$\mathbf{2}$

Comparing non-interleaving equivalences on labelled transition systems

Vashti Galpin

vcg@dcs.ed.ac.uk

Department of Computer Science University of Edinburgh

22 November 1995

Comparing non-interleaving equivalences on labelled transition systems

Outline of seminar

- 1. Background
 - CCS and observation equivalence
 - Non-interleaving equivalences
- 2. Comparison of equivalences—why and how
- 3. Comparison in terms of CCS processes
- 4. Comparison in terms of transition systems
- 5. Conclusions and further work

CCS (Milner)

• Syntax

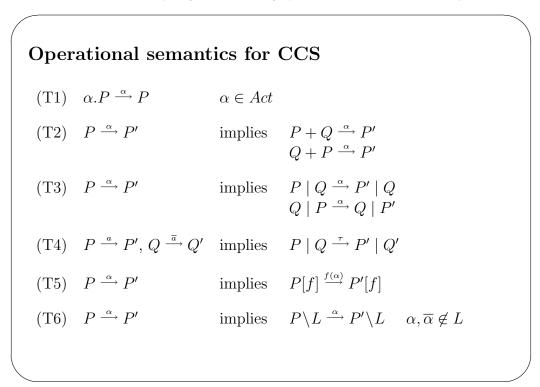
$$P ::= nil \mid \alpha.P \mid P + P \mid P \mid P \setminus L \mid P[f]$$

- $\alpha \in Act = \{a, b, c, \dots, \overline{a}, \overline{b}, \overline{c}, \dots\} \cup \tau$
- $L \subset \mathcal{L} = \{a, b, c, \dots, \overline{a}, \overline{b}, \overline{c}, \dots\}$
- f, relabelling function such that $f(\overline{\ell}) = \overline{f(\ell)}$ and $f(\tau) = \tau$
- \mathcal{P}_{CCS} denotes the set of processes generated by this syntax

22 November 1995

Comparing non-interleaving equivalences on labelled transition systems

4



Observation equivalence

Define $\Rightarrow = (\stackrel{\tau}{\rightarrow})^n, n \ge 0$, and $\stackrel{\alpha}{\Rightarrow} = \Rightarrow \stackrel{\alpha}{\rightarrow} \Rightarrow$

A (weak) bisimulation is a symmetric binary relation $\mathcal{R} \subseteq \mathcal{P}_{CCS} \times \mathcal{P}_{CCS}$ such that $(P,Q) \in \mathcal{R}$ if

- 1. whenever $P \xrightarrow{\tau} P'$, then there exists $Q' \in \mathcal{P}_{CCS}$ such that $Q \Longrightarrow Q'$ and $(P', Q') \in \mathcal{R}$, and
- 2. for all $a \in \mathcal{L}$, whenever $P \xrightarrow{a} P'$, then there exists $Q' \in \mathcal{P}_{CCS}$ such that $Q \xrightarrow{a} Q'$ and $(P', Q') \in \mathcal{R}$

Observation equivalence \approx is the union of all weak bisimulations and is the largest weak bisimulation

22 November 1995

Comparing non-interleaving equivalences on labelled transition systems

6

Two CCS terms can be shown to be observation equivalent, by finding a weak bisimulation that contains them as a pair.

Observation equivalence obey the Expansion Law, for example:

 $a.nil \mid b.nil \approx a.b.nil + b.a.nil$

Non-interleaving equivalences are those equivalences under which the Expansion Law does not hold.

CCS with locations (Boudol, Castellani, Hennessy & Kiehn)

• Syntax

$$P ::= nil \mid u :: P \mid \alpha.P \mid P + P \mid P \mid P \mid P \setminus L \mid P[f]$$

- $u \in Loc^*$
- \mathcal{P}_{Loc} denotes the set of processes generated by this syntax

22 November 1995

Comparing non-interleaving equivalences on labelled transition systems

8

Operational semantics for CCS with locations					
	(LT1)	$a.P \xrightarrow{a}{l} l :: P$	$a \in \mathcal{L},$	$l \in Loc$	
	(LT2)	$P \xrightarrow{a}{u} P'$	implies	$v ::: P \xrightarrow[vu]{a} v ::: P'$	
	(LT3)	$P \xrightarrow[u]{a} P'$	implies	$\begin{array}{c} P+Q \xrightarrow[u]{a} P' \\ Q+P \xrightarrow[u]{a} P' \end{array}$	
	(LT4)	$P \xrightarrow[u]{a} P'$	implies	$\begin{array}{c} P \mid Q \xrightarrow[u]{u} P' \mid Q \\ Q \mid P \xrightarrow[u]{a} Q \mid P' \end{array}$	
	(LT5)	$P \xrightarrow[u]{a} P'$	implies	$P[f] \stackrel{f(a)}{\longrightarrow} P'[f]$	
	(LT6)	$P \xrightarrow[u]{a} P'$	implies	$P \backslash L \xrightarrow{a}{u} P' \backslash L a, \overline{a} \notin L$	

Location equivalence

Define $\xrightarrow{a}{u} = \Longrightarrow \xrightarrow{a}{u} \Longrightarrow$

A location bisimulation is a symmetric binary relation $\mathcal{R} \subseteq \mathcal{P}_{Loc} \times \mathcal{P}_{Loc}$ such that $(P, Q) \in \mathcal{R}$ iff

- 1. whenever $P \xrightarrow{\tau} P'$ then there exists $Q' \in \mathcal{P}_{Loc}$ such that $Q \Longrightarrow Q'$ and $(P', Q') \in \mathcal{R}$, and
- 2. for all $a \in \mathcal{L}, u \in Loc$, whenever $P \xrightarrow[u]{a} P'$ then there exists $Q' \in \mathcal{P}_{Loc}$ such that $Q \xrightarrow[u]{a} Q'$ and $(P', Q') \in \mathcal{R}$.

Location equivalence \approx_l is defined to be the largest location bisimulation

22 November 1995

Comparing non-interleaving equivalences on labelled transition systems

10

Example

 $a.nil \mid b.nil \not\approx_l a.b.nil + b.a.nil$

Consider the following transitions for $l, m \in Loc$

$$(a.nil \mid b.nil) \stackrel{a}{\longrightarrow} (l :: nil \mid b.nil) \stackrel{b}{\longrightarrow} (l :: nil \mid m :: nil)$$

whereas

$$a.b.nil + b.a.nil \stackrel{a}{\Longrightarrow} l :: b.nil \stackrel{b}{\longmapsto} l :: m :: nil$$

Other non-interleaving equivalences

- local/global cause equivalence (Kiehn) $P \xrightarrow[A,B,l]{a} P'$
- causal bisimilarity (Darondeau & Degano) $P \xrightarrow{\langle a, B \rangle} P'$
- distributed bisimulation equivalence (Castellani & Hennessy)

$$P \xrightarrow{a} \langle P', P'' \rangle$$

• refine equivalence/ST-equivalence (Hennessy)

$$a.P \xrightarrow{s(a_i)} f(a_i).P$$
 and $f(a_i).P \xrightarrow{f(a_i)} P$

• read/write equivalence (Priami & Yankelvich)

$$(a.c.b \mid d.\overline{c}.e) \setminus c \not\approx_{rw} (a.\overline{c}.b \mid d.c.e) \setminus c$$

 $22 \ {\rm November} \ 1995$

Comparing non-interleaving equivalences on labelled transition systems

12

Comparison

- Why?
 - to determine the relationship between different equivalences
 - to determine which equivalence to use in a given situation
- How?
 - in terms of CCS processes
 - in terms of labelled transition systems

Comparison in terms of CCS processes

\approx	observation equivalence
$pprox_d$	distributed bisimulation equivalence
\approx_l	location equivalence
\approx_{ll}	loose location equivalence
\approx_l^s	static location equivalence
$pprox_{dg}$	distributed grapes equivalence
\approx_c	causal bisimilarity
\approx_{lc}	local cause equivalence
$pprox_{gc}$	global cause equivalence
$pprox_{lg}$	local/global cause equivalence
\approx_{rw}	read/write equivalence
\approx_{ST}	ST-equivalence

22 November 1995

Comparing non-interleaving equivalences on labelled transition systems

14

Comparison in terms of labelled transition system

- Underlying process domain
- Language-independent approach
- Commonalities

Extended single-action labelled transition system (esaLTS)

 $\mathcal{L} = (\mathcal{S}, \mathcal{A}, \mathcal{D}, \mathcal{U})$

- \mathcal{S} , set of states
- \mathcal{A} , set of (atomic) actions
- \mathcal{D} , data structure
- $\mathcal{U} \subseteq (\mathcal{S} \times \mathcal{A} \times \mathcal{D} \times \mathcal{S}) \cup (\mathcal{S} \times \{\tau\} \times \mathcal{S})$
- Write $s \stackrel{a}{\longrightarrow} s'$ for $(s, a, d, s') \in \mathcal{U}$ and $s \stackrel{\tau}{\longrightarrow} s'$ for $(s, \tau, s') \in \mathcal{U}$
- Define $\xrightarrow[d]{a} = \xrightarrow[d]{a}$ and $\xrightarrow[\tau]{a} = \xrightarrow[t]{a}$

 $22 \ {\rm November} \ 1995$

Comparing non-interleaving equivalences on labelled transition systems

16

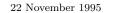
esaLTS bisimulation

A (weak) esaLTS bisimulation is a symmetric binary relation $\mathcal{R} \subseteq \mathcal{S} \times \mathcal{S}$ such that $(s, t) \in \mathcal{R}$ if

- 1. whenever $s \xrightarrow{\tau} s'$, then there exists $t' \in S$ such that $t \Longrightarrow t'$ and $(s', t') \in \mathcal{R}$, and
- 2. for all $a \in \mathcal{A}, d \in \mathcal{D}$, whenever $s \stackrel{a}{\to} s'$, then there exists $t' \in \mathcal{S}$ such that $t \stackrel{a}{\to} t'$ and $(s', t') \in \mathcal{R}$,

Two states, s_1 and s_2 are (esaLTS-)bisimilar ($s_1 \approx_{\mathcal{D}} s_2$) if there exists a bisimulation \mathcal{R} such that (s_1, s_2) $\in \mathcal{R}$,

esaLTS homomorphism $(h_{\sigma}, h_{\delta}, h_{v}) : (\mathcal{S}_{1}, \mathcal{A}, \mathcal{D}_{1}, \mathcal{U}_{1}) \to (\mathcal{S}_{2}, \mathcal{A}, \mathcal{D}_{2}, \mathcal{U}_{2}) \quad \text{with}$ $h_{\sigma} : \mathcal{S}_{1} \to \mathcal{S}_{2}, \qquad h_{\delta} : \mathcal{D}_{1} \to \mathcal{D}_{2} \quad \text{and}$ $h_{v} : \mathcal{U}_{1} \to \mathcal{U}_{2} \quad \text{such that}$ $h_{v}(s \xrightarrow{\tau} s') = h_{\sigma}(s) \xrightarrow{\tau} h_{\sigma}(s') \quad \text{if} \quad h_{\sigma}(s) \neq h_{\sigma}(s') \quad \text{and}$ $h_{v}(s \xrightarrow{a} s') = h_{\sigma}(s) \xrightarrow{a}_{h_{\delta}(d)} h_{\sigma}(s') \quad \text{such that}$ 1. for each $t \xrightarrow{a} t' \in h_{v}(\mathcal{U}_{1})$ and each s such that $h_{\sigma}(s) = t$, there exists $s \xrightarrow{a}_{i_{1}} s' \in \mathcal{U}_{1} \text{ such that } h_{\sigma}(s') = t' \text{ and } h_{\delta}(d_{1}) = d_{2}.$ 2. for each $t \xrightarrow{\tau} t' \in h_{v}(\mathcal{U}_{1})$ and each s such that $h_{\sigma}(s) = t$, there exists $s \xrightarrow{\tau} s' \in \mathcal{U}_{1} \text{ such that } h_{\sigma}(s') = t' \text{ and } h_{\delta}(d_{1}) = d_{2}.$



Comparing non-interleaving equivalences on labelled transition systems

18

Given

- $(\mathcal{S}_i, \mathcal{A}, \mathcal{D}_i, \mathcal{U}_i)$ for i = 1, 2
- esaLTS homomorphism $(h_{\sigma}, h_{\delta}, h_{v}) : (\mathcal{S}_{1}, \mathcal{A}, \mathcal{D}_{1}, \mathcal{U}_{1}) \to (\mathcal{S}_{2}, \mathcal{A}, \mathcal{D}_{2}, \mathcal{U}_{2})$
- $s_1 \approx_{\mathcal{D}_1} s_2$

then

• $h_{\sigma}(s) \approx_{\mathcal{D}_2} h_{\sigma}(s')$ in $(h_{\sigma}(\mathcal{S}_1), \mathcal{A}, h_{\delta}(\mathcal{D}_1), h_{\upsilon}(\mathcal{U}_1))$

Sequential esaLTS $\mathcal{L}_{\mathcal{D}} = (\mathcal{P}_{\mathcal{D}}, \mathcal{A}, \mathcal{D}, \mathcal{U})$ • Syntax $P ::= \tau P \mid \langle a, d \rangle P \mid \sum_{i \in I} P_i$ • Operational semantics P1 $\langle a, d \rangle P \stackrel{a}{\rightarrow} P$ P2 $\tau P \stackrel{\tau}{\rightarrow} P$ P3 $P_1 \stackrel{a}{\rightarrow} P'$ implies $P_1 + P_2 \stackrel{a}{\rightarrow} P'$ and $P_2 + P_1 \stackrel{a}{\rightarrow} P'$

22 November 1995

Comparing non-interleaving equivalences on labelled transition systems

20

Standard function for h_{δ} $h_{\delta}: \mathcal{D}_1 \to \mathcal{D}_2$, surjective Define $H_{h_{\delta}} = (H_{\sigma}, h_{\delta}, H_v)$ where $H_v(P \stackrel{a}{\to} P') = H_{\sigma}(P) \stackrel{a}{\to} H_{\sigma}(P')$ $H_v(P \stackrel{\tau}{\to} P') = H_{\sigma}(P) \stackrel{\tau}{\to} H_{\sigma}(P)$ such that $\mathcal{U}_2 = H_v(\mathcal{U}_1)$ and $H_{\sigma}(\langle a, d \rangle P) = \langle a, h_{\delta}(d) \rangle H_{\sigma}(P')$ $H_{\sigma}(\tau P) = \tau H_{\sigma}(P)$ $H_{\sigma}(\sum_{i \in I} P_i) = \sum_{i \in I} H_{\sigma}(P_i).$

Given

- $\mathcal{L}_{\mathcal{D}_i} = (\mathcal{P}_{\mathcal{D}_i}, \mathcal{A}, \mathcal{D}_i, \mathcal{U}_i)$ for i = 1, 2
- $h_{\delta}: \mathcal{D}_1 \to \mathcal{D}_2$, surjective

then

- $H_{h_{\delta}}$ is an esaLTS homomorphism
- $P_1 \approx_{\mathcal{D}_1} P_2$ implies $H_{h_{\delta}}(P_1) \approx_{\mathcal{D}_2} H_{h_{\delta}}(P_2)$ implies

22 November 1995

Comparing non-interleaving equivalences on labelled transition systems

Questions

- Which \mathcal{D} 's are interesting?
- Which h_{δ} 's are interesting?
- How does this relate to the operational semantics of a specific process algebra?
- Does this explain the known relationships between equivalences on CCS?

Conclusions and further work

- Two approaches to comparison
 - in terms of CCS processes
 - in terms of labelled transition systems
- Quantification over elements of ${\mathcal D}$
- Rule formats

Comparing non-interleaving equivalences on labelled transition systems

24

