Students’ Mental Models of Recursion at Wits
lan Sanders and Vashti Galpin

School of Computer Science, University of the Witwaterdralbhannesburg, South Africa

| an@s.WMts.ac.za, vashti@s.wts. ac. za

Motivation

e Recursion is a difficult concept but it Is important for corgmscientists to understand recursion
e At Wits we are concerned about how we can assist our studentsdierstanding recursion [5, 2, 4]
e One thrust is to study th@ental model¢c.f. Kahney [3]) our first year students develop

e \We do this by looking at the students’ traces of recursiveraigms

e \We did a study in 2003, 2004 and 2005 [2]

e Many students develop tlewpiesmodel but some still develop non-viable models [2]

e In 2006 we changed from Scheme to Python as our implementainguage

e Here we report the mental models our 2006 cohort of studesvisloped

Background

Kahney describes recursion as “a process that is capabig@dting new instantiations of itself, with
control passing forward to successive instantiations @u# from terminated ones” [3, p.315].

Mental models of recursion describe the students’ undsisig of the process of recursion.

Mental models are derived from how thetive flow base or limiting casendpassive flowl1] are
understood by the student.

Copies Model: Always viable [3]. The active flow of recursion is shown, @lled by a switch from
active to passive flow once the base case Is reached and #hpaghaive flow is shown explicitly.

L ooping Model: Recursion is seen as a form of iteration with the recursioniteating once the base
case Is reached [3]. Neither the active flow nor passive flasihh@avn. This model is only viable for
recursive algorithms where it is possible to evaluate thatism at the base case.

Active Model: Demonstrates the active flow but not the passive flow. Thdisalis evaluated at the
base case. [2]. This model is viable in some circumstances.

Step Moddl: Shows that the student has no understanding of recursidm, iamolves either execution
of the recursive condition once, or of the recursive coonditbtnce and of the base case [2].

Return Value Model: Indicates that the student believes values to be genergteadh instantiation,
stored and then combined to give a solution [2].

Magic or Syntactic Model: Shows that the student has no clear idea of how recursionsywbtk is
able to match on syntactic elements [3]. Students with treglehare close to the copies model but
need more exposure.

Algebraic Model: Students try to manipulate the program or algorithm as agbaéac problem [2].

Odd Model: Many misunderstandings of various types are shown. Thestadre not able to predict
program behaviours [3].

Experiment

e Asked students to trace the execution of recursive algosth

e Catergorised traces based on how the active and passiveritbtha
limiting case were shown

e Used the categorisations to describe the students’ meide s

2006 Results

90

80

70 -

60

50 -

40 -

30 -

20 -

10 -

IJ o mm

Copies Passive Looping Active Step Magic

‘IRecurrence B List Manlpulatlon‘

Conclusions

e The results are in line with our previous results

e Thecopiesmodel is the dominant model for a recurrence relation typeadrsive function but for
list manipulation problems some students showeddiveor looping model

e Our teaching approach, even with the switch to Python, is@$g our students in developing a
viable copiesmental model of recursion

e An Iinteresting new result was the emergence paasivemental model.

Here the students recognised that the recursive algoritboiddgomehowget to the base case and
then used the base case plus the implicit definition of thetion in the algorithm to build up the
required solution.

References
March 2000.
February 2003.

Hillsdale, New Jersey, 19809.

The Algorithms To Be Traced

May Class Test Question — A recurrence relation

What would the algorithm given below return as output if itsaaalled with an input ob. In
other words, what wouldest Al g(5) be?

Al gorithm Test Al g(n)

I1f n =1

t hen
return 5
el se

return 2 = TestAlg(n-1) + 3

Show your workings!

June Final Examination Question — List manipulation

Suppose that you are given the algorithm below. This algriiakes as input a list of numbers
(num | st) and returns another list of numbers as output.
Note: As in lectures, tutorials and laboratories in the seunead(anyl i st) means the
first item in the listand ai | (anyl | st) means the list with the first number removed, and
| means joining two lists in the order they are given to makevalist.

Al gorithm ExamAl gl(nunli st)
|f numist Is enpty
t hen
return a list containing the nunmber O
el se
return ExamAl gl(tail (numist)) ||
a list containing head(numist)/2

What would the output of the algorithm be if the input list was14, 6, 12|?

Show your workings.

Students’ Traces — May Class Test

A Copies Model An Active Model
n — 5 TestAlg(5)
TestAlg(5) = 2% TestAlg(4) + 3 2% TestAlg(4 —1)+3
N — A 2% 2% TestAlg(3—1)+3+3
TestAlg(4) = 2 x TestAlg(3) + 3 2%2%2xTestAlg(2—1)+3+3+3
N — 3 242%2%x2%(5)+3+3+3+3
TestAlg(3) =2« TestAlg(3) + 3 = 80 +4(3)
n=>2 = 92
TestAlg(2) =2« TestAlg(1) + 3 Sometimes viable — shows active flow, lim-
n=1 iting case and passive flow but has errors
TestAlg(1) =5 A Magic Model
TestAlg(2) =2%5+3 =13
TestAlg(3) =2* 13+ 3 =29 n=>52x(4+3)=
TestAlg(4) = 2% 29+ 3 = 61 n =4 2*(3+3)—12
TestAlg(5) =2 %61 + 3 = 125 n=3 2*(2+3)—10
. . L =2 2% (143
Viable — shows active flow, limiting case Z: |5 *(143) =

and passive flow

A Passive Model Not viable — seems to show active flow but

really is just syntatic matching

n=1Testdlg=>5 An Odd Model

n=2 TestAlg=2x5+3=13

n=3 TestAlg=2%x13+3 =29 2x(O=1)+3+2x(4—-1)+3+

n=4 TestAlg=2%294 3 =61 2Xx(B3-1+3+2x(2-1)+3

n=>5 TestAlg =261 +3 =125 = (22 X14+33)+(2 X 3+3)+(2%x2+3)+
Sometime viable — shows limiting case and :(11X+ QJ:L 7) 15 —39

passive flow Not viable — some idea of active flow

Students’ Traces — June Examination
A Copies Model An Active Model

EzamAlgl(2,14,6,12)) ExamAlgl([14,6,12]) + [1]
6,12]) + [7]) + [1]

(1
= ExamAlgl(14,6,12) || (2/2) (2) (EzamAlgl(|
—(0,6,3,7) || (1) (3) (ExamAlgl([12]) + [3]) + [7] + [1]
—(0,6,3,7,1) (4) (EBzamAlgl(]]) +[6]) + (3] + [7] + [1]
(5) 0] + (6] + [3] + [7] + [1]
EramAlgl(14,6,12) Output would bg0 63 7 1)
= FxamAlgl(6,12) || (14/2) _ | |
—(0,6,3) || (7) Som_etlmes viable — shovys active flow and
— (0,6,3,7) limiting case but not passive flow
ExamAlgl(6,12) A Looping Model
— BExamAlgl(12) || (6/2) 1) 14;6;12;2/2
=(0,6)]| (3) 2) 6:12;2/2; 14/2
= (0,6, 3) 3) 12:2/2:14/2:6/2
EramAlgl(12) 4) 2/2:14/2,6/2;12/2
— ExamAlgl() || (12/2) S
= (0)]| (6) Sometimes viable — missing limiting case
= (0,6) and incorrect passive flow

Viable — shows active flow, limiting case
and passive flow

[1] C. George. EROSI-visualising recursion and discovgemew errors. InProceedings of the 31st SIGCSE Technical Sympogages 305-309, Austin, Texas, USA,
[2] T. Gotschi, I. D. Sanders, and V. Galpin. Mental models of raouatsin Proceedings of the 34th SIGCSE Technical Sympqgoaiges 346—-352. ACM SIGCSE, ACM,
[3] K. Kahney. What do novice programmers know about reom3i In E. Soloway and J. Spohrer, editdssidying the novice programmerages 315-323. L. Erlbaum,

[4] 1. D. Sanders, V. C. Galpin, and T.dBchi. Mental models of recursion revisited. Froceedings of the Eleventh Annual Conference on Innavatmm Technology in

Computer Science Educatigmages 138-142, University of Bologna, Italy, 26-28 Jun@c2@CM SIGCSE.
[5] D. Wilcocks and |. D. Sanders. Animating recursion as at@instruction.Computers & Educatio23(3):221-226, November 1994.

