
Performance loss between concept and keyboard

András Z. Salamon1,2 and Vashti Galpin3

1 Computing Laboratory, University of Oxford
2 Oxford-Man Institute of Quantitative Finance

3 LFCS, School of Informatics, University of Edinburgh

Abstract. Standards bodies and commercial software vendors have defined parallel constructs
to harness the parallelism in computations. Using the task graph model of parallel program
execution, we show how common programming constructs that impose series-parallel task
dependencies can lead to unbounded slowdown compared to the inherent parallelism in the
algorithm. We describe various ways in which this slowdown can be avoided.

Inexpensive multicore processors have brought parallelism to the desktop computer [2]
and users would like to take advantage of this parallelism for faster program execution.
Standards for multiple-processor programming such as OpenCL [7] and commercial numeri-
cal software such as Matlab4 and Mathematica5 include language constructs for parallelism.
Our position is that these constructs may limit the amount of parallelism, causing slowdown,
but we also argue that there are ways to avoid this unnecessary loss in performance. With
the projected progression from multicore computing (2-8 cores) to manycore computing
(hundreds of cores) [10], we believe that parallel computing systems should avoid slowdown
at the point of expressing the intention of the programmer, between the concept and the
keyboard.

We focus on a specific structure on the dependencies between program tasks which some
constructs impose. This structure is called series-parallel and can be most easily expressed
as those task graphs generated by the language

P ::= seq(P, P) | par(P, P) | a

where a is a task or activity which represents some amount of program code (possibly as
small as a single arithmetic operation) to be executed on one processor. Series-parallel task
graphs are not only easy to express, but also have modular structure which can be exploited
for efficient scheduling [3,11].

We can represent the tasks in a parallel program, and the dependencies between tasks,
in a task graph (also known as an activity network). A task graph is a directed graph where
each node is labelled with a distinct activity name, and associated with each activity is a pos-
itive real number, its duration, describing how long the activity
will take to execute. Arcs in the task graph capture dependen-
cies between tasks (also known as precedence constraints). The
left graph in the figure is series-parallel and can be written as
seq(par(a, b), par(c, d)). The right graph is not series-parallel

a b

c d

a b

c d

and is the smallest graph lacking this property. It is called the N -graph. Denote by t the
workload function that assigns durations to activities. The critical paths in a task graph
determine the time to execute the whole graph. If t(a) = t(d) = 1 and t(b) = t(c) = 2, the
series-parallel graph on the left will take 4 time units since the longest critical path is from
b to c, whereas the N -graph on the right will take 3 time units to execute.
4 Via the MATLAB Parallel Computing Toolbox. http://www.mathworks.com/
5 From version 7. http://www.wolfram.co.uk/

http://www.mathworks.com/
http://www.wolfram.co.uk/

Some dependencies in a task graph are inherent in the algorithm. Additional dependen-
cies can be imposed by static scheduling, which maps the tasks to processors [6]. Depen-
dencies can also be implicit in the programming constructs that are used to express the
algorithm.

The left graph above is a series-parallelised version of the N -graph, obtained by adding
an arc from activity b to activity c. (There are two other minimal ways to series-parallelise
it.) By using the series-parallel (SP) graph with its extra dependencies instead of the non-
series-parallel (NSP) N -graph, we can observe a slowdown of 4/3. This is in fact the least
slowdown possible for this task graph and workload. Slowdown is defined as the ratio of the
slower SP graph to the faster NSP graph. We can view the NSP graph as capturing the data
dependencies in the original algorithm and the SP graph as the dependencies in a program
expressing the algorithm in a specific programming language. In this specific case, the SP
version will take one-third as long again to execute as the NSP version. The SP version
can never be faster than the NSP version since dependencies are added. In some cases, this
slowdown can be arbitrarily large.

Now that we have introduced some concepts, we return to the programming constructs
that can be used to exploit the parallelism provided by multi-core processors. Consider
the example of a nested loop with neighbourhood synchronisation, which can be calculated
sequentially using the Matlab style code

for i = 1 : t
for j = 1 : m
A[i,j] = f(A[i-1,j-1],A[i-1,j],A[i-1,j+1]) (task ai,j)

This can be expressed using a parallel-for construct as

for i = 1 : t
parfor j = 1 : m
A[i,j] = f(A[i-1,j-1],A[i-1,j],A[i-1,j+1]) (task ai,j)

which captures the idea that each of the new values in the array can independently be
updated using the earlier values. If we study the dependencies inherent in the sequential
code, we obtain the task graph on the left in the figure below. On the other hand, the
code using the parfor construct imposes the dependencies shown in the right graph. Note
that the left graph is not series-parallel as it contains the N -graph as indicated by the
bold links (note the absence of the arc (a1,3, a2,1)). The right graph can be expressed as
seq(par(a1,1, . . . , a1,m), . . . , par(at,1, . . . , at,m)) if we generalise par to take multiple argu-
ments, and hence is SP.

a1,1 a1,2 a1,3 . . . a1,m

a2,1 a2,2 a2,3 . . . a2,m

. . .
...

...
...

.... . .

at,1 at,2 at,3 . . . at,m

a1,1 a1,2 a1,3 . . . a1,m

a2,1 a2,2 a2,3 . . . a2,m

. . .
...

...
...

.... . .

at,1 at,2 at,3 . . . at,m

In the NSP graph, there is no requirement that all tasks must finished before the second row
is finished, so for example if a1,1, a1,2, a1,3 have completed then a2,2 can start regardless of

whether a1,4 has finished. This is not the case in the SP graph which is a series-parallelisation
of the NSP graph.

We now consider transforming an NSP graph to an SP graph. There are two classes of
approaches to series-parallelising a task graph. In the first, workloads are not known, namely
it is assumed that they are not known a priori [4]. In the second, workload information is
used [9]. Note that in the case of the parallel-for construct, there is no explicit transformation
as such but there is an NSP version given by the inherent data dependencies of the algorithm,
hence this can be considered as a transformation without workload information.

For the case when workloads are not used in the series-parallelisation transformation or
algorithm, it has been hypothesised that except for pathological workloads, the slowdown
is bounded by two [12]. This can be expressed logically as

∃Y ∀G ∀t T (G, t)/T (Y (G), t) ≤ 2

where Y is an algorithm to convert an NSP graph to an SP graph that does not consider
t, and T (G, t) is the shortest possible time to execute G with workload t (obtained from
the critical path of G with the largest execution time). Less formally, the hypothesis is that
any task graph can be series-parallelised with slowdown at most 2, even if the details of the
workload in obtaining the SP version are ignored.

In our opinion, this statement is false. We have shown that for every algorithm, it is
possible to find a graph and a workload such that the slowdown is greater than two [9], and
moreover these are not pathological cases. Specifically, for a neighbourhood synchronisation
problem with depth 3, width 8 and degree 3 (the same degree as in the example above),
where certain tasks have duration 4 + ε and the remainder duration 1, then slowdown is at
least (12 + 3ε)/(6 + ε). This exceeds 2 whenever ε > 0. In this case, the ratio of the longest
task to the shortest task is just over 4, which is entirely feasible.

The proof of [9, Theorem 2] can be extended to larger task graphs to demonstrate
arbitrarily large slowdown, as long as the choice of how to series-parallelise the task graph
must be made without knowledge of the workload.

The above example of neighbourhood synchronisation has illustrated how the use of an
inherently SP parallel-for construct can cause a slowdown of more than 2. This is clearly
not desirable – this is a loss that occurs even before the system with parallel processors has
had the opportunity to begin running the program. Next we move on to considering the
options for dealing with this.

General techniques: One option is to choose a parallel language with more expressive con-
structs (ensuring that it does not lose parallelism unnecessarily during compilation). The
disadvantage is that programming then becomes more complex and introduces the possibil-
ity of unexpected behaviour such as deadlocks.

Alternatively, it would be possible for numerical software such as MATLAB to introduce
a parallelisation phase in which sequential code is assessed for data dependencies and these
could then be used to introduce as much parallelism as possible [1,8].

Limited knowledge of workload: If it is known that the variance in the duration of tasks
is neglible, then using inherently SP constructs is unlikely to lead to large slowdown. For
a simple technique for series-parallelisation that gives level-constrained (LC) graphs, the
slowdown is bounded by the ratio of the longest task to the shortest task [9]. If the variance
is low, this will be close to 1, hence very little slowdown.

Full knowledge of workload: If workloads can be fully assigned to tasks in advance of exe-
cution, then careful hand-coding is a good approach, especially when the resulting program
will be run frequently. Another approach, if an SP task graph is required before execution,
is to consider the workload when transforming to the SP graph. We hypothesise that for
algorithms which consider t that slowdown is bounded. Expressed logically,

∃X ∀G ∀t T (G, t)/T (X(G, t), t) ≤ 4/3

where X is a series-parallelisation algorithm which does use t to find the SP graph. This has
been shown true for graphs with 4, 5 and 6 nodes. The proof for 6 nodes is programmatic
and may be extendible to 7 and more nodes. However, it appears that finding the best SP
version of a task graph may be NP-hard [9].

Note that the 4/3 bound is the best possible, illustrated by the N -graph with workload
1/2/2/1, as discussed previously. In a recent paper, the authors of the 2-bound hypothesis
have shown experimentally with real workload data that slowdown of between 1 and 1.1
(and certainly less than 4/3) can be achieved [5].

In conclusion, unacceptable slowdown may be introduced by expressing an algorithm in
series-parallel form. This can be counteracted if workload information is available, if more
expressive programming constructs are used, or if the identification of parallelism is at least
partially left to the programming environment. Finally, if the tasks in a program can be
chosen to be of similar durations, then very simple techniques may be enough to avoid the
slowdown discussed here.

References

1. A. Aiken and A. Nicolau. Perfect pipelining: A new loop parallelization technique. In ESOP ’88:
Proceedings of the 2nd European Symposium on Programming, volume 300 of Lecture Notes in Computer
Science, pp. 221–235. Springer-Verlag, 1988. doi:10.1007/3-540-19027-9_15.

2. K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan, D. Patter-
son, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick. A view of the parallel computing landscape.
Communications of the ACM, 52(10), pp. 56–67, 2009. doi:10.1145/1562764.1562783.

3. L. Finta, Z. Liu, I. Mills, and E. Bampis. Scheduling UET-UCT series-parallel graphs on two processors.
Theoretical Computer Science, 162(2), pp. 323–340, 1996. doi:10.1016/0304-3975(96)00035-7.

4. A. González Escribano, V. Cardeñoso Payo, and A. J. C. van Gemund. On the loss of parallelism by
imposing synchronization structure. In Proceedings, 1st Euro-PDS International Conference on Parallel
and Distributed Systems, pp. 251–256, 1997.

5. A. González-Escribano, A. J. van Gemund, and V. Cardeñoso-Payo. Performance implications of
synchronization structure in parallel programming. Parallel Computing, 35(8-9), pp. 455–474, 2009.
doi:10.1016/j.parco.2009.07.002.

6. Y.-K. Kwok and I. Ahmad. Static scheduling algorithms for allocating directed task graphs to multipro-
cessors. ACM Computing Surveys, 31, pp. 406–471, 1999. doi:http://doi.acm.org/10.1145/344588.

344618.
7. A. Munshi (editor). The OpenCL Specification, Feb. 2009.
8. S. Rus, M. Pennings, and L. Rauchwerger. Sensitivity analysis for automatic parallelization on multi-

cores. In ICS ’07: Proceedings of the 21st annual international conference on Supercomputing, pp.
263–273. ACM, 2007. doi:10.1145/1274971.1275008.

9. A. Z. Salamon and V. Galpin. Bounds on series-parallel slowdown, Apr. 2009.
10. J. Shalf. The new landscape of parallel computer architecture. Journal of Physics: Conference Series,

78(1), p. 012066, 2007. doi:10.1088/1742-6596/78/1/012066.
11. K. Takamizawa, T. Nishizeki, and N. Saito. Linear-time computability of combinatorial problems on

series-parallel graphs. Journal of the ACM, 29(3), pp. 623–641, 1982. doi:10.1145/322326.322328.
12. A. J. C. van Gemund. The importance of synchronization structure in parallel program optimization. In

ICS ’97: Proceedings of the 11th international conference on Supercomputing, pp. 164–171. ACM, 1997.
doi:http://doi.acm.org/10.1145/263580.263625.

http://dx.doi.org/10.1007/3-540-19027-9_15
http://dx.doi.org/10.1145/1562764.1562783
http://dx.doi.org/10.1016/0304-3975(96)00035-7
http://dx.doi.org/10.1016/j.parco.2009.07.002
http://dx.doi.org/http://doi.acm.org/10.1145/344588.344618
http://dx.doi.org/http://doi.acm.org/10.1145/344588.344618
http://www.khronos.org/registry/cl/
http://dx.doi.org/10.1145/1274971.1275008
http://arxiv.org/abs/0904.4512
http://dx.doi.org/10.1088/1742-6596/78/1/012066
http://dx.doi.org/10.1145/322326.322328
http://dx.doi.org/http://doi.acm.org/10.1145/263580.263625

	Performance loss between concept and keyboard

