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Abstract—We present HieraGen, a new tool for automatically
generating hierarchical cache coherence protocols. HieraGen’s
inputs are the simple, atomic, stable state protocols for each
level of the hierarchy. HieraGen’s output is a highly concurrent
hierarchical protocol, in the form of the finite state machines
for all of the cache and directory controllers. HieraGen thus
reduces the complexity that architects face, by offloading
the challenging tasks of composing protocols and managing
concurrency. Experiments show that HieraGen can automatically
generate correct-by-construction MOESI family of hierarchical
protocols with dozens of states and hundreds of transitions.
We have verified all of the generated protocols for safety and
deadlock freedom using a model checker.

I. INTRODUCTION

Designing a cache coherence protocol for a multicore
processor is a challenging task, yet new protocols must
frequently be designed for new multicore processors. As
processor designs change—with the addition of more cores
or different types of cores, or with different expected
communication patterns—there are incentives to create new
coherence protocols to suit these changes. Even if a new
protocol is not a radical departure from previous protocols,
designing it and validating it are arduous, bug-prone processes.

One source of protocol design complexity is concurrency. If
one considers only atomic protocols, such as those sometimes
found in textbooks, then protocol design seems fairly simple.
These atomic protocols, also known as stable state protocols
(SSPs), have only a handful of stable coherence states (e.g.,
MESI), and have easily understood state transition diagrams.
However, modern protocols are highly concurrent, so as to
achieve as much performance as possible. Many transactions
can be in progress at once and it is the races among concurrent
transactions to a single block that lead to design complexity.
Sorin et al. [1] present concurrent directory protocols with
dozens of transient states and significant complexity, and
industrial coherence protocols can be even more complicated.

To overcome the design complexity of coherence protocols,
a recent design automation scheme called ProtoGen [2]
converts a SSP into a highly concurrent protocol design. The
designer need only reason about the SSP and not consider
the transient states and extra transitions that are needed
to accommodate concurrency. ProtoGen was shown to be
effective in creating concurrent flat directory protocols, in
which a single directory—perhaps colocated with a shared

cache—communicates directly with all of the cores and their
private cache hierarchies, as shown in Figure 1(a).

ProtoGen is a step towards automation, but it is restricted
to a very narrow system and protocol model. While we
expect directory-like coherence to persist, there are several
trends pushing industry away from flat protocols and towards
protocols with hierarchy. Hierarchy is a time-tested design
strategy for scalable systems [3]–[10], and it is an attractive
approach to multicore processor design as the number of cores
continues to increase. Hierarchy can also enable coherence
protocols that are more scalable [11]. Figures 1(b) and
1(c) show two hierarchical system models with hierarchical
directories (and hierarchical shared caches).

While hierarchy has many desirable features, it also
greatly complicates the design of the coherence protocol.
There are more states, more transitions, and more possible
concurrency. Crucially, communication between levels of the
hierarchy must preserve coherence invariants. In addition to
the design complexity, verification is also more challenging
with hierarchy, due primarily to the much larger state
space [9], [12].

To sidestep the challenges in designing (and verifying)
hierarchical coherence protocols, we introduce HieraGen1, a
design automation tool for generating correct-by-construction
hierarchical protocols.

The user inputs the SSPs of each level independently. For
example, as shown in Figure 1(d), the user would input two
SSPs (shown in different colors): one for the protocol of the
subtree in the bottom right (oblivious to the higher level) and
one for the protocol of the higher level (oblivious to the subtree
in the bottom right). The user would also specify the point(s)
at which the protocols are connected, e.g., that the subtree
protocol is a node in the higher level protocol. (For clarity, we
refer to a core with its private cache(s) as a core/cache node
and a directory with a collocated, optional shared cache as a
directory/cache node, and we use standard tree terminology
(root, parent, child) to identify nodes in the hierarchy). Thus,
the higher level SSP would include only the specifications of
the root directory/cache and the core/cache nodes that are its
children, as in the specification of a flat protocol; it would not
include any information about the possibility of a child that is
an integrated directory/cache node.

1https://github.com/icsa-caps/HieraGen



(a) flat directory (b) hierarchical directory

(c) multi-hierarchical directory (d) HieraGen composition of two SSPs (in different colors)

Fig. 1: System Models

Given these inputs, HieraGen produces the design of the
complete and concurrent hierarchical protocol, i.e., Figure1b.
The output is a finite state machine that is currently in
the language of the Murφ model checker [13], to facilitate
verification, but could easily be transformed to other finite state
machine representations (e.g., Verilog, VHDL, or SLICC).

Accommodating hierarchy introduces a key challenge
beyond what ProtoGen addresses: HieraGen must create
intermediate (non-root) directory/cache nodes that were not
completely specified by the user; as shown in Figure 1d,
HieraGen must compose the cache from the higher level (in
green) with the directory from the lower level (in blue) to
produce the intermediate directory/cache node.

HieraGen addresses this challenge by automatically
encapsulating higher-level coherence actions within
lower-level coherence transactions (and vice versa), such that
coherence invariants are enforced globally.

HieraGen must also implement concurrency in a hierarchical
system that can have multiple coherence transaction
serialization points (e.g., directories). We make the observation
that in a hierarchical SSP that correctly enforces coherence
globally, any two racing coherence transactions will serialize
at exactly one of the directories. This key invariant allows us
to leverage ProtoGen for generating concurrency.

HieraGen is currently limited to coherence protocols
that enforce the “single-writer, multiple reader” (SWMR)
coherence invariant. It is also limited to inclusive cache
hierarchies. Finally, the protocols generated by HieraGen do
not allow for direct communication between nodes of different
hierarchy levels.

In summary, the contributions of this paper are as follows.
• We present HieraGen, the first automated tool for taking

SSP specifications of coherence protocols of each level
of a hierarchical system, and generating the complete and
concurrent hierarchical protocol, while preserving safety
and preventing deadlocks.

• We have used HieraGen to generate high-performance
hierarchical protocols with the standard MOESI
coherence states.

• We have verified the generated protocols for safety and
deadlock freedom using the Murφ model checker.

II. BACKGROUND

In this section we provide a brief background on coherence
protocols. We also provide a brief overview of ProtoGen,
which HieraGen leverages for generating concurrency.

A. Coherence Protocols

An important class of coherence protocols, including
most multicore coherence protocols, satisfy the
Single-Write-Multiple-Reader (SWMR) invariant [1].
For any given memory location, at any given time, there is
either a single core that may write to it or some number
of cores that may read from it. In addition there is also
the data-value invariant that mandates that a read returns
the value of the latest write to that location. Hieragen is
currently restricted to protocols that enforce SWMR. Not
all protocols, however, enforce SWMR. For instance, some
recently-proposed protocols [14]–[17] relax SWMR and
instead enforce the consistency model directly.

B. ProtoGen

ProtoGen [2] is a pillar on which we base HieraGen’s
automatic generation of concurrency. ProtoGen’s input is a



Fig. 2: HieraGen Tool Flow

SSP for a flat directory protocol, as written in a domain
specific language. The input describes the behavior of a cache
controller and the directory controller, assuming an atomic
system model in which only one transaction is in-flight at a
time. ProtoGen outputs the finite state machines of the cache
controller and the directory. These two finite state machines
are in the format of the Murφ model checker [13], so as to
facilitate verification.

ProtoGen overcomes the key challenge in generating
(flat) protocols—creating cache and directory controllers
that correctly handle incoming coherence messages when
transactions are racing—by leveraging the insight that, in a
directory-based coherence protocol, racing transactions are
serialized at the directory. ProtoGen enables the directory
to convey this serialization order to the caches via the
forwarded requests it sends to caches; it overcomes possible
ambiguities by renaming certain forwarded requests. With the
caches and the directory achieving consensus on the order of
racing transactions, ProtoGen can generate highly-concurrent
and non-blocking (non-stalling) controller actions that are
consistent with this order. ProtoGen also has a flag that limits
concurrency by generating only stalling protocols. With the
latter, cache and directory controllers stall when they receive
potentially racing requests, at the cost of performance (while
still preventing deadlocks). With the former, the generated
protocol avoids stalling whenever possible at the expense of
an increase in the number of transient states.

III. BASELINE SYSTEM MODEL AND TERMINOLOGY

For ease of explanation, we present a baseline system model
with certain constraints that we will use when explaining
HieraGen. In Section VII, we discuss the impact on HieraGen
of relaxing some of these constraints.

Our baseline system model encompasses the two designs
in Figure 1(b)-(c). For purposes of HieraGen, Figure 1(b) and
Figure 1(c) are equivalent. Each directory/cache node tracks

the coherence state of blocks held in the private caches of its
children as well as blocks held by its collocated shared cache
(if any). The root directory/cache is attached to main memory.
These are both two-level designs, and we use “higher level”
to refer to the level closer to the root and “lower level” to
refer to the level farther from the root (e.g., the subtree on the
bottom right of Figure 1(b)).

For brevity, we refer to the four distinct node types as:
root (root directory/cache), cache-H (core/cache node in higher
level protocol), cache-L (core/cache node in lower level
protocol), and dir/cache (for the intermediate directory/cache
node). We refer to the higher level and lower level SSPs as
SSP-H and SSP-L, respectively.

We assume the following five constraints for now. In
Section VII, we relax the first three of these constraints.

• There are only two levels of hierarchy.
• Directories are inclusive2 and full-map, and evictions of

read-only blocks are not silent, i.e., each directory has
complete knowledge of its children’s coherence state.

• Each SSP is a flat directory protocol.
• Shared caches are inclusive.
• All communication across hierarchy levels is strictly

parent/child, i.e., a node cannot communicate directly
with nodes in other levels. Communication within a
hierarchy level is general.

Throughout this paper we use the terminology of Sorin
et al. [1]. This terminology includes coherence states (e.g.,
transient state names like IS that denote the block is in a
transient state between states I and S) and coherence requests
(e.g., GetShared or GetS).

IV. HIERAGEN TOOL FLOW

HieraGen starts with an SSP for each level of the hierarchy,
and it produces the finite state machines of all of the

2Directory inclusion means that a block may not be in a cache without the
directory’s knowledge.



distinct core/cache and directory/cache nodes. We illustrate
HieraGen’s flow from inputs to outputs in Figure 2. There are
two main steps: (1) from flat SSPs to an atomic hierarchical
protocol, and (2) from an atomic hierarchical protocol to a
concurrent hierarchical protocol.

The SSPs are described in a domain-specific language
(DSL); we employ the same DSL as that of ProtoGen.
The final outputs are the finite state machines (FSMs) for
concurrent hierarchical protocols. To enable verification, we
produce the FSMs in the Murφ model checker language. Next,
we discuss the two steps in detail in the following sections.

V. STEP 1: ATOMIC HIERARCHICAL PROTOCOL

All of the complexity in this step involves the generation
of the dir/cache (intermediate directory/cache node). As
highlighted in Figure 2, it is the only node that differs from the
input specifications; the other nodes effectively pass through
this step unchanged. Specifically, HieraGen must compose the
cache-H from the higher level with the dir-L from the lower
level into one intermediate dir/cache node. The dir/cache node
must integrate the functionality of a directory to its children
with the functionality of a child to its parent.

A. Intuition

HieraGen’s philosophy is to perform the protocol
composition in the most general way possible without being
“aware” of specific protocols or states, i.e., we do not modify
the input SSPs in any way. The key idea is to encapsulate
the coherence actions of the other level within a coherence
transaction, so that SWMR and data-value invariants are
enforced globally. Specifically, before completing a read
request originating from a particular level, HieraGen first
ensures that the other level has no writers (if there is a writer,
it is first downgraded). In a similar vein, before completing a
write request, HieraGen ensures that the other level does not
have any readers or writers (if there are any readers or writers,
they are first invalidated).

Fig. 3: Encapsulating higher-level coherence actions within a
lower-level coherence transaction

How is this enforced by HieraGen? Consider Figure 3
which shows a coherence request originating from cache-L
to dir-L 1 . Suppose dir-L determines that the request
cannot be completely satisfied at the lower level. HieraGen
then encapsulates higher-level protocol actions within the

lower-level transaction to ensure that the higher level is
ready for the access to be performed in the lower level. By
processing SSP-L, HieraGen is able to figure out the access
type of the lower-level coherence request (whether it is a read
or a write). By leveraging SSP-H, HieraGen makes cache-H
generate a higher-level request of the same access type 2 .
Since SSP-H enforces SWMR in the higher level, when
cache-H receives a response from dir-H 3 , one can infer
that the higher level is ready for the access to be performed in
the lower level. Therefore, HieraGen resumes the lower-level
coherence transaction, i.e., dir-L responds to cache-L 4 ,
thus completing the lower-level coherence transaction while
globally enforcing SWMR.

Fig. 4: Encapsulating lower-level coherence actions within a
higher-level coherence transaction via the proxy-cache

Consider Figure 4 which shows a coherence request
originating from one cache-H 1 and then forwarded by
dir-H to another cache-H 2 . Suppose the request cannot
be compeletely satisfied at the higher level. HieraGen
then encapsulates lower-level protocol actions within the
higher-level transaction to ensure that the lower level is ready
for the request to be completed in the higher level. Like in the
previous scenario, HieraGen can leverage SSP-H to determine
the access type of the higher-level request. But what entity can
HieraGen leverage to make a lower-level request of that access
type? Cache-H cannot be used because it logically belongs to
the higher level. Dir-L cannot directly be used because read
or write requests do not typically originate from the directory.
Therefore, HieraGen clones a cache controller from SSP-L
called proxy-cache and integrates it into the intermediate
dir/cache node as shown in Figure 4. HieraGen makes the
proxy-cache generate a coherence request to dir-L 4 , which
then forwards it to one or more caches in the lower level 5 .
When the proxy-cache receives a response 6 , one can infer
that the lower level is ready for the access to be performed in
the higher level. The proxy-cache then proceeds to evict the
block into cache-H 7 , allowing cache-H to respond to the
requestor 8 , thereby enforcing SWMR globally.

B. HieraGen in Detail via Transaction Flow Examples

We now illustrate how HieraGen works by describing the
protocol activity it must generate for every transaction using



Fig. 5: Transaction Flow 1: A load from cache-L that involves the higher level. (Read from left to right and back). Dashed
arrows denote messages internal to the dir/cache. (The proxy-cache-L is uninvolved in this transaction.)

Fig. 6: Transaction Flow 2: A store from cache-H that involves the lower level. (Read from right to left and back). Dashed
arrows denote messages internal to the dir/cache.

concrete examples. We assume for now that both levels of the
hierarchy use typical MSI protocols.

Protocol transactions that do not require the dir/cache to
provide both of its functionalities are effectively unchanged
with respect to the input SSPs. A request from a cache-L
that can be completely satisfied within SSP-L occurs as
expected. For example, a GetShared (GetS-L3) request from
a cache-L to the dir/cache that can be purely handled by
the dir/cache—either by sending the data directly from the
dir/cache or by forwarding the request to an owner that is
a child of the dir/cache—behaves as in the original SSP-L.
Similarly, a request from a cache-H that can be satisfied within
SSP-H also occurs as expected; as long as the request does not
require the involvement of dir-L from the dir/cache, it behaves
as in the original SSP-H.

There are three types of transactions that require the
dir/cache to provide both of its functionalities and thus
require HieraGen to generate the corresponding dir/cache
logic. We now walk through concrete examples of each type
of transaction.

1) SSP-L loads/stores that involve SSP-H: Our first
example is illustrated in Figure 5. Initially, a block is in
state M in one cache-H, and the cache-L issues a GetS-L to
the dir/cache. HieraGen can tell from processing SSP-L that
this GetS-L request corresponds to a read, by inferring that

3When otherwise ambiguous, we label coherence messages with “-L” or
“-H” to denote which protocol they are in.

the final state of the transaction allows only reads and not
writes. Similarly, HieraGen can tell from processing SSP-H
which coherence request a cache-H would issue if it needed to
obtain (at least) read permissions, which is GetS-H. HieraGen
matches these two request types; that is, because the cache-L’s
GetS-L provides read permissions, it has the dir/cache issue
the GetS-H request to the dir-H (root) that a cache-H would
issue for obtaining read permissions.

The dir-H and the rest of SSP-H behave as usual for that
type of coherence request. In this example, the dir-H forwards
the GetS-H for readable data to the cache-H that is the owner,
and that owner responds with data to the dir/cache. The
dir/cache fills its cache-H with the data and responds to the
cache-L that made the original GetS-L request. This response
is the same response as would be made to the original GetS-L
request in a flat SSP-L.

2) SSP-H loads/stores that involve SSP-L: As illustrated in
Figure 6, our concrete example here is a GetM-H request from
a cache-H when one cache-L has the block in state S (and no
other caches have the block). The cache-H sends a GetM-H
to the dir-H, and the dir-H does two things: it forwards the
request (in the form of an Invalidation-H) to the dir/cache, and
it sends a message to the requesting cache-H to let it know
how many Acknowledgments to expect. HieraGen can tell
from processing SSP-H that the Invalidation-H corresponds
to a write (and not a read), and it needs the dir/cache to
emulate what should happen due to a request for writable



data. HieraGen provides this functionality via the proxy-cache
introduced in the previous section. (Recall that the proxy-cache
is essentially a clone of the cache-L controller that is integrated
as part of the dir/cache; it is used to encapsulate coherence
transactions, but it does not perform loads or stores.)

HieraGen can tell from processing SSP-L which coherence
request a cache-L would issue if it needed to obtain write
permissions, which is GetM-L, and it has the proxy-cache-L
issue a GetM-L to dir-L. This GetM-L is an internal request
since the proxy-cache-L and dir-L are part of the same
controller. The dir-L then sends an Invalidation-L to the
cache-L in state S and transitions to state M (because it now
views the proxy-cache-L as being in state M). This GetM-L
transaction completes once the cache-L in state S has sent
an Invalidation-Ack-L to the proxy-cache-L; the transaction
ensures that all of the cache-L nodes are in the appropriate
coherence state (Invalid) with respect to the cache-H that made
the original GetM-H request.

Once the GetM-L transaction completes, the proxy-cache-L
immediately evicts the cache block into the dir/cache, causing
dir-L’s state to change from M to I. The dir/cache then
responds to the root with the appropriate response for SSP-H
(which is an Invalidation-Ack-H in the example). Note that the
response would have included the data if one of the cache-L
nodes had been the owner.

3) Dir/cache evictions: To maintain directory inclusion, an
eviction from the dir/cache must first evict the block from all
cache-L nodes, if any, that have the block. HieraGen again
employs the proxy-cache-L for this purpose, and HieraGen
exploits its ability to process the SSP-L to discover which
SSP-L coherence request invalidates the block from all
cache-L nodes. Thus, the proxy-cache-L issues a GetM-L,
resulting in the proxy-cache-L holding the only copy of
the block in SSP-L. (If a cache-L is the owner when it
is invalidated, it sends its data to the proxy-cache-L.) The
proxy-cache-L then evicts the block to the dir/cache. Once the
only copy is at the dir/cache, the dir/cache issues a PutM-H
to the root, the coherence request for evicting an owned block
in SSP-H.

C. Algorithm

We now precisely illustrate how our algorithm composes
cache-H, dir-L, and cache-L (proxy cache) to produce the
intermediate dir/cache controller. Our algorithm essentially
takes “code” from the input controllers and stitches them
together. Therefore, to specify how our algorithm works, we
must first provide a notation for the controllers.

In the following discussion, “Accesses” refers to the set
of accesses: load, store, and evict. “States”, “Requests”,
and “Fwd-requests” refer to the sets of states, requests, and
forwarded requests (resp.) associated with a controller. For
example, cache-L.States, refers to the set of stable states
associated with the lower level cache controller. Similarly,
“send-request”, “send-fwd-request”, “await-response”,
“update-state”, and “send-response” are variables that point
to code that do what their names indicate.

1) Cache controller: The cache controller component of
an SSP specifies, for each stable state, what happens on each
access and each incoming forwarded request. We specify
this as follows. (Note that this abstract specification must
be instantiated to make up specific cache controllers as the
following example illustrates.)

∀ access ∈ Accesses, ∀ state ∈ cache.States
cache.send-request(access,state);
cache.await-response(access,state);
cache.update-state(access,state);

∀ fwd-request ∈ cache.Fwd-requests, ∀ state ∈ cache.States
cache.update-state(fwd-request,state);
cache.send-response(fwd-request,state);

Consider a lower level MSI cache controller:
cache-L.send-request(store,I) points to code that sends a
GetM to dir-L; cache-L.await-response(store,I) points to code
that waits for Data; and cache.update-state(store,I) points to
code that changes state from I to M. Some of these code
pointers may point to empty actions—for example, a store
to a block in state M needs no messages to be sent nor any
state update.

2) Directory controller: The directory controller
component of an SSP specifies, for each stable state,
what happens on an incoming request. We specify this as
follows. (As before, the abstract specification has to be
instantiated to make up specific directory controllers.)

∀ request ∈ dir.Requests, ∀ state ∈ dir.States
dir.send-fwd-request(request,state);
dir.await-response(request,state);
dir.update-state(request,state);

3) Generating dir/cache controller: We can now specify
how dir-L, cache-H, and cache-L are composed to form the
intermediate dir/cache controller. This compound controller,
being a directory as well as a cache, will have to specify for
the cross-product of dir-L/cache-H states, what happens on:
(a) an incoming request from a cache-L (Figure 3); and (b)
an incoming forwarded request from dir-H (Figure 4). We
consider the former first, as shown below.

∀ request ∈ dir-L.Requests
∀ (dir-state, cache-state) ∈ dir-L.States × cache-H.States

/* compute access that generated request at lower level */
access = compute access(request, SSP-L);

/* issue request to the higher level of same access type */
cache-H.send-request(access, cache-state);
cache-H.await-response(access, cache-state);
cache-H.update-state(access, cache-state);

/* Now respond to the request in the lower level */
dir-L.send-fwd-request(request, dir-state);
dir-L.await-response(request, dir-state);
dir-L.update-state(request, dir-state);



By parsing SSP-L, we determine the access that leads to
the request. We then make the controller send a request to the
higher level of the same access type (if necessary). Finally,
we have the controller respond to the original request.

∀ fwd-request ∈ cache-H.Fwd-requests
∀ (dir-state, cache-state) ∈ dir-L.States × cache-H.States

/* compute access that generated fwd-request at higher level */
access = compute access(fwd-request, SSP-H);

/* The proxy cache logically issues a request of the same access
to dir-L. But this request, being internal, needn’t actually be sent.
We simply compute the request it would generate (from Invalid
state) so that dir-L can respond to this virtual request*/

request = compute request(access, Invalid, SSP-L);
dir-L.send-fwd-request(request, dir-state);
dir-L.await-response(request, dir-state);
dir-L.update-state(request, dir-state);

/* The virtual proxy cache waits for response */
cache-L.await-response(access, Invalid);

/* Then the proxy cache updates its state */
final-state = cache-L.update-state(access, Invalid);

/* The proxy cache must now evict the block, but this is again
an internal request and needn’t be sent. We simply compute the
request it would generate so that dir-L can respond to this virtual
eviction request */

evict-request = compute request(evict, final-state, SSP-L);
dir-L.update-state(evict-request, dir-state);

/* Now respond to the forwarded request */
cache-H.update-state(fwd-request, cache-state);
cache-H.send-response(fwd-request, cache-state);

Next, we deal with incoming forwarded requests. As shown
above, the idea is to first compute the access that led to the
forwarded request by parsing SSP-H. (It is worth reiterating
that this computation, and indeed all of the following steps,
happen at design time.) Then, we must make the controller
“perform” the access in the lower level. The “code” for how
to do this is available in the input SSP-L, and the source of this
transaction is the cache-L. That is why we leverage a proxy
cache to initiate this transaction. In reality, the proxy cache is
a single temporary cache line (and state) which is physically
integrated within the dir/cache controller. Therefore the request
from the proxy cache to dir-L need not be physically sent.
Instead, we compute (at design time) what request it would
have sent and simply make dir-L react to this request. We
then make the controller await the response that the proxy
cache would have normally waited for. Once the response is
received, we make the controller update its state and make it
evict the block into dir-L. Again this eviction is virtual and so

no message is actually sent. Instead the request corresponding
to the evict access is computed, and dir-L is made to react
to this request. Finally, cache-H is made to respond to the
incoming forwarded request from the higher level.

D. Compatibility Between Protocol Levels

HieraGen can compose SSPs together into a hierarchical
protocol, but not all SSPs are immediatly compatible.
Specifically, there is one protocol feature—silent upgrading
of coherence permissions—that can cause incompatibility if
not handled appropriately. In “typical” protocols that use a
subset of the MOESI stable coherence states, the culprit is the
(E)xclusive state. In the E state, which is read-only, a cache
can silently upgrade to the M state, which is read-write.

The issue of protocol compatibility is best explained through
an example of incompatibility. Consider the case in which
SSP-L is MESI and SSP-H is MSI. Assume initially that the
block is Invalid in all caches. One cache-L performs a load,
misses, and issues a GetS-L to the dir/cache. The dir/cache
issues a GetS-H to the root, and the root responds to the
dir/cache with Shared (read-only) permission and data. The
root records that its dir/cache child is in state S. Because
SSP-L is MESI and there were no sharers at the time of the
GetS-L from the requesting cache-L, the dir/cache responds
to the cache-L with data and Exclusive permissions. Now the
cache-L can silently transition from E to M and write the
block. Meanwhile, any cache-H can issue a GetS-H to the
root and obtain Shared access. In this situation, the hierarchical
protocol violates the SWMR coherence invariant.

Fortunately, HieraGen can automatically detect
incompatibility when processing the SSPs, because it
can detect when an SSP permits silent permission upgrades.
In our example above, since the cache-L can silently transition
from E to M and write the block, HieraGen can infer that E
state is writable. There are two solutions to this problem. The
first one is more intuitive, but the second one offers better
performance.

The intuitive solution is for HieraGen to have the dir/cache
conservatively issue a GetM-H request that corresponds to
the greatest permissions that the cache-L could receive (in
this case, read-write access), rather than the GetS-H request
that corresponds to the original request (for read-only access).
While this solution ensures safety, it has negative performance
implications due to needless SSP-H invalidations if the
originating cache-L does not write to the block.

The higher performance solution avoids these needless
invalidations. The dir/cache issues a GetS-H, and the root
responds to the dir/cache with read-only access. HieraGen,
when generating the dir/cache, adds logic to detect mismatches
between the permission its cache-H received from SSP-H
(S=read-only) and the permission its dir-L would otherwise
grant to the cache-L requestor (E=silently upgradeable to
read-write). In this case, it has the proxy-cache-L issue a
request for the received permission, i.e., the proxy-cache-L
issues a GetS-L. In this way, the proxy-cache-L mimics the
possible behavior of an external cache-H. The proxy-cache-L’s



GetS-L, which is serialized before the cache-L’s GetS-L, puts
the dir-L momentarily in state E, from which it will now grant
S (not E) permissions to the requesting cache-L. Once the
dir/cache has responded to the cache-L, the dir-L changes to
state S, and the proxy-cache-L evicts its block.

With this more optimized solution, there is one last issue to
resolve. Let us assume that both the SSP-H and SSP-L have
protocols with E states. Initially let us assume that all blocks
are in I state. Consider the situation in which cache-L issues
a GetS-L to request a block for reading; the dir/cache first
obtains the block in state E (due to SSP-H) and provides the
block in E state for the requesting cache-L (due to SSP-L).
Now the cache-L can silently upgrade to M and modify the
block, without notifying the dir/cache, as per SSP-L. We now
have another mismatch to resolve. We want the dir/cache’s
cache-H to change to state M so that it is compatible with the
earlier store that was performed at cache-L. Furthermore, we
want to do this without modifying SSP-H, which we recall is
HieraGen’s philosophy.

When cache-L evicts the block to the dir/cache, the type of
eviction message (PutE-L or PutM-L) reveals the access that
was performed in the cache-L. In our case, PutM-L reveals
that a write occurred. Therefore, there must now be a write
of cache-H to update it with the evicted data. But because
cache-H is already in state E, it does not need to issue a request
to dir-H; it can silently go to state M as per SSP-H.

E. Optimizing Protocol Finite State Machines

As explained thus far, HieraGen will create somewhat
unoptimized finite state machines for the root and dir/cache.
Consider a state machine to be a 2D matrix, in which
rows are coherence states, columns are events (incoming
coherence messages), and entries specify what happens for
that state/event pair. Naively, a specification of a directory
(either the root or the directory part of the dir/cache) or
a cache controller would have an entry for every possible
state/event pair, i.e., NumRows*NumCols entries. However,
many of those entries are not actually reachable, because
certain events cannot occur in certain states.

Without optimization, the finite state machines for
directories will needlessly include logic to handle unreachable
state/event pairs. This logic is not harmful, but it is
unnecessary; it may also complicate debugging in that it may
be useful to know that a believed-to-be unreachable state/event
has been reached. We have implemented a custom model
checker that explores the reachable state space of the protocols
so as to eliminate these unreachable state/event pairs.

VI. STEP 2: CONCURRENT HIERARCHICAL PROTOCOL

At the end of Step 1, HieraGen has produced an atomic
hierarchical protocol in the form of finite state machines for
the cache-L, dir/cache, cache-H, and root. In Step 2, we add
concurrency to this protocol.

For flat protocols, ProtoGen injected concurrency as
explained in Section II-B. ProtoGen could leverage the fact
that every coherence transaction was serialized at the directory.

Fig. 7: There is a unique serialization point for any two racing
transactions.

(There is just one directory in a flat protocol). HieraGen can
still leverage transaction serialization, but in a hierarchical
protocol, there can be multiple serialization points, depending
on the protocol level of the block’s current owner. Consider
the system model in Figure 7. A request from a cache-L that
is satisfied entirely within SSP-L is serialized at the dir/cache.
However, a request from a cache-H or a request from a cache-L
that cannot be satisfied within SSP-L is serialized at the root.

Despite the two serialization points (or more, if more levels
of hierarchy), the tree structure of the hierarchy provides
the invariant that any two racing coherence transactions are
serialized at exactly one of these serialization points. ProtoGen
can thus be leveraged for extracting concurrency.

Consider an example in which cache1-H holds a block in
writable state. Assume two racing transactions: cache2-H and
cache1-L both want to write to the block. Accordingly, both
of their requests will attempt to obtain ownership of the block;
the request that reaches the root first will win the race. In other
words, the root is the serialization point.

For the same initial state—i.e., cache1-H initially holding
the block in writable state—let us now consider two racing
transactions coming from the lower level. Specifically, assume
both cache1-L and cache2-L want to obtain ownership of the
block. In this situation, although there are potentially two
serialization points in play, the hierarchical nature means that
the first transaction to reach the dir/cache wins the race; the
transaction to reach the dir/cache second will be able to infer
that it has lost the race and will not proceed to the root. In
other words, the dir/cache is the serialization point.

Let us now generalize. Because a HieraGen-generated
atomic protocol enforces SWMR globally, there can be exactly
one owner for any block. (It is the cache that holds the block
in writable state; if there is no such cache, the owner is the
root). Any two racing transactions, therefore, will both attempt
to reach this unique owner by traversing a path consisting of
one or more directory nodes. The tree structure guarantees
there will be exactly one directory node in common across
the two paths. This is because the transaction that reaches this
common node second can infer that it has lost and will not
proceed any further towards the original owner. In other words,
this common directory will serve as the unique serialization
point, allowing us to use ProtoGen for performing Step 2.

VII. OTHER SYSTEM MODELS

In Section III, we presented our baseline system model, and
we listed five design constraints that we imposed at the time.



We now explore the effects of relaxing each of them.

A. Deeper Hierarchies
As systems continue to scale, there is likely to be incentive

to use more levels of hierarchy. We consider whether deeper
hierarchies affect how HieraGen composes SSPs into a
hierarchy (Step 1) and how HieraGen introduces concurrency
(Step 2).

1) Step-1: Composition is unaffected by the depth of
the hierarchy, for two reasons. First, at each point of SSP
composition, there is a structured interface consisting of a
single dir/cache node that provides the cache functionality to
its parent and the directory functionality to its children. This
structured interface is used by HieraGen to ensure that before a
coherence request from one level completes, each of the other
levels are in a state that allows for this coherence request
to complete without violating SWMR globally. Second,
HieraGen does not permit any communication across levels,
without this structured interface. Thus, the reasons for why
HieraGen works for composing two SSPs into a hierarchy also
apply for composing additional SSPs.

Fig. 8: How HieraGen works with deeper hierarchies.
A write from cache-J leads to a write in the higher
level (via dir–[J]/cache–[J+1]) and write in the lower level
(via dir–[j-1]/cache–[J])

Figure 8 illustrates how HieraGen’s tree structure ensures
SWMR globally. Consider an n-level hierarchy in which
cache-J (a cache from the jth) level performs a write. Assume
that there are one or more sharers in level(s) higher than
j as well as level(s) lower. Before cache-J’s write request
is completed, HieraGen issues write requests to the higher
levels (via dir–J/cache–[J+1]) as well as lower levels (via
dir–[j-1]/cache–J), thereby ensuring SWMR globally.

2) Step-2: Similarly, deeper hierarchies have no impact on
how HieraGen introduces concurrency into the hierarchical
protocol. This is because, irrespective of the depth of the
hierarchy, any two racing transactions serialize at exactly
one node. This enables the use of ProtoGen to uncover
concurrency.

B. Incomplete Directory Knowledge
There are three ways in which a directory can have

incomplete or stale knowledge of its children’s coherence

states: the directory uses an incomplete data structure (e.g.,
coarse sharing vector), its child caches are permitted to
perform silent evictions of read-only blocks, or the directory
is not inclusive. Fortunately, this design issue does not affect
HieraGen because it is handled in the input SSPs.

For example, assume that SSP-L uses a non-inclusive
directory. Recall that in a non-inclusive directory, a directory
miss does not mean that the block is uncached in any of its
children. Therefore, to ensure SWMR, SSP-L would already
have had to revert to a broadcast on a write to a block missing
in the directory. This feature of SSP-L is what HieraGen
leverages to ensure SWMR at the level, and hence globally.

C. Other SSP Protocol Types

We have assumed that each SSP is a flat directory protocol,
but there is some flexibility here. The key is that the protocol
must have a single structure that can serve as an interface
between hierarchy levels. Directory protocols naturally have
that structure: the directory.

However, a snooping protocol can also be viewed as a
directory protocol with a “null directory,” sometimes denoted
Dir1B. In such a snooping protocol, every coherence request
is sent to the “directory,” and the stateless directory simply
broadcasts the request to all of its children. As long as
the interconnection network provides point-to-point ordering
between the “directory” and each of its children, this protocol
will provide broadcast snooping.

D. Non-Inclusive Shared Caches

We have thus far assumed that shared caches are inclusive,
but there are systems that provide either exclusion or
non-inclusion (i.e., neither strictly inclusive nor exclusive).

In its current form, HieraGen is limited to inclusive shared
caches. The underlying reason for this limitation is our
philosophy of (a) allowing the user to specify the SSPs
completely independently, and (b) not modifying the SSPs
when composing them. Because we have drawn a sharp line
between the SSPs, they have no knowledge of each other.

To illustrate the problem with non-inclusion, consider the
following scenario. One cache-L is in M, its dir-L knows that
the cache-L is in M, and the block is in M in the shared cache
(i.e., the cache part of the dir/cache). In a non-inclusive model,
the shared cache would consult with the dir-L to decide how
to proceed. If any of its cache-L children still has the block in
state M, the shared cache can evict silently; else, the shared
cache has the only up-to-date owned copy, and it must not
drop it silently. However, with our separation between SSPs,
the shared cache cannot consult the dir-L in this fashion, and
thus it cannot know how to proceed.

Future work will explore the possibility of relaxing the
sharp break between the SSPs, in order to enable non-inclusive
shared caches.

E. Communication Across Levels

We have assumed a tree-structured hierarchy in which
communication is strictly hierarchical. A node can



communicate only with its parent, children, or siblings.
Thus, for example, a cache-L cannot directly communicate
with the root or a cache-H. This assumption enables us to
clearly reason about the composition of SSPs, and it is critical
to the current design and implementation of HieraGen. We
can imagine a future tool that overcomes this limitation, but
we leave this project to future work.

VIII. EXPERIMENTAL EVALUATION

The goal of this evaluation is to determine the effectiveness
of HieraGen in producing concurrent, hierarchical protocols.
To illustrate the design automation benefits of HieraGen,
we first compare the complexity of the input SSPs to
the complexity of the hierarchical SSP and the concurrent
hierarchical protocol. We then discuss the verification of the
generated protocols.

We view hierarchy as useful—as do the architects of
existing hierarchical protocols—and we do not perform
experiments to quantitatively confirm its benefits.

A. Benchmarks

Our “benchmarks” are flat input SSPs along with the
descriptions of how the hierarchy is structured (e.g., that
SSP-L is attached to SSP-H at a specified point). These SSPs
include typical MSI, MESI, MOSI, and MOESI protocols, like
those found in Sorin et al. [1] but without the concurrency.

In Table I, we present the complexity of the flat input
SSPs. Complexity is difficult to quantify precisely but, for a
flat coherence protocol, the numbers of states and reachable
state/event pairs (i.e., transitions) are reasonable proxies.

Protocol Cache Directory
MI 2/9 2/6

MSI 3/26 3/16
MESI 4/33 4/25
MOSI 4/38 4/24

MOESI 5/45 5/33

TABLE I: Flat atomic protocols. Each entry is the number of
stable states/transitions.

SSP-L/SSP-H dir-L cache-H dir/cache
MSI/MI 4/16 5/9 10/42
MI/MSI 2/4 10/26 12/37

MSI/MSI 4/16 10/26 21/94
MESI/MSI 6/25 10/26 26/119

MESI/MESI 6/25 12/33 40/184
MOSI/MSI 4/24 10/26 28/149

MOSI/MOSI 4/24 14/38 42/227
MOESI/MOESI 5/33 16/45 59/368

TABLE II: Complexity of atomic hierarchical protocols
produced by HieraGen. Each entry is the number of
states(stable+transient)/transitions.

B. Design Complexity

The goal of HieraGen is to overcome the design complexity
of manually designing hierarchical protocols. Thus we provide
HieraGen with pairs of input SSPs, one SSP-L and one SSP-H,
and study the concurrent hierarchical protocols it produces.

For additional insight, we first study the results of Step 1,
i.e., the atomic hierarchical protocols. In Table II, we show the
quantifiable complexity results for seven different hierarchical
protocols. Each row of the table compares, for a given
hierarchical protocol, the complexity of the dir-L and cache-H
of the input SSPs to the automatically-generated dir/cache.
We note first that the dir-L and cache-H appear to have greater
complexity than they did in Table I; this discrepancy is because
we are now considering the dir-L and cache-H after HieraGen
has expanded them to include transient states (but still no
concurrency).4 Potential races introduced due to these transient
states will have to be considered in Step 2, and hence we report
these transient states.

Looking at these results, we observe that the complexity
introduced in Step 1 can be considerable, and it varies
considerably across the protocols. At the low end, the dir/cache
in the MSI/MI hierarchy, when compared to the sum of its
constituent parts, has only one more state and roughly double
the number of reachable transitions. At the high end, the
MOESI/MOESI dir/cache has 59 states and 368 transitions, far
more than the sum of its parts (21 states and 78 transitions).
We also remind the reader that not all states and transitions
are equally easy to reason about, and we find it particularly
challenging to reason about the dir/cache and how it must
bridge the two SSPs.

We now examine the additional complexity introduced
during Step 2, when HieraGen adds concurrency to the
protocols. We run HieraGen twice for each protocol, once with
the input flag set to produce a stalling protocol and once with
the flag unset. Table III shows the quantifiable complexity for
HieraGen’s final output; the table reproduces the results from
Table II to facilitate visual comparisons.

One perhaps curious result is that the nodes in the
concurrent protocols often have approximately the same—or
even fewer—states than the corresponding atomic protocols.
This phenomena is because, even though the protocol
complexity has increased, HieraGen can often discover how
to merge states that are equivalent. For example, a cache in an
MSI protocol may have states MI and SI, which denote that the
cache has evicted a block in state M or state S, respectively.
Because all messages that arrive in these states are distinct,
they can be merged. Manual protocol designers, including the
authors, tend not to merge states in this way. In fact, for clarity
when reading and debugging a protocol, designers are likely
to want to distinguish states like these, but HieraGen does not
need to care as much about readability or debuggability (since
the generated protocols are correct by construction).

Ultimately, what is more important than the quantifiable
complexity metrics is HieraGen’s ability to automatically and
nearly instantaneously produce protocols that are correct by
construction. HieraGen took less than 10 seconds to correctly
generate each of the protocols in this section.

4Even atomic protocols have transient states. Atomicity simply means that
messages from other transactions cannot intervene in transient states.



Atomic Hierarchical Concurrent Hierarchical Stalling Concurrent Hierarchical Non-stalling
SSP-L/SSP-H cache-L dir/cache cache-H root cache-L dir/cache cache-H root cache-L dir/cache cache-H root

MSI/MI 10/26 10/42 5/9 2/4 9/31 10/43 4/9 2/6 12/42 10/43 4/9 2/6
MI/MSI 5/9 12/37 10/26 4/16 4/9 12/41 9/31 4/24 4/9 16/53 12/42 4/24

MSI/MSI 10/26 21/94 10/26 4/16 9/31 21/102 9/31 4/24 12/42 28/126 12/42 4/24
MESI/MSI 12/33 26/119 10/26 4/16 10/37 26/126 9/31 4/24 13/48 31/145 12/42 4/24

MESI/MESI 12/33 40/184 12/33 6/25 10/37 39/191 10/37 6/45 13/48 44/210 13/48 6/45
MOSI/MSI 14/38 28/149 10/26 4/16 10/40 31/170 9/31 4/24 13/51 39/206 12/42 4/24

MOSI/MOSI 14/38 42/227 14/38 4/24 10/40 47/273 10/40 4/37 13/51 64/353 13/51 4/37
MOESI/MOESI 16/45 59/368 16/45 5/33 11/46 64/415 11/46 5/66 14/57 81/495 14/57 5/66

TABLE III: Concurrent hierarchical protocols. This table shows the complexities of the HieraGen-generated concurrent cache-L,
dir/cache, cache-H, and root nodes compared with their atomic counterparts. We present both stalling and non-stalling protocol
variants. Each entry is the number of states(stable+transient)/transitions.

C. Verification of Correctness

To confirm HieraGen produces correct protocols—protocols
that never violate coherence and never deadlock—we perform
three verifications for every protocol.

First, we use the Murφ model checker [13] to formally
and completely verify the atomic hierarchical protocol that is
produced by Step 1 of HieraGen for a configuration depicted in
Figure 1b and Figure 1d. The configuration consists of a single
root directory, two cache-H nodes, the generated dir/cache
(including the proxy-cache-L), and two cache-L nodes.

Second, we verify the concurrent hierarchical protocols
generated by HieraGen for the same configuration. The
verification is performed on a server with 256GB of memory.

Third, to gain more confidence we add one additional
cache-L node, resulting in a configuration consisting of:
a single root directory, two cache-H nodes, the generated
dir/cache (including the proxy-cache-L), and three cache-L
nodes. However, Murφ runs out of memory for this
configuration. To extend the verification to this configuration,
we used the hash compaction capability provided by Murφ
[18]. Hash compaction compresses the state descriptors stored
within the state table to reduce the memory footprint of the
model checker during verification. Due to the compression,
there exists a small but non-zero probability that system
states are omitted during verification; after each verification
run, Murφ model reports this omission probability. Because
Murφ randomly picks independent compression functions for
the state descriptors, the omission probabilities of different
runs can be multiplied. For each coherence protocol, we
performed multiple verification runs, until the probability of
an undetected bug fell below a threshold of 0.001%.

IX. RELATED WORK

There are three primary areas of related work: frameworks
for structured hierarchical protocols, design automation for
coherence protocols, and hierarchical protocols that are
designed for verifiability.

MCP [3] is a design framework that seeks to minimize
design complexity by cleanly separating the two functionalities
of the dir/cache (our term) into the manager (directory)
and client (cache). Unlike HieraGen, MCP does not provide
any design automation. Cook [19] automates by providing
a protocol communication template. The template has

many nice features, including hierarchy, but several critical
constraints, including: blocking directories, no sibling-sibling
communication, and caches that block during writebacks.

The second area of related work is in design automation for
coherence protocols. We have already discussed ProtoGen [2]
at length, but there were schemes prior to it. Dave et
al. [20] used the Bluespec hardware description language
to describe concurrent protocols, and the compiler produced
RTL. Unlike HieraGen, this work starts with a concurrent
protocol and its contribution is that it allows designers to
write in Bluespec [21] instead of directly in RTL. One can
also use Bluespec to specify an atomic protocol and have
the compiler generate concurrency; however, the concurrency
is quite limited because the compiler must conservatively
serialize coherence transactions to the same cache block. Work
by Staunstrup and Greenstreet [22] is similar but uses a
different language called Synchronized Transitions. One other
approach is to use ideas from program synthesis, i.e., specify
part of the protocol and synthesize the rest. Examples include
TRANSIT [23] and VerC3 [24], both of which are highly
constrained by the state space explosion problem.

The third area of related work is in hierarchical protocol
design that facilitates verification. Verifiability can ensure
that the bugs that are likely to be introduced during
manual protocol design are caught, but verifiability does not
necessarily simplify the design process. Verifiable hierarchical
protocols include HCC [6], Fractal Coherence [10], and
protocols that conform to the Neo framework Neo [9].

X. CONCLUSIONS

We have presented HieraGen, a new tool for automatic
generation of hierarchical cache coherence protocols. We have
demonstrated that HieraGen can successfully compose atomic,
flat SSPs into a highly concurrent hierarchical protocol.
The generated protocols are verifiably correct and avoid
the substantial design and verification effort—cache and
directory controllers with dozens of states and hundreds of
transitions—required by manual design. We believe that design
automation of hierarchical protocols is both practical and
preferable to manual design.
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