2 Charron-Bost’s measure of concurrency w

Charron-Bost [14] suggests a measure of concurrency w based on counting con-
current pairs of events—the more concurrent pairs, the more concurrency in the

computation—defined as

O {(a,) | @ co b}
{(a,b)|a€ C;,be C;and i # j}
If each C; contains ¢; events, then there are Elgi <j<n ¢i¢; concurrent pairs in total
and this occurs when the computation is totally concurrent. If the computation is

entirely sequential then there are no pairs of concurrent events. Hence the range

°Cited in [32].
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of this measure is [0, 1], where 0 represents totally serial, and 1 totally concurrent,
namely with no communication between processes.

Charron-Bost notes that this is not a very accurate measure [14], and presents
an example to show where the measure does not behave in an intuitive way on a
simple example. The measure w does not allow the calculation of a measure for a
specific event. Fidge [32] has presented an algorithm to calculate the measure, but
there is no analysis of its complexity. Kim et al [44] suggest an approximation to
w, W that is cheaper to calculate. The measure has not been evaluated in terms of

any other criteria.

2.3.3 Charron-Bost’s measure of concurrency m

The measure m [14] will be the focus of this research, and therefore it will be
presented in detail. The reasons for the choice are presented in Section 2.5. The
measure m is based on counting the number of consistent cuts in a computation.
The concept behind this is that the more processes wait, the less concurrency the
computation exhibits. Since the ability of the computation to be cut consistently is
related to its tolerance to stopping, a computation’s concurrency can be measured
in terms of its number of consistent cuts.

A cut of a distributed computation can be defined as follows: Consider the sets

{z € C;,z < a;}, where a; is an event in C;, and their union

C= U {z ez =<a;}.
ie{1,...n}
This is called a cut. It is not a computation, as it may contain the receipt of a
message but not the sending of that message.

A consistent cut is a computation and it can be viewed as a global state of the
computation where causality is not violated [33], hence the consistent cut cannot
contain the receipt of a message without its sending. However, this global state does
include messages that are in transit, namely those messages that have been sent but
not yet received [49].

A consistent cut can be defined formally as follows: a consistent cut of a dis-
tributed computation C is a cut C’ that is left closed by the causality relation. This
means that for any a,b € C,if b€ C'and ¢ < b = a € C'. An example of a consis-
tent cut is the past of an event a, (| )¢ or (] @) defined by (| a) = {z € C,z < a}.
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Results from combinatorics are used to define the measure. If it is assumed that

each C; contains g; events, then the following values can be determined analytically:

e The value p® represents the number of consistent cuts in a totally sequential
computation. A totally sequential computation is one in which no events can
happen concurrently and it can be conceptualised as each process completing
before the next process begins. Hence, there are g; events in each process at
which the computation can be cut consistently. Together with the empty cut

that is also consistent, it follows that p°* =14+ ¢ + -+ ¢y.

o The value ¢ represents the number of consistent cuts in a totally concurrent
computation. This is defined to be a computation where there is no commu-
nication between processes. For each process, there are ¢; events at which
a consistent cut can occur plus the start of the process when no event has

yet occurred. Because all the processes can run concurrently, this means that

pe=0+q) - (1+q).

The measure m is defined as

m(C) = 7:__’;

where p is the number of cuts in the computation under consideration. The measure
takes values in the interval [0,1] with 1 for a concurrent computation and 0 for a
sequential computation.

Charron-Bost presents two methods to determine p.

1. A cut

C= U {r €Ci|z <a;}
1€{1,...,n}

is consistent if and only if

sup(O(aq),...,0(a,)) = (0(a1)[1],...,0(a,)[n]).
Hence each cut can be checked for consistency using the vector clocks.

2. The number of antichains (or independent subsets)!? of a partially ordered

set of events is equal to the number of consistent cuts in that distributed

19An antichain or independent subset has the property that no pairs of elements are related by
the partial order relation. In this case, all the events in an antichain will be concurrent.
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computation. Therefore each subset can be checked to see if it is an antichain.
Each pair of elements in the subsets can be checked for concurrency using the

vector clocks.

Charron-Bost also presents a geometric interpretation of the measure. This inter-
pretation allows for the identification of the events that contribute to a reduction in
concurrency.

Charron-Bost presents a comparison of w and m and she notes that w is a
special case of m. Let k-antichains denote antichains of size k, then w investigates
the number of 2-antichains, whereas m investigates the total number of k-antichains
for 2 < k < mn. Hence w = m when there are 2 processes. She notes that there exist
computations C' and C’ such that w(C) < w(C’) and m(C) > m(C’).

Charron-Bost [16] has compared two algorithms for calculating m, based on the
two methods of characterising consistent cuts. She notes that the algorithm that
counts the number of antichains is efficient when the computation under considera-
tion contains few 2-antichains. This would occur when there is little concurrency in
the computation, namely when there are few concurrent events. Kim et al [44] have
presented an analysis of the antichain algorithm that suggests it requires exponential
time. No further analysis of these algorithms has been presented.

Raynal [59] describes m as a good characterisation of the degree of concurrency
in a computation, but he notes that the computation of u is not feasible. Fidge [32]
notes that the calculation of y using vector clocks requires }; <<, ng; integers to
be stored and that m can only be calculated after the computation has terminated.

Recent work by Kim et al [44] suggests an approximation to m, denoted M
that is applied to formal protocol specifications. A computation is decomposed
into concurrency blocks and a measure is calculated for each block based on the
antichain approach. They show that the algorithm is faster than Charron-Bost’s
antichain algorithm; however they do not evaluate M in terms of any of the other
criteria or show how the values returned by the approximation differ from those
returned from the measure.

It has not been shown that there does not exist a fast algorithm to calculate
1, although any algorithm using vector clocks would have some expense in terms
of space, because of the necessity of storing the vector clock information and time,
because of the procedure for adding the vector clocks. It is possible to compare
events for concurrency without using vector clocks by showing that there is no

directed path in the graph between the events [44]. This results in a tradeoff between
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space and time, since once the vector clocks have been added, it is faster to check
for concurrency using the vector clocks of two events than to show the absence of a
path in the graph of events.

Charron-Bost [16] has shown that m does not give the expected results when
used with the operators concatenation and fusion. She describes the following: if
C(" is the computation created from [ copies of C' concatenated together, and C

has measure m and C'() measure m(). Then
m =m/l and | — o0 = m!) = 0.

She notes that this is counter-intuitive, as it would be expected that m() = m.
However, within the generalisation for compatibility with operators presented in
Section 2.2.3, this would be an acceptable result for an operator such as concate-
nation. She also notes that with fusion some concurrency is guaranteed when two
very concurrent operations are joined by fusion. Finally, she states that there may
be other operators that are better adapted for use with m, but she is not aware of
any that are easily studied from the point of view of combinatorics.

Charron-Bost [16] notes that the measure is not stable with respect to granular-
ity but argues that the causal relationship cannot remain the same as granularity
changes. Therefore this criterion is not applicable to a measure based on the causal
dependence and independence of events.

It is not possible to calculate the measure at a specific event in a computation,
although the measure can be interpreted geometrically which allows the bottlenecks
in the computation to be identified. The measure has not been evaluated in terms
of applicability to real examples.

Hence it appears that there is conflicting evidence regarding m. It has been de-
scribed as a good measure of concurrency, although it is computationally expensive
and is not compatible with operators; however, further work is required in these

areas.

2.3.4 Charron-Bost’s measure of parallelism p

In other papers [15, 18], Charron-Bost presents a measure of parallelism, which relies
on the idea that the less processes wait, the more concurrent the computation, as
does m. This measure is presented in the above-mentioned framework with the

following assumptions:

1. all processes start together,
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2. the time for an internal event in F; is constant and equal to &;,
3. sending and receipt of messages is instantaneous,
4. the time taken to deliver a message is constant and equal to ég.

A set of rules is defined for recursively determining the time 7'(a) at which event
a occurs. T; is defined as the time of the last event in process P;. Let p; be the
number of internal events in C; and pg the number of messages in C'. Two measures
are defined. The first is (p1,...,pn) where
_ T — pidi
pPi = 5.
250, }\{i} Pi0i

The measure p; is called a coeflicient of coupling. This describes the interactions
between P; and the other processes. It is one when the computation is sequential
and zero when it is totally concurrent and the last event of C' occurs in C;. The
measure (p1,...,ps) presents problems for comparison as R™ is not totally ordered.
A less accurate measure that allows for comparison is defined as
p= Yic(Ti—pibi)
> im1 (2 jeq0,mp\ (i} Pi05)

This measure takes on values in [0, 1] and equals zero if entirely concurrent; however,

it does not necessarily equal one if sequential. The measure p is called the mean
coeflicient of coupling.

Charron-Bost shows that this measure is compatible with the operators con-
catenation and fusion on computations, it is stable with respect to granularity, and
notes that it is well behaved for simple examples of computations. It has not been

evaluated in terms of any other criteria.

2.3.5 Fidge’s measure of concurrency f3

Fidge’s aims in designing a measure of concurrency are that it should be more
accurate than w but less computationally expensive than m, should yield useful
results during the computation, and should be general enough to deal with ‘nested
parallelism’, namely where processes can be created and can terminate dynamically
[32]. The measure is defined at an event a in the computation as

_PI-T

P= TP
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where | P | is the number of events that have occurred so far and is calculated by

summing the event-counts for each process in the clock for a
n
| P 1= 0(a)j].
=1

This value gives the number of events that occur before event a in terms of the
‘happened before’ relation. Other events may have occurred in the computation,
but there is no knowledge of them at a. 7 is the linear logical time and represents
the minimum number of logical time steps necessary to reach a (this is the same as

the longest causal chain)
T = c(a).

The measure is based on the idea that as totally ordered time 7 increases in pro-
portion to the number of events that have occurred | P | the amount of concurrency
decreases. The numerator denotes the amount of time ‘saved’ by the use of concur-
rency. The denominator represents the amount of time that could be ‘saved’ if there
were unlimited computing resources, assuming that it is not possible to execute it
in less than one logical time unit.

To calculate the observed concurrency for the whole computation, it is assumed
when the ‘outer level processes’ terminate, the logical clock is integrated as for
subprocesses, and the measure can be calculated.

The range of the measure is [0, 1], where 0 represents a totally sequential compu-
tation and 1 a totally concurrent computation. In this context, a totally concurrent
computation would be one in which there is a process for each event in the compu-
tation, since new processes can always be created. Therefore, Fidge’s totally con-
current computation is more concurrent than Charron-Bost’s definition where there
are a fixed number of processes and generally more than one event per process.

Fidge notes that there are similarities between § and p, as p measures the addi-
tional time introduced into the computation by concurrency. § tends to return lower
figures than w or m, since it assumes that more processes can be created. Fidge
suggests a more realistic measure that takes number of processors d into account

5= |P|-T
SIPI=IPId
He also shows that § is well behaved with respect to the operators ; (sequential
concatenation) and | (parallel concatenation). It has not been evaluated in terms of

any other criteria, such as applicability to real systems or usability for comparing
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distributed algorithms. Calculation of the measure would seem not to be computa-
tionally intensive since the measure can be calculated from the last known values of

the linear clock and the vector clock.

2.3.6 Raynal, Mizuno and Neilsen’s measure of concurrency o

Raynal et al [59] present two measures; a.(e) that measures how much time is wasted
in synchronisation delay to produce event e and a(C') that measures how much time
is wasted by synchronisation delay in the whole computation.

Two abstractions CONE and CYLINDER are described. A CONE refers to the
events that causally precede a given event. It is a partially ordered set and can be

defined in terms of the past of an event
CONE(e)=(le)\{e} ={b|be C,b =< e} \ {e}.

A CYLINDER refers to the partially ordered set associated with a given computa-
tion.

There are three values associated with each of the abstractions: volume, weight
and height. The calculation of these measures requires an additional counter to be
introduced. Each process P; contains a counter W; € N™. W;[i] stores ¢;, the value
of the linear logical clock; and W;[j],¢ # j stores the last known ¢; value of process

P;. The following rules are used:
1. W; is initialised to (0,...,0),
2. before process P; executes an event, W;[{] is incremented by one,
3. when a message is sent, it carries the value W;,
4. when a process P; receives a message from P; containing W;
(a) Wilk]is set to max(W;[k], W;[k]) for 1 <k <n (k#1)
(b) W;[7] is set to max(W;[¢], W;[j]) and W;[7] is incremented by 1.

Also define ©;(C') (respectively, W;(C')) to denote the values of ©; (respectively, W;)
when the computation C' terminates.

The weight(CONE(e)) represents the number of events that causally precede
e and the weight(CYLINDER(C')) represents the total number of events that oc-

curred in the computation.
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weight(CONE(e)) = (X7, O(e)j]) ~ 1 =| P | -1
weight(CYLINDER(C)) = Y7y 05(C)[j] (= iy 45)

The volume(CONE(e)) represents the maximum number of events that could pos-
sibly have occurred before e, taking into account the ‘holes’ or unused time slots
formed by synchronisation delays. The volume(CYLINDER(C')) represents the

maximum number of events that could have occurred in the computation.

volume(CONE(e)) = (3°7-, Wi(e)[5]) — 1
volume(CYLINDER(C)) = nxheight(CYLINDER(('))

The height(CONE(e)) represents the number of events on the longest causal path
of events leading to e. The height(CYLINDER(C')) represents the greatest logical

time that occurred in the computation.

height(CONE(e)) = Wi(e)li] -1 =7 — 1
height(CYLINDER(C')) = max;<;<, W;(C)[4]

The concurrency measures are defined as

volume(CONE(e)) — weight(CONE(e))
volume(CONE(e)) — height(CONE(e))’

a.(e)=1-

volume(CYLINDER(C')) — weight(CYLINDER(C'))

a(C)=1- volume(CYLINDER(C)) — height(CYLINDER(C)) "

The first measure produces a value for a specific event, and the second for an
entire computation. The numerator denotes the total synchronisation delay that
occurred. The denominator denotes the maximum synchronisation delay possible
in the computation. The measures are not defined when the denominator is zero
which occurs when only one process is involved in the computation. Raynal et al
[59] also define other measures that quantify interaction between specific processes.

The measure allows for the calculation of a measure for a single event, but has
not been evaluated in terms of any other criteria. Calculation would seem not to be
computationally intensive since the measure can be calculated from the last known

values of the clocks.
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2.3.7 Other measures

In this section, short summaries of other measures of concurrency will be presented.

Formal languages

Two concurrency measures have been developed for the model defined by Arnold
and Nivat [1]*! which deals with regular languages and uses the concept of the homo-
geneous (Cartesian) product of automata to define a model of concurrent processes.
They are based on the concept that the less the processes wait, the more concur-
rency the computation exhibits. A special letter is introduced into the automata to
indicate waiting and the concurrency measure is defined in terms of the number of
times this letter occurs, namely the amount of waiting that occurs. The measure of
Geniet et al [37] is a probabilistic extension of Beauquier, Bérard and Thimonier’s
measure [5]'? and is based on a mapping from automata to Markov chains.

Arques et al [2] present a measure of the degree of authorised parallelism for
database concurrency control algorithms based on combinatorics of words. It is
defined as the ratio of all possible serializable executions to the number of serializable
executions permitted by a specific concurrency control algorithm.

Francon [36] presents a measure of parallelism for three different approaches to
mutual exclusion. The measure is defined on the behaviours of the system that
are defined as words over the alphabet of ‘allocate’ and ‘deallocate’. The three
approaches to mutual exclusion allow a number of different behaviours and these
are used to calculate the measure.

The measures defined by Frangon and by Arques et al (and to some extent
the measures of Bérard et al and Geniet et al) represent an interleaved approach
(see Section 2.4.2) to concurrency, as they depend on the concept of a shuffle over
words'®. The behaviours of processes are represented as words of actions and the
measure of Arques et al compares the maximum number of behaviours with the ones
that actually occur.

This relates to an approach suggested by Charron-Bost [14] of counting the
number of linear extensions'? of a given partial order of events. However, she rejects

this on the grounds that the number of linear extensions of a particular partial

1 Cited in [37].

12Cited in [37].

13T he shuffle of two words, w1, wa consists of the set of words obtained by interleaving the letters
of wy and w» while retaining the order inside wq and w». This can be defined recursively [35] as:
(av1 L bvg) = a(v1 LU bvz) U b(avy LU vz) and v LLle = e LLlv = {v} where € is the empty word.

14 A linear extension of a partial order is a total order that extends the partial order.
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order can not be determined analytically from combinatorics, the complexity of
counting linear extensions is not known, and an interleaving approach is not suitable
for distributed systems. Pruesse and Ruskey [54] have presented an algorithm to
generate linear extensions that runs in constant amortised time!®; however, in the
worst case there is an exponential number of linear extensions. This will be discussed

further in Chapter 6.

Graph theoretical approach

Barbosa [4] investigates the effect of k-capacity channels on the amount of con-
currency using a graph theoretical approach. The reciprocal of the multi-chromatic
index of the graph G is defined to be the measure of concurrency. Barbosa shows that
the gain in concurrency obtained by replacing 0-capacity channels with k-capacity
channels can be described by a bound that is usually small and tends to 1 as the

system grows.

Queuing theoretical approach

Bambos and Walrand [3] define a degree of parallelism within the area of queuing
theory. They assume an infinite number of processors; however, there are precedence
constraints on the jobs being processed that produce a queuing phenomenon. The
degree of parallelism is defined to be the asymptotic average number of processors
that work concurrently and it is equal to the average quantity of work that enters

the system in one period.

Execution of program statements

Kumar [45] notes that many measures relate specifically to the architecture they are
being applied to and they measure the parallelism that is present in that specific
architecture, and frequently only the reduction in completion time as a function
of the number of processes is used to characterise parallelism. He has developed a
software tool COMET to determine the maximum possible concurrency in a FOR-
TRAN program. It keeps track of the earliest time that a statement can be executed
by determining when the values that it depends on are computed. The measure is

expressed in terms of the number of FORTRAN statements that can be executed

15A generation algorithm runs in constant amortised time if it runs in O(N) where N is the
number of objects generated
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at one time. This value changes during the execution of the program, and the au-
thor notes that the instant parallelism can be several orders of magnitude larger or

smaller than the average parallelism.

Parallel program execution times

This section discusses those measures that are associated with parallel program
performance. An important measure for parallel performance is speedup which
is a ratio of the time taken to execute a program sequentially to the time taken to
execute it in parallel. It measures concurrency indirectly because it only provides an
idea of the amount of concurrency within a program without taking the structure of
the computation into account. It is debatable whether these performance measures
achieve the same aims as concurrency measures.

Quinn [57, Chapter 2] defines the speedup S for a parallel algorithm running on

a parallel computer with n processors as

g-h

Ty

where T7 is the time taken for the fastest sequential algorithm to run on that com-
puter using one processor and T, is the time for the parallel algorithm to run on n
processors. Other definitions take T to be the time taken for the parallel algorithm
to run on one processor, or the time taken for the fastest sequential algorithm to run
on the fastest sequential computer. Thus speedup indirectly measures the average
amount of parallelism by comparing the difference in execution times.

Eager et al [29] defines the average parallelism to be the average number of
processors that are busy during the execution of the program, given an unlimited
number of processors and this is equivalent to speedup with unlimited processors.
This can be seen as an indirect measure of the maximum concurrency.

Sevcik [63] investigates a number of ways to characterise parallelism and inves-

tigates their use in scheduling. He defines the following parameters:

o [ : the fraction sequential, i.e. the fraction of the program that must be

executed sequentially.
e A : average parallelism as defined by Eager [29].

e m : the minimum parallelism, i.e. the minimum number of processors used

during the computation.
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e M : the maximum parallelism, i.e. the maximum number of processors used

during the computation.
e F': the fraction spent at maximum parallelism.
e V : the variance in parallelism.

His research has shown that it is not sufficient to use a single parameter in charac-
terising a parallel program for scheduling purposes. It should be noted that none
of the parameters considered fully capture the structure of the computation in a
general sense, although the concept of using a number of parameters to measure
concurrency has merit.

An approach to determining execution time that deals with task precedence and
random task execution times has been suggested by Robinson [61]. A task graph
consists of nodes that represent tasks and arcs that describe the precedence con-
straints between tasks; the task graph describes a partial order of tasks. Bounds on
the expected execution time can be determined from the random variables associ-
ated with each task. The expected execution time can then be used to determine an
expected speedup. This approach moves closer to the idea of a concurrency measure,
but its focus remains on comparing execution times.

Amdahl’s Law [57] although not a measure, is an important result that gives a
bound on the speedup as
b
S+ =0/

where f represents that proportion of the program that is inherently sequential, also

S

known as the serial fraction [43] or the fraction sequential [63]. This law describes
how one aspect of the structure of the computation can limit the speedup, although
it is not general enough to take into account the whole structure.

Other authors [40, 43] have disagreed with the extremely limiting nature of this
law and suggested other approaches. Gustafson [40] notes that f decreases as n
increases, because in real applications the parallel part of the computation grows
with the number of processors but the sequential component does not grow. Karp
and Flatt [43] suggest that a new metric for parallel programs should be defined in
terms of a serial fraction which is determined experimentally.

However, neither of these suggestions for modification of Amdahl’s Law remove
the fact that this law is based on timing and architecture. Amdahl’s law and modi-

fications of it therefore differ from the concept of a concurrency measure where the
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aim is to evaluate the concurrent structure of algorithms independently of execution

times on specific architectures.

2.4 CCS

In this section, work will be presented that pertains to Milner’s Calculus of Com-
municating Systems [50]. The operators that will be used in evaluating the measure
of concurrency m will be discussed and the definition of an algebraic calculus of
processes will be given to facilitate the discussion of partial orders and time in CCS.

An overview of CCS is presented in Appendix A. This appendix is presented to
give an overview of the topic for the reader with knowledge of CCS, and to detail

the CCS notation that will be used in this research report.

2.4.1 Operators

As discussed earlier, a criterion for the evaluation of concurrency measures is that of
compatibility with operators. CCS offers two combinators or operators in the basic

set of combinators that can be used for obtaining new agents [50]:
¢ Composition which allows the combination of two agents in parallel,

o Prefix which allows the prefixing of an agent by an action or sequence of
actions. This operator differs from the other types of sequential operators that

were presented earlier, since it cannot be used to put two agents in sequence.

Milner has defined a further two operators [50, Chapter 8]. They are Before and

Par and have the following definitions:
Definition 1

P Before @ def (P[b/done] | b.Q)\b

P Par @ ' (P[dy/done] | Q[dy/done] |

(dl.dg.done.O + dg.dl.done.O)) \ {dl, dg}

These definitions are only meaningful when P and @ are well-terminating agents,
because they rely on the presence of a done label in the case of an agent that

terminates.
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Definition 2 P is well-terminating if, for every derivative P’ of P, P’ done s

impossible and also if P’ done y1en P! ~ done.0.

These four operators will be used in the evaluation of the chosen measure.

2.4.2 Algebraic calculi of process and partial orders

The components of an algebraic calculus are defined in [8] as follows:

o a syniax consisting of a family of operators defined over a set of labels,

e an operalional semantics specifying the behaviour of the operators which re-

sults in a transition system (it is also possible to give a denotational semantics,

for example, Hoare’s CSP [11] and Hennessy’s ATP [41]),

e the semantics given by equivalences compatible with the algebraic structure.

These equivalences equate processes with similar behaviours.

Algebraic calculi for representing concurrency and nondeterminism can be divided
into two main groups [27]: those that represent concurrency by interleaving and
those that represent concurrency by some form of ‘true concurrency’, such as the
partial ordering of events.

CCS is an example of the first group—concurrency is represented by the fact
that events can occur in any order, and this means that the parallel operator | is
not primitive with respect to observational congruence, as shown by the Expansion
Law. Any agent containing | can be equated with respect to behaviour to another

agent expressed in terms of the other operators, for example,
a.b.0+b.a.0 = .0 | b.0.

These formalisms assume the existence of a global clock and global states [27]. Advo-
cates of the interleaving approach admit that for some applications this assumption
is not realistic; however, all formalisms have some simplification and this particular
simplification allows for mathematical models of large concurrent systems that are
amenable to specification and verification [66].

Calculi'® in the second group represent concurrency by an absence of ordering—

two events are concurrent if they are causally independent, and it is argued that

The calculi based on a ‘true concurrency’ approach will be referred to as having a causal
semantics, because the causality between events is described in such a formalism. This term includes
‘partial ordering semantics’ and ‘noninterleaving semantics’.
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sequential nondeterminism should be distinguished from concurrency to understand
properties such as liveness in concurrent systems [27]. There is no assumption of a
global clock or linear timescale in these models and behaviours of the system are
expressed as causal relations between actions performed by distributed subprocesses
[27, 39].

A number of different approaches have been taken in providing CCS with a causal
semantics. Best and Devillers [7], Goltz and Mycroft [39] and Hirschfield et al [42]
have used Petri nets to investigate causal models for CCS. Castellani and Hennessy
[13] define a distributed labelled transition system that distinguishes the local and
global results of a transition and from this they define a distributed bisimulation
that distinguishes concurrent processes from nondeterministic sequential processes.
Their approach is based on an observational view similar to Milner’s but assumes
a number of observers where each can only see the actions in a specific subprocess.
Boudol and Castellani define algebras [9, 10], where labels on the transitions allow
for the unique identification of each transition and hence allow for the definition of a
concurrency relation. Degano, De Nicola and Montanari [22, 23, 24, 25, 26] present
a number of approaches to providing CCS with a causal semantics. In their latest
work, they define a new operational semantics based on a partial ordering derivation
relation [27]. Many of these approaches involve decomposing a CCS agent into a set
of sequential subprocesses and the transition relation describes how these sets are
transformed.

The issues discussed above relate to the semantics of CCS, which I will not
be dealing with in this research. However, it may be possible for vector clocks to
be used to define a partial ordering semantics for CCS, and this will be discussed

further in Chapter 6.

2.4.3 Time in CCS

The concept of logical time has not been applied to CCS. Tofts [65] investigates
a temporal model that is an extension of CCS that is more concerned with real-
time issues and ensuring that events occur at certain instants than issues of partial
ordering. Transitions are divided into action transitions that represent actions of
no duration, and temporal transitions that represent the passage of time. Two
extensions to CCS are defined—weakly timed CCS and strongly timed CCS. A new

equivalence, time-equivalence ~7 is defined for strongly timed CCS.
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Quemada and Fernandez [56]'7 introduce time into LOTOS, a data communica-
tion protocol specification language based on CCS. T Hooft [64] demonstrated that
Timed LOTOS was not suitable for the description of timers and time out mecha-
nisms. This attempt at introducing time seems mainly aimed at timing events.
Other work in the area of time and concurrency theory includes the timed model
of CSP presented by Reed and Roscoe [60], the real-timed concurrency theory of
Murphy [53], and the real-time consistent equivalence of van Glabbeek and Vaan-

drager [66].

2.4.4 Measuring concurrency in CCS

Moller [52] in his PhD thesis, presents a measure of concurrency for CCS. He con-
siders the subset of CCS containing 0, Prefix, Summation and Composition and
attempts to define a normal form for process terms as a product (parallel composi-
tion) of terms
Il 7 (n>0)

1<i<n

where each P; represents a prime process and is in some prime normal form such as
> ai.pi (n>0)

1<i<n
where each p; is in normal form. He shows that a unique decomposition theorem
can be proved for this subset of CCS with or without communication, with respect
to strong and weak observational congruence. Each agent can be expressed a unique
product of primes

P= H ( E a;;.pij)-

1<e<m 1<5<n;

This allows for the following definition of a measure of the measure of maximum
parallelism as

maxpar(P) = Z (1%;2(% maxpar(p;;)).
1<i<m ==
This concept is presented at the beginning of Moller’s thesis on axioms for concur-

rency and to the best of my knowledge has not been investigated further.

17Cited in [64].
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2.5 Choice of measure

In this section, the justification for the measure chosen to be applied to CCS will
be presented. The focus in this chapter has been on measures defined in Lamport’s
message-passing formalism of a distributed system for the reason that this formalism
seems more applicable to CCS. The other frameworks in which measures have been
defined are less suitable for a number of reasons which will be discussed below
after which the measures defined in Lamport’s message-passing formalism will be

discussed.

Formal languages

The measures based on the Arnold-Nivat model [1] represent concurrency by an
m-tuple of actions occurring in one timestep and therefore these measures would
be more applicable to the synchronous calculus defined by Milner [50, Chapter 9].
Degano et al [25] have noted that the multiset labels found in Synchronous CCS
give a direct representation of the amount of parallelism.

The other two measures based on formal languages relate to specific areas
(database concurrency control and mutual exclusion) and are not obviously gen-

eralisable to a wider setting.

Graph theoretical approach

Barbosa’s work [4] relates specifically to the issue of size of channel and its effect on
concurrency, therefore this measure is difficult to generalise to allow the investigation

of other aspects of concurrent systems.

Queuing theoretical approach

Bambos and Walrand [3] deal with queuing theory which is not applicable to CCS,
mainly because of the emphasis on service times that are associated with each job. In
CCS, the only timing assumption is that ‘concurrent agents proceed at indeterminate
relative speeds’ [50, p. 195]. Time has been applied to CCS as mentioned in Section
2.4.3, but these variants of CCS are not under consideration in this research, as the

aim is to investigate a measure of concurrency for CCS in its original form.
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Execution of program statements

Kumar’s concurrency measurement tool [45] is applicable to FORTRAN programs
and looks at the number of statements that can be executed at once. Again this
approach seems more applicable to Synchronous CCS, as the number of program
statements relates to the number of multiset labels as described by Degano et al

[25].

Parallel program execution times

The work that relates to performance measures for parallel programs [57, 29, 40,
43, 63] is not applicable to CCS for two reasons; first, as mentioned above, the only
timing assumption in CCS is that nothing can be said about the relative speeds of
processes; and second, speedup does not take into account the structure of the com-
putation because it measures concurrency only indirectly by comparing execution

times.

Moller’s measure of maximum parallelism

In Section 2.4.4, Moller’s measure of concurrency in CCS is defined. The investiga-
tion of this measure relates to finding an algorithm to decompose CCS agents into
normal forms—a research issue which I have chosen not to pursue, although the ap-
plication of this measure remains an unexplored area of research. A second reason
for not choosing this measure is the fact that it measures the maximum parallelism
that an agent can have without taking into account the effect of communication and

therefore it can not be used to evaluate realistic algorithms.

Measures defined in the message-passing formalism

In Section 2.3.1, a number of measures were presented in Lamport’s framework. All
of these measures have not yet been fully evaluated and therefore it would be worth-
while investigating any of them to determine their strengths and weaknesses. As will
be shown, it is relatively easy to map from CCS to the message-passing formalism.
There is a good match between the two models; it is easy to identify events and
processes in both, and neither model makes assumptions about the relative speeds
of processes.

Charron-Bost’s measures p; and p [15] assume real times associated with each

event, and for similar reasons given above, these measures were not chosen for the
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focus of this research. Charron-Bost’s measure w [14] has not been chosen because
it is described as inaccurate and because m is an extension of it.

Three measures are therefore available for evaluation by application to CCS.
They are a, the measure of Raynal et al [59]; 3, Fidge’s measure [32]; and Charron-
Bost’s measure m [14].

There is conflicting evidence about m. It is described as expensive to compute
[59, 44]; however it has recently been used in the literature as a model of measuring
concurrency [44]; hence it is important to fully evaluate m and determine if it is a
suitable measure of concurrency. By applying the measure to CCS, more operators
will become available to evaluate the compatibility of m with these operators. Fi-
nally, by testing m for usability and applicability, the worth of m for use with real
examples can be determined.

The approach taken in this research will be general and will allow for the future

evaluation and comparison of other measures defined in the same framework.

2.6 Summary

In this chapter, a number of measures of concurrency were presented. The majority
are defined in the message-passing formalism that describes distributed systems in
terms of the partial ordering of events in processes. Amongst these is the measure
m which will be investigated in this research. Other measures that were described
fall into the models of concurrent systems based on formal languages, graph theory,
queuing theory and parallel program execution times.

A number of criteria for the evaluation of measures of concurrency were presented
and discussed. They were divided into two groups—objective and subjective criteria.
An important criterion is that of compatibility with operators and a framework was
developed to discuss the different approaches presented in the literature.

Work relating to partial ordering and time in CCS was described and a measure
of maximum parallelism for CCS agents was detailed. This measure is defined for
agents in a specific normal form.

Justification was given for the choice of m, although it was noted that there are
a number of measures that require an evaluation.

In the next chapter, the message-passing formalism will be redefined to accom-
modate synchronous communication and nested parallelism, so that m can be ap-

plied to CCS agents.



3. Applying the measure to CCS

3.1 Introduction

The aim of this chapter is to develop the necessary theory that will allow for the
application of the measure m to CCS. This will involve the identification of differ-
ences between the message-passing formalism in which the measure is defined and
CCS. Once these differences have been detailed, it will be possible to redefine the
message-passing formalism so that the justification for the measure remains and so
that CCS can be translated into the redefined formalism. This process of redefini-
tion will involve changing some basic features of the formalism and proving that the
results still hold in this new formalism. Finally an algorithm can be developed to
translate CCS into the new formalism. This will involve determining which subset

of CCS can be measured.

3.2 The message-passing formalism and CCS

In this section, the existing formalism and CCS will both be briefly presented as
well as a discussion of the differences. Then an outline of the necessary steps to
apply the measure to CCS will be given.

As discussed in Chapter 2, Charron-Bost! describes the following framework:

e A formal definition of a distributed system and computation.

A partial ordering of events in a distributed computation.

The concept of a consistent cut.

Vector clocks applied to the distributed system.

The definition of a measure of concurrency in terms of consistent cuts.

A combinatorial characterisation of the number of consistent cuts in a totally

sequential computation and in a totally concurrent computation.

! Charron-Bost [14] will be used as my main reference although the material on logical time and
vector clocks has been presented in [33, 46, 49, 62].

39
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¢ Two methods for calculating the consistent cuts—one relating to conditions

on the vector clock and the other relating to antichains of the partial order.
Milner [50] provides the following?:
e A syntax of operators over a set of events.

— Nil 0, Prefix a., Summation 4+, Composition |, Restriction \a, Relabelling

[f], Constant (or Recursion fix(X = F) ).

e Operational semantics, specifying the behaviour of operators which results in

a transition system, namely the transition rules:
— Act, Sum, Com, Res, Rel, Con.

e Semantics given by an equivalence, for example strong equivalence and obser-

vation equivalence.

In this research, a measure of concurrency for CCS will be defined and it will involve
mapping the syntax and indirectly the operational semantics to a formal model of
a distributed system. However, it will not involve the second level of semantics.
First it is necessary to determine the differences between the message-passing
formalism that Charron-Bost presents and the model of CCS. The major differences

can be detailed as follows:

1. Charron-Bost’s formalism assumes a fixed number of processes that all effec-
tively start at the same time, and that no new processes are created during the
computation. In CCS, certain agents can be interpreted as involving process
creation. For example a.b.(¢.0 | d.0), starts as one process that performs a and
b, and then ‘branches’ into two processes, one that performs ¢ and one that
performs d. Therefore, in each case, there are a fixed number of processes,

however, some processes can only start when other processes have finished.

2. Charron-Bost’s formalism assumes asynchronous point-to-point communica-
tion, so each message has a send process P; and receipt process P; associated
with it, and no other process can be involved in the communication. In CCS,
communication occurs between a port ¢ and its complement @ and this com-

munication is synchronous. As in Charron-Bost’s formalism, only two partic-

2See Appendix A for an overview of CCS
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ipants are permitted. Note that in both cases, the content of the messages is

ignored?®.

3. There is a difference in expressive power with respect to computations. The
message-passing formalism represents one computation of an algorithm whereas
a CCS agent can describe an entire algorithm. Charron-Bost is not clear about
how computations relate to algorithms and in her presentation she deals with
individual distributed computations that are composed of individual sequen-
tial computations. This lack of clarity extends to defining the measure for an
algorithm; she suggests briefly that a measure can be determined for an algo-

rithm by calculating the average across the values found for each computation.

The steps in the process of applying Charron-Bost’s measure of concurrency to CCS

are as follows:

1. Redefine Charron-Bost’s message-passing formalism to take into account pro-

cess creation and synchronous communication.

2. Prove all proofs with necessary modifications as given by Charron-Bost in the

new formalism.

3. Show that intuitively the basic idea of a measure of concurrency still holds in

this formalism.

4. Discuss the difference in expressive power between the message-passing formal-

ism and CCS, and determine how this affects the measurement of concurrency.

5. Present an algorithm for translating CCS into this message-passing formalism.
This involves investigating various issues that relate to measuring concurrency
in CCS, for example:

o What is a totally sequential agent?
e What is a totally concurrent agent?
e Can all CCS agents be measured or only a subset. If so, which subset?

6. Use the algorithmic translation as a basis for the implementation of the con-

currency measurement tool.

?This research deals with the basic calculus of CCS, not the value-passing calculus. This is not
a major issue as it can be shown that the two are equivalent, so the method developed here will
extend to the value passing calculus.



CHAPTER 3. APPLYING THE MEASURE TO CCS 42

3.3 Discussion

In this work, I will take a different approach to defining synchronous communication
in the message-passing formalism to that presented in the literature.

Charron-Bost et al and Fidge [19, 33] define synchronous communication in the
message-passing formalism in a manner which I have found to be problematic when
using consistent cuts. The concept of consistent cuts has not been dealt with in
the framework of synchronous communication except in [44] where it is dealt with
briefly.

The definition for synchronous communication given in the literature results
in the two events that form a synchronous communication event being concurrent,
which means that they are not related by the partial ordering relation. As described
in Chapter 2, a consistent cut is defined to be the left closure of a cut with respect to
the partial order of events. When this definition of a consistent cut is applied to the
situation where synchronous communication events are defined to be concurrent, it
is possible for a cut to be consistent but to only include one of the two events. This
contradicts the intuitive idea that a consistent cut represents a consistent global state
in the computation [33]. (Note that in the case of asynchronous communication,
the send event can occur in a consistent global state without the corresponding
receive event because the send event is dependent on the receive event; however for
synchronous communication, both events must be in the global state for it to be
consistent because the two events are mutually dependent.)

Another anomaly occurs in the situation described above. The partial order
information about pairs of synchronous communication events describes them as
concurrent, however their vector clock information is identical [34]. This means
that the vector clock characterisation of consistent cuts given by Charron-Bost [14]
identifies different consistent cuts to those identified by the left closure definition in
the synchronous case. It also implies that the vector clocks contain more information
of the relationship between events than does the partial order.

My approach will be to equate the two events that form a synchronous communi-
cation event. With this definition the partial ordering of events is retained, however
the left closure definition of a consistent cut together with the equating of commu-
nication events means that if one event occurs in the cut, the other event must also
appear in the cut. This approach will also result in the vector clocks containing only
the information of the partial order, and hence the vector clock characterisation of

consistent cuts will identify the same cuts as the left closure definition.
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The idea of equating the events in synchronous communication was partly de-
rived from the fact that in CCS, when communication occurs between two agents
that are concurrent, their two complementary actions are transformed to a single 7
action. Taking the approach that synchronous communication represents a single
event therefore allows a closer match between CCS and the message-passing formal-
ism. The idea also arose from the work of Charron-Bost et al [19] where although
they use the definition that results in the two events involved in a synchronous com-
munication event being concurrent, they also make statements such as ‘...in the
synchronous case a pair of corresponding send-receive events can be regarded as a
single combined communication event...” [19, p. 25] and ‘.. .they behave as if they
are glued together and can only occur together’ [19, p. 15].

This approach has one disadvantage in that the value of the number of cuts in
a totally sequential computation must be redefined to take into account that some

pairs of events are reduced to single events. This will discussed further in Section

3.4.4.

3.4 New message-passing formalism

In this section, a new message-passing formalism will be defined to take into ac-
count the differences mentioned above. This exposition will have the same structure
as Charron-Bost’s paper [14]. A summary of the original theoretical framework
that Charron-Bost uses was presented in Chapter 2, in the Sections titled The
‘happened before relation’, Logical clocks and Charron-Bost’s measure of

concurrency m.

3.4.1 Computation of a distributed system

A computation of a distributed system consists of a finite set of processes which are
denoted P = { Py, P, ..., P,}. In Charron-Bost’s formalism, each P, is a set of finite
sequences C; of events and is prefix closed. In this new formalism, it will be assumed
that each P; represents only one specific finite sequence of events. This means that
the property of prefix closure is no longer applicable to the P;’s. However, this
does not affect the definition of the concurrency measure, and allows for a simpler
definition of process creation.

S C P gives the processes that start at the beginning of the computation. All

processes that are in P\S are caused by other processes and the relation — is used
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P,

Figure 3.1: Example of a distributed computation.

to describe this. The fact that there are a number of processes that can proceed
simultaneously allows for the expression of concurrency in this formalism.

The notation P; — P; is used when process P; causes process P;, (i # j). Each
process in P\S is caused by exactly one process?. However, each process may cause
none, one or many processes. Define F C P, the set of processes that do not cause
any processes, i.e. the ‘last’ processes.

For example, let P = {P;...P;}, with § = {Py, P,} and F = { Py, Ps, Pr}, then
if P; causes P3 and Py, P, causes Ps, P3 causes FPg, and Ps causes P7, then this

could be expressed as
Py P3, P Py, Py Ps, Py Ps, P5s+— Pr.

Each P, is a finite sequence of events. Let a, b, c, ... denote events. It is assumed that
events can be distinguished from each other. The set of events that occur in specific
set of processes P or a specific process P; is denoted by E(P) and E(PF;) respectively.
The number of events in the sequence P; is denoted ¢;, i.e. | E(P;) |= ¢.

The relation < can be defined on the set of events E(P) for a specific set of
processes P = {Py, Py,..., P,} as follows:

1. if process P; = ajay...a, and a; occurs before a; in the sequence, ie. 7 <k,

then a; < ag,

2. if process P; = aqyay...ay and P; = bib,y .. .bq], and P; — P; then a4, < b;.

Define <'= (< U =)*, the transitive closure of < and =. Then <’ defines a partial
order® on E(P). (See Appendix B for the proof of this.) The relation <’ captures

the causality between events; if @ <’ b then b is causally dependent on a.

*This means that each process can only occur once in a computation.
A partial order is a relation that is reflexive, antisymmetric and transitive [20]. Antisymmetry
has the following definition: if @ <’ b and b <’ @ then a = b.
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Consider the following: P = { Py, P», P3, Py}, S = {P1, P2}, F = { Py, P3, P4}
and P; — Py, P; — P3;. Each process is defined as a sequence of events: P; =
abe, Py, = def, P3 = gh, Py = kl. This is expressed diagrammatically in Figure 3.1.
The diagram captures the information of the partial order <’; if there is a line going
from left to right between a process e; and ey then e; <’ e5. In the example, a </ g.

As yet the formalism described does not allow for communication between pro-
cesses. In this formalism, only synchronous communication will be represented.
Certain pairs of events represent synchronous communication events (this commu-
nication can only occur between pairs of events) and an event can only participate
in one such communication. Note also that the events must occur in different pro-
cesses. The relation < will be used to describe this. If @ and b are the pair of events
in a synchronous communication, then a < b. This relation is symmetric and has

the property that
Va,b,c€ E(P),c#a,c#b,a—b= =(a<c)AN(b<c).

It is necessary to redefine <’ to include communication. This will be done by the

following rule
Va,be E(P),a < b= a=0.

This will retain the partial ordering information of < and add the new information
given by the < relation by equating events involved in communication.

Then the relation < which includes communication can be defined as (< U =)*
or the transitive closure of < and =; however = now includes the information from
. The relation < gives a partial order on E(P). (See Appendix B for the proof of
this.) The transitivity captures the causality that results from communication. For
example, if a,b € E(F;) and ¢,d € E(P;), with a < band ¢ < d, thenif b < ¢, b and
¢ are equated and a < d.

P is called a computation when (£(P), <) as defined by — and < contains no
cycles. (Charron-Bost includes in her definition of a computation the additional
condition that for each receipt of a message m there is a (single) sending of m. In
the new formalism, this has been dealt with above in the definition of «, so that by
definition the two components of a synchronous communication event are included
in a computation.)

Two events are concurrent when they are not related by <. Formally, ¢ and b

are concurrent (a co b) if =(a < b) and —(b < a). Note that this definition implies
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P,

Figure 3.2: An example of a distributed computation with synchronous communi-
cation.

that @ and b are not in the same process, or in different processes that are related
by .

For example, consider the following: P = {Py, P, P3, Py}, S = {P, P2}, F =
{P,, P3, Py} and P; — P,, Py — P3. Each process is defined as a sequence of events:
Py =ab, P, =cdefg, Ps = hijklm, Py = npgrs and the communication events are
j <> pand r < e. This is shown in Figure 3.2. This diagram captures partial order
<; if there is a directed path joining event e; and es, then e; < e5. For example,

t < sand 7 < e. Events ¢« and d are concurrent.

3.4.2 Cuts

The measure m is based on the number of consistent cuts in a computation and for
this reason the definition of a cut and a consistent cut are required. This definition
has a similar intuitive basis as in the asynchronous case; however, for consistency
to hold, both events that take part in a synchronous communication event must be
in the cut.

Charron-Bost defines a cut with respect to all processes: for each index 2, let a;

be an event in P;, then

C= U {r € E(P) |z <a;}
ie{1,...n}
is a cut of the computation.

There is a problem with this definition in that it does not allow a cut that
excludes some processes, i.e. processes where no events have occurred at the place
of the cut, for example, the empty cut.

For example, if P, = ab, P, = ¢d, and P; = ef, then it should be possible to
obtain the cut {c,e, f} from the definition ({c,e, f} ={z € E(P1) |z 2 c}U{z €
E(P;) | « < f}) (see Figure 3.3(a)). However, this is not possible because the
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(a) Pt (b) /p/—
P, ¢ 4 P

PS € f Pk

Figure 3.3: (a) An example of a cut in Charron-Bost’s formalism. (b) An example
of a cut in the new formalism.

definition requires that an event is chosen from each process. This is only a minor
problem in Charron-Bost’s work®, but it becomes important when introducing the
causal relation between processes, —. For example, given P; — P; and P; — F;, it
should be possible to cut at an event in P; and at no event in P; or Py, because this
would satisfy the intuitive idea of a cut (see Figure 3.3(b)).

The definition can be modified as follows: let N = {1,...,n}, and let Ec C N.
FE¢ will contain the indices of the processes that do not contribute any events to the
cut C'. Then for each ¢ € N\ E¢, choose an a; € E(F;), then

C = U {r e E(P) |z =< a;}
iEN\E¢
is a cut of the computation.

A consistent cut C' of a computation is defined as follows: ' is a consistent cut
if it is a cut that is left closed by <, namely, if a,b € E(P) such that b € C' and if
a < bthenacC.

The past of an event a, is defined as follows: (| ¢) = {z € E(P)| 2 <a}. It is a
consistent cut. The following notation will be used for the past of event « in process
Pi: (la);=(la)NE(P) =1z € E(F) |z < a}. Note that is not necessarily a
consistent cut. Note, however, that it is a totally ordered set, as all events come
from one process, and are ordered by <.

The definition of a cut given above can therefore be rewritten as

C= U {r e E(P) |z <a;}= U (] @i)i.
iEN\E¢ iEN\E¢

Consider the example given in Figure 3.2 (p. 46)

5Charron-Bost’s proof of the result concerning the checking of a cut for consistency using vector
clocks is not complete as it omits the cuts that are not defined by n events.
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o Let Ec ={3,4}, a1 = b, ay = ¢, then C = {a,b,c} and it is a consistent cut.

o let Ec=0,a1 =0, a3=c¢, a3 =1, ay = s,

then C' = {a,b,c,d, e, h,i,7,k,l,n,p,q,r, s}. It is a consistent cut.

o Let Fo = {1}, a3 = d, a3 = i, ag = q, then C = {e,d,h,i,n,p,q} is a cut. It

is not a consistent cut since b < hand b ¢ C.

As further examples, (| ¢) = {a,b,h,i,5,n,p,q}, (| )1 = {a,b}, (] ¢)2 =0,
(xl, q)3 = {h’viv.j}v (xl' q)4 = {nvpv q}

3.4.3 Clocks

In this section, the theoretical background for vector logical clocks will be presented.
First the clocks will be defined, then some results will be proved. The first result
shows that the vector clock of an event gives the number of events that have hap-
pened in that process before the event under consideration. The next two results
show how vector clocks can be used to characterise concurrency.

Partially ordered logical clocks are represented as vectors in N™:
o If v € N™ then v[¢] represents the ith component of v.
e N is partially ordered by <; a < b iff a[i] < b[i] for each index .

o If u,v € N”, then w = sup(u,v) is defined as follows: for each index ¢, w[i] =

max(ulz], v[i]).
Clocks are applied to the message-passing formalism described above as follows:
e Each process P; has a clock ©; that takes values in N”.
e 0;(a) represents the time of event a in process P;.
o Initial values of clocks

— If P, € S, then the initial value of the clock ©; is (0,...,0).

— If P, € P\S and P, — P;, then let a be the last event in P, clock ©;
takes the value of the clock O(a).

e Updating values of clocks

— For each event in P;, ©,[¢] is incremented by 1.
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h i J k l m
P
3,0,1,0)(2,0,2,0) (2,012,2) (2,0,4,2) (2,0,5,2) (2,0,6,2)
Py
(1,0,0,0) (2,0,0,0 " » p . R
4 (2,001 (2,0,3,2) (2,0,3,3) (2,3]5,4) (2,3,3,5)

c d e f g

P
(0,1,0,0) (0,2,0,0) (2,3,3,4) (2,4,3,4)(2,5,3,4)

Figure 3.4: A distributed computation with vector clocks.

— If @ < b is a synchronous communication event and @ occurs in P; and b

in P;, then both ©; and ©; are set to sup(©;, ©;) when this event occurs’ .

e For any event @ that occurs in process P;, its vector time is O(a) = 0;(a).

Consider the example given previously. In Figure 3.4, vector clocks have been
added to the computation. Note that communication is treated as an event and
therefore the clock is incremented. At event j, the third position has been changed
to 3, and the fourth to 2.

In the next part of this section, some results are proved that relate to vector
clocks. The statements of these proofs do not differ from those stated by Charron-
Bost. To understand why this is so, consider the following case: if F; — P; then
by the rules given above, ©; contains full knowledge of ©;, so it is possible to
present the proof statements without recourse to the — relation. Note also that the
communication information is contained in the partial order and therefore does not

need to be dealt with explicitly.

Proposition 1 For any event a, O(a)[i] equals the number of the events of P; that
belong to the past of a : O(a)li] =| E(P;) N (] a)|=| (| a);|.

Proof: If P, € S, then ©; is initialised to (0,...,0) and on each event in P;,
0;[¢] is incremented by one, so this value represents the number of events up to and
including a in P;.

If P; € P\S then the following situation exists for some Pj,,..., P;

leHPjQH i—>iji—>PZ' Witthl e€S.

When Pj starts, O, is initialised to (0,...,0), so ©;,[7] = 0. As P; cannot be

started before Pj it is not possible for it to communicate any timestamp to P;

"This approach to vector clocks in the case of synchronous communication is presented by Fidge
in [33]
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(either directly or indirectly). Therefore at the last event in P;

s 05,14 = 0 still
holds and therefore holds at the start of P;,. This argument holds for each P;, hence
when P; starts the value of ©,[¢] is zero and so by a similar argument to above, on
event a in P;, ©(a)[¢] will represent the number of events up to and including a in
P;. (In the case of a communication event, say a < b with a € E(F;), b € E(P;),
then @ remains in P; and the count of the number of processes remains the same.)

a

The following result shows that the vector clocks totally capture the information
of the partial order. This is in contrast to linear vector clocks as mentioned in

Chapter 2.

Theorem 1 For any events a and b of a distributed computation the following holds
a=b<= 0(a) <O().

Proof:

= : Since < is transitive, ¢ < a implies that ¢ < b, hence for each 7, ¢ €
{r € E(P) |z 2 a} = c€{z € EP) |z <b}ie {z € EPF)|z =
a} C {z € E(F) | « < b}. Therefore (| a); C (| b);, so from Proposition 1,
O[t](a) < O[](b) Vi € {1,...,n}, therefore O(a) < O(b).

< : Assume the converse; there are two cases:

1. b < a; by the first part of the proof it can be shown that O(b) < O(a)—

contradiction.

2. a co b; therefore a € E(F;) and b € E(P;) with ¢ # j, since if @ and b are
in the same process, then they are not concurrent. Consider (| b); = {z €

E(P;)| z < b}. There are two cases.

(a) (] b); = 0 and hence (| b); C (] a);.

(b) (1 b); # 0, (] b); is totally ordered and has a largest element ¢, say. Note
that ¢ < a, otherwise if ¢ < ¢ then since < is transitive and ¢ < b,
a = b which would be a contradiction of a co b. Therefore (| ¢); C (| a);.

However, (| b); = (] ¢); since ¢ is the largest element of (| b); and hence

(1 b)i C (] a)s.

In either case, (| b); C (| a);. Hence by Proposition 1 O(b)[i] < O(a)[i].
Therefore it is not true that ©(a) < ©(b)—contradiction.
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a

The final result in this section presents a method for determining if two events

are concurrent, by investigating the values of the vector clocks.

Proposition 2 Let a and b be two events that belong respectively to P; and P;.
Then

a co b<= (0(b)[i] < O(a)[i] and O(a)[j] < O(b)[5] ).

Proof:

= : Assume a co b, with @ € E(P;) and b € E(P;). Consider (| b); = {z €
E(P;) | # < b}. There are two cases, as in Theorem 1 and it can be shown by a
similar argument that (| b); C (| @);. Hence by Proposition 1, O(b)[:] < O(a)[].
By a symmetrical argument, it can be shown that O(a)[j] < O(b)[;].

< 1 O(b)[i] < O(a)[i] and O(a)[j] < O(b)[7] show that O(a) £ O(b) and O(b) £
O(a). Therefore from Theorem 1, =(a < b) and —(b < a), hence a co b. |

These results show how vector clocks can fully describe the partial order <. This

allows for a characterisation of concurrency as shown in the last proposition.

3.4.4 Measure of concurrency

Charron-Bost motivates the measuring of concurrency in terms of consistent cuts
by arguing that the tolerance of a computation to stopping relates to its ability to
be cut in a consistent manner. This argument still holds in the new formalism. For
example, consider Figure 3.4 (p. 49). If process Ps is stopped (or cut) at ¢, then
process Py can be stopped (or cut) at n, however, it cannot be cut at p because
event j has not occurred, because of the cut at ¢. If the communication event j < p
were not present, more cuts would be possible, for example at g.

Recall that the measure of concurrency for the computation C is defined by

Charron-Bost [14] as

m(C') = i
HC_MS

By definition, m(C') should fall in the interval [0,1]. As a result of the redefinition

of the formalism, there are now a few choices for u® and u°.
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e 1° represents the number of consistent cuts in a totally sequential execution
of C. It is determined by summing the number of events in C. There are two

possible values
Mﬁnamz 1+Q1++Qn
M'fmn = M'fnaa:_ |H| .

The first value counts each event separately, so each pair of communication
events is counted as two events. In the second case, each pair of communication
events is counted as one event, to mirror the equating of communication events.
This value is obtained by subtracting the cardinality of the communication
relation. To ensure that the measure remains in the range [0, 1], it was decided
that the second value pJ ;, would be used. This can be explained by the fact
that for some computations p < u;,,.. and hence m < 0, This occurs because
when p is calculated, pairs of communication events are viewed as one event,

whereas for u ... they are viewed as two.

e In the original formalism, a totally concurrent computation was one with no
communication constraints and therefore u® = (14 ¢1)(1 + ¢2)...(1 + ¢n)-
In the new formalism, there are two factors that constrain the amount of
concurrency—communication and the causality between processes. It was
decided that a totally concurrent agent in the new formalism should be one in
which there is no communication and in which the process structure is retained.
The first condition is transferred from the original formalism. The second
condition can be explained as follows: removing communication indicates how
concurrent the agent under consideration can possibly become; however, if the
process structure was removed, it would result in the concurrency of the agent

under consideration being compared to the concurrency of a different agent.

Because the causality of processes is being taken into account, a more complex
equation is required to characterise the number of consistent cuts ¢ in a totally

concurrent computation in terms of ¢;
pe = [lpescuts(F;) where

g + H cuts(P;) if P ¢ F
cuts(P;) = 1P |Pi=Pj}
¢+ 1 if P, e F.
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e The number of consistent cuts in a given computation p can be calculated by

methods that will be discussed in the next section.

e The original measure is defined for a specific computation of an algorithm. In
this research I will extend the measure to algorithms by defining an ordered
pair as the measure of an algorithm. More specifically two values will be

chosen to represent the measure of concurrency of an algorithm A:

— min{m(C) | C is a computation of A}

— max{m(C) | C is a computation of A}.

This makes it more difficult to compare algorithms because R? is not totally
ordered. However, it seems realistic that when taking into account all com-
putations of an algorithm, there may be algorithms that cannot easily be

compared.

Another possible approach suggested by Charron-Bost [15, 16] which will be
discussed further in Chapter 6 is that of determining probabilities for compu-
tations, and using these probabilities as weights to determine a measure for
the algorithm from the measures of each computation. This approach would

generate a total ordering of algorithms.

3.4.5 Calculating the number of consistent cuts

Charron-Bost presents a result for determining whether a cut defined by aq,...,a,

is consistent by checking a specific condition on the vector clocks

sup(0O(a1),...,0(ay,)) = (0(a1)[1],...,0(ay)[n]).

The idea is that consistency occurs when the clock of a process P; has the most
up-to-date knowledge about its own ‘time’, and all other processes have the same
or older knowledge about its time.

As the notion of a cut has been redefined, this result needs to be modified. First,
to recap, the definition of a cut is as follows: let N = {1,...,n}, and let Fc C N.
FE¢ will contain the indices of the processes that do not contribute any events to the

cut C'. Then for each ¢ € N\ E¢, choose an a; € FE(F;), then

C= | {zeEP)|z=a}= |J (la)

iEN\E¢ iEN\E¢

is a cut of the computation.
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Additional notation is required because of the new definition. Let C' be a cut
defined by F¢ and a; for ¢ € N\E¢. Define T; € N" as O(q;) if ¢ € N\ E¢ otherwise
T; is defined as (0, ...,0). The value T;[j] will denote the jth component of T;. The

following result can now be proved.
Proposition 3 The cut C defined by Ec and a; for each i € N\ E¢,
C = U {xEE(PZ)|xjaZ}: U (laz)z
{EN\E¢ {EN\E¢

1s a consistent cut if and only if
sup(Ty,...,Tn) = (T1[1], ..., Tu[n]).
Proof: The proof of this proposition appears in Appendix B. a

Charron-Bost presents a second approach to counting consistent cuts, whereby
it is shown that the number of consistent cuts in a computation is equal to the
number of antichains®. This result has not been proved in the redefined formalism.

Finally, it has been suggested that the number of consistent cuts in a computa-
tion is equal to the number of nodes in the (finite) transition graph of a confluent
CCS agent. As yet, this result has not been proved and an outline of a possible

proof is presented in the section on further work in Chapter 6.

3.5 Expressive power

The message-passing formalism has now been redefined to deal with the first two
differences described in Section 3.2. The remaining difference to be discussed is
that of expressive power. As noted earlier, the message-passing formalism repre-
sents one particular behaviour or computation of an algorithm, whereas CCS is a
description of the behaviour of an algorithm. In the following section, some back-
ground material on computations and nondeterminism will be presented, after which
it will be discussed how the difference in expressive power affects the measurement
of concurrency.

A computation is defined to be a specific behaviour or execution of an algorithm
or program. Therefore for a sequential algorithm, there are a number of different

computations of that algorithm, each relating to different inputs. It is generally

8 An antichain is a subset of a partially ordered set with no pair of elements comparable. An
antichain is also called an independent subset. In this context, it means that each pair of elements
is concurrent.
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expected that sequential programs or specifications will be deterministic; that is for a
given input, the program will behave in a predictable way. Obviously it is possible for
a construct that causes nondeterminism to be introduced into a sequential language.
However, the issue of nondeterminism becomes more important when dealing with
concurrency as it is necessary to model the nondeterminism that occurs in the real
world because of relativistic effects of time—these effects are the result of a lack of
a global or centralised clock.

Nondeterminism can be described as follows: an algorithm exhibits nondeter-
ministic behaviour if for a subset of its inputs, two or more different behaviours
are possible for each input in this subset. So for each input, there are one or more
possible computations.

The message-passing formalism does not explicitly express nondeterminism as
it describes individual computations, except for that nondeterminism which results
from the interleaving of events from different processes.

When dealing with a concurrent algorithm specified in CCS, nondeterminism is

introduced by a number of factors and these result in different computations:
e Summation, for example
— a.0 + 5.0 can perform the action a or the action b
e Composition

— a.0 | b.0 can perform a then b, or b then a

— a.0 | @.0 can perform as a first action a, @ or 7

There is a special class of nondeterministic agents called confluent agents (see Ap-
pendix A). Although these agents generate a number of computations, they have
the characteristic that performing an action does not preclude the later occurrence
of a different action that could have occurred at that time. These are a useful class
of agents since the property of confluence is desirable when specifying concurrent

systems [50]. Nondeterminism can occur in confluent agents as follows:

o Confluent Summation?, for example

°For a1,...,a, € Act,n > 0, the Confluent Sum (a1 | ... | @,).P is defined recursively as
follows
O.p = P
(| lan)P = Y en(an | i [aipa | [ @) P (1> 0)
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- (a|b).0 4 4.6.0 + b.a.0 can perform @ and then b or alternatively b and

then a.

o Confluent Composition'?, for example

— a.0|pb.0 def (a.0] 5.0)\0 can perform a then b, or b and then a.

— a.0 |, @0 def (a.0 | @.0)\ @ can only perform 7, so this agent does not

display nondeterminism.

Note that nondeterminism can no longer occur because of potential communication
across the Composition operator since all communication is restricted by the set
used in the definition of Confluent Composition. (See Appendix A.)

It is necessary to determine what effect the difference in expressiveness has on
applying the measure to CCS. The most general approach is to consider each trace!!
of actions as a separate computation. However, in this research it will be ensured
that at least the confluent agents can be measured.

The simplest way to deal with Confluent Summation is to consider each occur-
rence of the Summation operator as causing two different computations. Therefore,
in the example given above, there are two computations ab and ba. This approach
can be applied more generally to any occurrence of Summation, where each occur-
rence of this operator is treated as the point where the computation becomes two
computations. For example, given @.0 | (b.c.0 + d.e.0), there are two computations
@.0| b.c.0 and a.0 | d.e.0.

The type of nondeterminism allowed by Confluent Composition can be consid-
ered as basic to the message-passing formalism since it is the nondeterminism that
occurs because of interleaving of events. Hence (a.0 | .0)\( can be regarded as two
processes, one of which performs ¢ and the other . In a Confluent Composition
communication is ‘forced’, that is the set of actions in the Restriction is defined in
such a way that communication has to happen if there is the potential for it, namely
if an action and its complement appear on opposite sides of the Composition. This
maps conveniently to the relation < which defines the communication events.

To generalise to Composition, consider the differences between Composition and
Confluent Composition. There are two major differences; first, the two agents in-

volved in the Composition must be confluent and second, nondeterminism as a result

def

OFor L C L, P, |L_P2 = (P | P.)\L is a Confluent Composition if L(P1) N L(P;) = @ and
L(P)NL(P,) C LUT.

1A trace is the sequence of actions generated by a CCS agent.
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of communication is removed. For the purposes of resolving the differences between
the formalisms, the second is more important, since it permits the definition of the
communication event relation < and it would be desirable to retain this in an at-
tempt to make the approach more general. For example, given .0 | @.0 there is
the potential of @, @ or 7. To retain a simple translation to <, the Composition
operator will be redefined so that communication can only appear when the action
and its complement are bound by Restriction. This involves combining Comg with

Res as follows

, ELE PLp
m
T O(E[F\LT (B F\L

(te LUL)

This rule can also be viewed in terms of a condition on Coms stating that it cannot
be applied if Com; or Comy can be applied. There are also similarities between the
Composition operator as redefined by Comj and Hoare’s Conjunction and Hiding
operators [50, p. 194].

Note that communication in Confluent Composition will satisfy this rule, as
communication always falls in the scope of a Restriction. This redefinition does
affect the agents that can be described in CCS using Composition; however, it
does not have a serious impact because in general communication is restricted when
specifying concurrent systems in CCS.

To understand how Composition works when Comjs replaces Com}, consider
the following; if two complementary actions fall in the scope of a Restriction, these
actions will be the events that are paired in the < relation and will be represented
by one 7 action—this is the same as in standard CCS. However, the difference
occurs in the case where there is no Restriction. In standard CCS, the occurrence
of the action, its complement or a communication action is permitted; however for
the purposes of this research the ability to perform a communication action will be
precluded.

For example, in the agent (.0 | @.0) only the actions @ and @ will be permitted,
and in the agent (a.0 | @.0)\a only the 7 action is permitted, as in standard CCS.

This discussion also raises the issue of measuring the concurrency of an algo-
rithm. As noted in Section 3.4.4, the measure of an algorithm will be determined by

the minimum and maximum values found over all computations of that algorithm.



CHAPTER 3. APPLYING THE MEASURE TO CCS 58

3.6 Translation of CCS

3.6.1 Discussion

The message-passing formalism has now been extended to deal with synchronous
communication and process creation, and can be applied to CCS. There are a number
of questions that must be answered before the translation of CCS agents into the
redefined formalism is presented. These relate to motivating the translation and to
determining which subset of CCS should be modelled. The following points describe
informally the intended translation process and are presented here to set the scene

for the discussion.

e CCS actions will be mapped to events in the message-passing formalism, and
actions and their complements will be used to identify communication event
pairs. When a communication event occurs, the two actions are replaced by a
single 7 action. For example, consider the following agent (a.0 | @.0)\a. The
communication event that occurs between a and @ will be represented by the

single action 7.

e An agent of the form a;..... a,.Q where Q is a CCS agent that does not start
with a prefixed action, will be identified as a process. So, for example, the
agent a.b.(c.d.0 | e.f.0) will be decomposed into three processes—P; = ab,
P, =cd and P; = ef, with P, — P and P, — Ps.

o Asdiscussed in the previous section, the Composition operator will be modified
by the replacement of the transition rule Coms by Com} to allow simple
translation from CCS to the < relation. When two complementary actions
fall in the scope of a Restriction, these actions will be the events that are
paired in the < relation and will be represented by one 7 action. However,
when two complementary actions are not bound by a Restriction, they are not
considered as communication events, and therefore are not related by the «

relation.
The approach that will be taken here is that CCS agents can be broken down into
a number of computations, each of which will be expressed in CCS notation.
Events and actions

In the message-passing formalism, processes are composed of events. It is necessary

to translate the actions of CCS to events. In CCS, there is the set of labels £ = AUA,
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from which the set of actions Act = LU {7} is defined. 7 is a distinguished action
that represents communication. The translation of actions to events can be done as

follows:
o Each element of £ represents an event.

e A communication pair is indicated by an action @ and its complement @. When
the communication occurs, it is indicated by a single event which is represented

by the 7 action.

Processes

In the formalism, processes are described as a finite sequence of events. Therefore,
to translate CCS into this model, it would be reasonable to identify sequences of
action Prefixes as events. For example, in the agent a.b.c.d.e.0, the process would
consist of the events abede. In general, an agent of the form a;.....a,.Q where Q
is a CCS agent that does not start with a prefixed action, will be identified as a

process.

Uniqueness of events and messages

In the message-passing formalism, events and messages are assumed to be distin-
guishable from each other. In CCS, actions which will be treated as events, do not
have this property when considered as elements of Act. However, each action will
be mapped to a specific point in the time-space diagram, and from the point of
view of the Concurrency Measurement Tool, this will be sufficient to distinguish
actions. A more rigorous approach to the unique identification of actions is to label
them with the transition in which they occurred. For example, consider the agent
@.h.0 | a.c.0. There are two possible actions both of which are @ actions. They can

be distinguished as:
e the a action that causes the transition a.b.0 | ¢.c.0 % 5.0 | a.c.0 and
e the a action that causes the transition a.b.0 | a.c.0 % a.b.0 | c.0.

Messages can be distinguished similarly by associating them with the transition
where the communication occurred. This approach, however, is not required for the

correct implementation of the Concurrency Measurement Tool.
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Communication

In the message-passing formalism, communication is defined by the < relation which
defines pairs of events between which communication occurs. As discussed in detail
above, this set of events will be identified by using a redefined form of Composition
where Restriction is used to permit communication. The communication events that

can occur are those that are present in the Restriction set.

Totally concurrent agents and totally sequential agents

As mentioned in Section 3.2, it is necessary to investigate what agents will be inter-
preted as totally concurrent agents and totally sequential agents. These agents are
required to calculate the measure.

As described in Section 3.4.4, there are two factors that constrain the amount
of concurrency in a computation in the redefined formalism; communication and
process causality. In line with the discussion given in that section, a totally con-
current agent will be defined as one with no communication, so each process is not
blocked by communication with other processes; however, the process causality will
be retained in the definition of a totally concurrent agent. This means that delays
that occur because of the structure of processes will contribute to the measure. For
example, consider the agent a.b.(c.d.0| ¢.e.0)\c. The totally concurrent form of this
agent will be a.b.(c.d.0 | ¢.e.0) where no communication can occur. So the effects
of the communication on the concurrency are not taken into account; however, the
effects of the fact that events ¢, ¢, d and e can only occur after @ and b are taken
into account.

A totally sequential agent is the agent where each pair of communication events
has been reduced to one event, and where all events must occur one after another.
For example, consider a.b.(c.d.0 | €.e.0)\ ¢ again. A totally sequential form of this
agent will be one interleaving of possible events, for example a.b.7.d.e.0 or a.b.T.€.d.0,
with the pair of communication events reduced to one 7 event, as discussed in Section
3.4.4. In effect, the agent that represents the sequential computations in the example

is a.b.7.d.e.0 4+ a.b.7.e.d.0, the agent that is defined by the Expansion Law.

Finite agents

The formalism assumes that processes eventually terminate and therefore the mea-

sure can only be applied to a set of processes with a finite number of events. For
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that reason, only finite agents will be used. Milner [50, p. 160] defines finite agents

as follows:

An agent expression is finite if it contains only finite Summations and

no Constants (or Recursions).

Subset of CCS
The subset of CCS that can be dealt with contains the following operators:
0, Prefix, (finite) Summation, Composition, Restriction and Relabelling
and excludes:
infinite Summation and Constant (or Recursion).

However, as discussed above the message-passing formalism does not allow the
Summation operator, so the agents that are used for input will be divided into
the different computations that would result from the presence of a Summation.
Relabelling will be treated in a similar way—an agent for input will be in a form
where all Relabellings have been applied.

The last question to be answered is the suitability of the subset of CCS. As

stated above, this subset includes (finite) confluent agents which are defined by:

0, (finite) Confluent Summation (which includes Prefix), Composition,

Restriction and one-to-one Relabelling.

Milner has noted in his book [50] that confluence is a desirable property for
ensuring well-behaved specifications. This would indicate that although it would be
preferable to capture the whole of CCS, the subset that has been dealt with is, in

fact, significant. Possible extensions to the subset will be discussed in Chapter 6.

Use of CCS notation

Note that the different syntactic forms of agents are used to distinguish the dif-
ferent forms these agents take in the message-passing formalism even though these
different syntactic forms may be equated by the equivalence semantics (~, = or
=) of CCS. For example, consider Figure 3.5, (a) represents diagrammatically, the
one computation that is possible in the message-passing formalism by the agent
a.0 | .0, and (b) represents diagrammatically the two computations that are pos-

sible in the new formalism by the agent @.b.0 + b.¢.0, although from the FExpansion
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Figure 3.5: (a) @.0 | b.0. (b) .b.0 4 b.¢.0.

Law, a.0 | 5.0 = a.b.0 4 b.a.0. Note that (a) is the totally concurrent form of the
agent @.0 | .0 and (b) is its totally sequential form.

This use of notation does not impose any restrictions on the agents that can be
translated. However, this illustrates that the research deals with the syntax and

operational semantics of CCS, but not the equivalence semantics of CCS.

3.6.2 Translation algorithm

The algorithm presented is a static algorithm to translate a CCS agent into the
new formalism. It is static in the sense that the decomposition of the agent into
processes is based only on the syntax of the agent. The input is a CCS agent and the
output is a set of processes P = { Py, P,,..., P,}, consisting of sequences of events,
a relation that describes the causal links between processes —, and a relation that
describes the communication pairs <. Note that this translation algorithm maps
CCS agents into the message-passing formalism, whereas the algorithm used in the
Concurrency Measurement Tool which will be presented in the next chapter, maps
CCS agents into the data structures that represent the message-passing formalism.

In the following, agent will be used to indicate the CCS agent and ¢, j, k will

indicate process numbers.
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translate( agent ,7)
if agent has the form a.F then
add a to P;
translate( F, i)
if agent has the form FE | F' then
get new process numbers 7 and k
create empty processes P; and Py
add (P;, P;) and (P;, P;) to —
translate(~, 7)
translate( F, k)
if agent has the form 0 then
do nothing
if agent has the form F\a
add the action a to the restriction information about ¥
translate( £, ¢)
After this has been done, the communication pairs < can be determined from
the restriction information that was recorded. A communication pair occurs
whenever a label ¢ and its complement @ occur within two distinct processes

in the scope of a Restriction on a.

3.7 Summary

In this chapter, the differences between the message-passing formalism of a dis-
tributed system and CCS were identified. The major differences are asynchronous
versus synchronous communication, and nesting of processes, and expressive power.
The formalism was redefined to allow for these differences, and it was shown that
the original results are valid in a modified form in the new formalism, and that
the justification for the measure still holds. The difference in expressive power be-
tween CCS and the formalism was resolved by defining how agents in CCS will be
measured. It was determined which subset of CCS will be used in the research,
and it was shown that this subset includes confluent agents. Finally, a translation
algorithm was presented to map CCS agents into the redefined formalism.

In the next chapter, the Concurrency Measurement Tool which was developed
to measure the concurrency of CCS agents, will be discussed. This discussion will
include the algorithms used in calculating the measure, and the performance of the

Concurrency Measurement Tool.



4. The Concurrency Measurement
Tool

4.1 Introduction

In this chapter, the Concurrency Measurement Tool will be described and discussed.
The Concurrency Measurement Tool is a program that provides for the measure-
ment of the concurrency of agents in a specific subset of CCS, as detailed in the
previous chapter. First, an overview of the program will be given, with discussion
of the approach taken, the data structures used and the algorithms implemented.
The two major algorithms—that for updating vector clocks and that for calculating
p—will be discussed. The second algorithm comprises the main work in determin-
ing the measure and a theoretical analysis of its performance will be given. This
analysis will be compared with experimental results that were obtained. Sugges-
tions for optimising the algorithm will also be presented. Finally, extensions to the
Concurrency Measurement Tool and the application of it to other measures will be

discussed.

4.2 Description of approach

Since there is no known method for analytically determining the number of consis-
tent cuts in an arbitrary computation, it is necessary to generate cuts and check
them for consistency. As there are a large number of possible cuts to be checked,
it becomes necessary to automate the process. Therefore, as part of this research,
a program was implemented to calculate the measure for a given CCS agent, sub-
ject to the limitations described in Chapter 3. The program provides the ability
to perform experiments on CCS agents and hence to evaluate the measure and the
feasibility of applying a measure of concurrency to CCS.

The program receives as input a CCS agent, and maps the agent in a data
structure that is a representation of the message-passing formalism as redefined in
the previous chapter. As the algorithm requires vector clocks to determine if a

cut is consistent, vector clocks must be added to the events. Once this is done, the

64
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number of consistent cuts g can be counted. The values ¢ and p® can be determined

analytically and the measure can be calculated.

4.2.1 Data structures

The basic data structure is that of the event. Events are combined into a tree
structure that represents the possible causation of one process by another. Although
in Chapter 3, the presentation is at the level of processes, in the implementation of
the Concurrency Measurement Tool, events cannot be represented as a sequence of
labels attached to each process because of the amount of data associated with each
event. It is sometimes necessary to have dummy events that represent no action,
as only binary branching is allowed. These dummy events are ignored when the
measure is calculated.

In the following, the type declarations (in C) for the data structures are pre-
sented. Both the action type and the restriction type contain label fields. Instead
of each action being represented by a single character as in the previous chapter, an
action label consists of a string. This allows for the use of meaningful names when
defining CCS agents. The action structure has a label field and a field to indicate
whether the label is complemented. The Restriction operator defines a subset of
actions that are precluded, and these actions are stored in a linked list. It is not
necessary to store the complement of an action, since if L is the set that is specified

by the operator, then LUL is the set of actions that are prevented by the Restriction.

struct action_t /* action type */

{

labelstr label; /* label name */

int bar; /* complement indicator */
3

struct restrict_t /* restriction type */

{

labelstr res; /* label name */

struct restrict_t #*next_res; /* pointer to next restriction in list */

};

The event structure has two pointers to the two next events, a pointer to a possible
communication event and an action structure as described above. Next there is a
pointer to the variable that contains the vector clock, and a counter to record the

latest clock update. Other fields contain the event number and the process number
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in which the event occurs. There is a pointer to a structure of Restrictions that

captures all Restrictions that apply to that event and hence to all events further

down the tree.

struct event_t

{

struct event_t *1_event;
struct event_t *r_event;

struct event_t *comm;

struct action_t act;
int *clock;

int update;

int event_num;

int process_num;

struct restrict_t *next_res;

};

/* event type */

/*
/*
/*

/*
/*
/*
/*
/*
/*

pointer to next (left) event */

pointer to next (right) event */

pointer to event involved in communication
(may be NULL) */

action information (may be empty) */
pointer to vector clock */

most recent clock update */

number of event */

number of process that event occurs in */
pointer to list of restrictions

(may be NULL) */

Finally, there is a structure to keep track of process information. This structure

duplicates some of the information that can be obtained from the event tree.

struct process_t
{
struct event_t *first_event;
int num_events;
int first;
int last;
int left;
int right;

struct event_t *cut;

int enable;

};

/*

/*
/*
/*
/*
/*
/*
/*

/*

/*

process type */

pointer to first event in process */
number of events in process */

first (non-empty) event in process */
last (non-empty) event in process */
number of next (left) process */

number of next (right) process */

for convenience, this type contains info
about which event (if any) in the process
is contributing to the current cut during
the cut checking process */

pointer to event in current cut

(may be NULL) */

indicator of whether events in process

can contribute to current cut */

This structure captures the — relation in the fields 1eft and right. It also con-

tains the information about the event (if any) in the process is contributing to the
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current cut being checked. Finally, the enable field indicates whether the process
is currently available to contribute events to the cut. This will be discussed in more

detail later.

4.2.2 Program overview

There are two main sections in the program. The first relates to creating an event
tree, finding communication events and adding the vector clock. The second consists
of the procedures to calculate p, u° and p® and from these to determine the value

of m. The structure of the program is as follows:

input the agent

parse agent and create event tree

find pairs of communication events and return count

add vector clocks to events

calculate p by generating all cuts and checking them for consistency

calculate u° and p* analytically from the number of events in each
process

calculate measure and print results

The agent is input via a file, in the form specified in the previous chapter. To
find pairs of communication events, the restriction lists are used to determine what
subtrees to search. Vector clocks are updated by the rules presented in Chapter
3. Dummy events receive the same time stamp as the event preceding them. The
procedures used to find g will be discussed in more detail in the next section, and
1® and pf can both be calculated by knowing the number of events in each process,
the structure of the processes and the number of communication events.

The output includes the measure, g, p°, p°, the number of events, number of

processes, number of communication events and the time taken to obtain pu.

4.3 Translation procedure

The translation procedure takes CCS agents and translates them into the data struc-
tures given above. A recursive descent parser together with a number of semantic
routines is used to create the event structure. The grammar is shown below, includ-
ing the action symbols indicating the semantic routines, which are the functions

that create the event tree:
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<..> indicates nonterminals
{..} indicates optional elements

#.. 1indicates action symbols

<agent> —--> Nil <atail> #fNil
LPar <agent> RPar <atail> #fPar
Action #StoreAction Dot <agent>
<atail> --> Comp <agent> <atail> #fComp
Res <set> <atail> #fRes
empty string
<set> --> Action #StoreRestrict
LBrace <setelem> RBrace

<setelem> --> Action #StoreRestrict { Comma <setelem> }

terminals

Nil 0 LPar ( RPar )

LBrace { RBrace } Dot

Comma , Comp | Res \

Action {’}X where X is a string consisting of one or more lower

case letters.

semantic routines associated with action symbols

StoreAction - record details of action for use later in the
translation procedure

StoreRestrict - add new action for restriction to list of actions for
later use

fNil, fPar,

fAction, fComp,

fRes - (in general) create new events and add them to event tree

As opposed to the conceptual algorithm presented in Chapter 3, the grammar and
the semantic routines presented here embody the concrete algorithm that is used to
translate CCS agents into the data structures that are themselves a concretisation

of the message-passing formalism.

4.4 Algorithm for adding vector clocks

The goal of the algorithm is to add vector clocks to the event tree using the rules

presented in Chapter 3, which are presented here in a less formal form:
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o Initial values of clocks

— If an event occurs at the beginning of a process that is not caused by

another process, then the initial value of the clock is (0,...,0).

— If an event occurs at the beginning of a process that is caused by another
process, then the clock is set to the value of the clock of the last event in

the other process.
e Updating values of clocks

— For each event that occurs in process P;, the ith position of the vector

clock is incremented by 1.

— If two events are partners in synchronous communication then their clocks
are set to the maximum of the values of their clocks after the previous

step has been done.

A counter is used to indicate if the update of the ¢th position has been performed
and this is used to indicate which events (nodes) have been visited. The algorithm
traverses the tree depth-first adding vector clocks. If the beginning of a new process
is found, the clock for the first event is copied from the last event in the previous
process. In a similar fashion, an event that is not at the beginning of a process takes
a copy of the clock from the previous event. Then regardless of whether the event
is at the beginning of a process, a communication event or any other event, the ith
position is incremented. However, if the event is one of a pair of communication
events then it is necessary to find the maximum of the two clocks. This can only
be done once both clocks have had the position in the vector that correspond to
their process indices updated. If the partner has not been updated yet, the subtree
beneath the event cannot be updated and is left until the partner is updated and
then vector clocks are added to the subtrees beneath both events.

As each event is visited at most twice, the algorithm takes O(g¢) time where

q = ) j=14;, the total number of events.
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add_clocks to event e
if e is not a communication event

copy clock from previous event

if e is not a dummy event
increment position i of the clock, where e is in process i

set update counter to new value

add_clocks to the left child of e

add_clocks to the right child of e

else /* e is a communication event */

if e’s communication partner has not been updated
copy clock from previous event
increment position i, where e is in process i
set update counter to new value

else /* e’s has been updated */
copy clock from previous event
increment position i of the clock, where e is in process i
take max of e’s clock and e’s partmners clock
set update counter to new value
add_clocks to the left child of e
add_clocks to the right child of e
add_clocks to the left child of e’s partner
add_clocks to the right child of e’s partner

4.5 Algorithm for counting consistent cuts

The algorithm for counting the number of consistent cuts in an arbitrary compu-
tation is necessary to determine u. The approach taken is based on Proposition 3
which presents a condition for determining whether a cut is consistent.

This cut depends on the vector times of the events that defined the cuts. Let
C be a cut defined by Ec, and a; for each 1 € N\ Ec, C = U;en\g,(] ai)i, and
let T; € N™ be defined as O(a;) if i € N\ E¢ otherwise (0,...,0). If the following

condition holds for a specific cut then the cut is consistent
sup(Ty,...,Tn) = (T1[1], ..., Tu[n]).

This result suggests a simple way for determining the number of consistent cuts,
first generate a cut, then use the condition to check if the cut is consistent.
There are two functions—gen_cuts and consistent_cut—for implementing this

algorithm. The first is a recursive procedure to generate all cuts and the second
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checks whether a cut is consistent or not. These algorithms will be discussed in

detail below.

Function gen_cuts

In the original message-passing formalism, there were (¢1+1)(g2+1)...(¢g,+1) cuts
to be checked, namely the number of consistent cuts in a totally concurrent version
of the computation. However, in the new formalism, because of process causality,
this is described by!
pue = H cuts(P;) where cuts(P;)=¢; + H cuts(P;).
Pes {P;|Pi—P;}

Hence, to prevent extra work, the causality structure of the processes needs to be
taken into account. This will mean that the actual number of cuts as described by
the above equation, will be checked for consistency, as opposed to an inflated value
given by (¢1 +1)(g2 +1)...(gn + 1).

In order to generate only those sets of events that form cuts as defined by the
causality of processes, it is necessary to allow processes to be ‘enabled’ and ‘disabled’.
If P; — P; then no events of process P; can contribute to a cut unless the final event
of process P; is in the cut. Therefore, process P; will be marked as disabled until
the final event of P; has been put in the cut. The algorithm proceeds by working
through each process, adding events (in order of occurrence) to the cuts. After each
process has had the opportunity to contribute an event, the cut is defined and can

be checked for consistency. The procedure is started by the call gen_cuts(0).

!This is the same as the more detailed equation presented in Section 3.4.4 since if P; € F,

{Pj| Pi— P} =0and [[, =1
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gen_cuts(int pr)
if pr = total_number_of_processes /* if each process has
contributed an event */
if consistent_cut() /* check cut for consistency */

increment consistent_cut counter
else /* still processes to contribute */
gen_cuts(pr + 1) /* with no event contributing from process pr */

if process pr is enabled
while not last event in process pr /* add each event in turn
from process pr to the */
add next event to cut /* cut, except last one */

gen_cuts(pr + 1)

enable next processes
gen_cuts(pr + 1) /* with last event from process pr */

disable next processes

Function consistent_cut

As described above, the vector clocks of the events that form a cut can be examined
to determine whether the cut is consistent. The condition that is required to hold

on the vector clocks can be rewritten as follows:

sup(Ty,...,17%) = (Th[1],...,Tu[n])

& Vped{l,...,n} max Ty[p] = Tp[p]
<ign
& Vp,jedl,...,n} T;lp] < T,[p]

Consider j and p; there are four distinct scenarios that can occur with respect

to membership of F¢:

e j,p€ Ec, then T}[p] = 0 = T, [p], and the condition holds,
o j€ Ec and p € Ec¢, then T;[p] = 0 < T,[p], and the condition holds,
o j & Ec and p € E¢, then T;[p] > T,[p] = 0, and the condition does not hold,

o j,p¢& Ec, then T;[p] > 0 and T},[p] > 0 and these two values must be explicitly

checked to determine if the condition holds.



CHAPTER 4. THE CONCURRENCY MEASUREMENT TOOL 73

To minimise the time involved in accessing complex data structures, the above
scenarios were used to derive an algorithm that first determines if a process has
contributed an event to the cut before explicitly checking the clock values. As soon as
a counterexample is found, it can be indicated that the cut is not consistent. However
if a cut is consistent it requires O(n?) operations to show this. The algorithm can

be described as follows:

for( p = 0; p < total number of processes; p++ )
for( j = 0; j < total number of processes; j++ )
if j € E¢
/* do nothing since Tj[p| = 0 < T,[p] */
else if p€ E¢

return(false) /* condition fails */
else if Tj[p] > T, [p]
return(false) /* condition fails */
return(true) /* condition true, cut is consistent */

4.5.1 Analysis of algorithm

In this section, I will present a worst-case analysis of the algorithm used to check for
consistent cuts. This analysis is an extension of an analysis presented by Charron-
Bost [16]. The number of cuts to be checked can be described by the following
formula
e = H cuts(P;) where cuts(P;) = ¢; + H cuts(Pj).
Pes {P;|Pi—P;}
The worst case occurs for a given n where n is the number of processes when there

is no causality between processes, namely when
VP, eP, P,eSand P, € F.

then there are u® = [[i(¢; + 1) cuts to be checked.
To analyse this algorithm the following inequality which is derived from the

relationship between geometric and arithmetic means [21] is required

H(qz‘l’l)ng%‘kl where q:qu7

=1 7=1

therefore

n

ITGa+ 1)< (1"

=1
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From this, u® can be expressed as

n

p =TIl + 1) < (g/n+ 1)

=1

Note that in the case where all the ¢;’s are equal, namely

Vie{l,...,n}, ¢ =q/n

then

n

=T+ 1) = (41

=1
and hence the upper bound is achieved in this case.

Also in the worst case it takes n? steps to check a cut for consistency which
therefore gives an upper bound of n?(g/n + 1)" steps to generate and check all cuts
for consistency.

This gives an algorithm of O(¢"/n"~?) where ¢ is the total number of events in
the computation and »n is the number of processes. Although it has not been shown
that this is a tight upper bound for solving this problem, it is the tightest upper
bound known.

It would be difficult to perform an average case analysis as this would require the
knowledge of the probabilities associated with the occurrence of certain computation
structures. However, an approach to the average case can be demonstrated as
follows. Assume that on average, when a cut is not consistent, it will require half
the time used for determining if a cut is consistent to discover this, and let ¢ be the
time required in the worst case, then time taken in an average case can be described

as

Iz pe—p ot et
—1+( )z =( )t € 0(t).
HC HC 2 2[1/0
This shows that even in an average case, the algorithm remains exponential.
Fidge [32] notes that the calculation of p requires ) ,.,., ng integers to be

stored. Using ¢ as defined above, this can be written as

In the implementation of the Concurrency Measurement Tool, assuming an average
number of restrictions per event, let the number of bytes required to store an event
be ¢1. The total number of events is defined above by ¢, and n is the total number

of processes. Dummy events are required in some circumstances, but more than ¢
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dummy events are not possible. So the space required for the event tree is 2¢1gn. If
each process requires cy bytes to be stored, then con bytes are required to store all
processes in the process structure. This gives a total of n(2¢1q + ¢2) bytes for these
two data structures, or space complexity of O(gn) which correlates with Fidge’s
result.

These results show that the algorithm implemented is expensive. In the next
section, other approaches will be discussed after which experimental timings for the

program be will compared to the above theoretical result.

4.5.2 Other algorithms

The research done here did not focus on finding the most efficient algorithm to
perform the counting of consistent cuts, so in some sense the algorithm used is
naive. In the literature, however there are indications that an efficient algorithm
has not been found. Raynal et al [59] note that the calculation of u is not feasible
but do not give any further details. Fidge [32] notes that the space requirements for
calculating p are expensive.

Charron-Bost [14, 16] has derived an algorithm based on her result that relates
the number of consistent cuts to the number of antichains in the partial order. The
algorithm first determines all 2-antichains and from these, builds the k-antichains
for £k > 3. She notes that the algorithm is efficient only when there are few 2-
antichains in the computation under consideration. This occurs because if there are
few 2-antichains, there are few k-antichains for £ > 2. This is the same as saying
that the algorithm is efficient when there is little concurrency in the computation.
The analysis of this algorithm is complex and requires determining the number of
k-antichains for each & in terms of the number of 2-antichains. I have investigated
this algorithm further and found it to be O((ng)"*1).

Kim et al [44] present an approach whereby they divide computations into con-
currency blocks, and count the number of antichains in each block. This results in
an approximation to m that is faster to compute; namely O((ng)"/b""!), where b
is the number of concurrency blocks.

The algorithm that is used in the Concurrency Measurement Tool also exhibits
that property that the less concurrent the computation, the faster it is to count
consistent cuts, as the procedure to check for consistency needs to find one index
pair for which the condition does not hold to show that a cut is not consistent,

although as shown above it does not affect the complexity of the algorithm.
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Py \
P2 e f g c

Figure 4.1: An example computation.

It would seem therefore that all algorithms proposed in the literature are ex-
ponential. However, in terms of the algebraic expressions found by the analyses,
Charron-Bost’s antichain algorithm is the more expensive. Depending on the rel-
ative sizes of n and b, the analyses of algorithm that I have implemented and the
algorithm proposed by Kim et al are similar, but the latter algorithm is less desirable
because of the inaccuracy involved in the approximation of m.

A few different approaches have been suggested that attempt to take the struc-
ture of the graph into account, however their worst case analysis appears to be the
same as the algorithm given above. A basic approach to improving the algorithm
is to eliminate the generation of cuts that are not consistent. This can be done by
‘knowing’ where the communication events are in a graph. Consider Figure 4.1—let
the current cut be defined by (| d); U (] €)2. It is not consistent and in fact it will
only be consistent once the algorithm has reached the cut (| d); U (] ©);. If the
communication events can be located, then it should be possible to avoid checking
the cuts created by adding f and g. In some sense, it is necessary for the algorithm
to determine why the cut is not consistent, namely in which processes the inconsis-
tency occurs and how to skip it. This may require an additional data structure to

retain the communication structure, but this is an issue for further research.

4.6 Use of the Concurrency Measurement Tool

As mentioned earlier in this chapter, the CCS agent is input via a file, the calculation
is performed, and m, p, p®, u°, the number of events, the number of communication
events, and the time taken to obtain u are output.

To determine the maximum and minimum values for the measure of a specific
CCS agent, it is necessary to determine if there is any Summation in the agent
that may cause a number of distinct computations. If this is the case, the CCS

agent must be decomposed into a number of agents that represent the different
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computations that can occur. These agents are measured individually by distinct
executions of the Concurrency Measurement Tool and the maximum and minimum
values for the original agent can be determined from the values obtained. An area
of further research is to automate the decomposition and the presentation of the

maximum and minimum values.

4.6.1 Experimental error

As there is no possibility of different values for the measure being obtained from
different experiments on the same agent, the issue of experimental error does not
play a major role in this research. The execution times presented later in this
chapter form the only opportunity for experimental error; however they do not form

the crux of this research.

4.7 Performance of Concurrency Measurement Tool

The Concurrency Measurement Tool consists of 1740 lines of optimised ANSI C
code, and was executed on a Silicon Graphics Indigo workstation with on a 50MHz
MIPS R4000 processor. In the experiments that were performed the number of
cuts checked per second ranged from 83,000 to 168,000. This would indicate that
although the algorithm is exponential in the number of processes, it is still feasible
to calculate the measure for CCS agents as long as the number of events and pro-
cesses remains within a reasonable range. For example, in the largest experiment
performed, there were 60 events, 23 processes and 1.8 x 10? cuts to be checked. Of
these, 11,836 were consistent and it took 2.2 x 10* CPU seconds to check the cuts
and calculate the measure.

Table 4.1 presents a comparison of theoretical and actual execution times across
a number of experiments for different values of ¢ and n. The first two columns
give the values of n and ¢ respectively. The third column gives the number of CPU
seconds taken to calculate the number of consistent cuts, and the fourth column gives
the predicted number of operations obtained from the analysis of the algorithm as
given in Section 4.5.1. The final column presents the ratio of the third column
to the fourth column. These figures in the final column range from 2.07 x 10° to
112.16 x 10°. This range indicates that the number of operations given by the
analysis does to a fairly large extent predict the CPU time required to calculate the

number of consistent cuts. This confirms the analysis of the algorithm presented in
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n q seconds operations operations/
(nQ(q/n + 1)) second
4 20 0.01 2.07 x 10* 2.07 x 10°
5 28 0.06 3.13x 10° 5.22 x 108
8 40 12.91  1.07 x 108 8.33 x 10°
8 48 33.68  3.69 x 108 10.95 x 108
8 64 144.08  2.75 x 10° 19.12 x 10°
8 96 885.80  5.22 x 1010 58.94 x 109
10 56  1027.24  1.57 x 10'° 15.27 x 10°
10 64  2138.93  4.92 x 10'° 23.02 x 108
11 56  1910.80 5.18 x 10'° 27.11 x 10°
11 64  4100.32 1.79 x 1011 43.68 x 106
10 80  6900.07  3.49 x 10! 50.53 x 106
11 80 13398.80 1.50 x 10'? 112.16 x 10°
12 60 22366.00 3.13 x 10! 14.02 x 108

Table 4.1: Comparison of actual and theoretical times.

Section 4.5.1.

4.8 Extensions to the Concurrency Measurement Tool

One important extension is the addition of a preprocessor to apply Relabellings and
determine the different computations that result from the Summation operator, as
currently it is necessary to create individual input files by hand. The program can
also be extended to deal with these different files and to print all results including
the minimum and maximum of the measures. A preprocessor could also be used in
the case of probabilistic CCS [55] where actions are assigned probabilities. Then a
weighting can be determined from these probabilities for each possible computation
and a measure can be determined for the whole algorithm. This is discussed further
in Chapter 6.

Other extensions discussed in Chapter 6 relate to extending the subset of CCS
for which the measure is defined. To make these extensions to the measure usable,
the Concurrency Measurement Tool would also require modification. In general,
the idea would be to extend the map of CCS to the message-passing formalism, and

hence the underlying algorithms are unlikely to need much alteration.
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4.9 Calculation of other measures

The other measures that have been defined in the message-passing formalism are
w [14], p [15], B [32] and a [59] (see Chapter 2). In what follows, modifications
required to enable the Concurrency Measurement Tool to calculate the measures

will be briefly detailed.

The measure w This measure is a special case of m and can be calculated by
determining the number of concurrent pairs of events in the computation. The data
structures would remain the same and a function could be added to perform pairwise
comparisons of events. If the antichain algorithm is used to count the number of
consistent cuts then finding the number of concurrent pairs will be part of this

algorithm as these are just the 2-antichains.

The measure § The calculation of this measure requires two additions. First
linear logical clock times are required in the calculation of the measure. The second
addition is more complex as it requires changes to the message-passing formalism,
since the clocks must be integrated at the end of the computation, namely
Ofinal = sup  O(ay,).
{Pi|P;ieF}
It is necessary to check that this is a reasonable approach when applied to CCS
agents. In terms of the Concurrency Measurement Tool, however it is a relatively

simple modification.

The measure @ This measure requires an additional vector counter W which to
be added to the event data structure. As for the measure 3, the values of both ©
and W are integrated at the end of the computation. Again the modifications are

relatively simple.

The measure p This measure is not defined in terms of vector clocks and hence
the modifications required are more difficult. p is defined in terms of event and
message times and the values of the measures can be determined analytically if
the number of events and communication events are known. Therefore the data
structures and functions used by the Concurrency Measurement Tool would not be

required and a new program should be written.
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4.10 Summary

In this chapter, the Concurrency Measurement Tool was discussed, including the
algorithms used to calculate the measure, the most important of these being the
algorithm used to calculate p. It was shown that this algorithm was exponential
in n, however it was possible to calculate the measure for agents of a reasonable
size. Other algorithms, extensions to the Concurrency Measurement Tool and the
calculation of other measures were discussed. In the next chapter, results of exper-
iments performed using the Concurrency Measurement Tool will be presented and

discussed with respect to the criteria used for evaluating the concurrency measure.



5. Results and evaluation

In this chapter, the results of experiments performed on CCS agents using the
Concurrency Measurement Tool will be documented and interpreted. First, a review
of the evaluation criteria described earlier in this document will be presented after
which the experiments that were performed to evaluate m will be discussed in detail.
This discussion will include the aim of each experiment, the agents chosen, figures
that include the measure for the agent and other relevant information, and a short
interpretation of the results. Following this there will be a section that consists of a
fuller discussion of the results obtained and an evaluation of the measure in terms of
the criteria. The next two sections will present suggestions for an improved measure
and a discussion of this new measure in terms of the criteria.

Finally, the application of a measure of concurrency to CCS will be discussed
and it will be argued that this has resulted in new methodology for the evaluation

of concurrency measures defined in the message-passing formalism.

5.1 A review of evaluation criteria

This section presents a summary of the criteria presented in Chapter 2.

Intuitive understanding of the measure (p. 9) [14]

Being well behaved for small examples (p. 9) [14, 15]

Compatibility with operators on computations (p. 9) [15, 18, 32]

Usability and applicability (p. 13) [15, 45]

Ability to calculate measure for a specific event (p. 14) [32, 59]

Expense of computation in terms of both time and space (p. 14) [32, 38, 59]

Stability with respect to granularity (p. 14) [16]

81
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5.2 The experiments

The Concurrency Measurement Tool will be used to perform a number of experi-
ments that have been designed to evaluate m with respect to the issues discussed
above. The presentation format for each experiment contains the CCS agents or a
description of them, a short description of the aim of the experiment, the results of

the experiment and a brief interpretation of the results.

5.2.1 Experiment A: Simple example

Al d:ef (c.al.ag.ag.a4.0 | E.bl.bg.bg.b4.0)\c

A2 d:ef (01.0.02.03.04.0 | bl.E.bQ.bg.b4.0)\C

A3 d:ef (al.ag.c.ag.a4.0 | bl.bQ.E.bg.b4.0)\C
The agents : def

A4 = (al.ag.ag.c.a4.0 | bl.bg.bg.E.b4.0)\c

A5 d:ef ((11.(12.(13.@4.6.0 | bl.bg.bg.b4.6.0)\c

The aim : To investigate the behaviour of the measure on a simple example.

[ S

peoptopom
Ay 36 10 26 0.62

Ay 36 10 20 0.38
Az 36 10 18 0.31
Ay 36 10 20 0.38
As 36 10 26 0.62

The results :

Interpretation : In Figure 5.1, the space-time diagrams are presented for Ex-
periment A. The results show that there is a symmetry displayed about the middle
of the computation, which was not expected. The closer the communication is to
the middle of the computation the less concurrency there is. This can easily be
explained by the fact that communication in the middle of the computation can
affect a greater number of events, therefore the processes in this computation are

more susceptible to blocking.

5.2.2 Experiment B: Simple example

The agent : B, (c.ay. - +.ay.0| Cby. - -.0,.0)\c



CHAPTER 5. RESULTS AND EVALUATION 83

The aim :  To see how the measure changes as the number of events in each

process increases.

1Y I I m
B 4 1 1 0
B 9 4 5 0.2
The results : 2
By 25 8 17 0.53

By 121 20 109 0.8
Bigo 10201 200 10001 0.98

Interpretation : In Figure 5.2 the space-time diagrams are presented for Ex-
periment B. The measure seems to extend across the whole of [0,1) for increasing
values of n. It should never reach 1 unless the single communication event in the
graph is removed. The fact that the amount of concurrency increases is in accor-
dance with the expected behaviour of such an example, because as the number of
events increases, a single communication event has less effect on the concurrency of

the computation.

5.2.3 Experiment C: Composition operator
def _ _ _
Cl :e (Cl.al.CQ.O | 61.63.62.0 | ag.Cg.ag.O)\{Cl,CQ,Cg}
The agents : CQ d:ef (Cl.al.CQ.O | €1.€3.¢5.0 | ag.Eg.ag.O)\{Cl,CQ,Cg} |

(Cl.al.CQ.O | 51.63.52.0 | 0@.53.@3.0)\{61, Ca, C3}

The aim :  To investigate the behaviour of the measure when using the Compo-

sition operator.

[ m
The results : C 64 7 12 0.0877
Cy 4096 13 144 0.0321

Interpretation :  The agents for this experiment are described in Figure 5.3.
This experiment is used to determine the action of the measure under the CCS
operator Composition. As described in Section 2.2.3, it would be reasonable to
expect the amount of concurrency to increase. However, in this experiment there is

a decrease in the measured concurrency.
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Ay Ay
¢ b by b3 by by by b3 c by
ay c as as a4 a as as ay C
Az As
b1 [4 bg b3 b4 b1 b2 bg b4 [4
a a9 C as aq
Az
by by c b by
Figure 5.1: Experiment A.
c
B B
4
c aq
B
? ¢ b
C a o an—1
By,
c b o br_1

Figure 5.2: Experiment B.
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5.2.4 Experiment D: Prefix operator

def

D1 (61.01.62.0 | 51.63.52.0 | (12.63.(13.0)\{61, Ca, Cg}

The agents : def

2 bl.bg.bg.(Cl.al.CQ.O | 61.63.62.0 | (12.52.(13.0)\{61, Ca, 63}

The aim :  To investigate the behaviour of the measure when using the Prefix

operator.

O N
The results : Dy 64 7 12 0.0877
Dy 67 10 15 0.0877

Interpretation :  The agent for this experiment is shown in Figure 5.4. In this
experiment, the effect of the CCS operator Prefix on the measure was investigated.

As can be seen from the above table there was no change in the measure.

5.2.5 Experiment E: Par operator

B (j.m.p.0| k.p.g.r.done.0 | I.n.q.0)\{p, ¢}
B, ¥ B Par B
The agents : C (Gmp.0| kpgrdi.0|lng0)\{p,q}|
b.(j.m.p.0| k.p.g.r.d2.0 | [.n.q.0)\{p,q} |
dy.dy.done.0 + dy.d;.done)\ b
The aim : To investigate the behaviour of the measure when using the Par

operator.

A m
The results : Eq 96 10 24 0.1628
FE, 36864 20 554 0.0145

Interpretation :  The agent used for this experiment (and for the next) are
described in Figure 5.5. This experiment is used to determine the action of the
measure under the operator Par . As described in Section 2.2.3, it would be reason-
able to expect the measure of concurrency to increase, but to a lesser extent than
with the Composition operator because an additional agent is introduced by the

Par operator. As can be seen from the results, the measure decreases.
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C1 ay €3 C1 a1 C2
[ C [ C
Cy 1 3 2 1 3 2
a3 €3 das a3 C3 a3
Cy
C1 a1 C2
€1 €3 Cy
a3 C3 a3
Figure 5.3: Experiment C.
C1 ay €3
¢ ¢ C
D, 1 3 2
a3 €3 das
4] a1 C2
b b b ¢, ¢C [
D, 1 2 1 3 2
UP) €3 das

Figure 5.4: Experiment D.

7 m P
2 P / r done
[ n__9q

Figure 5.5: The agent for Experiments F and F.
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5.2.6 Experiment F': Before operator

def . . —
B = (jm.p.0|kp.grdone.0|l.nqg0)\{p q}
F def Fy Before Fy
The agents : def

= ((jm.p.0| kp.g.r.b.0|l.n.q.0)\{p,q} |
b.(j.m.p.0| k.p.g.r.done.0 | [.n.q.0)\{p,q})\b

The aim :  To investigate the behaviour of the measure when using the Before

operator.

peopt m
The results : F 96 10 24 0.1628
Fr, 9312 19 47 0.0030

Interpretation :  This experiment is used to determine the action of the measure
under the operator Before . As can be seen from the results, the measure decreases

significantly.

5.2.7 Experiment G: Dining philosophers

The next set of experiments involves the dining philosophers problem which was first
proposed by Dijkstra [28]. This problem is of interest because it is a classic prob-
lem in concurrent systems, and involves mutual exclusion with multiple resources.
Solutions to the problem must ensure that deadlock does not occur. Two solutions

are investigated:

1. The room-ticket solution, where there are n — 1 room-tickets which ensure that
deadlock cannot occur because it only allows n — 1 philosophers in the room

at one time [12].

2. The solution when n is even, where philosophers p; for ¢ mod 2 = 0 pick up
their right forks first and philosophers p; for (¢ + 1) mod 2 = 0 pick up their
left forks first. This prevents a situation where all n philosophers are holding
a right fork and cannot obtain a left fork. This will be referred to as the

odd-even solution [47].

The agents used for these experiments are detailed in Appendix B. To facilitate the
comparisons of results the notation zpy is used, where x indicates the number of

philosophers in the experiment and y indicates the number of eat and think actions



CHAPTER 5. RESULTS AND EVALUATION 88

that occurs. In Experiment G, philosophers alternatively perform one ‘eat’ action
and then one ‘think’ action. In Experiment H, the number of eat and think actions

is increased.

G1 2 philosophers odd-even solution 2pr1

G5 4 philosophers odd-even solution 4p1

Gs 6 philosophers odd-even solution 6p1
The agents :

G4 2 philosophers room-ticket solution 2p1

G5 4 philosophers room-ticket solution 4p1

The aim :  To test the usability and applicability of the measure for comparison

of real distributed algorithms.

C S

H Iz H m
Gi 1.22x10%® 1.30x 10! 2.00 x 10! 5.78 x 1072 2p1

Gy 1.50 x 10° 2.50 x 10! 1.72 x 102 9.79 x 10~° 4prl

The results : G3 1.84x10° 4.20 x 10" 1.18 x 10* 6.42x 107% 6p1
G4 1.01x10* 1.70 x 10' 2.50 x 10! 7.92 x 10~* 2pr1

G5 1.03x10® 3.30 x 10! 2.51 x 10? 2.13 x 107% 4p1

1.85 x 10% 3.30 x 101 4.49 x 102 2.25 x 107¢ 4pr1

Interpretation :  The interpretations of experiments G and H are related, there-
fore the interpretations will be discussed after the presentation of Experiment H.
Note, however, that the values are very small and decrease as the size of the example
increases. There are two results for G5 since there are two computations that can
occur. The smaller of these values is listed first as the minimum measure for the

algorithm, and the larger second as the maximum measure.

5.2.8 Experiment H: Dining philosophers

In the final experiment, the number of think and eat actions was increased for each
philosopher, to see what effect a lower ratio of communication events had on the

amount of concurrency and to test for stability with respect to granularity.
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G
Hy
Hy
The agents : H
Gs
H,y
Hs

4 philosophers
4 philosophers
4 philosophers
4 philosophers

4 philosophers
4 philosophers
4 philosophers

odd-even solution
odd-even solution
odd-even solution

odd-even solution

room-ticket solution
room-ticket solution

room-ticket solution

89

1l eat 1 think 4pl
2 eat 2 think 4p2
4 eat 4 think 4r4
8 eat 8 think 4p8

1 eat 1 think 4prl
2 eat 2 think 4p2
4 eat 4 think 4pr4

The aim :  To test the usability and applicability of the measure for comparison

of real distributed algorithms and to test for stability with respect to granularity.

G
Hy

Hj
The results :
Gs

H,y

Hs

C

il
1.50 x 108

4.10 x 108
1.79 x 107
1.22 x 108

1.03 x 108
1.85 x 108
4.12 x 108
2.29 x 103
1.42 x 10°
7.91 x 10%

S

il
2.50 x 10!

3.30 x 10"
4.90 x 10!
8.10 x 10*

3.30 x 10!
3.30 x 101
4.10 x 10*
4.10 x 10!
5.70 x 101
5.70 x 10!

il
1.72 x 102

5.12 x 102
2.52 x 103
1.94 x 10*

2.51 x 10?
4.49 x 102
1.03 x 103
6.93 x 102
3.95 x 103
3.13 x 10°

m
9.79 x 1077
1.17x 1074
1.38 x 107*
1.59 x 10~

2.13 x 107
2.25 x 1076
2.41 x 1076
2.85 x 1076
2.73 x 1076
3.88 x 107

4prl
4p2
4p4
4p8

4r1
4r1
4p2
4p2
4p4
4p4

Interpretation The interpretation of these results will be presented in the next

section. From the results, it can be seen that additional internal events reduce the

amount of concurrency measured. As in the previous experiment, for each of the

room-ticket solutions, two values are obtained for the two different computations

that can occur. They represent the minimum and maximum values found in each

experiment.

5.3 Discussion and evaluation of m

A number of issues arose in the experiments, which will discussed under the following

headings:
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Behaviour of the measure with respect to parallel operators The be-
haviour of the measure when using the Composition operator can be explained as

follows:
e the number of cuts in the totally concurrent computation is squared
e the number of cuts in the computation itself is squared

e the number of cuts in the sequential computation is doubled and decremented

by one.

Considering experiment C, this means that m(C3) can be expressed as

(1, )? = (2ug, — 1)
(ug,)? = (2ug, — 1)

where ¢, , ug, , ¢y, are the relevant measures for computation Cj.

Since pc, /ug, < 1, (pe, /pg,)* < pe,/ug,. Assuming that the size of p® is
small with respect to p¢ and g, as in this experiment, the value of m must decrease.

The operator Par was used in Experiment E and it too can be regarded as a
parallel operator. In this experiment, the measured concurrency decreased and this
decrease can be explained by a similar argument to that given above. Note, however,
that there is a sharper decrease in concurrency. This can be explained by the fact
that the Par operator defines an extra agent, di.dy.done.0 + dy.d;.done.0, to be
used for synchronisation purposes.

Both of the results from Experiments C' and E contradict the expectation that
m(Cz) = m(C11Cy) > m(Cy) and m(Ez) = m(ElEy) > m(Ey)

as discussed in Section 2.2.3.

Behaviour of the measure with respect to sequential operators The fact
that m does not change when the Prefix operator is used as explained in Experiment
D can be explained by the fact that a constant number of cuts is added to each

element of the equation. This means that m(D;) can be expressed as

(up, +¢) = (0, +¢) _ Bp — KD,
(up, + )= (wp, +¢)  pp, = 1p,

where up, , up, , 4, are the relevant number of cuts for computation D;.
There are two possible explanations for why the measure does not change in the

presence of sequential operators as presented in Section 2.2.3; first, if the component
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computations are the same; and second if the component computations are sequen-
tial. As can be seen, neither hold in this case. The Prefix does in a very strong
sense make the computation more sequential and the fact that the measure does not
change, means that the measure can not express this.

Experiment F deals with a sequential operator which is more similar to the
sequential concatenation presented by Fidge and Charron-Bost than the Prefix op-
erator. In the presence of the Before operator, the amount of measured concurrency

decreases, and this agrees with the expectation that

Mc(C'~C") < max(mc(C), mc(C")).

The dining philosophers experiments It was unexpected that the measure
would be so small for these examples, and that the measure would become smaller as
n increased. Consider, for example, experiment G4 (2P1) where only one philosopher
can eat at one time because there is only one room-ticket. This would indicate that
the system is in some sense serial, however this system has a higher concurrency
measure than G5 (4P1) where two philosophers can eat simultaneously (although
three philosophers have access to the dining room). In fact, because the values are so
small and cover such a small linear range, the use of these values for the comparison
of different algorithms is difficult to justify.

There are two basic approaches to comparison; taking the absolute value of the
difference of the two values (additive comparison) or taking the ratio of the two
values (multiplicative comparison). Because the measure takes on values in the
range [0, 1], additive comparison is inappropriate, because the values are bounded.
Multiplicative comparison seems more valid to apply to a measure that returns
bounded values; and this approach will be taken here.

When G; (4p1) and G5 (4p1) are compared, the ratio of the first to the second is
42.61. Although it can be said that the odd-even solution has less message passing
than the room-ticket solution because there are no room-ticket agents, it seems
unreasonable to say that the odd-even solution is 43 times more concurrent than
the room-ticket approach. Also note the overlap in the room-ticket example—the
minimum value for Hs (4p4) is less than the maximum for Hy (4p2), so these values
do not distinguish between the different algorithms.

It can be seen from the relative sizes of p°, p® and g that u® dominates the value
of m. Hence, the values obtained in the experiment are small because u° occurs in

the denominator. From this, it can be argued that the algebraic expression for m is
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G1 5.78 x 1073 4 0.2757 2pr1
Go 9.79 x 107° 8 0.3154 4p1
Gs 6.42 x 1076 12 0.3692 6p1
G4 7.92 x 1074 5 0.2397 2p1
Gs 2.13 x 107 10 0.2709 4p1
Gs 2.25 x 1076 11 0.3066 4p1
H, 1.17 x 10~¢ 8 0.3224 4p2
H, 1.38 x 1074 8 0.3293 4p4
Hs 1.59 x 10~* 8 0.3351 4p8
Hy 2.85 x 1076 10 0.2789 4p2
H, 2.41 x 10~ 11 0.3085 4p2
Hs 3.88 x 1076 10 0.2877 4p4
Hs 2.73 x 1076 11 0.3121 4p4

Table 5.1: The nth root of m

ill behaved.

To support this argument consider Table 5.1, where the nth root of m is presented
for both Experiments G and H. As can be seen from this table, {/m ~ 0.3. If it
can be assumed that {m is in some sense constant then this implies that m ~ 0.3,
This has two consequences—first that the value of the measure appears to be related
to n and second it would appear by extrapolation that as n — oo then m — 0. This
also implies that the measure is inversely related to n, namely as n increases, m
decreases.

The interpretation given above relates to the experiments performed using the
dining philosophers agents. It would be desirable to be able to generalise these
results to all algorithms. Unfortunately this is not possible, because of particular
features of the dining philosopher problem that may be unique to this algorithm,
for example, the fact that the number of processes correlates with the number of
communication events. However, this has shown that there are algorithms for which

the measure does not behave well.

The effect of changes in granularity Within the agents for each type of solu-
tion to the dining philosopher’s problem, there is little change in the measure as the
number of non-communication events changes. This can be explained by the fact

that the addition of non-communication events is causing g and p¢ grow at a similar



CHAPTER 5. RESULTS AND EVALUATION 93

rate. Charron-Bost states that she did not expect m to be stable with respect to
granularity as it is a measure based on a causal relationship; this viewpoint can also
be justified by the fact that the addition of more non-communication events results
in a computation that will be more tolerant to blocking and this approach will be
adopted here. Hence, the measure does not display the expected change when there

is a change in granularity.

5.3.1 Evaluation of m with respect to the criteria

The measure m will be evaluated in terms of the criteria presented at the beginning
of the chapter. A short description will be given for each criterion and a summary

of these points and the preceding discussion will be presented afterwards.

Intuitive understanding of the measure The measure has a good intuitive
base as described in Section 2.2.1. The concept that the number of consistent cuts
in a computation is an indication of its tolerance to the stopping of individual

processes is valid.

Being well behaved for simple examples The two experiments (A and B)
performed on m would indicate that it is well behaved. The concurrency increases
in a way that is expected, although the symmetry found in Experiment A was
not expected. However, this symmetry can be explained as follows: the single
communication event divides the computation into two parts, and the number of
consistent cuts in the computation equals one plus the number of consistent cuts in
the first part plus the number of consistent cuts in the second part. Hence, whether
the larger part comes first or second does not affect the number of consistent cuts.

Note that this only applies in the case of two processes.

Compatibility with operators The four experiments performed to investigate
this had mixed results. In the case of the parallel operators, Composition and Par
the measure decreased—this would indicate that the measure is not compatible
with these operators. In the case of the serial operator Prefix, the measure stayed
the same, which cannot be explained in terms of the operator. Finally, the Before
operator yielded the expected decrease in concurrency and hence it would seem that
m is compatible with this operator, although this has not been shown that this is

true in all cases. By using the CCS operators, it has been possible to corroborate
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Charron-Bost’s results concerning compatibility with operators and moreover, to

show analytically why these results occur.

Usability and applicability The measure was tested on two solutions of the
dining philosophers problem. For all examples, the measure produced very small
values on a small subset of [0, 1]. This can be explained by the fact that the algebraic
structure of the equation defining m, and the manner in which p°, g and u® grow,
causes ¢ to dominate the resultant value of the measure. The measurement of con-
currency for the dining philosophers solutions did not distinguish a more concurrent
algorithm.

This has shown the measure does not work in some instances. It may be possible
that the example chosen has certain peculiar characteristics that prevent measure-
ment of concurrency, although the analytic results dealing with operators on compu-
tations suggest there are more fundamental problems with the measure. However,
the dining philosophers example does show that in general, m cannot be used to

compare algorithms.

Ability to calculate measure for a specific event The measure m cannot be
calculated for a specific event, although it may be possible to extend the measure.
However, the geometric interpretation (which has not been dealt with in detail here)
can be used to determine which events in the computation are causing a reduction

in the amount of concurrency.

Lack of expense of computation In Chapter 4, it was shown that the algorithm
used to calculate the number of consistent cuts in any given agent was exponential in
the number of processes. It was, however, possible to calculate the measure with the
computing power available, with 1.4 x 10% cuts being the largest number checked
for consistency in any experiment. The possibility that consistent cut counting is

intractable needs further investigation.

Stability with respect to granularity It was shown that the measure showed
some stability with respect to granularity, although this contradicts the expectation

that the measure would change as the granularity changed.

Summary The more important issues rising out of the evaluation of m are as

follows: m is not compatible with a number of operators, it returns very small
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values, it is expensive to calculate, the value of u° appears to dominate the value of
m since it grows faster than p or p®. These results show that m does not meet the
criteria for evaluation and this contradicts both Charron-Bost [14, 16] and Raynal

et al [59].

5.4 A new measure

As shown in the previous sections, the measure m has a number of flaws which can
be explained by the fact that p¢ dominates the value of the measure. To solve these
problems, m was redefined and the new measure is defined as

log p — log p*

log ¢ — log us

This form was chosen because taking logarithms reduces the size of the values, and

Tn'new -

should thus prevent u¢ from dominating the measure.
Two other algebraic forms were considered, however they did not prove to be as
successful, although the results were similar to those of myey. They were
e = YEZVE o = MEZ VR
new — \/l?—\/l? new — W— W‘

The results of the experiments with the new measure are presented in the following

sections. Refer to Section 5.2 for further details of the experiments.

5.4.1 Experiment A: Simple example

peopt M. Mpew
Ay 36 10 26 0.62 0.7459
Ay 36 10 20 0.38 0.5411
Az 36 10 18  0.31 0.4589
Ay 36 10 20 0.38 0.5411
As 36 10 26  0.62 0.7459

The results :
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5.4.2 Experiment B: Simple example

peoopd Y m Mnew
B 4 1 1 0 0
By 9 4 5 0.2 0.2752
The results :
By 25 8 17 0.53 0.6615

Byg 121 20 109 0.8 0.9420
Bigo 10201 200 10001 0.98 0.9950

5.4.3 Experiment C: Composition operator
peoop’ K m Mpew
The results : C1 64 7 12 0.0877 0.2436
Cy 4096 13 144 0.0321 0.4180

5.4.4 Experiment D: Prefix operator

C S

il Jis M m Mnpew
The results : Dy 64 7 12 0.0877 0.2436

Dy, 67 10 15 0.0877 0.2132

5.4.5 Experiment E: Par operator

peopt m Mnew
The results :  F 96 10 24  0.1628 0.3871
Ey 36864 20 554  0.0145 0.4417

5.4.6 Experiment F': Before operator

[ m Mnew
The results : F 9 10 24 0.1628 0.3871
Fy 9312 19 47 0.0030 0.1462
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5.4.7 Experiment G: Dining philosophers

Gy
G
The results : Gs
Gy
Gs

C

il
1.22 x 103

1.50 x 10°
1.84 x 10°

1.01 x 10*
1.03 x 108
1.85 x 108

S

il
1.30 x 10!

2.50 x 10!
4.20 x 101

1.70 x 10!
3.30 x 10!
3.30 x 10!

il
2.00 x 10!

1.72 x 102
1.18 x 10*

2.50 x 101
2.51 x 102
4.49 x 10?

5.4.8 Experiment H: Dining philosophers

G
Hy
Hy
Hs

The results :
Gs

C

Jis
1.50 x 10°

4.10 x 108
1.79 x 107
1.22 x 108

1.03 x 108
1.85 x 108
4.12 x 108
2.29 x 108
1.42 x 10°
7.91 x 10%

S

il
2.50 x 10!

3.30 x 10!
4.90 x 10!
8.10 x 10!

3.30 x 10*
3.30 x 10*
4.10 x 10*
4.10 x 10?
5.70 x 101
5.70 x 101

il
1.72 x 102

5.12 x 102
2.52 x 103
1.94 x 10*

2.51 x 102
4.49 x 102
1.03 x 103
6.93 x 102
3.95 x 103
3.13 x 103

m
5.78 x 1073
9.79 x 107°
6.42 x 1076

7.92 x 1074
2.13 x 1076
225 x 107°

m
9.79 x 10~?
1.17x 1074
1.38 x 1074
1.59 x 10~

2.13 x 107
2.25 x 1076
2.41 x 1076
2.85 x 1076
2.73 x 1076
3.88 x 1076
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Mpew
0.0948
0.1753
0.3206

0.0604
0.1357
0.1680

mnew

0.1753
0.2337
0.3076
0.3852

0.1357
0.1680
0.2002
0.1820
0.2488
0.2435

5.5 Discussion and evaluation of the new measure

For Experiments A and B, the same trends are shown by myew as by m, although

there is a general increase in the values.

When applied to Experiments C' and F, myey seems a better measure than m

since the value increases as the computation becomes more concurrent through use

of the Composition operator and the use of the Par operator. However, it is possible

to find agents where this does not hold. Consider the agents F{ and E)} where the

number of internal events has been increased (See Figure 5.6).

2pr1
4p1
8pl

2pr1
4p1
4p1

4r1
4p2
4p4
4p8

4pr1
4r1
4p2
4p2
4p4
4p4
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JiJ2 g3 m__p

ki Ry k3 ﬁ/: r_done

Figure 5.6: The agent Ej.

def .. [,
EY = (j1.J2.J3-m.p.0 | ky.k2.ks.p.g.r.done.0 | l1.l2.l3.n.q.0)\ {p, ¢}
E, B par E!
By £ BB

where the measure has the following values
Mpew(E1) = 0.8268, mpew( E4) = 0.6369, mpew(F5) = 0.7514
. Once again, this contradicts the expectation that
m(E}) > m(E]) and m(E}) > m(E}).

This contradiction can be explained by the fact as u® becomes very large, the value
of log p¢ will still dominate the value of the measure, hence as the agent size increases
because of concatenation, the value of mpey Will decrease in some cases.

Considering the Experiments D and F, the value of mpey now decreases, as was
originally expected both for Prefix and for Before . Note also that the decrease
caused by the Before operator is not as marked.

In both Experiments G and H, the values given by myey are much increased on
those of m. Also as the number of philosophers increases in Experiments G (2p1),
G2 (4p1) and G5 (6P1), so does the value of myey, which seems more promising than
the values for m. Similar results are shown for the room-ticket example. However, it
is still difficult to compare the odd-even and room-ticket solutions. It appears that
for the same number of philosophers and the same number of eat and think actions,
the room-ticket algorithms are less concurrent than the odd-even algorithms. This
can be explained by the communication overhead required by the use of room-tickets.

Similarly as the number of non-communication events increases in Experiments
G4 (4pl), Hy (4P2), Hy (4P4) and Hs (4P8), the measure also increases substantially.

This would show that mpey is less stable with respect to granularity than m.



CHAPTER 5. RESULTS AND EVALUATION 99

5.5.1 Evaluation of the new measure with respect to the criteria

The measure mp.y Wwill be evaluated in terms of the same criteria used in Section

5.3.1.

Intuitive understanding of the measure The measure myey has a similar
intuitive base as m; however the use of logarithms causes it to be less intuitive,
especially in the light of the fact that it does not seem intuitive that u¢ dominates

m.

Being well behaved for simple examples The two experiments (A and B)

performed on mpeyw wWould indicate that it is well behaved as m for these examples.

Compatibility with operators my., shows more compatibility with Prefix, Par
and Composition. However, there exist agents for which mpey does not behave as

expected in the presence of parallel concatenation.

Usability and applicability The measure myey produced better results on the
dining philosophers problem than m. The values of the measure were larger and
increased as the number of philosophers increased. Different algorithms could be

distinguished by mypew. Further research is required on other examples.

Ability to calculate measure for a specific event my., cannot be calculated

for a specific event, although it may be possible to extend the measure.

Lack of expense of computation In Chapter 4 it was shown that the algorithm
used to calculate the number of consistent cuts in any given agent was exponential
in the number of processes. Since Mmyeyw, like m, is based on the number of consistent

cuts, it is as expensive to calculate as m.

Stability with respect to granularity The measure myey shows less stability
with respect to granularity then m. As discussed earlier, this is the result that is
expected because m is based on a causal relationship and because the addition of

more non-communication events makes a computation more tolerant to blocking.

Summary The measure myey is better than m although it does not fully solve

all problems associated with m.



CHAPTER 5. RESULTS AND EVALUATION 100

5.6 Evaluation of the measurement of concurrency in

CCS

The focus of this chapter so far, has been on the evaluation of the measure m. Two
other important aspects of this research are the feasibility of measuring concurrency
in CCS and the development of a methodology for the evaluation of concurrency

measures. In the next two subsections these points will be discussed in detail.

5.6.1 Measuring concurrency in CCS

In the course of this work it has been shown repeatedly by the fact that the evalu-
ation of the measure m was possible that the concept of measuring concurrency in
CCS is a workable one. Although the measures have been defined for a subset of
CCS, it was shown in Chapter 3 that this subset includes confluent agents. An area

of research is the extension of the measure to the whole of CCS.

5.6.2 A methodology for the evaluation of concurrency measures

This research has shown that concurrency can be measured in CCS and that it
can be used to evaluate concurrency measures. Hence, the approach taken here
to evaluate m can be used to evaluate other measures. This will provide both for
evaluation of existing measures and the development of new measures; and for the
further development of a new tool for the theoretical investigation of concurrency
using CCS.

When authors present measures of concurrency in literature, generally they do
not present evaluations of these measures. For a measure to be a useful tool, it is
essential that it is evaluated with respect to relevant criteria. The research has drawn
together a number of criteria and used them in conjunction with the Concurrency
Measurement Tool to evaluate m. This approach can also be applied to other
measures defined in the message passing formalism.

Therefore, an important outcome of this work has been to produce a method-
ology for evaluating measures of concurrency. This approach currently can be used
for measures defined in the message-passing formalism; however, it may be possible
to use CCS with measures defined in other formalisms. It has been shown to be
a useful methodology by the fact that it facilitated the discovery that a specific
measure was ill behaved and allowed for the definition of a measure using the same

basis that fitted better with the evaluation criteria.
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5.7 Summary

In this chapter, criteria for the evaluation of concurrency measures were reviewed.
The experiments that were performed using the Concurrency Measurement Tool
were presented. From these experiments, it was shown that the measure m does not
fulfil some of the criteria for evaluation, such as compatibility with CCS operators
and applicability and usability. A new measure myuew was defined and its values
were determined for the same experiments. It was shown that myew although better
than m was still problematic with respect to a few criteria.

Through the experiments on both m and myey it was shown that the concept of
measuring concurrency can be applied to CCS agents. Finally it was shown that this
research has produced a methodology for the evaluation of concurrency measures.

The work presented in this document has resulted in a number of questions for
further research and these questions will be discussed in the next chapter together

with the final conclusions.



6. Conclusions and further research

In this final chapter, an outline of the research and the conclusions drawn will be
presented. After this section, issues that are suitable for further investigation as
a result of this research will be discussed. There are a number of directions that
include improving m, comparing concurrency measures, defining a measure based
on linear extensions, extending the measure to algorithms, proving that there is the
same number of consistent cuts in the computation representing a confluent CCS
agent as there are nodes in a transition graph of that agent, extending the measure
to a larger subset of CCS, applying measures to other algebraic calculi of processes

and defining a partial ordering semantics for CCS.

6.1 Outline

The aim of this research was to investigate the measurement of concurrency in CCS
and at the same time, to evaluate a particular measure of concurrency.

Measures of concurrency are proposed in the literature as a means of investigat-
ing distributed algorithms. These aim to assess the structure of computations, as
opposed to time complexity and message complexity which do not do this. CCS is a
calculus of processes that allows for the investigation of concurrency. By achieving
a fusion of the two, a new tool can be developed for the investigation of concur-
rency using CCS and comparison of different agents. There are a number of criteria
which can be used to evaluate a measure and this work aims to address the fact that

measures of concurrency presented in the literature are not fully evaluated.

6.2 Summary of work done

In this section, an overview of the work done in this report will be given.

Literature survey First, the relevant background literature was presented, to
draw together the different approaches to concurrency measurement and evaluation
of these measures. The choice of model was narrowed down to Lamport’s space-time

model/message-passing formalism. A number of measures have been defined in this

102
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framework and all require some further investigation and evaluation. Charron-Bost’s

measure of concurrency m was chosen as the measure to be applied to CCS.

Comparison of the message-passing formalism and CCS Once the model
and measure had been chosen, it was necessary to compare the message-passing
formalism and CCS, and determine any differences that would prevent the direct
application of the measure to CCS agents. Three main differences were found—the
message-passing formalism provides asynchronous communication and CCS provides
synchronous communication; CCS allows for process creation, whereas the message-
passing formalism has a fixed number of processes; and CCS has more expressive

power than the message-passing formalism.

Redefinition of the message-passing formalism The message-passing formal-
ism was redefined to take into account these differences. This process involved
defining a new process structure, whereby a process could ‘cause’ other processes,
and determining the effect that synchronous communication had on the ordering of
processes. The result of this was a new partial ordering of events where the events
in a process that causes another process, precede the events in the process that
was caused and where events that take place in synchronous communications are
equated. A number of results were shown to hold in the new formalism. These
results and the intuitive basis for the measure (that of consistent cuts being related
to the tolerance of a computation to stopping) justify the extension of the measure

to the redefined formalism.

Development of the translation algorithm After the redefinition, it was pos-
sible to define a translation algorithm to map CCS agents into the message-passing
formalism and hence for the measure to be applied to CCS agents. A subset of
CCS was chosen to be translated—this subset includes finite agents defined using
Prefix, 0, (finite) Summation, Composition, Restriction and Relabelling, although
the Concurrency Measurement Tool is not able to directly handle Summation and

Relabelling. It was shown that this subset includes finite confluent agents.

Development of an algorithm to calculate the measure An algorithm was
defined to calculate the concurrency measure. The largest part of this algorithm is
counting the number of consistent cuts in the agent under consideration, since the

number of cuts in the totally concurrent and totally sequential forms can be deter-
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mined analytically. The algorithm generates all possible cuts, and checks them for
consistency. It was shown that the algorithm has a worst case analysis of O(¢"/n""?)
where ¢ is the total number of events in the computation and n is the number of

processes in the computation. Other algorithms were suggested.

Implementation of the Concurrency Measurement Tool The Concurrency
Measurement Tool was implemented to automate the calculation of the measure for
CCS agents, using the algorithm that was developed. It was used to experiment with
chosen CCS agents to evaluate m and its performance was measured to compare it
with the theoretical analysis given above. It was show that the theoretical analysis

did largely predict the performance of the program.

Evaluation of experiments A number of experiments were performed to eval-
uate the measure and to evaluate the measurement of concurrency in CCS. These
experiments will be discussed in more detail in the section below. The outcome was
that the measure m does not meet the criteria for evaluation, especially with respect
to compatibility with operators and applicability to real situations, that a better
measure Mpeyw can be defined and that the measurement of concurrency in CCS is

possible.

6.3 Conclusions
In the following the conclusions of the research will be presented and explained:

1. In the evaluation presented in Chapter 5, it was shown that there are flaws in

the measure m. This is demonstrated clearly in the experiments:

o When two agents are concatenated in parallel, the effect is essentially to
square both p® and p. Because of the equational structure of the mea-
sure and the fact that p® tends to be relatively small, this results in the
squaring of the measure and since m is defined on [0, 1], m? < m. There-
fore the amount of measured concurrency decreases which is contrary to
expectation. Similarly, the use of the Prefix operator does not provide
the expected results, although the use of Before the second sequential
operator does result in the expected decrease in concurrency. Therefore
the measure, in general, does not fulfil the criterion of compatibility with

operators. By applying the measure to CCS, it was possible to confirm
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Charron-Bost’s results concerning compatibility with operators and to
show analytically why these results occur. As discussed earlier, compat-
ibility with operators is an important criterion because CCS allows for

abstraction from detail.

e The results of the dining philosopher experiment showed that applying
the measure in a real situation does not allow clear comparison of algo-
rithms. The measures calculated fall into a very small subset of [0, 1],
in the range of 2 x 107% to 5 x 1072 which raises issues about the in-
terpretation of the measure, and the validity of comparison. The size of
the values returned by the measure can be explained by the fact that u°

dominates the measure m.

e In the dining philosopher experiment, it was shown that as the size of
the experiment increased, the measure decreased, which indicates that it

was not measuring the actual concurrency in the agents.

Do these experiments show that the approach that was used to apply the
measure to CCS was flawed? No, they show that Charron-Bost’s measure is
problematic. Although the message-passing formalism that was used originally
to define the measure was modified, it was done in a consistent way and hence
the argument for the motivation of the measure was successfully applied to

the new formalism.

The anomalies presented above, can be explained as follows: for reasonable
sized systems, the resulting measure will be very small; and p° the number of
cuts in a totally concurrent computation dominates the value of the measure
for a given computation. Hence, it can be claimed that although the justifi-
cation for the measure is correct, the algebraic expression used to define the

measure is ill behaved.

2. A new measure mpey using logarithms was proposed and evaluated. It was
shown that this measure was more compatible with the four operators, al-
though in the case of the parallel operators the measure is not always compat-
ible. It was shown that myey returned larger, more reasonable values than m.
However, for certain computations, it was still possible for log u® to dominate

the value of mpeyw, as in the case of the parallel operators.

3. The algorithm used to calculate p was exponential in the number of processes;

although it was possible to calculate the measure for the dining philosophers
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algorithms, an example of applying the measure in a real situation. It has
been suggested that the problem is inherently intractable. This issue requires

further research.

4. The measure was successfully applied to a subset of CCS that included finite
confluent agents. This shows that the measurement of concurrency in CCS is
feasible and therefore other measures can be applied to CCS and evaluated.
The understanding of concurrency that is provided by CCS allowed for the
evaluation of m and will allow for the further development of a tool for the
measurement of concurrency which will aid the theoretical investigation of
concurrency. Because of the abstraction provided by CCS, compatibility with
operators is an important issue in any measure of concurrency for CCS; it is
desirable to be able to understand the effects on the amount of concurrency

when components are interchanged or variables are instantiated.

5. The fact that it was possible to apply the concurrency measure to CCS and
evaluate it in terms of the criteria gleaned from the literature means that this
approach can be applied to other measures and can be used in the definition
of new measures. The redefined formalism, CCS, the Concurrency Measure-
ment Tool and the criteria provide a methodology for evaluating concurrency
measures in a manner that has been absent in previous presentations of con-

currency measures.

6.4 Further research

6.4.1 Improving the measure based on consistent cuts

As it was shown that the measure had undesirable properties, an area of further
research would be to use the motivation given for the measure m—the fact that the
number of consistent cuts is related to how tolerant the computation is to being
stopped—and attempt the definition of a better measure based on consistent cuts.
A suggestion was advanced in Chapter 5 using logarithms to define the measure

Mpew; however, it did not solve all the problems associated with m.



CHAPTER 6. CONCLUSIONS AND FURTHER RESEARCH 107

6.4.2 Further investigation of the algorithm to count consistent

cuts

Currently the algorithm used to calculate p is exponential in the number of pro-
cesses. Further investigation is required to determine if there exists an efficient
algorithm to solve the problem or whether the problem is intractable. Some sug-
gestions were presented in Chapter 4. Another suggestion involves that of space
complexity. Fidge [32] has noted that ), .;., ng¢; integers are required to store the
vector clock information. It is possible to count consistent cuts without using vec-
tors clocks. The partial ordering of events describes a directed acyclic graph and
the consistent cut counting problem can be rephrased in terms of the number of
subgraphs there are which have the property that if vertex v is in the subgraph,

every vertex on every path from the root to v is also in the subgraph.

6.4.3 Comparison of measures applied to CCS

A number of measures have been defined in the framework that Charron-Bost used.
These include w [14], p [15], 5 [32] and «a [59] all of which were described in Chapter
2. These measures can also be translated into the new formalism with the necessary
research to ensure they remain consistent and can be motivated. Hence they can
also be applied to CCS, and the Concurrency Measurement Tool can be modified
to calculate these measures. This modification should be minor as the program
already embodies the redefined theoretical basis. For the measures § and «, linear
logical clocks need to be added, and for a a second type of vector clock is required—
the modification to the program for these is not large. The measure w is related
strongly to m and its calculation should be possible in the existing program; p is
more complex as it does not use vector clocks and therefore the implementation
requires more investigation. This is discussed in more detail in Chapter 4.

Similar experiments can be performed to those done in this research and the
results can be used to compare different measures. This work is important as such

comparisons have not previously been reported in the literature.

6.4.4 A measure based on linear extensions

Charron-Bost [14] suggests a measure using linear extensions of the partial ordering
of events, but rejects it because there is no fast algorithm to count linear exten-
sions. Pruesse and Ruskey [54] have recently presented an algorithm for generation

of linear extensions that runs in constant amortized time. A generation algorithm
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is said to run in constant amortized time if it runs in time O(N) where N is the
number of objects generated. In the worst case, this algorithm is exponential since
the number of linear extensions is exponential. However, it has been shown that it
is practical for certain examples. This algorithm could be used to investigate a con-
currency measure based on linear extensions, as it seems as good as the algorithms
for counting consistent cuts.

The approach taken in this algorithm revolves around generating each extension
by permuting adjacent elements of the previous extension. Another area for further
research is to investigate whether this technique can be applied to the counting of
consistent cuts, to obtain a constant amortized time algorithm. In both of these
cases, this research will be fruitful only if it can be determined that there are in-
teresting subclasses of the partial orders (computations) for which the algorithms

become tractable.

6.4.5 Extension of the measure to algorithms

In this research, a measure for an algorithm was determined from the minimum
and maximum of the values of the measures of its computations. Another approach
would be to determine weights wy, ..., w, that could be applied to the measures of

the computations Cy,...,C, for an algorithm A as follows:

n

m(A) = Z w;m(C5).

=1
These weights could be determined from the probabilities assigned to actions as
discussed by Purushothaman and Subrahmanyam [55]. This work involves assigning
probabilities to 7 actions in agents of the form 7,,.P + 7,,.P where p; + p; = 1.
This determines the probabilities of different actions occurring. These probabilities
can be added to the derivation tree of the agent and the result would be a decision

tree from which the probability of each computation can be determined.

6.4.6 Extension of the message-passing formalism

In Section 3.6.1, the issue of nondeterminism was discussed and it was shown that the
message-passing formalism cannot adequately deal with the nondeterminism caused
by the Summation operator, or by the possibility of communication permitted by
the Composition operator in the absence of Restriction.

One extension to include the former type of nondeterminism is suggested as

follows and a similar approach could be taken for the latter type. This suggestion is
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to describe the processes that a process P; does cause and the processes that it may
cause. This relation — could then be redefined to map from the set of processes
to the powerset of processes and thus capture the nondeterminism. For example,
consider the agent a.b.(c.d.0| (e.f.0 + g.h.0)) with P, = ab, P, = ¢d, P; = ef and
Py = gh, then Py — {Py,{Ps, P;}}. This indicates that P; causes P,, and P; causes
one of P3 and Pj.

A different approach involves finding a topology in which the space-time dia-
grams can be embedded, so that the concept of nondeterminism can be added to

the message passing formalism.

6.4.7 Transition graphs of CCS agents

In Section 3.4.5 on calculating the number of consistent cuts, it was suggested that
the derivation graph of an agent could be used. A result that has not yet been

proved or disproved is that:

The number of consistent cuts in the computation of a given confluent
CCS agent is equal to the number of nodes in the transition graph of

that CCS agent.

If this result is shown to hold, it would then be possible to investigate an algorithm
based on creating this graph and counting the nodes.

For a rigorous proof, it needs to be shown that there is a bijection from the set of
nodes in the transition graph to the set of consistent cuts (or vice versa). Transition
graphs have not been investigated in this research and therefore this proof is beyond
the scope of this report.

An informal justification can be explained as follows: A consistent cut represents
a ‘consistent’ state of a computation or in other words, a state where all events that
precede an event in the cut are also in the cut. Since communication determines
the precedence between events in different processes, a consistent cut takes this
communication structure into account. Therefore it is not possible to have a com-
munication event without its partner and all events that preceded the partner, in
the cut. On the other hand, a node in a transition graph represents the agent in a
particular state. The actions which label the directed edges of the graph correspond
to events; and the actions that occur on the preceding edges of the graph must
represent those in the cut, since the agent at a node contains the information about

what can happen in the future and nothing else.
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6.4.8 Extension of the measure of concurrency on CCS

Another area for future research is the extension of the measure to the whole of

CCS. The subset currently supported includes

Nil, Prefix, finite Summation, Composition, Restriction and Relabelling
and excludes:

infinite Summation and Constant (or Recursion).

However the Concurrency Measurement Tool does not deal directly with Summation
or Relabelling—agents for input can consist only of Nil, Prefix, Composition and
Restriction.

Areas for extension include:

¢ The Concurrency Measurement Tool can be extended to handle agents that
include finite Summation and Relabelling, explicitly, without some form of
preprocessing by the user. Currently it is necessary to apply Relabellings and
decompose the agent into the different computations caused by the occurrence
of Summation before using the Concurrency Measurement Tool, then from the
values for each computation, the maximum and minimum values for the agent
are obtained. This proposed extension would automate the work involved,
allowing the user to input an agent to the Concurrency Measurement Tool
and receive the maximum and minimum values as output. However, this

extension will increase the cost of computing the measure considerably.

e The measure could be extended to deal with the whole of CCS. This would
involve defining a measure on infinite agents. One approach would be to deter-
mine the measure at specific stages during an infinite computation and from
these values calculate a final measure for the infinite computation. This could
be done by considering the stages of the partial computation as finite and ap-
plying a measure defined for finite computations to obtain these values. Two
basic approaches can be used to obtain the final values from the intermediate
values; averaging across all intermediate values obtained, or viewing the inter-
mediate values as a sequence that converges to a final value, with conditions

to ensure convergence.
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6.4.9 Application of concurrency measures to other formalisms

In this research, the focus has been on measuring concurrency in CCS. There are
other algebraic calculi of processes in the literature for expressing concurrency, and

some of them will be discussed briefly here.

e Bergstra and Klop’s ACP (Algebra of Communicating Processes) [6] and Hen-
nessy’s ATP (Algebraic Theory of Processes) [41] have similarities with CCS at
the syntactic and operational level, although different congruences are defined
at the semantic level. Each calculus has some operators that are unique, and
therefore to apply any measures defined in the message-passing formalism, it
is necessary to decide how these operators will be mapped into the message-
passing formalism. The issues of differences in expressive power must also be
addressed for these calculi. A similar argument as used in Section 2.5 can be
used to justify the application of one of the measures from the message-passing

formalism.

e Meije [8] and Synchronous CCS (SCCS) [50] are two synchronous process cal-
culi that are similar. In a synchronous calculus, processes proceed in lockstep,
and the assumption that nothing is known about the relative speeds of the
processes does not hold. As suggested in Section 2.5, these calculi would be
more applicable to the measures of concurrency based on formal languages,

because actions occur in lockstep and transitions are represented by multisets

of labels.

e COSY [48] is an algebraic approach to Petri nets. Paths which represent
resources, and processes are the components that make up a COSY program.
Processes act independently except where they are restricted by paths. To
apply a measure from those defined in the message-passing formalism, it is
necessary to determine how to map COSY paths and processes in the message-
passing formalism, and to consider issues that relate to the expressive power
of the two formalisms, and it appears that this would be more complex than

the solution found in this research.

e Hoare’s CSP (Communicating Sequential Processes) [11], is defined in terms
of a denotational semantics, although it is sometimes informally described
operationally. It is not immediately obvious how a measure of concurrency
could be applied to CSP processes, and hence this would appear to require a

different approach.
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6.4.10 Partial ordering semantics for CCS

As discussed in Chapter 2, there is a debate about whether models of concurrency
should display interleaved semantics or semantics based on ‘true’ concurrency. The
vector clocks described in this research could be added to CCS to give a partial order-
ing semantics in a similar way to the work of Degano et al [27]. In this research, CCS
was mapped into the message-passing formalism. However, for a partial ordering
semantics it would be necessary to add, in some sense, the clocks that define the par-
tial ordering in the message-passing formalism to CCS. The methodology presented
here distinguishes between agents that are observationally congruent; however, the
methodology does not deal with the semantic properties of an agent, but rather with
properties that are defined by the syntax and the transitional rules of CCS.

The general approach to providing CCS with a partial ordering semantics can

be described as follows:
o redefine the syntax of the expressions in the language,
e redefine the operational semantics in terms of a new transition relation,

e provide a new equivalence under the redefined expressions. Generally the

Expansion Law will not hold under this new equivalence.

This is a major area of research and requires a new approach to the work presented

here.

6.5 Conclusion

The aim of the research was to investigate the measurement of concurrency in CCS.
This aim was achieved by applying the measure m to CCS agents, and in the process
of accomplishing this, criteria for evaluating measures of concurrency were drawn
from the literature, the message-passing formalism was redefined to enable the map-
ping of CCS agents to it, a software tool was developed to calculate the measure,
the measure m was shown by evaluation against the criteria to be problematic and
a New measure Mpeyw was defined which was shown to be better than m. The re-
defined formalism, CCS, the Concurrency Measurement Tool and the evaluation
criteria together form a methodology that permitted the evaluation of m, and this
methodology can be applied in the evaluation of other measures.

When measures of concurrency are defined in the literature it is necessary that
they are properly evaluated to ensure their validity and usefulness. This research has
advanced towards that goal by providing this methodology, and simultaneously it has

advanced towards the goal of developing more tools for investigating concurrency.



A. An overview of CCS

In this appendix, a brief overview of Milner’s Calculus for Communicating Systems
(CCS) [50, 51] is given. The aim of this presentation is twofold; first to review of
CCS, and second to set the notation used in this research report. This is in no way
a full presentation of CCS and the reader that has no experience of the subject is
referred to Milner’s book Communication and Concurrency [50]. The last section

in this appendix presents confluence which is used in the research report.

A.1 The basic language

The language is defined in terms of expressions, actions and an action relation which

combined form a Labelled Transition System.

A.1.1 Syntax and notation

Let A be an infinite set of names a,b,c, ..., and A be the set of co-names @, b,,.. .,
with @ =a. £ = AU A is the set of labels, £ and £ will range over £, and K, L will
range over L. Define L = {{ | £ € L}. 7 is a distinguished action such that 7 ¢ L,
called the silent or perfect action. Let Act = £ U {7}, with a, § ranging over Act.
A relabelling function f : £ — L is a function such that f(¢) = f(€). It is
extended to Act by defining f(7) = 7.
Also assume a countable set X" of process variables X,Y,.... An arbitrary (pos-

sibly infinite) indexing set will be denoted by I. The set & of process expressions

E.F, ... is the smallest set including A and the following expressions:

o a.F, a Prefix (a € Act),

YierF;, a Summation (when I = (), the summation is written as 0 and repre-

sents the agent that can perform no action),

Ey | Fy, a Composition,

FE\ L, a Restriction (L C L),

o I[f], a Relabelling (f a relabelling function),

113
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o fix;{X; = FE; | i € I}, a Recursion (j € I) (or alternatively A e p oa

Constant, where P € P, the set of agents which are defined to be expressions
that contain no free variables. This characterisation of recursion will be used

in the sequel because of its more presentable form.)

Let L£(F) denote the syntactic sort of the agent £ [50, p. 52]. A sort of an agent F

is a subset of £ containing all the actions that £ and its derivatives may perform.

A.1.2 Operational semantics

The operational semantics of CCS are defined in terms of a Labelled Transition
System, (£, Act, {=| a € Act}), where the relation — are defined to be the smallest

relation satisfying the following rules:

Act ———
all = F
E; = E! ,
Sumj ———— (G
EZFE
Com, j
E|F—=FE|F
o
Comjy E:}E
F|E—=F|F
ELE FLF
Com; =
E|F—E'|F
EZFE
Res j— (a,a ¢ L)
E\L = E'\L
ESE
Rel —fZ)
Elf]"=" E'f]
P2 P .
Con — (Ad:fP)
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Examples Consider the following agents:
e .0 4+ @.0 can perform the action a or the action a@.

e a.0 | @.0 can perform the actions a then @, or the actions @ then a, or the

perfect action 7.

¢ (a.0]@.0)\a can only perform the perfect action 7.

A.2 Strong congruence, observational equivalence and

observational congruence

Strong congruence

Strong congruence ~ is defined as follows.

Definition 3 P ~ Q iff, for all a € Act,

(i) Whenever P = P’ then, for some Q', Q = Q' and P' ~ Q'
(ii) Whenever Q = Q' then, for some P!, P = P’ and P' ~ Q'.

Because /sim is a congruence it is substitutive under all operators, namely if
P1NPQ,thellCY.PlNO[.PQ,P1—|-QNP2+Q,P1|QNP2|Q,P1\LNP2\L,
Pi[f] ~ P3[f]; and it is also substitutive under recursive definition.

To define observational equivalence =, a few definitions are required.

Definition 4 Lett = oy ...a, € Act*. Then

(i) Gdefen | om
(ii) 1€ L* is the resull of removing all T’s from t
(i) S (BB (B (D) (5

Note that 7 = ¢, the empty sequence, and S= (L)*

Definition 5 P ~ Q iff, for all s € L*,

(i) Whenever P = P’ then, for some Q', Q = Q' and P' ~ Q'
(ii)) Whenever Q = Q' then, for some P!, P = P’ and P' =~ Q'.
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However, &~ is not a congruence, therefore the further definition of observational

congruence or equality is required.

Definition 6 P = () iff, for all a € Act,

(i) Whenever P = P’ then, for some Q', Q = Q' and P' ~ Q'
(ii) Whenever Q = Q' then, for some P', P = P’ and P' =~ Q'.

The following result gives the relationship between the three equivalences.
Proposition 4 P~ Q =>P=0Q = P~Q.

Finally, the full form of the expansion law is given in the next proposition.

Proposition 5 Let P = (Py[f1]|...| P.[fn])\ L, with N > 1. Then

P~ S {fi(@) (A [ PIAT ] pal f DA
P, % P! fi(a)¢ LUT}
+ D Ar(PAL TP TP el S DAL
PR PP B P L) = (), i < g).

Example The following agents are equated by the Expansion Law

a.0]b.0~ a.b.0+ b.a.0.

A.3 Determinism and confluence
Strong and weak determinacy can be defined as follows:

Definition 7 P is strongly determinate if, for every derivative QQ of P and for all
a € Act, whenever Q = Q' and Q = Q" then Q' ~ Q".

Definition 8 P is (weakly) determinate if, for every derivative @ of P and for all
s € L, whenever Q = Q' and Q = Q" then Q' ~ Q"

The concept behind determinacy is predictability. If an experiment is performed
on a determinate system, the same result or behaviour should be obtained each

time that experiment is performed. It would be desirable to have a set of rules
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/

Figure A.1: The confluent agent @.0 | b.(c.0 | d.0) [50, p. 238].

/] \\/

that allow determinate systems to be constructed from determinate components.
However, there is no constrained form of Composition that is determinate and allows
communication. Therefore confluence, a stronger form of determinacy, has been

proposed.

Definition 9 r/s, the excess of v over s, is defined as follows

)
S~
®
l

£

Ur/s) iflds
r/(s/l) if L€ s.

Definition 10 P is confluent iff, for all r,s € L*, the following diagram can be

completed

P = P
s Is/r

Py 72;@2 ~ G

The idea behind confluence is that when performing an experiment different actions
may occur on different orders however the final result will be the same, or more
concisely stated—the occurrence of one action will not preclude the possibility of
another. In Figure A.1, an example of a confluent agent is given.

The following results describe which syntactic forms are confluent, and which

operators preserve confluence.
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Proposition 6 If P is confluent, then so are the following:
(i) 0,a.P and P\L

(ii) P[f], provided that f is injective on L(P).

Definition 11 For ai,...,a, € Act,n > 0, the Confluent Sum (oq | ... | ay).P is

defined recursively as follows

O.p ¥ p
def
(a1 ]...]an).P = E ai(ay | o) aimr Jaipr | o] an). P (n>0).
1<i<n
Proposition 7 If P is confluent then so is (oq | ... | a,).P.

Definition 12 For I C L the Restricted Composition is defined as

def
P P, = (A R)\L

and it is called a Confluent Composition if L(Py) N L(Pz) =0 and L(Py)NL(P,) C
LUL.

Proposition 8 Let Py and P, be confluent. Then if Py |1 Py is a Confluent Com-

position it is confluent.

Proposition 9 Let P, and all Constants upon which it depends be defined using
only 0, one-to-one Relabelling, Confluent Sum, Restriction, Confluent Composition

and Constants. Then P is confluent.



B. Proofs

In this appendix, proofs of propositions and theorems from Chapter 3 will be pre-

sented.

Proposition 10 =<’ is a partial order
Proof: To show that <’ is a partial order, it must be shown that <’ is reflexive,
transitive and antisymmetric relation. To recap, <’ is equal to the transitive closure

of (xU=).
1. Reflexivity : This follows from equality.

2. Transitivity : This follows from the fact that <’ is defined to be the transitive

closure.

3. Antisymmetry: Given (a <’ b)A(b <’ a), there are four cases to be considered.

a

Proposition 11 < is a partial order
Proof: < is defined to be the transitive closure of (< U =) with the additional

rule that
Va,be E(P)a < b= a=b.

As can be seen from the previous proof, this is a partial order. a
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Proposition 12 (Proposition 3) The cut C defined by E¢ and a; for eachi € N\F¢,

C= | {zeEP)|z=a}= |J (la)

iEN\E¢ iEN\E¢

1s a consistent cut if and only if
sup(Ty,...,1%) = (T1[1], ..., Tu[n]).

Proof:

Note that in the following proof it is not necessary to consider individually the
cases P; — P;, P; — P; and the case where neither is caused by the other, since
this is captured in the relation <.

= : Assume that C' defined by E¢ and a; for i € N\ E¢, is a consistent cut,
namely Va € C,b€ E(P)(b<a=b¢€ (). It must be shown that

sup(Ty,...,T,) = (Th[1],...,Tu[n])
& Vie{l,...,n} 1rgya§Xn T;[i] = T[4
& Vi, je{l,...,n} T;[e] < Tifel.
For any ¢ and j, there are four possible cases to consider:
1. t,7 € E¢ : then T;[t] = T;[¢] = 0 so the condition holds.
2. i¢ B¢ and j € E¢ : then T;[i] = 0 < T3[e].

3. 1€ Eg and j € E¢ : hence T;[i] > 0, therefore there exists a communication
event from P;, b € E(F;) such that b < a; and b ¢ C since P; does not
contribute any events to C. This contradicts the fact that C' is a consistent

cut, so this case cannot hold.

4. 1,7 € Ec @ consider a; and a;. They can be related to each other in the

following ways:

(a) a; co a; : From Proposition 2, this implies O(a;)[i] < O(a;)[i], hence
T;[i] < T;[¢] by the definition of T, so the required condition holds.

(b) a; < @; : This implies that O(¢;) < O(e;) & O(q;)[i] < O(a;)[i] &
T;li] < Tild].

(c) a; < a; : Therefore O(a;) < O(a;) & O(a;)[t] < O(q;)[¢]. Then from
Proposition 1, | (| a;); | <| (| a;); | Now since < is a total order on
E(P;), (| a;); C (] a;);- Therefore 3b € E(PF;), such that b € (| a;); but
b ¢ (] a;);, therefore b ¢ C, but b < a;, which contradicts the definition

of the cut €', and so this case cannot hold.
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So it has been shown that in all cases satisfying the definition of a consistent

cut, the required conditions hold.

< : Assume the following holds for C', a cut defined by E¢ and «a; for i € N\ E¢.

sup(Ty,...,17,) = (Th[1],...,Tu[n])
& Vie{l,...,n} lréljasxn T;[i] = T[4
& Vije {1, .. .,n} Tj[i] < TZ[Z]

It must be shown that C' is a consistent cut, namely Va € C,b€ E(P)(b<a =
b € C'). Suppose the converse, 3 a € C,b € E(P) such that b < a and b ¢ C. There

are two cases to consider:

l.a,be E(P)(i € N\E¢): a € C and a € E(P;) implies a € (] @;); which
implies that ¢ < a;, but b < a so by transitivity b < a; which implies that
b € (] a;); by definition and hence b € C'. Contradiction.

2. a € E(P;),be E(P) (i,j € N\Ec,i# j): a€ C and a € E(P;) implies that
a € (] aj); and @ < a;. Alsob ¢ C and b € E(PF;) implies b ¢ (] a;); and
a; < b.

Since a; < b, (| a;); C (| b); and O(a;)[7] < O(b)[:] from Proposition 1.
Also b <a,a < a; = b < a;,s0 O(b) < O(a;) and O(b)[7] < O(a;)[z].
Therefore ©(a;)[t] < O(a;)[¢] and by the definition of 1}, T}, T;[¢] < T;[i] since

i,j € N\Ec. Hence 34,5 € {1,...,n} such that T};[¢] < T;[7]. Contradiction.

Therefore it has been proved that C is a consistent cut. a



C. Agents for the dining philosophers

problem

In this appendix, the agents used in Experiments G and H in Section 5.2 are pre-

sented. The actions are abbreviations for the following:

t - think

e - eat

gf, - get the ith fork

df; - drop the ith fork
gt - get room ticket
dt - drop room ticket

(G1: 2 philosophers, odd-even solution

( t.afygfy.e.dfy.dfs.0 |
t.afy.aly.c.dfy.df2.0 |
o, 0F, 2T, 6.0 |
o, T2 2T, 0120

) Mefy, df1, gf5, df2}

philosopher,
philosopher,
forky
forks

(G5: 4 philosophers, odd-even solution

( tgf,.gf,.e.df1.df4.0 |
t.gf,.gf.e.df1.df.0 |
t.gfy.gfy..df3.df2.0 |
t.gfs.gf,.e.df5.df4.0 |
of | dF, 2,710 |
ol dls.8T,. .0 |
T 0T 2050750 |
of AT 4.8T . d14.0

philosopher,
philosopher,
philosopherg
philosopher
fork,
fork,
forks
forky

) \{gflv dfl,ng, df%ng, df37gf47 df4}
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(G3: 6 philosophers, odd-even solution

( t.gf,.gfg.e.df1.df.0 | philosopher,
t.gf,.gf5.e.df1.df5.0 | philosopher,
t.gfs.gf5.e.df3.df5.0 | philosopher,
t.glfs.gf4.e.df3.df4.0 | philosopher,
t.gf5.gf y.e.df5.df4.0 | philosopher
t.gfs.gfg.e.gf5.gf.0 | philosopherg
gf,.df.gf,.df1.0 | fork,
gfy.df5.gf5.df .0 | forky
gf5.df3.gf5.df 3.0 | forks
gf ,.df y.gf,.df 4.0 | forky
gf5.df 5.gf5.df 5.0 | forks
56-36-56-36-0 forkg

) \{gflv dflvgf% df?vgf37 df37gf47 df47gf57 df57gf67 dfG}

(G4: 2 philosophers, room-ticket solution

This example is more complex because of the introduction of room-tickets and re-
quires the calculation of the measure for two different possible runs of the agent
(There are more runs, but these relate to permutations on the order of processes).
The first agent involving only two philosophers has only one possible run because

of the existence of only one room-ticket.

( t.gtgf,.gf,.e.df,.df>.dt.0 | philosopher,
t.gt.gfy.gf.e.dfy.df1.dt.0 | philosopher,
gfy.dfy.gf,.df 5.0 | forky
gf,.dfy.gf,.df1.0 | forky
gt.dt.gt.dt.0 room — tickets

) \{gt7 dtagfh dflygf27 df2}
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(G5: 4 philosophers, room-ticket solution

This situation now involves a number of different computations for the same agent.
This occurs, because any one of three room-tickets can generate a new copy of itself
to let the fourth philosopher into the room. The agent is described first, and then
the two different computations are given. The same applies to Experiments H4 and

Hs, although only the agents for those experiments are given in this appendix.

The agent

( t.gt.gf,.gfy.e.df1.df4.dt.0 | philosopher,
t.gt.gfy.gf.e.dfy.df1.dt.0 | philosopher,
t.gt.gfs.gf5.e.df3.df5.dt.0 | philosopher,
t.gt.gf,.gf5.e.df4.df3.dt.0 | philosopher,
gf,.df1.gf,.df 1.0 | fork,
gf,.df5.gf,.df .0 | forky
gfy.df5.gf5.df .0 | forks
gf ,.df 4.gf,.df 4.0 | forky
gt.dt.(gt.dt.0 + 0) | room — tickets

gt.dt.(gt.dt.0 +0) |
gt.dt.(gt.dt.0 + 0)
) \{gtv dtvgflv dfl,ng, df?vng%v df37gf47 df4}
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The first computation

( t.gtgf,.gfy.e.df,.df4.dt.0 | philosopher,
t.gt.gfy.gf.e.dfy.df1.dt.0 | philosopher,
t.gt.gfs.gf.e.df3.df5.dt.0 | philosopher,
t.gt.gf,.gf5.e.df4.df3.dt.0 | philosopher,
gf,.df1.gf,.df1.0 | fork,
gfy.df5.gf5.df 3.0 | fork,
gf,.df5.gf,.df 3.0 | forks
gf ,.df y.gf,.df 4.0 | forky
gt.dt.gt.dt.0 | room — tickets
gt.dt.0 |
gt.dt.0

) \{gtv dtvgflv dfl,ng, df?ang%v df37gf47 df4}

The second computation

( t.gt.gf,.gfy.e.df,.df4.dt.0 | philosopher,
t.gt.gfy.gf.e.dfy.df1.dt.0 | philosopher,
t.gt.gfs.gf5.e.df3.df5.dt.0 | philosopher,
t.gt.gf4.gf5.e.df4.df3.dt.0 | philosopher,
gf,.df.gf,.df1.0 | fork,
gfy.df5.gf,.df .0 | forky
gf,.df5.gf,.df 3.0 | forks
gf ,.df 4.gf,.df 4.0 | forky
gt.dt.gt.dt.0 | room — tickets
gt.dt.gt.dt.0|

) \{gt7 dtvgflv dfl,ng, df27gf3, df37gf47 df4}
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Hy: 4 philosophers, odd-even solution, 2 eat, 2 think

( t.t.gly.gfye.e.dfr.df4.0 |
t.t.gf,.gfy.e.e.df1.df5.0 |
t.t.gf5.l,.e.e.df5.df.0 |
t.t.gfs.f,.e.c.df5.df4.0 |
of , df.aT, . d71.0 |
of, 0T8T, 7.0 |
ol dls.8T5. 5.0 |
of AT 4.8T,.d14.0

) \lgfy, df1,gf,, df2, gfs, dfs, gfy, df}

( t.t.t.t.gf,.gfs.e.e.e.e.dfy.df4.0 |
t.t.t.t.gf,.gf,.e.e.e.e.dfy.df5.0 |
t.t.t.t.gf5.gf,.e.e.e.e.df3.df5.0 |
t.t.t.t.gf5.gf4.e.e.e.e.df3.df 4.0 |
of, T, 2T, 41,0 |
gly.df5.g15.df 5.0 |
of, T 2T, 0.0 |
gf,.df 4.g1,.df 4.0

) M{efy,dfy,gfy, dfy, gl df 5, gl4, df 4}

H3:

( tt.ttttt.tgf,.glyeee.ee.ee.e.dfi.df4.0 |
t.t.t.t.t.t.t.t.gf.gfy.e.e.e.e.e.e.e.e.dfy.df 5.0 |
t.t.t.t.t.t.t.t.gf5.915.e.e.e.e.e.e.e.e.df3.df,.0 |
t.t.t.t.t.t.t.t.gf5.8fs.e.e.e.e.e.e.e.e.df3.df 4.0 |

of | dF, 2,710 |
ol dl.2T5.d75.0 |
ol 3. dF.205.d75.0 |
of, 0T 4.2T,.dT 4.0
) \gfy, df1, gf,, dfs, gfs, dfs, gf,, df s}

philosopher,
philosopher,
philosopherg
philosopher
fork,
fork,
forks
forky

: 4 philosophers, odd-even solution, 4 eat, 4 think

philosopher,
philosopher,
philosopher,
philosopher 4
fork,
fork,
forks
forky

4 philosophers, odd-even solution, 8 eat, 8 think

philosopher;
philosopher,
philosopher,
philosopher,
fork,
fork,
forks
forky
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H,4: 4 philosophers, room-ticket solution, 2 eat, 2 think

The agent

( t.t.gtgf,.gfy.e.e.df1.df4.dt.0 |
t.t.gt.gf,.gf.e.e.dfy.df1.dt.0 |
t.t.gt.gfs.gfy.e.e.df3.df5.dt.0 |
t.t.gt.gf,.gfs.e.e.df4.df3.dt.0 |
of , dF,.2l,.d0,.0 |
of, 0T8T, d72.0 |
gly.dfy.g15.df 5.0 |
of , dT4.2T 740 |
gt.dt.gt.dt.0 |
gt.dt.o |
gt.dt.0

) \{gt7 dtvgflv dflygf27 df27gf3, df37gf47 df4}

philosopher;
philosopher,
philosopher,
philosopher,
forky
fork,
forks
forky

room — tickets

Hs: 4 philosophers, room-ticket solution, 4 eat, 4 think

The agent

( t.t.t.t.gtgf,.gfs.e.e.e.e.df.df4.dt.0 |
t.t.t.t.gt.gf,.gf.e.e.e.e.dfy.df1.dt.0 |
t.t.t.t.gt.gf5.gf5.e.e.e.e.df3.df,.dt.0 |
t.t.t.t.gt.gf ,.gf5.e.e.e.e.dfy.df3.dt.0 |
of , dF, 2T, .d0,.0 |
of, 0T8T, d72.0 |
gly.dfy.g15.df 5.0 |
of , dT4.2T 740 |
gt.dt.gt.dt.0 |
gt.dt.0 |
gt.dt.0

) \{gt7 dtvgflv dflygf27 df27gf3, df37gf47 df4}

philosopher;
philosopher,
philosopher,
philosopher,
forky
fork,
forks
forky

room — tickets
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