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Outline of seminar

1. Background

• CCS and observation equivalence

• Non-interleaving equivalences

2. Comparison of equivalences—why and how

3. Comparison in terms of CCS processes

4. Comparison in terms of transition systems

5. Conclusions and further work
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CCS (Milner)

• Syntax

P ::= nil | α.P | P + P | P |P | P \L | P [f ]

• α ∈ Act = {a, b, c, . . . , a, b, c, . . .} ∪ τ

• L ⊂ L = {a, b, c, . . . , a, b, c, . . .}

• f , relabelling function such that f(`) = f(`) and f(τ) = τ

• PCCS denotes the set of processes generated by this syntax

22 November 1995 Comparing non-interleaving equivalences on labelled transition systems 4'

&

$

%

Operational semantics for CCS

(T1) α.P
α−→ P α ∈ Act

(T2) P
α−→ P ′ implies P + Q

α−→ P ′

Q + P
α−→ P ′

(T3) P
α−→ P ′ implies P | Q α−→ P ′ | Q

Q | P α−→ Q | P ′

(T4) P
a−→ P ′, Q

a−→ Q′ implies P | Q τ−→ P ′ | Q′

(T5) P
α−→ P ′ implies P [f ]

f(α)−→ P ′[f ]

(T6) P
α−→ P ′ implies P \L α−→ P ′\L α, α 6∈ L
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Observation equivalence

Define =⇒ = (
τ−→)n, n ≥ 0, and

α
=⇒ = =⇒ α−→=⇒

A (weak) bisimulation is a symmetric binary relation R ⊆ PCCS ×
PCCS such that (P, Q) ∈ R if

1. whenever P
τ−→ P ′, then there exists Q′ ∈ PCCS such that Q =⇒ Q′

and (P ′, Q′) ∈ R, and

2. for all a ∈ L, whenever P
a−→ P ′, then there exists Q′ ∈ PCCS such

that Q
a

=⇒ Q′ and (P ′, Q′) ∈ R

Observation equivalence ≈ is the union of all weak bisimulations and

is the largest weak bisimulation
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Two CCS terms can be shown to be observation equivalent, by finding

a weak bisimulation that contains them as a pair.

Observation equivalence obey the Expansion Law, for example:

a.nil | b.nil ≈ a.b.nil + b.a.nil

Non-interleaving equivalences are those equivalences under which the

Expansion Law does not hold.



22 November 1995 Comparing non-interleaving equivalences on labelled transition systems 7'

&

$

%

CCS with locations (Boudol, Castellani, Hennessy
& Kiehn)

• Syntax

P ::= nil | u :: P | α.P | P + P | P |P | P \L | P [f ]

• u ∈ Loc∗

• PLoc denotes the set of processes generated by this syntax
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Operational semantics for CCS with locations

(LT1) a.P
a−→
l

l :: P a ∈ L, l ∈ Loc

(LT2) P
a−→
u P ′ implies v :: P

a−→
vu v :: P ′

(LT3) P
a−→
u P ′ implies P + Q

a−→
u P ′

Q + P
a−→
u P ′

(LT4) P
a−→
u P ′ implies P | Q a−→

u P ′ | Q
Q | P a−→

u Q | P ′

(LT5) P
a−→
u P ′ implies P [f ]

f(a)−→
u P ′[f ]

(LT6) P
a−→
u P ′ implies P \L a−→

u P ′\L a, a 6∈ L
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Location equivalence

Define
a

=⇒
u = =⇒ a−→

u
=⇒

A location bisimulation is a symmetric binary relation R ⊆ PLoc ×
PLoc such that (P, Q) ∈ R iff

1. whenever P
τ−→ P ′ then there exists Q′ ∈ PLoc such that Q =⇒ Q′

and (P ′, Q′) ∈ R, and

2. for all a ∈ L, u ∈ Loc, whenever P
a−→
u P ′ then there exists Q′ ∈ PLoc

such that Q
a

=⇒
u Q′ and (P ′, Q′) ∈ R.

Location equivalence ≈l is defined to be the largest location bisimu-

lation
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Example

a.nil | b.nil 6≈l a.b.nil + b.a.nil

Consider the following transitions for l,m ∈ Loc

(a.nil | b.nil)
a

=⇒
l

(l :: nil | b.nil)
b

=⇒
m (l :: nil | m :: nil)

whereas

a.b.nil + b.a.nil
a

=⇒
l

l :: b.nil
b

=⇒
lm

l :: m :: nil
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Other non-interleaving equivalences

• local/global cause equivalence (Kiehn) P
a−→

A,B,l
P ′

• causal bisimilarity (Darondeau & Degano) P
〈a,B〉−→ P ′

• distributed bisimulation equivalence (Castellani & Hennessy)

P
a−→ 〈P ′, P ′′〉

• refine equivalence/ST-equivalence (Hennessy)

a.P
s(ai)−→ f(ai).P and f(ai).P

f(ai)−→ P

• read/write equivalence (Priami & Yankelvich)

(a.c.b | d.c.e)\c 6≈rw (a.c.b | d.c.e)\c
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Comparison

• Why?

– to determine the relationship between different equivalences

– to determine which equivalence to use in a given situation

• How?

– in terms of CCS processes

– in terms of labelled transition systems
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Comparison in terms of CCS processes

≈ observation equivalence
≈d distributed bisimulation equivalence
≈l location equivalence
≈ll loose location equivalence
≈s

l static location equivalence
≈dg distributed grapes equivalence
≈c causal bisimilarity
≈lc local cause equivalence
≈gc global cause equivalence

≈lg local/global cause equivalence

≈rw read/write equivalence
≈ST ST-equivalence
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Comparison in terms of labelled transition system

• Underlying process domain

• Language-independent approach

• Commonalities
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Extended single-action labelled transition system
(esaLTS)

L = (S,A,D,U)

• S, set of states

• A, set of (atomic) actions

• D, data structure

• U ⊆ (S ×A×D × S) ∪ (S × {τ} × S)

• Write s
a−→
d

s′ for (s, a, d, s′) ∈ U and s
τ−→ s′ for (s, τ, s′) ∈ U

• Define
a

=⇒
d

==⇒
a−→
d

=⇒ and
τ

=⇒==⇒ τ−→=⇒
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esaLTS bisimulation

A (weak) esaLTS bisimulation is a symmetric binary relationR ⊆ S × S
such that (s, t) ∈ R if

1. whenever s
τ−→ s′, then there exists t′ ∈ S such that t =⇒ t′ and

(s′, t′) ∈ R, and

2. for all a ∈ A, d ∈ D, whenever s
a−→
d

s′, then there exists t′ ∈ S such

that t
a

=⇒
d

t′ and (s′, t′) ∈ R,

Two states, s1 and s2 are (esaLTS-)bisimilar (s1 ≈D s2) if there exists

a bisimulation R such that (s1, s2) ∈ R,
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esaLTS homomorphism

(hσ, hδ, hυ) : (S1,A,D1,U1) → (S2,A,D2,U2) with

hσ : S1 → S2, hδ : D1 → D2 and

hυ : U1 → U2 such that

hυ(s
τ−→ s′) = hσ(s)

τ−→ hσ(s′) if hσ(s) 6= hσ(s′) and

hυ(s
a−→
d

s′) = hσ(s)
a−→

hδ(d)
hσ(s′) such that

1. for each t
a−→

d2
t′ ∈ hυ(U1) and each s such that hσ(s) = t, there exists

s
a

=⇒
d1

s′ ∈ U1 such that hσ(s′) = t′ and hδ(d1) = d2.

2. for each t
τ−→ t′ ∈ hυ(U1) and each s such that hσ(s) = t, there exists

s
τ

=⇒ s′ ∈ U1 such that hσ(s′) = t′ and hδ(d1) = d2.
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Given

• (Si,A,Di,Ui) for i = 1, 2

• esaLTS homomorphism (hσ, hδ, hυ) : (S1,A,D1,U1) → (S2,A,D2,U2)

• s1 ≈D1 s2

then

• hσ(s) ≈D2 hσ(s′) in (hσ(S1),A, hδ(D1), hυ(U1))
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Sequential esaLTS

LD = (PD,A,D,U)

• Syntax P ::= τP | 〈a, d〉P |
∑

i∈I Pi

• Operational semantics

P1 〈a, d〉P a−→
d

P

P2 τP
τ−→ P

P3 P1
a−→
d

P ′ implies P1 + P2
a−→
d

P ′ and P2 + P1
a−→
d

P ′
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Standard function for hδ

hδ : D1 → D2, surjective

Define Hhδ
= (Hσ, hδ, Hυ) where

Hυ(P
a−→
d

P ′) = Hσ(P )
a−→

hδ(d)
Hσ(P ′)

Hυ(P
τ−→ P ′) = Hσ(P )

τ−→ Hσ(P )

such that U2 = Hυ(U1) and

Hσ(〈a, d〉P ) = 〈a, hδ(d)〉Hσ(P ′)

Hσ(τP ) = τHσ(P )

Hσ(
∑
i∈I

Pi) =
∑
i∈I

Hσ(Pi).
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Given

• LDi
= (PDi

,A,Di,Ui) for i = 1, 2

• hδ : D1 → D2, surjective

then

• Hhδ
is an esaLTS homomorphism

• P1 ≈D1 P2 implies Hhδ
(P1) ≈D2 Hhδ

(P2) implies
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Questions

• Which D’s are interesting?

• Which hδ’s are interesting?

• How does this relate to the operational semantics of a specific pro-

cess algebra?

• Does this explain the known relationships between equivalences on

CCS?
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Conclusions and further work

• Two approaches to comparison

– in terms of CCS processes

– in terms of labelled transition systems

• Quantification over elements of D

• Rule formats

22 November 1995 Comparing non-interleaving equivalences on labelled transition systems 24'

&

$

%

≈
�
�
�

B
B
B

≈ll≈d

B
B
B

�
�
�

≈l ≈s
l ≈lc ≈dg

�
�

�
�

�
��

≈c ≈gc

A
A

A
A

A
A

A
A

A
A
A
≈rw

@
@

@
@

@
@

@
@

@
@

@
≈ST

@
@

@@

�
�

��

≈lg


