2

True concurrency equivalence semantics: an overview

Vashti Galpin

vcg@dcs.ed.ac.uk

Department of Computer Science University of Edinburgh Scotland

14 December 1994

True concurrency equivalence semantics: an overview

Introduction

- concurrency
- process domains
 - Petri nets
 - event structures
 - labelled transition systems
- ullet process algebras
 - syntax
 - operational semantics
 - equivalence semantics
- $\bullet~{\rm true~concurrency~equivalence~semantics}$
 - $a \mid b \neq a.b.nil + b.a.nil$

Labelled transition system

$$(\mathcal{S}, \mathcal{A}, \{ \stackrel{a}{\rightarrow} \subseteq \mathcal{S} \times \mathcal{S} \mid a \in \mathcal{A} \})$$

- S set of states
- A set of transition labels, actions
- relations \xrightarrow{a} describe which transitions occur between states.
- write $s \stackrel{a}{\to} s'$ for $(s, s') \in \stackrel{a}{\to}$
- no structure on states or actions pure labelled transition system

CCS syntax

$$P ::= nil \mid \alpha.P \mid P + P \mid P \mid P \mid P \setminus L \mid P[f]$$

- $\alpha \in Act = \{a, b, c, \dots, \overline{a}, \overline{b}, \overline{c}, \dots\} \cup \tau$
- $L \subset \mathcal{L} = \{a, b, c, \dots, \overline{a}, \overline{b}, \overline{c}, \dots\}$
- f, relabelling function such that $f(\overline{\ell}) = \overline{f(\ell)}$ and $f(\tau) = \tau$
- \bullet \mathcal{P} denotes the set of processes generated by this syntax

14 December 1994

True concurrency equivalence semantics: an overview

Operational semantics for CCS

(ST1)
$$\alpha.P \xrightarrow{\alpha} P$$
 $\alpha \in Act$

(ST2)
$$P \stackrel{\alpha}{\to} P'$$
 implies $P + Q \stackrel{\alpha}{\to} P'$ $Q + P \stackrel{\alpha}{\to} P'$

(ST3)
$$P \stackrel{\alpha}{\to} P'$$
 implies $P \mid Q \stackrel{\alpha}{\to} P' \mid Q$
$$Q \mid P \stackrel{\alpha}{\to} Q \mid P'$$

$$(\mathrm{ST4}) \quad P \overset{\alpha}{\to} P', \, Q \overset{\overline{\alpha}}{\to} Q' \quad \mathrm{implies} \quad P \mid Q \overset{\tau}{\to} P' \mid Q'$$

$$(ST5) \quad P \overset{\alpha}{\to} P' \qquad \qquad \text{implies} \quad P[f] \overset{f(\alpha)}{\to} P'[f]$$

$$(ST6) \quad P \overset{\alpha}{\to} P' \qquad \qquad \text{implies} \quad P \backslash L \overset{\alpha}{\to} P' \backslash L \quad \alpha, \overline{\alpha} \not\in L$$

Examples

Notation

Use
$$\Longrightarrow$$
 for $(\stackrel{\tau}{\rightarrow})^n, n \ge 0$
Use $\stackrel{a}{\Longrightarrow}$ for $\Longrightarrow \stackrel{a}{\Longrightarrow} \Longrightarrow$
Use $\stackrel{m}{\Longrightarrow}$ where $m = a_1.a_2....a_k, k \ge 0$ for $\stackrel{a_1}{\Longrightarrow} \stackrel{a_2}{\Longrightarrow} \cdots \stackrel{a_k}{\Longrightarrow}$

14 December 1994

True concurrency equivalence semantics: an overview

Observational equivalence

Consider the labelled transition system $(\mathcal{P}, \mathcal{L}^*, \{\stackrel{m}{\Longrightarrow} \subseteq \mathcal{P} \times \mathcal{P} \mid m \in \mathcal{L}^*\})$

A (weak) bisimulation is a binary relation $\mathcal{R} \subseteq \mathcal{P} \times \mathcal{P}$ such that $(P, Q) \in \mathcal{R}$ if for all $m \in \mathcal{L}^*$

- 1. whenever $P \stackrel{m}{\Longrightarrow} P'$, then there exists $Q' \in \mathcal{P}$ such that $Q \stackrel{m}{\Longrightarrow} Q'$ and $(P', Q') \in \mathcal{R}$
- 2. whenever $Q \stackrel{m}{\Longrightarrow} Q'$, then there exists $P' \in \mathcal{P}$ such that $P \stackrel{m}{\Longrightarrow} P'$ and $(P',Q') \in \mathcal{R}$.

Observational equivalence \approx is the union of all weak bisimulations and is the largest weak bisimulation

Two processes are observationally equivalent if they occur as a pair in a weak bisimulation

Example

Consider

 $a.nil \mid b.nil$

 $\quad \text{and} \quad$

a.b.nil + b.a.nil

where $a \neq \overline{b}$. Then

$$\begin{split} & \{(a.nil \mid b.nil, a.b.nil + b.a.nil), (a.nil \mid nil, a.nil), \\ & (b.nil \mid nil, b.nil), (nil \mid nil, nil)\}. \end{split}$$

is a weak bisimulation and

 $a.nil \mid b.nil \approx a.b.nil + b.a.nil$

14 December 1994

True concurrency equivalence semantics: an overview

8

Syntax for CCS with locations

$$P ::= nil \mid u :: P \mid \alpha.P \mid P + P \mid P \mid P \mid P \setminus L \mid P[f]$$

- $u \in Loc^*$
- \mathcal{P}_{Loc} denotes the set of processes generated by this syntax

10

Operational semantics for CCS with locations

(LT1)
$$a.P \xrightarrow{a} u :: P \quad a \in \mathcal{L}, \quad u \in Loc^*$$

(LT2)
$$P \xrightarrow{a} P'$$
 implies $v :: P \xrightarrow{a} v :: P'$

(LT3)
$$P \xrightarrow{a} P'$$
 implies $P + Q \xrightarrow{a} P'$ $Q + P \xrightarrow{a} P'$

(LT4)
$$P \xrightarrow{a} P'$$
 implies $P \mid Q \xrightarrow{a} P' \mid Q$
$$Q \mid P \xrightarrow{a} Q \mid P'$$

(LT5)
$$P \xrightarrow{a} P'$$
 implies $P[f] \xrightarrow{f(a)} P'[f]$

(LT6)
$$P \xrightarrow{a} P'$$
 implies $P \setminus L \xrightarrow{a} P' \setminus L \quad \alpha, \overline{\alpha} \notin L$

14 December 1994

True concurrency equivalence semantics: an overview

Example

$$a.b.nil \xrightarrow{a} u :: b.nil \xrightarrow{b} u :: v :: nil$$

Notation

Use
$$\stackrel{a}{\Longrightarrow}$$
 for $\Longrightarrow \stackrel{a}{\Longrightarrow} \Longrightarrow$

Loose location bisimulation

Consider the modified labelled transition system $\,$

$$(\mathcal{P}_{Loc}, \mathcal{L}, Loc, \{ \stackrel{a}{\Longrightarrow} \subseteq \mathcal{P}_{Loc} \times \mathcal{P}_{Loc} \mid a \in \mathcal{L}, u \in Loc^* \} \cup \{ \stackrel{\tau}{\Longrightarrow} \subseteq \mathcal{P}_{Loc} \times \mathcal{P}_{Loc} \})$$

Loose location bisimulation (cont.)

A loose location bisimulation is a binary relation $\mathcal{R} \subseteq \mathcal{P}_{Loc} \times \mathcal{P}_{Loc}$ such that $(P, Q) \in \mathcal{R}$ iff

- 1. whenever $P \Longrightarrow P'$ then there exists $Q' \in \mathcal{P}_{Loc}$ such that $Q \Longrightarrow Q'$ and $(P', Q') \in \mathcal{R}$
- 2. whenever $Q \Longrightarrow Q'$ then there exists $P' \in \mathcal{P}_{Loc}$ such that $P \Longrightarrow P'$ and $(P',Q') \in \mathcal{R}$
- 3. whenever $P \stackrel{a}{\underset{}{=}} P'$ then there exists $Q' \in \mathcal{P}_{Loc}$ such that $Q \stackrel{a}{\underset{}{=}} Q'$ and $(P', Q') \in \mathcal{R}$.
- 4. whenever $Q \stackrel{a}{\Longrightarrow} Q'$ then there exists $P' \in \mathcal{P}_{Loc}$ such that $P \stackrel{a}{\Longrightarrow} P'$ and $(P', Q') \in \mathcal{R}$.

 \approx'_l is defined to be the largest loose location bisimulation

14 December 1994

True concurrency equivalence semantics: an overview

_

12

Example

$$(a.c.nil \mid \overline{c}.b.nil) \setminus \{c\} \not\approx'_l a.b.nil$$

Consider the following transitions for $l, m \in Loc$ and $l \neq m$

$$(a.c.nil \mid \overline{c}.b.nil) \backslash \{c\} \xrightarrow{a} (l :: nil \mid b.nil) \backslash \{c\} \xrightarrow{b} (l :: nil \mid m :: nil)$$

These must be matched

$$a.b.nil \stackrel{a}{\Longrightarrow} l :: b.nil$$

however the only transition that can be performed after that is

$$l::b.nil \stackrel{b}{\Longrightarrow} l::u::nil$$

for some $u \in Loc^*$ and it is not possible for lu to equal m.

Other true concurrency equivalences

- \bullet causal bisimulation: $P \stackrel{\langle a,B \rangle}{\longrightarrow} P'$
- distributed bisimulation $P \xrightarrow{a} \langle P', P'' \rangle$.
- equivalences based on duration
 - ST-bisimulation: $a.P \xrightarrow{s(a)} f(a).P$ and $f(a).P \xrightarrow{f(a)} P$
- equivalences based on time
- equivalences based on structure of actions

14 December 1994

True concurrency equivalence semantics: an overview

14

Proposed research

- \bullet Comparison
 - in terms of CCS processes
 - in terms of labelled transition systems
- Application
 - how to determine which equivalence to use
 - properties

Comparison in terms of CCS processes

 $observational\ equivalence$ distributed bisimulation \approx_d (dynamic) location bisimulation \approx_l loose location bisimulation \approx'_l static location bisimulation weak causal bisimulation \approx_c local cause bisimulation \approx_{lc} global cause bisimulation local/global cause bisimulation \approx_{lg} read/write bisimulation

14 December 1994

True concurrency equivalence semantics: an overview

16

Comparison in terms of labelled transition system

- Modified labelled transition systems
- Disadvantages of comparison in terms of CCS processes
- \bullet More general approach to modified labelled transition systems
 - union
 - general labelled transition system
 - parameterised labelled transition system

18

Applicability of equivalences

- Justification and criteria for use
- Survey of usage
- Decidability and efficiency issues
- Properties
 - An equivalence \approx is said to distinguish

```
 \begin{array}{lll} \textit{location} & & \text{iff} & (a.c.b \mid d.\overline{c}.e) \setminus c \not \asymp (a.c.e \mid d.\overline{c}.b) \setminus c \\ \textit{read-write causality} & & \text{iff} & (a.c.b \mid d.\overline{c}.e) \setminus c \not \asymp (a.\overline{c}.b \mid d.c.e) \setminus c \\ \textit{concurrency} & & \text{iff} & a \mid b \not \asymp a.b + b.a \\ \end{array}
```

- $-\approx_l, \approx_l'$ and \approx_l^s all distinguish location, but not read-write causality
- \approx_{rw} distinguishes read-write causality, but not location
- \approx_c doesn't distinguish location or read-write causality
- All equivalences shown previously except \approx , distinguish concurrency.

14 December 1994

True concurrency equivalence semantics: an overview

