2

Comparison of process algebra equivalences using formats

Vashti Galpin

vashti@cs.wits.ac.za

Programme for Highly Dependable Systems Department of Computer Science University of the Witwatersrand South Africa

http://www.cs.wits.ac.za/~vashti

ICALP '99

Comparison of process algebra equivalences using formats

Outline

- introduction
- background and motivation
 - comparison
 - existing approaches
- formats
- new format
 - congruence result
 - extension results
 - applications

Introduction

- process algebras
 - structured operational semantics SOS
 - labelled transition systems
 - CCS, ACP, CSP
 - semantic equivalences bisimulation etc.
 - extensions for different aspects of concurrent behaviour
- comparison of semantic equivalences
- develop new format
- prove congruence
- prove comparison results for format

ICALP '99

Comparison of process algebra equivalences using formats

4

Motivation

- understanding relationships between equivalences
- some related work
 - ad hoc approaches
 - interleaving semantics Van Glabbeek
 - observation trees Degano et al
- deal with bisimulation based on relations
 - pomset bisimulation $p \xrightarrow{a|b} p'$
 - location bisimulation $p \stackrel{a}{\underset{u}{\longrightarrow}} p'$
- take syntactic approach to labels instead of schematic

Formats

- metatheory of process algebra
- description of process algebra rules
- De Simone, GSOS, tyft/tyxt, ntyft/ntyxt, path, panth
 - single-sorted signature and schematic labels
 - negative premises, predicates
- \bullet example tyft/tyxt format

$$\frac{\{t_i \xrightarrow{a_i} y_i \mid i \in I\}}{f(x_1, \dots, x_n) \xrightarrow{a} t} \qquad \frac{\{t_i \xrightarrow{a_i} y_i \mid i \in I\}}{x \xrightarrow{a} t}$$

- open terms, closed terms, substitutions
- proof

ICALP '99

Comparison of process algebra equivalences using formats

6

Formats (cont.)

- congruence results
- conservative extension results
- related work
 - Algebraic De Simone format Ferrari and Montanari
 - promoted tyft/tyxt format Bernstein
 - Fokkink and Verhoef

8

A new format

- ullet many-sorted signature Σ
- distinguished process sort P, many label sorts
- no operator of label sort can have process sort as argument

$$\mathbf{op}: s_1, \dots, s_n \to s, \ s \neq \mathsf{P} \Rightarrow s_i \neq \mathsf{P} \ \forall 1 \leqslant i \leqslant n$$

 \bullet extended tyft/tyxt format

$$\frac{\{p_i \xrightarrow{\lambda_i} y_i \mid i \in I\}}{f(\eta_1, \dots, \eta_m, x_1, \dots, x_n) \xrightarrow{\lambda} p} \quad \text{or} \quad \frac{\{p_i \xrightarrow{\lambda_i} y_i \mid i \in I\}}{x \xrightarrow{\lambda} p}$$

ICALP '99

Comparison of process algebra equivalences using formats

A new format (cont.)

- for a specific process algebra
 - use Σ -algebra for labels
 - induce congruence over term algebra
 - relation over labels
- bisimulation wrt congruence \equiv assume \equiv is a congruence over closed terms with sort other than P, then $P \sim_{\equiv} Q$ iff for all closed terms λ
 - 1. whenever $P \xrightarrow{\lambda} P'$, there exists Q' and λ' such that $Q \xrightarrow{\lambda'} Q'$, $\lambda \equiv \lambda'$ and $P' \sim_{\equiv} Q'$
 - 2. whenever $Q \xrightarrow{\lambda} Q'$, there exists P' and λ' such that $P \xrightarrow{\lambda'} P'$, $\lambda \equiv \lambda'$ and $P' \sim_{\equiv} Q'$
- can work with congruence over label terms

Congruence theorem

- \mathcal{E} in extended tyft/tyxt format
- congruence over label terms \equiv
- \bullet ${\cal E}$ well-founded
- \equiv compatible with \mathcal{E}
- then bisimulation with respect to \equiv is a congruence for all operators

$$\forall 1 \leqslant k \leqslant m, \ \mu_k \equiv \nu_k, \ \forall 1 \leqslant j \leqslant n, \ u_j \sim_{\equiv} v_j \Rightarrow$$
$$\mathbf{op}(\mu_1, \dots, \mu_m, u_1, \dots, u_n) \sim_{\equiv} \mathbf{op}(\nu_1, \dots, \nu_m, v_1, \dots, v_n)$$

- proof sketch
 - similar to but simpler than abstracting extension theorem

ICALP '99

Comparison of process algebra equivalences using formats

10

Extensions

• form sums $-\mathcal{E}_0 \oplus \mathcal{E}_1$, $\equiv_0 \oplus \equiv_1$

$$p \sim_{\equiv_0}^{\mathcal{E}_0} q$$
 $p \sim_{\equiv_0 \oplus \equiv_1}^{\mathcal{E}_0 \oplus \mathcal{E}_1} q$

- abstracting extension up to bisimulation wrt to a congruence
- refining extension up to bisimulation wrt a congruence
- type-1 sum
 - restriction on sorts on label of conclusion for rules in \mathcal{E}_1
- type-0 sum
 - restriction on sorts on label of conclusion for rules in \mathcal{E}_1
 - restriction on function in source of conclusion for rules in \mathcal{E}_1

Abstracting extension theorem

- \mathcal{E}_0 , \mathcal{E}_1 in extended tyft/tyxt format
- \mathcal{E}_0 pure, label-pure
- \mathcal{E}_1 well-founded
- $\mathcal{E}_0 \oplus \mathcal{E}_1$ type-0
- $\equiv_0 \oplus \equiv_1$ compatible with $\mathcal{E}_0 \oplus \mathcal{E}_1$
- then $\mathcal{E}_0 \oplus \mathcal{E}_1$ is an abstracting extension
- proof sketch
 - define a relation and prove it is a bisimulation
 - consider transitions from each process and use induction on the depth of the proof of transitions
 - find a new substitution to generate a proof that a matching transition exists

ICALP '99

Comparison of process algebra equivalences using formats

12

Refining extension theorem

- \mathcal{E}_0 , \mathcal{E}_1 in extended tyft/tyxt format
- \mathcal{E}_0 pure, label-pure
- $\mathcal{E}_0 \oplus \mathcal{E}_1$ type-1
- $\equiv_0 \oplus \equiv_1$ conservative with respect to \equiv_0
- then $\mathcal{E}_0 \Longrightarrow \mathcal{E}_1$ is a refining extension
- proof sketch
 - work with the contrapositive and show two terms not related by the original bisimulation cannot be related by the new bisimulation
 - show that any new transition cannot 'fix'
 - use lemma about last rule used

Applications

- using the new format to express process algebras and prove congruence
 - CCS Milner
 - CCS with locations Boudol et al
 - multiprocessor CCS Krishan
 - pomset CCS Castellani

ICALP '99

Comparison of process algebra equivalences using formats

14

Applications (cont.)

- using the new format for comparison of semantic equivalences
 - pomset bisimulation is a subset of n multiprocessor bisimulation
 - proof sketch
 - * introduce intermediate process algebra
 - * prove refining extension of n multiprocessor bisimulation
 - * prove intermediate process algebra bisimulation and pomset process algebra bisimulation the same
 - proper subset

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} \cdot a_{j} \mid \prod_{k=1}^{n} a_{k}$$

$$\left(\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} \cdot a_{j} \mid \prod_{k=1}^{n} a_{k}\right) + \prod_{k=1}^{n} a_{k}$$

Conclusions

- \bullet new format
- ullet congruence result
- definition of extensions
- new extension results
- use of new format