A new format for process algebras

Vashti Galpin

vashti@cs.wits.ac.za

Department of Computer Science, University of the Witwatersrand

and

Department of Computer Science, University of Edinburgh

 $28 \ {\rm June} \ 1996$

A new format for process algebras

Outline and introduction

- process algebras
 - syntax, operational semantics, equivalence semantics
 - examples—CCS, extension to CCS
 - examples of bisimilar processes
- formats
 - existing formats and results
 - new format
 - * justification
 - * definition
 - * congruence result
- conclusions

 $\mathbf{2}$

Process algebras

- concurrency + interaction
- components
 - syntax
 - operational semantics—define labelled transition system, proofs of transitions
 - equivalence semantics—equate processes with same behaviour
- examples
 - CCS
 - CSP
 - ACP
 - extensions to CCS—location, distribution, causality

$28 \ {\rm June} \ 1996$

A new format for process algebras

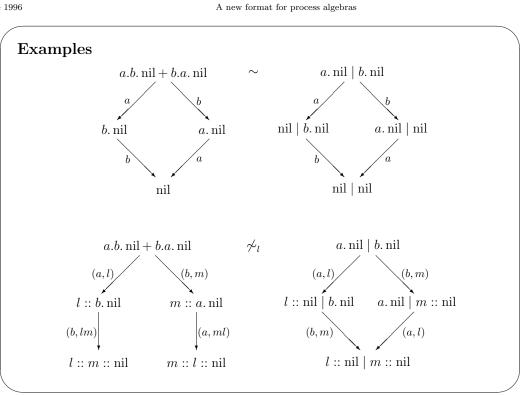
CCS and its extensions • syntax $-P ::= \operatorname{nil} | \alpha.P | P + P | P | P | P \setminus L | P[f]$ $-\alpha \in \{a, b, c, \dots, \overline{a}, \overline{b}, \overline{c}, \dots\} \cup \{\tau\}$ $-L \subset \{a, b, c, \dots, \overline{a}, \overline{b}, \overline{c}, \dots\}$ • operational semantics $\frac{P \xrightarrow{\alpha} P'}{\alpha.P \xrightarrow{\alpha} P} \qquad \frac{P \xrightarrow{\alpha} P'}{P + Q \xrightarrow{\alpha} P'} \qquad \frac{P \xrightarrow{\alpha} P'}{P | Q \xrightarrow{\alpha} P' | Q}$ • equivalence semantics, bisimulation— $P \sim Q$ iff for all α

- 1. whenever $P \xrightarrow{\alpha} P'$, there exists Q' such that $Q \xrightarrow{\alpha} Q'$ and $P' \sim Q'$
- 2. whenever $Q \xrightarrow{\alpha} Q'$, there exists P' such that $P \xrightarrow{\alpha} P'$ and $P' \sim Q'$

4

Extensions to CCS

- use additional information to capture characteristics of concurrency
- example—adding location information
 - new syntax: l :: P where $l \in Loc$ disjoint from $\{a, b, c, \dots, \overline{a}, \overline{b}, \overline{c}, \dots\} \cup \{\tau\}$
 - new rules for operational semantics, $u \in Loc^*$


$$\frac{P \xrightarrow{(\alpha, u)} P'}{\alpha. P \xrightarrow{(\alpha, l)} l :: P} \qquad \frac{P \xrightarrow{(\alpha, u)} P'}{P + Q \xrightarrow{(\alpha, u)} P'} \qquad \frac{P \xrightarrow{(\alpha, u)} P'}{P|Q \xrightarrow{(\alpha, u)} P'|Q} \qquad \frac{P \xrightarrow{(\alpha, u)} P'}{l :: P \xrightarrow{(\alpha, lu)} l :: P'}$$

$$- \text{ new labelled transition system: } \xrightarrow{(\alpha, u)}$$

$$- \text{ new equivalence: bisimulation matches on both action and location}$$

$$- \text{ example of non-interleaving equivalence}$$

 $28 \ {\rm June} \ 1996$

 $\mathbf{6}$

Formats

- meta-theory of process algebras, deals with rules for operational semantics
- congruence results—a semantic equivalence is a congruence for an operator **op** if

 $\forall 1 \leq i \leq n, P_i \sim Q_i \Rightarrow \mathbf{op}(P_1, \dots, P_n) \sim \mathbf{op}(Q_1, \dots, Q_n)$

- number of existing formats—De Simone, GSOS, tyft/tyxt, ntyft/ntyxt, panth
- *tyft/tyxt* format
 - single-sorted signature with standard definition of open terms, closed terms and substitutions, and notion of proof
 - rules have a specific form: y_i 's, x_j 's and x distinct variables, t_i 's and t open terms

$$\frac{\{t_i \xrightarrow{a_i} y_i \mid i \in I\}}{f(x_1, \dots, x_n) \xrightarrow{a} t} \quad \text{or} \quad \frac{\{t_i \xrightarrow{a_i} y_i \mid i \in I\}}{x \xrightarrow{a} t}$$

- given a signature, a set of rules in tyft/tyxt form at then bisimulation is a congruence for all operators

28 June 1996

A new format for process algebras

A new format

- why?
 - extensions to CCS have structured/non-atomic labels
 - schematic approach no longer works
 - interleaving is broken by passing action information into processes
 - require more general definition of bisimulation—work with equivalences over labels
- extended tyft/tyxt format
 - many-sorted signature with distinguished sort for process terms P, plus condition

op : $s_1, \ldots : s_n \to s, \ s \neq \mathsf{P} \Rightarrow s_i \neq \mathsf{P} \ \forall 1 \leq i \leq n$

- terms that have sort other than $\mathsf P$ can only appear as labels
- similar notions of open terms, closed terms, substitutions and proofs

8

- rule format

$$\frac{\{p_i \xrightarrow{\lambda_i} y_i \mid i \in I\}}{f(\eta_1, \dots, \eta_m, x_1, \dots, x_n) \xrightarrow{\lambda} p} \quad \text{or} \quad \frac{\{p_i \xrightarrow{\lambda_i} y_i \mid i \in I\}}{x \xrightarrow{\lambda} p}$$

- * y_i 's, x_j 's and x distinct variables of sort P
- * p_i 's and p open terms of sort P
- * η_k 's, λ_i 's and λ open terms of sort other than P
- * conditions on variables of sort other than P that appear in open terms
- work with more general bisimulation definition
- assume \equiv is a congruence over closed terms with sort other than P, then $P \sim_{\equiv} Q$ iff for all closed terms λ
 - 1. whenever $P \xrightarrow{\lambda} P'$, there exists Q' and λ' such that $Q \xrightarrow{\lambda'} Q'$, $\lambda \equiv \lambda'$ and $P' \sim_{=} Q'$
 - 2. whenever $Q \xrightarrow{\lambda} Q'$, there exists P' and λ' such that $P \xrightarrow{\lambda'} P'$, $\lambda \equiv \lambda'$ and $P' \sim_{=} Q'$

28 June 1996

A new format for process algebras

10

Congruence result

• given a many-sorted signature and a set of rules that are well-founded, compatible with ≡, then bisimulation with respect to ≡ is a congruence for all operators

 $\forall 1 \leqslant k \leqslant m, \ \mu_k \equiv \nu_k, \quad \forall 1 \leqslant j \leqslant n, \ u_j \sim_{\equiv} v_j \Rightarrow$

 $\mathbf{op}(\mu_1,\ldots,\mu_m,u_1,\ldots,u_n) \sim_{\equiv} \mathbf{op}(\nu_1,\ldots,\nu_m,v_1,\ldots,v_n)$

- proof sketch
 - define a relation containing the processes under consideration and prove it is a bisimulation
 - for each pair in relation, consider transitions from each process and use induction on the depth of the proof of transitions
 - this involves finding a new substitution to generate a proof that a matching transition exists
 - technical details relate to ensuring that a well-defined substitution can be found

Conclusions

- have shown that congruence holds for new format
- $\bullet\,$ more syntactic approach
- new format can express extensions to CCS and CCS
- can use to compare equivalences on different process algebras
- somewhat less direct