True concurrency equivalence semantics: an overview

Vashti Galpin

Department of Computer Science, University of Edinburgh
vcgldcs.ed.ac.uk

This paper will present an overview of true concurrency semantic equivalences for CCS which have
been presented in the literature in recent years. Selected equivalences will be described and examples
will be given of their use. Finally, these equivalences will be compared with respect to CCS and a partial
hierarchy will be given. I will also describe the research that I propose to pursue towards my PhD. This
research is in the area of theory of concurrency and deals specifically with semantic equivalences defined
on labelled transition systems, with the main focus being on equivalences for true concurrency. I wish
to compare the numerous equivalences presented in the literature and to determine when and how these
equivalences can be used.

1 Introduction

Over the last 15 years, there has been much research in the area of concurrency theory, that is research that
attempts to define theoretical foundations for concurrent computation. This is generally considered to be a
more complex task than dealing with sequential computation for two reasons: first, there is the possibility
of interaction between different parts of a computation, and second, concurrent computations often form
reactive systems [PR88]. A reactive system is one that interacts with its environment on an ongoing basis,
and hence is difficult to characterise by a set of inputs and a set of outputs.

Algebraic calculi of processes provide an approach to modelling communication and concurrency by
describing the behaviour of concurrent communicating systems in terms of an operational semantics. Milner’s
CCS (Calculus of Communicating Systems) [Mil89] is an example of this type of calculus. CCS provides for
the definition of processes using a small number of operators and allows for the description and specification of
concurrent systems. It consists of a syntax and an operational semantics defined using Structured Operational
Semantics [Plo88]. These together give rise to a labelled transition system, where each process is represented
by a state in the labelled transition system and the transitions between states represent actions that processes
can perform. However, labelled transition systems are not sufficiently abstract, and therefore equivalences
are defined over labelled transition systems to equate elements of the domains with similar behaviours. Each
equivalence class can then be viewed as representing a particular behaviour, or alternatively as the meaning
of a process that is a member of that equivalence class. Such equivalences on process domains are called
semantic equivalences. Well-known interleaving equivalences defined over labelled transition systems are
strong equivalence which is based on the concept of a relation over processes being a strong bisimulation and
observation equivalence based on the concept of (weak) bisimulation [Mil89].

In interleaving semantics, concurrency is equated with nondeterministic sequentiality. This is demon-
strated in CCS by the expansion law [Mil89] and an example of its application is as follows:

a.nil | b.nil ~ a.b.nil + b.a.nil (a # b).

In true concurrency semantics!, this equation does not hold. Other differences are that interleaving semantics
are held to be mathematically more tractable, and that true concurrency semantics are better for dealing
with certain properties such as fairness. It is an important area of research to determine what properties hold
for the different equivalences. There appear to be two main directions in which true concurrency semantics
have been pursued. The first relates to causality, and involves distinguishing actions that are dependent

1By the phrase ‘true concurrency’, I mean any equivalence where this equation does not hold; the word ‘non-interleaving’ is
also used in the literature



on other actions from those that are independent; the second relates to locality, and involves distinguishing
actions that occur in different locations of a distributed system.

Sometimes, in the literature there is lack of clarity about the equivalence semantics. For example, Petri
nets are sometimes described as having true concurrency semantics when they can have either type of
semantics defined; the structure of Petri nets does not inhibit the definition of true concurrency equivalence
semantics. The term ‘true concurrency semantics’ is also used to refer to the operational semantics of a
particular model as opposed to equivalence semantics that are used to equate processes. In this research, I
intend to focus solely on equivalence semantics. Labelled transition systems in their simplest form [Mil89,
vG90b, vG93] appear only to allow the definition of interleaving equivalences. However, many authors have
defined extensions of CCS on modified labelled transition systems that allow for definition of true concurrency
equivalences and these will be the focus of this paper.

An important question is how equivalences can be applied. They are often used to show that an imple-
mentation meets its specification. In CCS, this is done by describing both specification and implementation
as CCS processes and then showing that they are observationally equivalent. It is important to find out
properties of the true concurrency equivalences, so we understand how they can be used in this type of
application.

This paper will describe some of the research that I intend to do for my PhD and it is based on my
recently submitted proposal. In this paper, I aim to give some background to this research, as well as
describing the research I plan to carry out. In the second section, I will describe different approaches to true
concurrency equivalence semantics that have been presented in the literature. Then in the third section, I
will discuss in detail the approach taken in terms of CCS and extensions to CCS. This section will include
examples of how the equivalences can be used. Finally, I will discuss the research I propose to do.

2 Background

There appear to be two basic approaches to defining true concurrency equivalence semantics for process
algebras.

e The first is to map the syntax of a process algebra onto some construct that allows for definition of
true concurrency semantics such as event structures or Petri nets. Examples of this approach are
[DM87, DDNM8&8a, DDNM88b, DDNM90, GJ92, Gol90, Tau90, vGV87, Win82]. However, in many of
these papers, semantic equivalences are not defined—the authors are concerned with true concurrency
at an operational level only. I do not intend to discuss such approaches further in this document.

e The second approach is to modify the underlying transition system so that it contains the information
that allows for the distinction between concurrency and nondeterministic sequentiality. This is the
focus of this paper and hence this approach will be discussed in the following section.

Some research has attempted an overview of the different semantics and models. Category theoretical
approaches are taken in [Mes90, MY89, SNW93] and other approaches appear in [AD89, Arn93, BC90,
DN87, vG90b, vG93]. Many of these approaches do not investigate semantic equivalences [BC90, Mes90,
MY89, SNW93]. The work of van Glabbeek [vG90b, vG93] investigates interleaving equivalences in terms
of linear time and branching time. In [DN87], an early investigation into equivalences on labelled transition
systems is given. In [AD89, Arn93], bisimulations are defined as homomorphisms on labelled transition
systems. Different notions of equivalence have been investigated on event structures [vG90a]. Labelled
transition systems and bisimulation have been studied in both a domain theoretic setting [Abr91] and a
category theoretic setting [CFM90].

Most of the articles that give overviews of different true concurrency semantics focus on operational
semantics and not equivalence semantics. The research I propose to do, is a first attempt to find a general
framework in which to describe and compare all true concurrency semantic equivalences that have been
defined for various versions of labelled transition systems.



3 CCS and extensions of CCS

As mentioned in the introduction, process algebras are defined in terms of a syntax and an operational
semantics, which form a labelled transitions system. Labelled transition systems have the following definition:

Definition 1 (Labelled transition system, pure labelled transition system)
A labelled transition system is defined as

(S, A, {5 CSxS|ae A}

where S is a set of states, A is a set of transition labels called actions, and the relations — describe which
transitions occur between states.

Generally, we write s = s' for (s,s') € % where s,s' € S. Note that in this definition, no structure is
specified for the states or for the actions. A specific labelled transition which has unstructured states and
transitions will be referred to as a pure labelled transition system.

As discussed above, I will focus on the process algebra CCS [Mil89]. This can be described in the following
manner: Let A be an infinite set of names a,b,c, ..., and A be the set of co-names @,b,c, ..., with @ = a.
L = AU A is the set of labels, £ and £ range over £, and K, L range over £. 7 is a distinguished action
such that 7 ¢ £, called the invisible, silent or perfect action. Let Act = LU {7}, with a, B ranging over
Act. A relabelling function f : £ — £ is a function such that f(Z) = f(£). It is extended to Act by defining
f(r)=r.

(Finite) CCS has the following syntax:

P:=nil|a.P| P+ P|P|P|P\L| P[f]

We use P to define the set of processes generated by this syntax. To describe each operator briefly,
nil represents the process that can nothing; a.P represents the prefixing of a process by an action; P + P
represents nondeterministic choice between processes; P|P represents parallel composition of processes; P\L
represents the restriction of certain actions in P, that is P cannot perform the actions in the set L; and P[f]
represents the relabelling of the actions in P by the function f.

The operational semantics of CCS are defined in terms of a labelled transition system, (P, Act, {> C
P x P | a € Act}), where the relations = are defined to be the smallest relations satisfying the rules in
Figure 1. These rules can be informally described as follows: (ST1) states that the action a prefixed process
can perform is the action with which it is prefixed. (ST2) states that if P can perform an action, then that
same action can be performed by the nondeterministic choice of P and () and the result of this will be the
result of P performing the action—@ is discarded. (ST3) states that if P can perform an action, then P
in parallel with @) can perform the same action and the result will be the result of performing P in parallel
with ). (ST4) states that if P can perform an action and () can perform a complementary action when P
and @ are in parallel, then communication can occur between P and () which is represented by the invisible
action 7. (ST5) states that if P can perform an action then P relabelled can perform the action relabelled,
and finally (ST6) states that if P can perform an action then P restricted by a set can perform the same
action, as long as the action does not appear in the set.

Example Consider the following processes:
e a.nil + a.nil can perform the action a or the action a.
e a.nil | a.nil can perform the actions a then @, or the actions @ then a, or the perfect action .
e (a.nil | @a.nil)\a can only perform the perfect action 7.

A well-known semantic equivalence defined for labelled transition systems, and hence for CCS, is strong
equivalence. It has the following definition:



(ST1) a.P3 P o € Act

(ST2) P3P implies P+Q > P’
Q+P3 P
(ST3) P3P implies P|Q 3 P'|Q
QIP3Q|P

(ST4) P3P, Q5 Q implies P|Q5P|Q

(ST5) P 3% P implies  P[f] "’ P[]
(ST6) P35 P! implies P\L 3 P\L a,a¢L

Figure 1: Operational semantics for CCS

Definition 2 (Strong bisimulation, strong equivalence)
A strong bisimulation is a binary relation R C P X P such that (P,Q) € R if for all « € Act

1. whenever P 3 P', then there exists Q' € P such that Q = Q' and (P',Q') € R
2. whenever Q 3 Q', then there exists P' € P such that P > P' and (P',Q') € R.

The relation strong equivalence ~ is defined as ~ = |J{R | R is a strong bisimulation } and two processes,
P and Q are said to be strongly bisimilar, P ~ Q, if there exists a strong bisimulation R such that (P,Q) € R.

It is known from a general result that the relation ~ is the largest strong bisimulation and an equivalence
relation, hence the name strong equivalence.

Example Consider the processes a.nil | b.nil and a.b.nil + b.a.nil where a # b. Let S be the relation
{(a.nil | b.nil, a.b.nil + b.a.nil), (a.nil | nil,a.nil), (b.nil | nil, b.nil), (nil | nil, nil)}.

Then S is a strong bisimulation and hence a.nil | b.nil ~ a.b.nil + b.a.nil.

Strong equivalence is a fairly fine equivalence, and perhaps equates more processes than one would like.
One important aspect of an equivalence is the ability to abstract away from internal/invisible actions, namely
to ignore them in certain contexts. This will enable us to use such an equivalence to check specifications
and implementations for similar behaviour as described in the introduction. Observational equivalence is an
equivalence that abstracts from internal actions which in CCS are represented by 7 actions. Hence, as can
be seen from the rule (ST4), communication between processes results in an invisible action. This is defined
in a slightly different labelled transition system.

Definition 3 (Weak bisimulation, observational equivalence)
Define the following new transitions: = for (=)",n > 0, == for =3= and == where m =
ai.as. .. .. ag, k>0 for =H=2 ... =25

Consider the labelled transition system

(P,L*{= CP xP|me L}).



A (weak) bisimulation is a binary relation R CP x P such that (P,Q) € R if for all m € L*
1. whenever P == P', then there exists Q' € P such that Q = Q' and (P',Q') € R
2. whenever Q = Q', then there exists P' € P such that P => P’ and (P',Q’) € R.

The relation observational equivalence ~ is defined as = = |J{R | R is a weak bisimulation }. Two
processes P and @) are said to be observationally equivalent, P ~ Q, if there exists a (weak) bisimulation R
such that (P,Q) € R.

The relation = is known to be the largest (weak) bisimulation and an equivalence relation.

Example The following is an example of how observational equivalence can be used to compare an imple-
mentation (in CCS) with its specification (in CCS). Consider the processes

(a.cnil | 2.b.nil)\{c} and  a.b.nil.

The relation
R = {((a.c.nil | €.b.nil)\{c}, a.b.nil) , ((c.nil | 2.b.nil)\{c}, b.nil), ((nil | b.nil)\{c}, b.nil) , ((nil | nil)\{c}, nil)}

is a bisimulation and hence the two processes are observationally equivalent.
For reasons of space, I will only illustrate a few steps of the proof. Consider the first pair in the relation.

e (a.cnil | e.b.nil)\ {c} == (c.nil | €.b.nil)\ {c} and the second element in the pair can match this as
follows: a.b.nil == b.nil and clearly ((c.nil | €.b.nil)\{c}, b.nil) € R.

e (a.c.nil | €.b.nil)\{c} == (nil | b.nil)\{c} and the second element in the pair can match this as follows:
a.b.nil == b.nil and clearly ((nil | b.nil)\ {c}, b.nil) € R.

e (a.c.nil | e.b.nil)\{c} SN (nil | nil)\{c} and the second element in the pair can match this as follows:
a.bnil =% nil and clearly ((ndl | nil)\{c},nil) € R.

To complete the proof, it is necessary to perform a similar analysis for a.b.nil, and then for each of the
remaining pairs in the relation.

The two equivalences described above are the two standard interleaving equivalences for CCS. Other
weaker interleaving equivalences have been defined for labelled transition systems, such as trace equiva-
lence and failures equivalence, and these can also be applied to CCS processes. For an overview of these
equivalences, see [vG90b].

I will now move onto equivalences for true concurrency, namely those equivalences which do not equate
a.nil | b.nil and a.b.nil 4+ b.a.nil. All of the equivalences that I will describe here are defined on modified
labelled transition systems, that is, on transition systems that have structured states or structured actions.

3.1 An equivalence based on location

In [BC91, BCHKO14], location information is added to CCS processes, so that the transitions have the form
P Ta> P’ where u € Loc* and Loc is a set of atomic locations. The syntax of the processes remains the same
except for the addition of a new type of prefixing, location prefixing w :: P, where u € Loc*. T will refer to
this new set of processes as Proc-

It is necessary to define operational semantics for these new processes and they are presented in Figure 2.
The relations — are defined to be the smallest relations satisfying the rules given in Figure 2. Note that the
operational rules for CCS without locations are used to obtain 7 transitions. The new rule (LT1) states that
whenever a action occurs, it is assigned a location which is prefixed to the resulting process. (LT2) states



(LT1) aP-——u:P a€Ll, wu€ Loc*

(LT2) PP implies vz P —2v: P

(LT3) P~ P implies P+Q > P’
Q+P— P

(LT4) P P implies P|Q — P'|Q
QIP—Q|P

(LT5) P> P implies  P[f] °% P'[f]

(LT6) P P implies P\L — P'\L oa,ag¢L

Figure 2: Operational semantics for CCS with locations

that if P can perform an action at a location, then P prefixed by a location can perform an action at the
location consisting of the original location plus the prefixed location. The remaining rules in Figure 2 are
similar to those for CCS without locations. Note that there is no communication rule.

The idea behind locations is that each event occurs at a specific location and this location is related to
the location of any event that occurred before in a sequential subprocess. So the locations of the actions
performed by a.b.c.nil will be related, whereas the locations of the actions performed by a.nil | b.nil may be
unrelated.

The equivalence, loose location bisimulation (called location bisimulation in [BC91, BCHK91a]) is defined
as follows:

Definition 4 (Loose location bisimulation)

Define the following new transition: => for = —=>. Consider the modified labelled transition system
defined as

(PLoc, £, Loc, {=> C Proc X Proc | @ € L,u € Loc*} U{= C PLoc X PLoc})-
Then a loose location bisimulation is a binary relation R C PrLoc X Proc such that (P,Q) € R iff
1. whenever P = P’ then there exists Q' € Proc such that Q = Q' and (P',Q') € R
2. whenever Q = Q' then there exists P' € Pro. such that P= P' and (P',Q') € R
3. whenever P == P’ then there exists Q' € Pro. such that Q = Q' and (P',Q') € R.
4. whenever Q => Q' then there exists P' € Proc such that P=> P' and (P',Q') € R.

As usual, we use the largest loose location bisimulation relation, ~j= |J{R | R is a loose location bisimulation}.

Example The two processes of the previous example are not loose location bisimulation equivalent. The
first process has the following possible transitions where [,m € Loc and [ # m:

(a.cmil | e.bnil)\{c} = (I :: c.nil | &b.nil)\{c} = (I == nil | bnil)\{c} = (I :: nil | m :: nil)



(a,0) (0,0 (a,0) (0, 0)

(6, 0) (a,0) (,{1h (e, {1})

Figure 3: Examples of causal trees

The second process must be able to match these transitions, so the first transition must be
a.bnil == 1 :: bnil
however the only transition that can be performed after that is
l::b.nil l:l:f l:wnal
for some u € Loc* and it is not possible for lu to equal m. Hence it can be seen that this equivalence

distinguishes the fact that in the first process, the two actions can occur at separate locations, whereas in
the second process, the locations are related.

I have now presented a true concurrency semantic equivalence in some detail, and this demonstration
has shown how it differs from interleaving semantic equivalences. For reasons of space, I will not describe
any further equivalences in detail, although I will discuss a few briefly, namely weak causal bisimulation
and distributed bisimulation. I will also briefly refer to other equivalences that have been suggested in the
literature. In the presentation of the equivalences, I will not discuss the extensions to CCS that are required,
but will rather present the equivalences in terms of the general modified labelled transition systems on which
they are defined. My aim in this section is to give insight into the way labelled transition systems are
modified to allow for the definition of true concurrency semantic equivalences.

Causal equivalence

In [DD89, DD90], information about the causal structure of processes is used to distinguish nondeterministic
sequentiality from concurrency. In [DD90], causal trees are defined and I will recast them here in terms of a
labelled transition system.

Definition 5 (Weak causal bisimulation)
Let p range over (L x P(N)) U {r}. So each transition is either a T action, or an transition (a,B)
consisting of an action and o set of causes. The transition == is defined as =>5H=>, and let = for
m = fiq.[2- ... p k>0 be EE2 £

A weak causal bisimulation is defined to be a binary relation R, such that (P,Q) € R iff

1. whenever P =£> P' then there exists Q' such that Q == Q' and (P',Q') € R.

2. whenever Q == Q' then there exists P' such that P = P' and (P',Q') € R.
Again, we take the largest weak causal bisimulation and denote it ~..

The idea behind the transition labels {(a, B) is that a is the action that occurs and B represents a set of
causes that point back to the transitions that caused the current transition—in this manner it is possible to
capture the causality in the computation. In Figure 3, two different causal trees are given—the leftmost tree
represents a.nil | b.nil and the rightmost a.b.nil 4+ b.a.nil. In the first tree, the second level transitions (those
on the lower branches) are independent of the previous transitions since they have empty cause sets. In the
second tree, the transitions that form the lower branches are dependent on the previous transitions—this is
indicated by the fact that the cause set is {1}.



Distributed equivalence

In [Cas88, CH89, Hen88], the structure of states in the labelled transition system is modified to have the
following form: P % (P', P"). The first component is a local residual of the transition and the second
component is the global residual.

Definition 6 (Distributed bisimulation)
Consider the following transition system: given a set of states S, define S' to be S U {(S1,S2) | S1, 52 € S}.
Then the labelled transition system is

(S, A{BCS xS |aeS'}).
Then o distributed bisimulation, is defined to be a binary relation R CS' x S’ such that (S,T) € R iff
1. whenever 8 = (S',8") then there exists T',T" € S' such that T = (T",T") and (S',T"),(S",T") € R.
2. whenever T = (T',T") then there exists S',S" € S' such that S = (S',S") and (S',T"),(S",T") € R.

As usual, we take the largest distributed bisimulation, and denote it ~ .

Other approaches

Other work on location-based equivalences is found in [BCHK92, San94, Ace94, Cas93, Kri91, Fan92]. In
[Kie93a], a labelled transition system that allows for the capturing of information about local causality
and global causality is defined. Specific instantiations of the general bisimulation defined give rise to three
equivalences, one of which coincides with location equivalence [BCHK92] on CCS processes and one of which
coincides with causal bisimulation [DD89] on CCS processes. The third equivalence combines both local and
global causality.

Equivalences involving duration or time In [Hen88], it is assumed that actions have non-zero duration.
A modified labelled transition system is defined where the label on the transition can indicate the start or
finish of an action. Bisimulation equivalences have been defined for this transition system [Hen88, Hen91,
GL91] based on the notion of ST-bisimulation which was originally defined on Petri nets [vGV87]. Labelled
transition systems that have been modified to account for the passage of time are presented in [AM93, BB91].

Equivalences based on the structure of actions In the literature, there are a number of labelled
transition systems defined where the set of actions has a particular structure. Examples include Synchronous
CCS [Mil89] where actions are drawn from a commutative group, proved transitions systems where the
actions contain information about the proofs (transition rules) used [BC88a, BC88b, Cas88] and structured
transition systems which have algebraic structure on both states and transitions [FM90, CFM90, FGM91].

In [DDNM93], observation trees are defined, and parameterised bisimulation is defined with respect to
an observation function on the observation trees. Observation trees form unlabelled transition systems with
structured states that store details of the computation up until that state. In [MY92], observation trees are
used to present a parametric approach to localities. A slightly different approach is taken in [DP92] where
the transition system is labelled with proofs to form proved trees after which an observation function is
used to extract the relevant information from these proofs. In [PY94], an equivalence based on read—write
causality is defined using this approach.

Other papers of interest deal with modified labelled transition systems but do not involve equivalences.
Examples are [LRT88] where distributed transition systems are defined with transitions labelled with sets of
actions and the notion of a concurrent step is presented, but no equivalences are defined. In [Jef91], a partially
ordered time domain is used and operational and denotational semantics are given. Although partially
ordered time is used, it is not used to distinguish between concurrency and nondeterministic sequentiality.



4 Outline of proposed research

In this section, I will detail the research I intend to do. My research will focus on two topics:
e Comparison of true concurrency equivalence semantics defined on labelled transition systems
e Applicability of equivalence semantics.

This research will encompass the investigation and use of true concurrency equivalence semantics defined
on labelled transition systems, and I believe that a coherent framework for the definition and application of
these equivalence semantics will contribute to the knowledge and understanding of this area of research.

4.1 Comparison of true concurrency equivalence semantics

As mentioned above, many equivalences have been defined to deal with true concurrency issues. Two main
types of equivalences are those based on causality and those based on location. I intend to develop a
hierarchy /partial order (or if possible a lattice) to describe the relationship between different causal and
location equivalences. The comparison of true concurrency equivalence will be conducted in three ways:
first in terms of CCS processes (that is in terms of a specific labelled transitions system), second in terms
of specific properties that can be used to distinguish between equivalences and finally, in terms of modified
labelled transition systems.

I intend to focus on modified labelled transitions systems and equivalences that have been derived specif-
ically to deal with true concurrency issues; however, it must be noted that labelled transition systems and
equivalences that have been defined for other purposes such as timing or action refinement may also provide
for the distinction of concurrency from nondeterministic sequentiality, and other properties important to
true concurrency.

A hierarchy of process algebra equivalence semantics

A first approach to finding a hierarchy is based on CCS processes. This is not ideal because each process
algebra developed for true concurrency semantics tends to have its own special features relating to the
particular aspect of true concurrency that the researcher is trying to capture, and also this approach abstracts
away from labelled transition systems. However, it is still possible to compare the equivalence on CCS
processes, although most of the process algebras used for the definition of these equivalences have additional
operators. This is because the pure CCS processes are still valid terms in these process algebras. The
comparison will be done using the following notation:

observational equivalence [Mil89]

distributed bisimulation [Cas88]

(dynamic) location bisimulation [BCHK92, BCHK91b]
loose location bisimulation [BC91, BCHK91a)

static location bisimulation [Cas93]

weak causal bisimulation [DD89]

local cause bisimulation [Kie93a]

global cause bisimulation [Kie93a]

local/global cause bisimulation [Kie93a]

read/write bisimulation [PY94]

~u ~~ ~ g,
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S

The equivalences =, &4, & and = are defined in Section 3 and some others are described there briefly. The
relationship between these equivalences (for finite CCS processes) is summarised in Figure 4. These results
are drawn from [BC91, BCHK91a, BCHK91b, BCHK92, Cas88, Cas93, Kie93a, PY94] and work of my own.

The finer equivalences appear at the top of the lattice, so an arc from one equivalence to another appearing
lower in the figure means that the higher equivalence is contained in the lower equivalence. Saying that



Figure 4: A hierarchy of equivalences for finite CCS processes

~pw C &, for example, means that if P =, @) for some P and @, then P ~ (). Equivalences that are not
related by a path of downward arcs are incomparable, except that the relationship between =,.,, and =4 has
not yet been determined although it is known that ~4 ¢ =,. There are other equivalences in the literature
such as ST-bisimulation ~gr [Hen91] that need to be added to the hierarchy. It is also known that on finite
restriction and renaming free CCS, ~4, ~; and = coincide [BCHK91b], and that on finite restriction and
renaming free CCS without communication, &, &, and ~gr have the same axiomatisation [Kie93b].

Using properties to compare true concurrency equivalence semantics

A further approach to distinguishing the properties of equivalences is to identify certain processes that one
may wish to equate or distinguish. This would allow one not only to say when one equivalence is finer than
another, but also to give real examples of what type of processes the equivalences can distinguish. Examples
of properties are as follows:

Definition 7
An equivalence < is said to distinguish

location iff (a.cb|dc.e)\c# (a.ce|ded)\c
read-write causality iff (a.c.b|d.c.e)\c# (a.€b|d.ce)\c
concurrency iff a|lb#ab+ba

The following statements hold:
e ~, ~) and ~; all distinguish location, but not read-write causality.
e =, distinguishes read-write causality, but not location.
e =~ doesn’t distinguish location or read-write causality.
e All equivalences in Figure 4 except & distinguish concurrency.
This is obviously preliminary. Part of this research will be to identify where properties can be used to
meaningfully distinguish between different true concurrency semantic equivalences.
Modified labelled transition systems

In the previous section, true concurrency equivalences were compared with respect to CCS processes; this
means that they were compared in terms of specific labelled transition systems—a different modified labelled
transition system for each extension of CCS used. It is possible to do this because each CCS term is mapped
to a specific state in each modified transition system.



To explain this in more detail with a specific example, consider loose location bisimulation [BC91,
BCHK91a]. A new operator, location prefixing (I :: P) is added to the syntax of CCS. The operational
semantics are the same except the prefixing rule is modified to a.P Ta> [ :: P and a new rule is introduced:
P — P’ then v :: P —— v :: P'. Hence it is possible to have terms without the use of the location prefixing
operator. However, note that it is not possible for any transitions to have a target that is a pure CCS term
(this is not strictly true, because T-actions do not introduce the location prefixing operator). This holds
for many other of the variants of CCS that have been introduced to deal with true concurrency. Thus, in
the labelled transition systems, the states that represent pure CCS processes only have outward (non-7)
transitions. This differs from the case of pure labelled transition systems where such states do not occur.
This makes the comparison using CCS processes unsatisfactory as it is not possible to compare the equiv-
alences on other states within the labelled transition system. For this reason, it would be preferable to be
able to compare these equivalences on a single transition system. Another reason to prefer a more unified
approach is because equivalences that are identical on CCS processes may actually be related differently
when examined in terms of a more general setting. For example, one equivalence may be finer than the other
in the more general case, whereas viewed in terms of CCS, the equivalences identify the same processes.

As mentioned above, a labelled transition system is defined as a set of states, a set of actions and a
collection of transition relations, one for each action. In a pure labelled transition system, actions do not
have structure, although there may be some distinguished actions (for example 7), and the states do not
have structure either (although a process is identified with a state, the process descriptor is not used in the
definition of equivalences). However, for many of the causal and distributed equivalences, a modified labelled
transition system is used where states and actions do have structure, and the equivalences are defined with
respect to this structure.

For example, in location-based equivalences, the transition is decorated with location information, for
example [BC91]. An example of structured states is the labelled transition system used to define distributed
bisimulation [Cas88], where a successor state consists of two components—a local residual and a global
residual.

Now that I have identified these different approaches, the question is whether it is possible to define a
base modified labelled transition system on which all these different equivalences can be compared. Some of
the approaches in the literature allow for parameterisation which in turn allows for comparison. Examples
are the global/local cause transition system of [Kie93a] where bisimulation is parameterised by a function
on local and global clauses, and parameterised location bisimulation where bisimulations are parameterised
by a relation over locations [BCHK92]. In [DDNM93], bisimulation is parameterised by an observation
function, and in [DP92], transitions are modified by an observation function before a standard definition
of bisimulation is used. Most of these approaches capture some parts of the hierarchy given in Figure 4,
although none of them capture it all. The following are some suggestions for a more general approach that
I intend to investigate:

o take the union of all modified labelled transition systems—this can be done in a straightforward
manner. However, this does not appear to advance things much further than the approach that uses
CCS processes since equivalences will still be defined on different parts of the transition system.

e define a general enough transition system so that any other transition systems can be mapped into it
in such a manner that equivalences are preserved. This approach would be a further generalisation of
the approach taken in [BCHK92, Kie93a].

e Another possible approach is a parameterised transition system which can encapsulate the information
in a given modified labelled transition system. Equivalences can then be defined on this in a uniform
fashion; however, this does not necessarily facilitate the comparison of equivalences, although it may
give a standard way for discussing them. This would be a similar approach to [DP92, DDNM93].

These ideas are preliminary and require much more investigation. To determine what would be a satisfactory
approach, it is necessary to check whether the existing equivalences can be expressed in this new framework



and whether comparison is possible. It may also be possible to develop new equivalences of interest too,
since it is a very general approach. Another aim of my research is to obtain an understanding of the amount
of information or knowledge a particular labelled transition system contains. This may make it possible to
define the finest equivalence on a specific transition system. A question that can be asked here is whether
there are finer interesting equivalences—obviously syntactic equality of CCS processes is a finer equivalence,
but is hardly interesting—and whether there is a general notion of bisimulation that can be applied in any
labelled transition system.

4.2 Applicability of equivalence semantics

I intend to investigate issues of applicability. By this I mean, how one would decide which equivalence to use
in a particular set of circumstances. This will relate back to the work involving distinguishing properties, as
it is important to understand how equivalences are different and how these differences can be used.

Most researchers give informal arguments for why their equivalences are useful. For example, location
equivalence is justified on the grounds that it distinguishes local deadlock [BCHK92]. In [Cas93], it is noted
that location preorder is useful because an implementation is often not equivalent to its specification since
the specification is likely to be more sequential. Other true concurrency equivalences are justified on the
grounds that they have more veracity and that true concurrency semantics express the degree of concurrency
in a computation, although little work appears to have been done in terms of quantifying this degree of
concurrency. Research done on this topic in the area of process algebras includes a suggestion in [Mol89] on
the application of decomposition for CCS processes, and [Gal93] where a concurrency measure is applied to
CCS processes. Another important issue is that of abstraction from internal actions—are equivalences that
do not abstract useful? It would appear that this property is important because most specifications and
implementations differ by internal actions.

Issues of decidability and efficiency are also important—is the equivalence decidable and if yes, what
is the complexity of the algorithm for checking that two processes are equivalent? A recent paper [KH94]
shows that some of the true concurrency equivalences are decidable.

It is important to have a broad understanding of different equivalences and the circumstances in which
they may be useful (or not useful). In this part of the research, it may be important to discover which
equivalences are being used for the modelling and verification of concurrent systems within academia and
industry. I will address this issue by surveying the relevant literature.

5 Conclusion

I have presented an overview of true concurrency equivalences for CCS and given examples of how these
equivalences can be used. I have also outlined the research I intend to pursue over the next two years.
This research involves the comparisons of different true concurrency equivalences. It is important that the
differences between these equivalences are understood, so that one knows how they can be used and when it
is appropriate to use them. I believe that this will contribute to our understanding of concurrency.
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