
October 1999 Comparison of process algebra equivalences 1'

&

$

%

Comparison of process algebra
equivalences

Vashti Galpin

vashti@cs.wits.ac.za

Programme for Highly Dependable Systems

Department of Computer Science

University of the Witwatersrand

South Africa

http://www.cs.wits.ac.za/~vashti

October 1999 Comparison of process algebra equivalences 2'

&

$

%

Outline

• introduction and motivation

• what is a process algebra?

• what is a semantic equivalence?

• why is comparison important?

• what is a format?

• how can comparison be done using formats?

• conclusions

October 1999 Comparison of process algebra equivalences 3'

&

$

%

Process algebras

• motivation

– mathematical models

– specification and verification

– formal methods

• components

– syntax

– operational semantics

– semantic equivalence

• an example: CCS (Calculus of Communicating Systems)

October 1999 Comparison of process algebra equivalences 4'

&

$

%

Syntax

• define processes

• actions: A ∪ A ∪ {τ}

• operators: subset of full CCS

P ::= 0 | a.P | P + P | P | P

• examples of processes

– a.0

– b.Q

– a.0 + b.0

– a.0 | b.0
– a.(b.0 + c.0) | d.0

October 1999 Comparison of process algebra equivalences 5'

&

$

%

Operational semantics

• rule sets, describe behaviour of processes formally

• generate labelled transition system: p
a−→ p′

• rules for subset of CCS

a.x
a−→ x

x
a−→ y

x + x′ a−→ y

x
a−→ y

x′ + x
a−→ y

x
a−→ y

x | x′ a−→ y | x′

x
a−→ y

x′ | x a−→ x′ | y
x

a−→ y x′ a−→ y′

x | x′ τ−→ y | y′

October 1999 Comparison of process algebra equivalences 6'

&

$

%

Proof of a transition

• tree of rules plus substitutions

• prove: a.b.0 | a.0
τ−→ b.0 | 0

• σ1(x) = b.0 σ2(x) = 0

σ3(x) = a.b.0 σ3(y) = b.0 σ3(x
′) = a σ3(y

′) = 0

σ1

(
a.x

a−→ x

)
σ2

(
a.x

a−→ x

)
@@ ��

σ3

(x
a−→ y x′ a−→ y′

x | x′ τ−→ y | y′
) -

a.b.0
a−→ b.0 a.0

a−→ 0

@@ ��

a.b.0
a−→ b.0 a.0

a−→ 0

a.b.0 | a.0
a−→ b.0 | 0

October 1999 Comparison of process algebra equivalences 7'

&

$

%

Semantic equivalence

• some notion of similar behaviour

• equivalent?

a.(b.0 + c.0)

?
b.0 + c.0

@
@

@R

�
�

�	
0 0

a

b c

a.b.0 + a.c.0
@

@
@R

�
�

�	

b.0 c.0

??
0 0

a a

b c

October 1999 Comparison of process algebra equivalences 8'

&

$

%

• bisimulation — whenever p and q are related

1. if p
a−→ p′, there exists q such that q

a−→ q′ and p′ and q′ are related

2. if q
a−→ q′, there exists p such that p

a−→ p′ and p′ and q′ are related

• if there is a bisimulation containing (p, q) then p ∼ q

• equivalent?

a.0 | b.0
@

@
@R

�
�

�	
0 | b.0 a.0 | 0

�
�

�	

@
@

@R
0 | 0

a b

b a

a.b.0 + b.a.0
@

@
@R

�
�

�	

b.0 a.0
�

�
�	

@
@

@R
0

a b

b a

October 1999 Comparison of process algebra equivalences 9'

&

$

%

Other semantics

• introduce new operators, new rules, new equivalence

• locations

a.b.0 + b.a.0

�
�

�	

@
@

@R R	

a

l

b

m

l :: b.0 m :: a.0

? ? R	

mlb lm a

l :: m :: 0 m :: l :: 0

a.0 | b.0

�
�

�	

@
@

@R R	

a

l

b

m

l :: 0 | b.0 a.0 | m :: 0

@
@

@R

�
�

�	 R	

b

m

a

l

l :: 0 | m :: 0

• want to compare, understand relationship

October 1999 Comparison of process algebra equivalences 10'

&

$

%

Comparison

• extension

– combining two rule sets, R0 ⊕R1

– compare R0 with R0 ⊕R1

• conservative extension — no new transitions

• notation: ∼R — bisimulation with respect to a rule set R

• abstracting extension up to bisimulation — ∼R0 ⊆ ∼R0⊕R1

• refining extension up to bisimulation — ∼R0⊕R1 ⊆ ∼R0

• capture different semantics by combining rule sets

October 1999 Comparison of process algebra equivalences 11'

&

$

%

• add these rules to CCS rules

x
a−→ y x′ a−→ y′

x + x′ a−→ y + y′
x

a−→ y y
b−→ x′

x
a−→ b.x′

• new transitions are added

a.(b.0 + c.0)

? R	

b.0 + c.0b.0 c.0
@

@
@R

�
�

�	 ??
0 0

a a a

b b c c

a.b.0 + a.c.0
@

@
@R

�
�

�	 ?

b.0 c.0b.0 + c.0

?? R	
0 0

a a a

b b c c

October 1999 Comparison of process algebra equivalences 12'

&

$

%

Formats

• metatheory of process algebra

• reason about rule sets in general

• tyft/tyxt format: results about conservative extensions

{ti
ai−→ yi | i ∈ I}

f(x1, . . . , xn)
a−→ t

• propose new format: extended tyft/tyxt format

{ti
λi−→ yi | i ∈ I}

f(η1, . . . , ηm, x1, . . . , xn)
λ−→ t

• conditions on process variables and label variables

October 1999 Comparison of process algebra equivalences 13'

&

$

%

Main features of new format

• treats actions syntactically, not schematically

– allows for more general definition of bisimulation

• uses many-sorted algebras

– use of different sorts gives power for extension results

• bisimulation is a congruence with respect to operators defined using

the format

• example: CCS prefix rule

a.x
a−→ x

becomes
pref(z, x)

z−→ x

October 1999 Comparison of process algebra equivalences 14'

&

$

%

Abstracting extension up to bisimulation

• if

– R0 and R1 extended tyft/tyxt

– R0 pure, label-pure (conditions on variables)

– R1 well-founded (condition on premises)

– R0 ⊕ R1 type-0 (condition on function symbol and sort of label

in rule conclusion)

• then ∼R0 ⊆ ∼R0⊕R1

• proof

– define relation over processes, show bisimulation

– given proof of a transition, modify substitutions to show match-

ing transition

– induction on depth of proof, induction on variables in premises

October 1999 Comparison of process algebra equivalences 15'

&

$

%

Refining extension up to bisimulation

• if

– R0 and R1 extended tyft/tyxt

– R0 pure, label-pure (conditions on variables)

– R0 ⊕ R1 type-1 (condition on function symbol and sort of label

in rule conclusion)

• then ∼R0⊕R1 ⊆ ∼R0

• proof

– lemma: transition proved from R0 ⊕ R1 with last rule from R0,

transition can be proved from R0

– contrapositive

– show no added transition can ‘fix’ non-equivalent processes

October 1999 Comparison of process algebra equivalences 16'

&

$

%

Applications, further work and conclusions

• applications

– use to express process algebras

– new result: pomset bisimulation is a proper subset of

n-multiprocessor bisimulation

• further work

– comparison with other recent formats: Bernstein, Ferrari and

Montanari, Fokkink and Verhoef

– open questions

• conclusions

