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Abstract

This paper will report on research which investigates the application of Charron-Bost’s measure
of concurrency m to the Calculus of Communicating Systems (CCS), a formalism for expressing con-
currency. The purpose of a measure of concurrency is to calculate a numerical value that describes
the amount of concurrency occurring in a computation or algorithm. The aim of the research was
twofold: first to evaluate the measure m in terms of criteria gathered from the literature, and second
to determine the feasibility of measuring concurrency in CCS and to provide a new tool for under-
standing concurrency using CCS. The approach taken in the research was to identify the differences
between the message-passing formalism in which the measure m is defined, and CCS; and to modify
the message-passing formalism to enable the mapping of CCS agents to it. A software tool, the Con-
currency Measurement Tool, was developed to permit experimentation with chosen CCS agents and
hence to allow the evaluation of m. The criteria used for evaluation are the intuitive understanding
of the measure, being well-behaved for small examples, compatibility with operators, usability and
applicability, expense of computation, ability to calculate the measure for a specific event and stability
with respect to granularity. The experimentation showed that the measure m, although intuitively
appealing, is defined by an algebraic expression that is ill-behaved, is not compatible with operators
and is expensive to compute. A new measure is defined and it is shown that it matches the evaluation
criteria better than m, although it is still not ideal. The research has demonstrated that it is feasible to
measure concurrency in CCS and that a methodology has been developed for evaluating concurrency

measures.

1 Introduction

As Hoare has noted ‘Concurrency remains one of the major challenges facing Computer Science, both in
theory and in practice’ [19, Foreword]. For this reason, the investigation of issues that relate to concurrency
is important, as such an investigation can further our understanding of concurrency.

This paper reports on the research that was presented for the degree of Master of Science at the
University of the Witwatersrand [13]. In this research, I evaluated a measure of concurrency, namely
Charron-Bost’s measure m [6] by applying it to an algebraic calculus of processes, namely Milner’s CCS
(Calculus of Communicating Systems) [19] and in the course of this evaluation I developed a methodology
for evaluating concurrency measures.

Algebraic calculi of processes provide an approach to modelling communication and concurrency by
describing the behaviour of concurrent communicating systems. CCS is an example of this type of calculus.
It provides for the definition of agents using a small number of operators and for the definition of the
behaviour of these agents via an operational semantics, hence allowing for the description and specification
of concurrent systems, from which an understanding of the behaviour of such systems and the comparison of



different systems can be gained. Any new tools developed for use with CCS will further the understanding
of concurrent systems.

In the literature, there are a number of approaches to analysing the behaviour and performance of
concurrent systems. Lamport and Lynch [18] note that there are two basic complexity measures for
distributed algorithms: time complexity which measures the amount of time taken by message passing in
a particular algorithm; and message complexity which is based on the number of messages or the total
number of bits transmitted during a computation. Parallel programs also exhibit concurrency and their
performance can be measured by speedup; the ratio of time taken to execute the program on one processor
and the time taken on n processors [20].

However, as Charron-Bost has noted [6], none of these measures assess the structure of the computation.
She gives the example of a multibroadcast problem with two solutions—the solution with the lower number
of messages works in an essentially less concurrent manner and is less resistant to failure than the solution
with the higher number of messages. Recently in the literature, the notion of a concurrency measure has
been proposed by a number of authors [1, 2, 3, 4, 5, 6, 10, 12, 14, 15, 16, 21]. This notion is based on the
concept of a quantitative measure of the amount of concurrency in a computation or algorithm, usually
defined on the interval [0, 1] or [0, c0).

Although there have been a number of different measures proposed, there has been a lack of experi-
mental results for these measures, and the majority require further evaluation. Generally, it appears that
researchers present measures but little further research is done to evaluate the usefulness of the defined
measures in more practical situations. One aspect of this research is to remedy this situation by first
investigating one specific measure, and second by proposing a general approach for evaluating measures.

To evaluate measures of concurrency, it is necessary to determine which features or characteristics are
generally desirable. Dispersed throughout the literature are a number of different criteria for evaluating
measures of concurrency. These different approaches are drawn together in this research and will be used
to evaluate the measure of concurrency under investigated.

The structure of the paper is as follows: the first two sections are overviews of existing work—in
Section 2, CCS will be briefly discussed, and in Section 3, the measure m will be presented. In Section 4,
the application of the measure m to CCS will be discussed. Then in Section 5, the program that was written
to calculate the measure for CCS agents will be described. In Section 6, the criteria for the evaluation of
a measure of concurrency will be described and in Section 7, the experimental results of the research will
be presented. Finally I will discuss the conclusions from the research and mention some issues that remain
for further research.

2 CCS

For reasons of space, I will not discuss CCS in much detail and the reader is referred to [19] for further
details. CCS provides the following:

e A syntax of operators over a set of events, Act.

— Nil 0, Prefix a., Summation +, Composition |, Restriction \a, Relabelling [f], Constant (or
Recursion).

e Operational semantics, specifying the behaviour of operators which results in a transition system,

namely the transition rules:
— Act, Sum, Com, Res, Rel, Con.

e Semantics given by an equivalence, for example strong equivalence and observation equivalence.
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Figure 1: A distributed computation represented as a space-time diagram

In this research, the approach taken in applying the measure of concurrency to CCS will involve mapping
the syntax and indirectly the operational semantics to a formal model of a distributed system. However,
it will not involve equivalence semantics.

3 The message-passing formalism and Charron-Bost’s measure

m

The measure m is defined in the model of message-passing first defined by Lamport [17], which I shall refer
to as the message-passing formalism. This formalism defines a formal model of a distributed system and
allows for the definition of a partial ordering on the events in the distributed system, called the ‘happened
before’ relation. This framework has been formalised by Charron-Bost [5] as follows:

A distributed system consists of a finite set of sequential processes { P, ..., P,} where each P; is a set
of sequences of events and is prefix closed. Events fall into three classes: an internal event, the sending of
a message to another process, or the receipt of a message from another process.

For each 4, let C; be one of the sequences defining P;. The relation < is defined on the set of events
obtained from the computation C' = Cy U---U C), as the smallest transitive relation satisfying (1) if a and
b occur in the same process and a comes before b, then a<b, (2) if a is a sending of a message m, and b is
the receipt of m, then a<b. This relation, known as the ‘happened before’ relation forms a partial order
on the set of events and captures the causal relationship between events.

< is defined as: a < b iff a<b or a = b. Events a and b are concurrent (a co b) if =(a < b) and =(b < a).
Concurrent events are those that are causally independent of each other.

The happened-before relationship can be captured in the space-time diagrams introduced by Lamport
[17]. In Figure 1, the horizontal lines represent processes, the time axis runs from left to right, and send
and receive events are joined by a directed line.

The measure m is based on counting the number of consistent cuts in a computation. The concept
behind this is that the more processes wait, the less concurrency the computation exhibits. Since the
ability of the computation to be cut consistently is related to its tolerance to stopping, a computation’s
concurrency can be measured in terms of its number of consistent cuts.

A cut of a distributed computation can be defined as follows: Consider the union where each a; is an
element of C;

C' = U {z € Ci |z < a;}.
i€{1,...,n}

This is called a cut and it may contain the receipt of a message but not the sending of that message,
therefore it may exhibit inconsistency.



A consistent cut can be viewed as a global state of the computation where causality is not violated [11],
hence the consistent cut cannot contain the receipt of a message without its sending. A consistent cut of a
distributed computation C' is defined as a cut C' that is left closed by the causality relation. This means
that for any a,be C,ifbe " anda b= ac (.

The measure m is defined as

_ 8
where p is the number of cuts in the computation under consideration, u® is the number of cuts in a totally
sequential version of the computation (where no events can occur concurrently) and ¢ is the number of
cuts in a totally concurrent version of the computation (where there is no communication). The measure
takes values in the interval [0, 1] with 1 for a concurrent computation and 0 for a sequential computation.

The values of u® and p° can be determined analytically. Assuming there are ¢; events in each process
then

w=1+q+-+4qn

pe=1+aq) - (1+gn).

Vector logical clocks [11] can be defined on distributed computations and Charron-Bost has proved that
vector logical clocks can be used to check cuts for consistency.

Raynal [21] describes m as a good characterisation of the degree of concurrency, but he notes that
its computation is not feasible. Fidge [10] notes that the calculation of p using vector clocks requires
> 1<i<n N4 integers to be stored and that m can only be calculated after the computation has terminated.
Charron-Bost [7] has shown that m does not give the expected results when used with the operators
concatenation and fusion which are operators that are defined within the message passing formalism.
Finally, she notes that there may be other operators that are better adapted for use with m, but she is not
aware of any that are easily studied from the point of view of combinatorics, so part of this research will
evaluate m using the operators found in CCS. The measure has not been evaluated in terms of applicability
to real examples.

Hence it appears that there is conflicting evidence regarding m. It has been described as a good measure
of concurrency, although it is computationally expensive and is not compatible with operators; however,
further work is required in these areas.

4 Applying the measure to CCS

To enable the application of the measure to CCS, it was necessary to determine the differences between
the message-passing formalism and CCS. The major differences can be detailed as follows:

1. Charron-Bost’s formalism assumes that there are a fixed number of processes that all start at the
same time, and that no new processes are created during the computation. In CCS, certain agents
can be interpreted as involving process creation, for example a.(b.0 | ¢.0), starts as a process that
performs a, and then ‘branches’ into two processes, one performing performs b and one c.

2. Charron-Bost’s formalism assumes asynchronous communication. In CCS, communication occurs
between a port a and its complement @ and this communication is synchronous.

3. There is a difference in expressive power with respect to computations. The message-passing for-
malism represents one computation of an algorithm whereas a CCS agent can describe an entire
algorithm.



The first two differences are resolved by redefining the message-passing formalism to allow for synchronous
communication and for creation of processes. This redefinition results in a new relation on {P,..., P,},
namely — and a new relation < on events. The relation — describes causality between processes, for
example, P; — P; means that process P; occurs after and is created by process FP;. The relation «
describes pairs of communication events, for example a < b means that synchronous communication
occurs between a and b.

The relation < is defined on events and describes the causal relationship between events, as previously;
however, it now takes into account synchronous communication and process creation, and in the partial
ordering of events, synchronous communication events are equated—they are viewed as a single event.

It is also necessary to investigate the definition of cuts. This definition requires slight modification
since Charron-Bost’s original definition specifies that each process contributes an event to the cut which
excludes the definition of some cuts, for example the empty cut. The definition is modified as follows: let
C =CyU...UC, be a computation, let N = {1,...,n}, and let Ec: C N. E¢ will contain the indices
of the processes that do not contribute any events to the cut C’. Then for each ¢ € N\ E¢r, choose an
a; € C;, then

C'= U {zeCi|z<2a;}
iEN\Eg

is a cut of the computation. A cut C' is a consistent cut if it is left closed by =<, namely, if a,b € C such
that b€ C'" and if a < b then a € C'.

Vector clocks can also be defined in the redefined formalism and it has been proved that vector clocks
can be used to determine if a cut is consistent, in a similar fashion to Charron-Bost’s result!.

It can be seen that intuitively the basic idea of the measure m holds in this redefined formalism, namely
that consistent cuts indicate how resistant to stopping the computation is; however, there are new values
for p® and pc.

p=14q+ - +a— |

The value of u® is reduced by the number of communication events since communication events are

equated.

ué = H cuts(P;)  where cuts(P;) =gq; + H cuts(P;)
PeS {P;|P;—~P;}

This more complex definition for u® occurs because although there is no communication in a totally
concurrent computation, the causality between processes must now be taken into account.

Finally, the difference in expressive power was investigated. In the message-passing formalism, each
computation represents a specific execution of an algorithm, whereas in CCS, an agent represents an
algorithm which can generate many computations. Under certain conditions, it is easy to identify separate
computations, since they only occur as a result of the Summation operator. Hence for any CCS agent
which meets these conditions, many computations may be identified, and the concurrency for each will be
measured. The measure for the original agent will then be defined as an ordered pair, consisting of the
maximum and minimum values found across all computations.

The outline of the translation procedure is given below. This procedure assumes that the different
computations have been identified.

e CCS actions will be mapped to events in the message-passing formalism, and actions and their
complements will be used to identify communication event pairs. When a communication event

occurs, the two actions are replaced by a single 7 action. For example, consider the following agent

1The statement and proof of this result is given in [13].



(a.0 | @.0)\a. The communication event that occurs between a and @ will be represented by the

single action 7.

e An agent of the form a;..... a,.Q where Q is a CCS agent that does not start with a prefixed action,
will be identified as a process. So, for example, the agent a.b.(c.d.0 | e.f.0) will be decomposed into
three processes—P; = ab, P, = cd and P; = ef, with P, — P, and P, — Ps.

Another issue of importance is to determine what subset of CCS can be measured. Note first of all that the
message-passing formalism assumes that processes eventually terminate, therefore only finite agents will be
used. Milner [19, p. 160] defines finite agents as follows: ‘[a]n agent expression is finite if it contains only
finite Summations and no Constants (or Recursions).” Hence the subset of CCS that will be dealt with is
contained in the subset of agents defined by 0, Prefix, (finite) Summation, Composition, Restriction and
Relabelling. As noted above, there are some additional conditions on agents and it can be shown that the
subset of CCS that can be handled within these conditions includes finite confluent agents. Milner [19]
notes that confluence is a desirable property for ensuring well-behaved specifications. This would indicate
that although it would be preferable to capture the whole of CCS, the subset that has been dealt with is,
in fact, significant.

The algorithm that will be used is a static algorithm to translate a CCS agent into the redefined
formalism. It is static in the sense that the decomposition of an agent into processes is based only on the
syntax of the agent. The input is a CCS agent and the output is a set of processes P = {Py, Ps, ..., P,},
consisting of sequences of events, a relation that describes the causal links between processes —, and a
relation that describes the communication pairs <». An example of a translated CCS agent is given in
Figure 2. In the following, agent will be used to indicate the CCS agent and 1, j, k will indicate process

numbers.

translate(agent , 1)

if agent has the form a.E then
add a to F;
translate(E, ¢)

if agent has the form E | F then
get new process numbers j and k
create empty processes P; and Py
add (P;, P;) and (P;, Py,) to —
translate(E, 7)
translate(F, k)

if agent has the form 0 then
do nothing

if agent has the form E\a
add the action a to the restriction information about E
translate(E, )

identify communication pairs and create <+

5 Concurrency Measurement Tool

As part of this research, a program was written that calculated the measure of concurrency for CCS agents
in the subset described in the previous section. The program performed the translation described above
and then calculated the measure for the resultant space-time diagram. The approach taken was to calculate
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Figure 2: The translation of the agent (a.(b.d.0 | c.f.d.0) | e.2.0) \ c\ d.

i by generating each cut and then using the vector clocks to check the cut for consistency. This was not
an efficient algorithm and it has been shown to be O(q"/n"~2) where ¢ is the total number of events in
the computation and n is the number of processes. This analysis was confirmed by experimental timings
obtained from running the program.

Other approaches to this algorithm are also problematic. Charron-Bost [5, 7] has derived an algorithm
based on her result that relates the number of consistent cuts to the number of antichains in the partial
order. She notes that the algorithm is efficient only when there are few 2-antichains in the computation
under consideration, namely when there is little concurrency in the computation. I have investigated this
algorithm further and found it to be O((ng)"*!). Kim et al [15] present an approach whereby they divide
computations into concurrency blocks, and count the number of antichains in each block. This results
in an approximation to m that is faster to compute; namely O((ng)"/b"~!), where b is the number of
concurrency blocks; however no work has yet been done on the accuracy of the approximation.

6 Criteria for evaluation

The evaluation criteria that have been gathered from the literature are:

e Intuitive understanding of the measure [5]

Being well behaved for small examples [5, 6]

Compatibility with operators on computations [6, 8, 10]

Usability and applicability to actual algorithms [6, 16]

Ability to calculate measure for a specific event [10, 21]
e Expense of computation in terms of both time and space [10, 14, 21]
e Stability with respect to granularity [7]

These criteria will not be discussed in detail for reasons of space?. However it should be noted that one
important criterion is that of compatibility with operators. Operators on concurrent computations allow
computations to be ‘joined’ in some sense. Examples of such operators are parallel concatenation and
sequential concatenation. When two computations are combined by an operator, it would be desirable
that the value of the measure of concurrency for the combined computations can be explained in terms
of the type of operator. For example, when computations are combined in parallel, it is reasonable to

2 A more detailed explanation of these criteria can be found in [13].



expect the value of the measure to increase as the computation has in some sense become more parallel.
Compatibility with operators is an important criterion when building systems from components. If the
effect of an operator can be explained, then the effect on the amount of concurrency when exchanging

components can be determined.

7 Experimentation and results

A number of experiments were performed using the Concurrency Measurement Tool. The experiments
performed can be grouped into two categories— experiments on simple CCS agents and experiments on
CCS implementations of two solutions to the Dining Philosophers problem.

The first category of experiments showed that the measure appeared to be well-behaved for simple
examples. However, when the various operators were used to build new systems from simple examples,
anomalous results occurred. When the Prefix operator (which can be seen as a sequential operator)
was used, the measured amount of concurrency did not change, although it was expected to decrease.
Likewise, when the Composition operator (which is a parallel operator) was used, the amount of concurrency
measured decreased which also differs from the expectation that it would increase.

In the Dining Philosophers experiments, the resulting values of the measure were extremely small (of
the order of 107°%) and did not appear to distinguish between different agents. For example, the value for
the agent for two philosophers was 5.78 x 10~2 and for four philosophers it was 9.79 x 10~° which would
appear counter-intuitive since it would be expected that there would be more concurrency in the case where
three out of four philosophers can eat simultaneously as opposed to the case where only one out of two
can eat at a specific time. Therefore, this shows that there are algorithms for which the measure does not
behave well.

After an investigation of the values of p, p® and p° it was determined that p¢ dominates the value of
m. Hence, the values obtained in the experiment are small because u occurs in the denominator. From
this, it can be argued that the algebraic expression for m is ill behaved.

In an attempt to solve these problems, a new measure was defined

log p — log p*
log p1¢ — log p*

This form was chosen because taking logarithms reduces the size of the values, and should thus prevent

Mnew =

p¢ from dominating the measure.

On performing the same experiments with mpeyw, it was found that mpewwas better behaved. It was more
compatible with operators although it was still possible to find examples where the use of the Composition
operator could cause a reduction in measured concurrency. It also returned larger values in the experiments
on the Dining Philosopher agents, and it was found that the case of two philosophers had less measured
concurrency than the case of four as was originally expected. Note also that mpewis as expensive to calculate
as m. Therefore the measure myey is better than m although it does not fully solve all problems associated
with m.

In the course of this research it has been shown repeatedly by the fact that the evaluation of the
measure m was possible that the concept of measuring concurrency in CCS is a workable one. Although
the measures have been only defined for a subset of CCS, this subset does include confluent agents.

8 Conclusion

This research has showed that concurrency can be measured in CCS and that it can be used to evaluate
concurrency measures. Hence, the approach taken here to evaluate m can be used to evaluate other



measures. This will provide both for evaluation of existing measures and the development of new measures;
and for the further development of a new tool for the theoretical investigation of concurrency using CCS.
A number of issues for further research have come to light as a result of this research.

e Since myewdoes not solve all the problems associated with m, an area of research would be to develop
a better measure based on consistent cuts.

e Research can be done to find a better algorithm (if possible) to count the number of consistent cuts

in a computation.

e The existing framework can now be used to evaluate other measures of concurrency that have been
defined in the message-passing formalism.

When authors present measures of concurrency in literature, generally they do not present evaluations
of these measures. For a measure to be a useful tool, it is essential that it is evaluated with respect to
relevant criteria. The research has drawn together a number of criteria and used them in conjunction with
the Concurrency Measurement Tool to evaluate m. This approach can also be applied to other measures
defined in the message passing formalism.

Therefore, an important outcome of this work has been to produce a methodology for evaluating
measures of concurrency. This approach currently can be used for measures defined in the message-passing
formalism; however, it may be possible to use CCS with measures defined in other formalisms. It has been
shown to be a useful methodology by the fact that it facilitated the discovery that a specific measure was
ill behaved and allowed for the definition of a measure using the same basis that fitted better with the
evaluation criteria.
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