
References

[1] C. George. EROSI-visualising recursion and discovering new errors. InProceedings of the 31st SIGCSE Technical Symposium, pages 305–309, Austin, Texas, USA,
March 2000.

[2] T. Götschi, I. D. Sanders, and V. Galpin. Mental models of recursion. In Proceedings of the 34th SIGCSE Technical Symposium, pages 346–352. ACM SIGCSE, ACM,
February 2003.

[3] K. Kahney. What do novice programmers know about recursion? In E. Soloway and J. Spohrer, editors,Studying the novice programmer, pages 315–323. L. Erlbaum,
Hillsdale, New Jersey, 1989.

[4] I. D. Sanders, V. C. Galpin, and T. Götschi. Mental models of recursion revisited. InProceedings of the Eleventh Annual Conference on Innovation and Technology in
Computer Science Education, pages 138–142, University of Bologna, Italy, 26-28 June 2006. ACM SIGCSE.

[5] D. Wilcocks and I. D. Sanders. Animating recursion as an aid to instruction.Computers & Education, 23(3):221–226, November 1994.

A Looping Model

1) 14; 6; 12; 2/2
2) 6; 12; 2/2; 14/2
3) 12; 2/2; 14/2; 6/2
4) 2/2; 14/2; 6/2; 12/2

1; 7; 3; 6

Sometimes viable – missing limiting case
and incorrect passive flow

An Active Model
(1) ExamAlg1([14, 6, 12]) + [1]
(2) (ExamAlg1([6, 12]) + [7]) + [1]
(3) (ExamAlg1([12]) + [3]) + [7] + [1]
(4) (ExamAlg1([]) + [6]) + [3] + [7] + [1]
(5) [0] + [6] + [3] + [7] + [1]

Output would be(0 6 3 7 1)

Sometimes viable – shows active flow and
limiting case but not passive flow

A Copies Model

ExamAlg1(2, 14, 6, 12)
= ExamAlg1(14, 6, 12) || (2/2)
= (0, 6, 3, 7) || (1)
= (0, 6, 3, 7, 1)

ExamAlg1(14, 6, 12)
= ExamAlg1(6, 12) || (14/2)
= (0, 6, 3) || (7)
= (0, 6, 3, 7)

ExamAlg1(6, 12)
= ExamAlg1(12) || (6/2)
= (0, 6) || (3)
= (0, 6, 3)

ExamAlg1(12)
= ExamAlg1() || (12/2)
= (0) || (6)
= (0, 6)

Viable – shows active flow, limiting case
and passive flow

Students’ Traces – June Examination

A Passive Model
n = 1 TestAlg = 5
n = 2 TestAlg = 2 ∗ 5 + 3 = 13
n = 3 TestAlg = 2 ∗ 13 + 3 = 29
n = 4 TestAlg = 2 ∗ 29 + 3 = 61
n = 5 TestAlg = 2 ∗ 61 + 3 = 125

Sometime viable – shows limiting case and
passive flow

An Odd Model
2 × (5 − 1) + 3 + 2 × (4 − 1) + 3+

2 × (3 − 1) + 3 + 2 × (2 − 1) + 3
= (2 × 4 + 3) + (2 × 3 + 3) + (2 × 2 + 3)+

(2 × 1 + 3)
= 11 + 9 + 7 + 5 = 32
Not viable – some idea of active flow

A Magic Model

n = 5 2 ∗ (4 + 3) = 14
n = 4 2 ∗ (3 + 3) = 12
n = 3 2 ∗ (2 + 3) = 10
n = 2 2 ∗ (1 + 3) = 8
n = 1 5

Not viable – seems to show active flow but
really is just syntatic matching

An Active Model
TestAlg(5)
2 ∗ TestAlg(4 − 1) + 3
2 ∗ 2 ∗ TestAlg(3 − 1) + 3 + 3
2 ∗ 2 ∗ 2 ∗ TestAlg(2 − 1) + 3 + 3 + 3
2 ∗ 2 ∗ 2 ∗ 2 ∗ (5) + 3 + 3 + 3 + 3
= 80 + 4(3)
= 92

Sometimes viable – shows active flow, lim-
iting case and passive flow but has errors

A Copies Model

n = 5
TestAlg(5) = 2 ∗ TestAlg(4) + 3
n = 4
TestAlg(4) = 2 ∗ TestAlg(3) + 3
n = 3
TestAlg(3) = 2 ∗ TestAlg(3) + 3
n = 2
TestAlg(2) = 2 ∗ TestAlg(1) + 3
n = 1
TestAlg(1) = 5
TestAlg(2) = 2 ∗ 5 + 3 = 13
TestAlg(3) = 2 ∗ 13 + 3 = 29
TestAlg(4) = 2 ∗ 29 + 3 = 61
TestAlg(5) = 2 ∗ 61 + 3 = 125

Viable – shows active flow, limiting case
and passive flow

Students’ Traces – May Class Test

June Final Examination Question – List manipulation

Suppose that you are given the algorithm below. This algorithm takes as input a list of numbers
(numlist) and returns another list of numbers as output.
Note: As in lectures, tutorials and laboratories in the course,head(anylist) means the
first item in the list andtail(anylist) means the list with the first number removed, and
|| means joining two lists in the order they are given to make a new list.

Algorithm ExamAlg1(numlist)
if numlist is empty

then
return a list containing the number 0

else
return ExamAlg1(tail(numlist)) ||

a list containing head(numlist)/2

What would the output of the algorithm be if the input list was[2, 14, 6, 12]?
Show your workings.

May Class Test Question – A recurrence relation

What would the algorithm given below return as output if it was called with an input of5. In
other words, what wouldTestAlg(5) be?

Algorithm TestAlg(n)
if n = 1
then
return 5

else
return 2 * TestAlg(n-1) + 3

Show your workings!

The Algorithms To Be Traced

Conclusions

• The results are in line with our previous results

• Thecopiesmodel is the dominant model for a recurrence relation type ofrecursive function but for
list manipulation problems some students showed anactiveor loopingmodel

• Our teaching approach, even with the switch to Python, is assisting our students in developing a
viablecopiesmental model of recursion

• An interesting new result was the emergence of apassivemental model.
Here the students recognised that the recursive algorithm would somehowget to the base case and
then used the base case plus the implicit definition of the function in the algorithm to build up the
required solution.

2006 Results

Experiment

• Asked students to trace the execution of recursive algorithms

• Catergorised traces based on how the active and passive flow and the
limiting case were shown

• Used the categorisations to describe the students’ mental models

Background
Kahney describes recursion as “a process that is capable of triggering new instantiations of itself, with
control passing forward to successive instantiations and back from terminated ones” [3, p.315].

Mental models of recursion describe the students’ understanding of the process of recursion.

Mental models are derived from how theactive flow, base or limiting caseandpassive flow[1] are
understood by the student.

Copies Model: Always viable [3]. The active flow of recursion is shown, followed by a switch from
active to passive flow once the base case is reached and then the passive flow is shown explicitly.

Looping Model: Recursion is seen as a form of iteration with the recursion terminating once the base
case is reached [3]. Neither the active flow nor passive flow isshown. This model is only viable for
recursive algorithms where it is possible to evaluate the solution at the base case.

Active Model: Demonstrates the active flow but not the passive flow. The solution is evaluated at the
base case. [2]. This model is viable in some circumstances.

Step Model: Shows that the student has no understanding of recursion, and it involves either execution
of the recursive condition once, or of the recursive condition once and of the base case [2].

Return Value Model: Indicates that the student believes values to be generated by each instantiation,
stored and then combined to give a solution [2].

Magic or Syntactic Model: Shows that the student has no clear idea of how recursion works, but is
able to match on syntactic elements [3]. Students with this model are close to the copies model but
need more exposure.

Algebraic Model: Students try to manipulate the program or algorithm as an algebraic problem [2].

Odd Model: Many misunderstandings of various types are shown. The students are not able to predict
program behaviours [3].

Motivation
• Recursion is a difficult concept but it is important for computer scientists to understand recursion

• At Wits we are concerned about how we can assist our students in understanding recursion [5, 2, 4]

• One thrust is to study themental models(c.f. Kahney [3]) our first year students develop

• We do this by looking at the students’ traces of recursive algorithms

• We did a study in 2003, 2004 and 2005 [2]

• Many students develop thecopiesmodel but some still develop non-viable models [2]

• In 2006 we changed from Scheme to Python as our implementation language

• Here we report the mental models our 2006 cohort of students developed

School of Computer Science, University of the Witwatersrand, Johannesburg, South Africa
ian@cs.wits.ac.za, vashti@cs.wits.ac.za

Students’ Mental Models of Recursion at Wits
Ian Sanders and Vashti Galpin

