
Independently Extensible Solutions to the Expression Problem

Matthias Zenger Martin Odersky
École Polytechnique Fédérale de Lausanne

1015 Lausanne, Switzerland

Abstract
The expression problem is fundamental for the development
of extensible software. Many (partial) solutions to this prob-
lem have been proposed in the past, but the question of
how to use different, independent extensions jointly has re-
ceived less attention so far. This paper proposes solutions
to the expression problem that make it possible to com-
bine independent extensions in a flexible, modular, and type-
safe way. The solutions, formulated in the programming lan-
guage Scala, are affected with only a small implementation
overhead and are relatively easy to implement by hand.

1. The Expression Problem
Since software evolves over time, it is essential for soft-
ware systems to be extensible. But the development of ex-
tensible software poses many design and implementation
problems, especially, if extensions cannot be anticipated.
The expression problem is probably the most fundamental
one among these problems. It arises when recursively de-
fined datatypes and operations on these types have to be
extended simultaneously. The term expression problem was
originally coined by Phil Wadler in a post on the Java-
Genericity mailing list [34], although it was Cook who first
discussed this problem [9]. His work motivated several oth-
ers to reason about variants of the problem in the follow-
ing years [18, 27, 17, 12]. In his post to the Java-Genericity
mailing list, Wadler also proposed a solution to the problem
written in an extended version of GENERIC JAVA [3]. Only
later it appeared that this solution could not be typed.

For this paper, we paraphrase the problem in the follow-
ing way: Suppose we have a datatype which is defined by a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
FOOL 2005 15 January 2005, Long Beach, California
Copyright © 2005 ACM . . . $5.00

set of cases and we have processors which operate on this
datatype. There are primarily two directions along which we
can extend such a system:

• The extension of the datatype with new data variants,
• The addition of new processors.

We require that processors handle only a finite number of
data variants and thus do not provide defaults which could
handle arbitrary cases of future extensions. There are both
good reasons to admit and disallow defaults. On the plus
side, defaults might help in writing concise code, if the
desired behavior is uniform over all types except for a finite
number of types for which explicit treatments are given.
On the minus side, sometimes the only reasonable thing
to do in the default case is to raise an exception. Defaults
thus transform type errors that would manifest statically
into runtime exceptions that are thrown dynamically. We
concentrate here on solutions without defaults because that
is how the expression problem was defined by Wadler and
also because the typing issues for solutions without defaults
are more difficult and interesting.

The challenge is now to find an implementation technique
which satisfies the following list of requirements:

• Extensibility in both dimensions: It should be possible to
add new data variants and adapt existing operations ac-
cordingly. Furthermore, it should be possible to introduce
new processors.

• Strong static type safety: It should be impossible to apply
a processor to a data variant which it cannot handle.

• No modification or duplication: Existing code should
neither be modified nor duplicated.

• Separate compilation: Compiling datatype extensions or
adding new processors should not encompass re-type-
checking the original datatype or existing processors. No
safety checks should be deferred until link or runtime.

We add to this list the following criterion:

• Independent extensibility: It should be possible to com-
bine independently developed extensions so that they can
be used jointly [30].

System

Extension 1 Extension 2

Compound
Extension 1 + 2

Figure 1. Combination of independent extensions.

Implementation techniques which meet the last criterion al-
low systems to be extended in a non-linear fashion. Such
techniques typically allow programmers to consolidate in-
dependent extensions in a single compound extension as il-
lustrated by Figure 1. By contrast, without support for in-
dependent extensibility, parallel extensions diverge, even if
they are completely orthogonal [7]. This makes a joint use
of different extensions in a single system impossible.
This paper presents two families of new solutions to the ex-
pression problem. One family is based on an object-oriented
decomposition while the other is based on a functional de-
composition using the visitor pattern. In its original form,
each of these decomposition techniques allows extensibility
only in one direction (data or operations), yet disallows ex-
tensibility in the other. The solutions presented here achieve
independent extensibility of data and operation extensions.
They are sufficiently simple and concise to be immediately
usable by programmers.

Our solutions are expressed in the programming language
SCALA [24]. SCALA is a strongly statically typed program-
ming language which fuses object-oriented and functional
programming concepts. For instance, (SML-style) module
systems are expressed in a purely object-oriented way by
identifying modules with objects, functors with classes, and
signatures with interfaces. It follows from this identification
that objects in SCALA can contain types as members. Fur-
thermore, these type members can be either abstract or con-
crete. The path-dependent types of the νObj calculus [25]
give a type theoretic foundation for languages like SCALA
where types can be members of objects.

In module systems, abstract type members are primarily
used for information hiding — they allow one to abstract
from concrete implementations. In this paper they are used
as a means of composition. We will see that each decomposi-
tion technique uses an abstract type member to keep the sys-
tem open for future extensions in the “dual” dimension (i.e.
the dimension in which extensions are normally not possi-
ble).

Two other type-systematic constructs explored in νObj
and implemented in SCALA also play important roles in our
solutions. Mixin composition allows one to merge indepen-
dent extensions. Explicitly typed self references overcome a

problem in the visitor-based solutions which made Wadler’s
original proposals untypable.

SCALA has been designed to interact smoothly with JAVA
or .NET host environments. All solutions in this paper com-
pile as given with the current SCALA compiler [24] and can
be executed on a Java VM, version JDK 1.4 or later.

The rest of the paper is organized as follows. Section 2
analyzes previous work on the expression problem based on
the criteria mentioned initially. Section 3 discusses an in-
dependently extensible solution to the expression problem
formulated in an object-oriented programming style. An al-
ternative approach based on a functional decomposition is
presented in Section 4. Section 5 discusses the implemena-
tion of binary methods. Section 6 concludes with an analysis
of the language features that are required by the discussed
approaches.

2. Related Work
The expression problem has been intensively studied in the
literature. However, none of the proposed solutions satisfies
all the requirements stated in Section 1. This section gives
an overview over some of the most important solutions pro-
posed in the past.

Object-oriented decomposition In object-oriented lan-
guages, the Interpreter design pattern [13] can be used to im-
plement datatypes in an extensible fashion. Here, a datatype
would be implemented by an abstract superclass which spec-
ifies the signature of methods that implement the various
processors. Concrete subclasses represent the data variants
and implement the processors. This approach makes it easy
to add new data variants simply by defining new subclasses,
but adding new processors involves modifications of the ab-
stract superclass as well as all concrete subclasses.

Functional decomposition With the Visitor design pat-
tern [13] it is possible to address the problem in a more
functional fashion. This pattern allows one to separate the
representation of data from functionality operating on such
data. Processors are encapsulated in Visitor objects which
provide for every data variant a method that handles the par-
ticular case. This approach makes it straightforward to write
new processors, but adding new data variants requires that
all existing processors are modified to include methods that
handle the new cases.

Extensible visitors Krishnamurti, Felleisen, and Friedman
propose the Extensible Visitor pattern [17], a slightly mod-
ified variant of the Visitor design pattern which makes it
possible to add both new data variants and new processors.
Unfortunately, this approach is based on type casts which
circumvent the type system and therefore make extensions
unsafe. In this pattern, all existing visitor classes have to be
subclassed whenever a new variant class is added. Otherwise
a runtime error will appear as soon as an old visitor is applied
to a new variant.

Extensible visitors with defaults Zenger and Odersky
refine the Extensible Visitor pattern into a programming
protocol in which datatype extensions do not automati-
cally entail adaptations of all existing processors and vice
versa [35, 36]. Technically, extensibility of data and func-
tionality is achieved by adding default cases to type and vis-
itor definitions; these default cases handle all possible fu-
ture extensions. While this approach allows programmers to
reuse existing visitors for new data variants and therefore
does not suffer from the runtime errors described above, it is
still not fully satisfactory, since it allows one to apply visi-
tors to data variants for which the visitor was not specifically
designed originally.

Multi-methods Programming languages supporting mul-
tiple dispatch via multi-methods provide good support for
extensibility with default cases. MultiJava [8] is a JAVA-
based programming language that allows programmers to
add new methods to existing classes without modifying
existing code and without breaking encapsulation proper-
ties. While new, externally specified methods require default
cases, internal methods (i.e. methods that are defined inside
of the corresponding class) are not subject to this restric-
tion. A precise analysis of the constraints that are required to
enable modular typechecking for such internal and external
methods is given by Millstein, Bleckner, and Chambers, in
their work on EML [21].

As opposed to all the approaches mentioned before,
multi-methods make it possible to use independent exten-
sions jointly. Furthermore, the extensibility mechanism does
not require any preplanning. On the other hand, it relies
on defaults and therefore violates our strict separate com-
pilation criteria as discussed in Section 1. Relaxed Multi-
Java [22] defers completeness and unambiguity checks of
multi-method implementations until link-time lifting the re-
quirement to provide default cases. This approach violates
both our strong static type safety and our separate compila-
tion criteria.

Generic visitors Palsberg and Jay’s Generic Visitors, also
called Walkabouts, offer a way to completely decouple data
representations from function definitions [27]. Therefore,
walkabouts are very flexible to use and to extend. But since
they rely on reflective capabilities of the underlying system,
this approach lacks static type-safety and is subject to sub-
stantial runtime penalties. Grothoff recently showed that the
performance decrease can be avoided by using runtime code
generation techniques [16].

Polymorphic variants Garrigue’s polymorphic variants
provide a solution to the expression problem using a
functional approach. It is based on a new form of alge-
braic data types with structural subtyping [14] provided by
OCAML [19]. His solution does satisfy all of the criteria we
put forward [15]. However it is quite difficult to compare
his approach with ours, since his technical foundations are

quite different. Where we use an object-oriented language
with a nominal type system, his implementation language is
functional with structural subtyping and a global namespace
for data constructors. Where we use mixin composition for
combining independent extensions, he relies on explicit for-
warding of function calls. The recursion implicit in object-
oriented self-references is expressed in his solution by self-
application.

Self types Recently, Bruce presented a way to make the
Interpreter design pattern extensible [4]. His approach is
based on the existence of a new ThisType type construct,
referring to the public interface of the self reference this
inside of a class. Like this, the meaning of ThisType
changes when a method whose signature refers to ThisType
is inherited in a subclass. This feature makes it possible to
keep the type of the data variants open for future extensions.
A severe limitation of this approach is that for type-safety
reasons, the exact runtime type of the receiver of a method
referring to ThisType has to be known at compile-time. A
further limitation is that ThisType cannot be used to make
the visitor design pattern extensible.

Generic classes Solutions to the expression problem
which rely on generic classes and F-bounds have re-
cently been proposed by Torgersen [32]. Similar to our ap-
proach, Torgersen proposes two kinds of solutions: one data-
centered solution based on an object-oriented decomposi-
tion, and a operation-centered solution based on a func-
tional decomposition using the visitor design pattern. Torg-
ersen’s solutions satisfy our first four requirements stated
in Section 1, but do not address the problem of indepen-
dent extensibility. Another drawback is the relatively exten-
sive and complex programming protocol the programmer
has to observe. For instance, his data-centered solution re-
quires a fixed point operation for all classes at each instan-
tiation, which makes it cumbersome to use the schema in
practice. His operation-centered solution relies on a clever
trick to pass a visitor object as argument to itself in order to
overcome the typing problems encountered by Wadler. How-
ever, this is not exactly an obvious technique for most pro-
grammers and it becomes progressively more expensive in
the case of several mutually recursive visitor classes. An in-
teresting variation of Torgersen’s solution uses JAVA’s wild-
cards [33] to achieve object-level extensibility, i.e. reusabil-
ity of actual expression objects across extensions.

3. Object-Oriented Decomposition
This section presents a solution of the expression prob-
lem in SCALA using an object-oriented approach. Follow-
ing Wadler’s original problem statement, we evolve a sim-
ple datatype for representing arithmetic expressions together
with operations on this type by incrementally adding new
datatype variants and new operations. An overview of the
whole scenario is given in Figure 2.

3.1 Non-Solution
We start with a single data variant Num for representing in-
teger numbers and an operation eval for evaluating expres-
sions. A first object-oriented implementation, which is not
yet extensible in all directions, is given by the following pro-
gram:

class Base0 {
trait Exp {
def eval: int

}
class Num(v: int) extends Exp {
val value = v;
def eval = value

}
}

There is a trait Exp which contains an abstract eval method.
This method is implemented in the concrete subclass Num
of Exp. Both classes are wrapped in an outer class Base0.
At the moment, this is just for packaging reasons, so that it
is always clear which language to extend. These “package
names” are also used in Figure 2 to illustrate the various
languages and their extensions.

Traits in SCALA [23] are abstract classes without state
or parameterized constructors; another way to characterize
them would be as JAVA-like interfaces that may also con-
tain inner classes and concrete implementations for some
methods. Unlike the original trait proposal [29], traits in
Scala are not different from classes. In the example above
and all examples that follow one could have also used
abstract class instead of trait.

Adding a new data variant to Base is easy: we simply
define a new subclass of Exp.

class BasePlus0 extends Base0 {
class Plus(l: Exp, r: Exp) extends Exp {
val left: Exp = l;
val right: Exp = r;
def eval = left.eval + right.eval

}
}

So far, so good. We consider next the other extension di-
mension. What needs to be done to add a new operation to
class Exp? As a concrete example, let’s say we want to add
a show method to expressions. One might try to form a new
subclass Exp1 of Exp which contains an abstract method for
show. Concrete subclasses of Num and Plus that implement
the new method would also have to be defined. However, this
does not work in general, since the left and right fields
of class Plus are of type Exp, not Exp1. Hence, the show
method of class Plus cannot follow these links to call the
show method of its subtrees. At least it cannot do this with-
out using a type cast — and type casts have been ruled out
in our problem statement.

In fact, it is believed to be impossible to add a new oper-
ation in this setup without either using type casts or dupli-
cating or rewriting code. If one forsees extensions by new
operations, it is instead recommended to use the visitor de-
sign pattern [13]. Standard visitors make it indeed possible
to add new operations, but at the price of making it impos-
sible to add new data (unless one uses type casts or code
rewriting).

3.2 Framework
Instead of visitors we use a typical object-oriented approach
to extensibility: if a member of a class is not yet known,
one should make that member abstract and implement it in
subclasses. Mainstream object-oriented languages allow the
definition of abstract methods only. Scala extends this con-
cept to other class members, including types. The following
example introduces an abstract type exp which is known to
be a subtype of the class Exp.

trait Base {
type exp <: Exp;
trait Exp {
def eval: int

}
class Num(v: int) extends Exp {
val value = v;
def eval = value

}
}

As before, trait Exp lists the signature of all available opera-
tions and thus defines an interface for all data variants. The
only data variant is implemented by class Num. This class
extends Exp with a method value which returns the corre-
sponding integer value. It also defines a concrete implemen-
tation for operation eval.

To keep the set of operations on expressions open for
future extensions, we abstract over the expression type and
use the abstract type exp whenever we want to refer to
expression objects. The current example is too simple to
illustrate this case, but it will show up in the examples that
follow. An abstract type definition introduces a new named
type whose concrete identity is unknown; type bounds may
be used to narrow possible concrete incarnations of this type.

Since we want to be able to refer to our three abstractions
exp, Exp, and Num as a whole, we wrap them into a top-
level trait Base. Base has to be subclassed in order to either
extend it, or to use it for a concrete application. The latter is
illustrated in the following program:

object BaseTest extends Base with Application {
type exp = Exp;
val e: exp = new Num(7);
Console.println(e.eval);

}

Num eval

Num
Plus

eval Num
Neg

eval

Num
Plus
Neg

eval

Num eval
show

Num
Plus
Neg

eval
show

Num
Plus
Neg

eval
dble

Num
Plus
Neg

eval
show
dble

Data Operations

Extension

Base

BaseNegBasePlus Show

BasePlusNeg

ShowPlusNegDblePlusNeg

ShowDblePlusNeg
Language

Figure 2. Evolution of a simple language Base for representing arithmetic expressions.

This program defines a top-level singleton object whose
class is an extension of trait Base. The type alias defini-
tion type exp = Exp overrides the corresponding abstract
type definition in the superclass Base, turning the abstract
type exp into a concrete one (whose identity is Exp). The
last two lines in the code above instantiate the Num class and
invoke the eval method. The clause with Application in
the header of the object definition is a mixin class composi-
tion [2] which, in this case, adds a main method to BaseTest
to make it executable. We will explain mixin class composi-
tions in the next subsection.

3.3 Data Extensions
Linear Extensions The object-oriented decomposition
scheme makes it easy to create new data variants. In the
following program we present two extensions of trait Base.
BasePlus extends our system by adding a new Plus variant,
BaseNeg defines a new Neg variant. Note that in general, we
type expressions using the abstract type exp instead of the
type defined by the concrete class Exp.

trait BasePlus extends Base {
class Plus(l: exp, r: exp) extends Exp {
val left = l;
val right = r;
def eval = left.eval + right.eval

}
}

trait BaseNeg extends Base {
class Neg(t: exp) extends Exp {
val term = t;
def eval = - term.eval;

}
}

Combining Independent Extensions We can now deploy
the two extensions independently of each other; but SCALA
also allows us to merge the two independent extensions into
a single compound extension. This is done using a mixin
class composition mechanism which includes the member
definitions of one class into another class. The following line
will create a system with both Plus and Neg data variants:

trait BasePlusNeg extends BasePlus with BaseNeg;

Trait BasePlusNeg extends BasePlus and incorporates all
the member definitions of trait BaseNeg. Thus, it inherits all
members from trait BasePlus and all the new members de-
fined in trait BaseNeg. Note that the members defined in trait
Base are not inherited twice. The mixin class composition
with trait BaseNeg only incorporates the new class members
and omits the ones that get inherited from BaseNeg’s super-
class Base [23].

Mixin class composition in SCALA resembles both the
mixin construct of Bracha [2] and the trait composition
mechanism of Schärli, Ducasse, Nierstrasz, and Black [29].
As opposed to multiple inheritance, base classes are inher-

ited only once. In a mixin composition A with B with C,
class A acts as actual superclass for both mixins B and C, re-
placing their declared superclasses. To maintain type sound-
ness, A must be a subclass of the declared superclasses of
B and C. A super reference in either B or C will refer to
a member of class A. As is the case for trait composition,
SCALA’s mixin composition is commutative in the mixins
— A with B with C is equivalent to A with C with B.

A class inheriting from A with B with C inherits mem-
bers from all three base classes. There are three rules that
govern which members get inherited:

• Concrete members in either base class replace abstract
members with the same name in other base classes,

• Concrete members of the mixin classes B and C always
replace members with the same name in the superclass A,

• If some concrete member m is implemented in both B and
C, then the inheriting class has to resolve the conflict by
giving an explicit overriding definition of m.

Unlike the original mixin and trait proposals, SCALA does
not distinguish syntactically between classes on the one hand
and mixins or traits on the other hand. Every class can be
inherited as either superclass or mixin base class. Traits in
SCALA are simply special classes without state or construc-
tors. This special case is necessary because of the principle
that base classes are inherited only once. If both B and C
have a base class T, then the two instances are unified in the
composition A with B with C. This presents no problem as
long as T is a trait, i.e. it is stateless and does not have an
explicit constructor. For non-trait base classes T, the above
mixin composition is statically illegal. The idea to have a
common syntactic construct for classes and mixins/traits is
due to Bracha [1].

3.4 Operation Extensions
Adding new operations requires more work than adding new
data variants. For instance, here is how we can add a show
method to expressions of our base language.

trait Show extends Base {
type exp <: Exp;
trait Exp extends super.Exp {
def show: String;

}
class Num(v: int) extends super.Num(v) with Exp {
def show = value.toString();

}
}

In this example, we first have to create an extended trait
Exp which specifies the new signature of all operations (the
old ones get inherited from the old Exp trait, the new ones
are specified explicitly), then we have to subclass all data
variants and include implementations of the new operations
in the subclasses. Furthermore, we have to narrow the bound
of our abstract type exp to our newly defined Exp trait. Only

this step makes the new operations accessible to clients since
they type expressions with the abstract type exp.

Note that the newly defined Exp and Num classes shadow
the former definitions of these classes in superclass Base.
The former definitions are still accessible in the context of
trait Show via the super keyword.

Shadowing vs. overriding constitutes one of the key dif-
ferences between classes in SCALA and virtual classes [20].
With virtual classes, class members override equally named
class members of a base class, whereas in SCALA the two
class members exist side by side (similar to what happens
to object fields in JAVA or C#). The overriding behavior of
virtual classes is potentially quite powerful, but poses type
safety problems due to covariant overriding. There exist pro-
posals to address the type safety problems of virtual classes
[31, 11], but the resulting type systems tend to be compli-
cated and have not yet been explored fully.

Linear extensions We can adapt our previously defined
systems so that even data variants defined in extensions of
Base support the show method. Again, this is done with a
mixin class composition. This time we mix the new Show
trait into extensions of existing traits such as BasePlusNeg
of Section 3.3. Since all our data variants have to support
the new show method, we have to create subclasses of the
inherited data variants which support the new Exp trait.

trait ShowPlusNeg extends BasePlusNeg with Show {
class Plus(l: exp, r: exp)
extends super.Plus(l, r) with Exp {
def show = left.show + "+" + right.show;

}
class Neg(t: exp) extends super.Neg(t) with Exp {
def show = "-(" + term.show + ")";

}
}
object ShowPlusNegTest extends ShowPlusNeg

with Application {
type exp = Exp;
val e: exp = new Neg(

new Plus(new Num(7), new Num(6)))
Console.println(e.show + " = " + e.eval);

}

The previous program also illustrates how to use the new
system. The singleton object ShowPlusNegTest first closes
the (still open) definition of type exp, then it instantiates
an expression involving all different kinds of data variants.
Finally, both the eval and the show method are invoked.

Tree transformer extensions So far, all our operations
took elements of the tree only as their receiver arguments.
We now show what is involved when writing tree trans-
former operations, which also return tree elements as re-
sults. As an example, let’s add a method dble to the ex-
pression type defined in trait BasePlusNeg. Method dble is
supposed to return a new expression which evaluates to a
number which is twice the value of the original expression.

Instead of first introducing the new operation in the base
system (which would also be possible), we choose to specify
it directly in an extension. The following program illustrates
the steps required to add method dble to the expression type
defined in trait BasePlusNeg.

trait DblePlusNeg extends BasePlusNeg {
type exp <: Exp;
trait Exp extends super.Exp {
def dble: exp;

}

def Num(v: int): exp;
def Plus(l: exp, r: exp): exp;
def Neg(t: exp): exp;

class Num(v: int) extends super.Num(v) with Exp {
def dble = Num(v * 2);

}
class Plus(l: exp, r: exp)

extends super.Plus(l, r) with Exp {
def dble = Plus(left.dble, right.dble);

}
class Neg(t: exp) extends super.Neg(t) with Exp {
def dble = Neg(t.dble);

}
}

Note that we cannot simply invoke the constructors of the
various expression classes in the bodies of the dble methods.
This is because method dble returns a value of type exp, the
type representing extensible expressions, but all data variant
types like Plus and Num extend only trait Exp which is a su-
pertype of exp. We can establish the necessary relationship
between exp and Exp only at the stage when we turn the ab-
stract type into a concrete one (with the type alias definition
type exp = Exp). Only then, Num is also a subtype of exp.
Since the implementation of dble requires the creation of
new expressions of type exp, we make use of abstract fac-
tory methods, one for each data variant. The concrete fac-
tory methods are implemented at the point where the abstract
type exp is resolved. For instance, they can be implemented
at the point where we use the new dble method:

object DblePlusNegTest extends DblePlusNeg
with Application {

type exp = Exp;
def Num(v: int): exp = new Num(v);
def Plus(l: exp, r: exp): exp = new Plus(l, r);
def Neg(t: exp): exp = new Neg(t);
val e: exp = Plus(Neg(Plus(Num(1), Num(2))),

Num(3));
Console.println(e.dble.eval);

}

All examples presented here are type-safe, in the sense
that it is impossible to mix data from different languages,
nor to invoke an operation on a data object which does not

understand it. For instance, here is what happens when we
try to compile a program which violates both requirements.

object erroneous {
val t1 = new ShowPlusNegTest.Num(1);
val t2 = new DblePlusNegTest.Neg(t1);

/ / ^
/ / t ype mismatch ;
/ / found : ShowPlusNegTest .Num
/ / requ ired : DblePlusNegTest . Exp

val t3 = t1.dble;
/ / ^
/ / value dble i s not a member o f
/ / ShowPlusNegTest .Num
}

Combining independent extensions Finally we show how
to combine the two traits ShowPlusNeg and DblePlusNeg
to obtain a system which provides expressions with both a
double and a show method. In order to do this, we have to
perform a deep mixin composition of the two traits; i.e. we
have to combine the two top-level traits ShowPlusNeg and
DblePlusNeg as well as the traits and classes defined inside
of these two top-level traits. Since SCALA does not provide
a language mechanism for performing such a deep mixin
composition operation, we have to do this by hand, as the
following program demonstrates:

trait ShowDblePlusNeg extends ShowPlusNeg
with DblePlusNeg {

type exp <: Exp;
trait Exp extends super[ShowPlusNeg].Exp

with super[DblePlusNeg].Exp;

class Num(v: int)
extends super[ShowPlusNeg].Num(v)

with super[DblePlusNeg].Num(v)
with Exp;

class Plus(l: exp, r: exp)
extends super[ShowPlusNeg].Plus(l, r)

with super[DblePlusNeg].Plus(l, r)
with Exp;

class Neg(t: exp)
extends super[ShowPlusNeg].Neg(t)

with super[DblePlusNeg].Neg(t)
with Exp;

}

For merging the two Exp traits defined in ShowPlusNeg
and DblePlusNeg, we extend one of the two traits and
mix the other trait definition in. We use the syntactic form
super[...] to specify to which concrete Exp trait we are
actually referring. The same technique is used for the other
three classes Num, Plus, and Neg.

The previous examples show that the object-oriented ap-
proach described in this section supports both data and op-
eration extensions and provides good support for combining

independent extensions on demand. While combining exten-
sions with new data variants is relatively simple to imple-
ment, combining extensions with different new operations is
technically more difficult.

4. Functional Decomposition
For applications where the data type implementations are
fixed and new operations are added frequently, it is often
recommended to use the Visitor design pattern. This pattern
physically decouples operations from data representations.
It provides a double dispatch mechanism to apply externally
defined operations to data objects. In this section we will
show how to use techniques similar to the ones presented in
the previous section to implement this pattern in an extensi-
ble fashion, allowing both data and operation extensions and
combinations thereof.

4.1 Framework
The following program presents a framework for a visitor-
based implementation of expressions supporting an eval op-
eration. In this framework, we use the type defined by trait
Exp directly for representing expressions. Concrete expres-
sion classes like Num implement the Exp trait which defines a
single method accept. This method allows programmers to
apply a visitor object to the expression. A visitor object is an
encoding for an operation. It provides methods of the form
visitC for the various expression classes C. The accept
method of a concrete expression class simply selects its cor-
responding visit method in the given visitor object and ap-
plies it to its encapsulated data.

trait Base {
trait Exp {
def accept(v: visitor): unit;

}
class Num(value: int) extends Exp {
def accept(v: visitor): unit =
v.visitNum(value);

}
type visitor <: Visitor;
trait Visitor {
def visitNum(value: int): unit;

}
class Eval: visitor extends Visitor {
var result: int = _;
def apply(t: Exp): int = {
t.accept(this); result

}
def visitNum(value: int): unit = {
result = value;

}
}

}

To keep the set of expression classes open, we have to ab-
stract over the concrete visitor type. We do this with the ab-
stract type visitor. Concrete implementations of the visitor

interface such as class Eval typically implement its bound
Visitor.

Class Eval uses a variable result for returning values.
The definition var result: int = _ initializes this vari-
able with a default value. Using a variable is necessary since
the visitNum method has as result type unit, and therefore
cannot return a non-trivial result. It would seem more natu-
ral to return a result directly from the visit methods. Then the
Visitor class would have to be parameterized with the type
of the results. However, in that case the abstract type name
visitor would be bounded by the type constructor Visitor.
Such abstract type constructors have not yet been studied in
detail in the context of νObj and consequently have not been
implemented in SCALA.

To facilitate the processing of result values in clients, the
Eval class provides instead an apply method which returns
the most recent result value. The body of this method ex-
hibits a technical problem. We have to call t.accept(this),
but the type Eval is not a subtype of visitor, the type re-
quired by the accept method of expressions. In SCALA we
can overcome this problem by declaring the type of this ex-
plicitly. Such an explicitly typed self reference is expressed
in the program above with the clause :visitor directly fol-
lowing the name of class Eval. The type assigned by such an
explicitly typed self reference is arbitrary; however, classes
with explicitly typed self references can only be instantiated
if the type defined by the class is a subtype of the type as-
signed to this. Since Eval is not a subtype of visitor we
cannot create instances of Eval in the context of the top-level
trait Base. For creating new instances of Eval we would have
to resort to factory methods.

Note that explicitly typed self references are different
from Bruce’s mytype construct [6], even though the two
techniques address some of the same problems. Unlike
mytype, explicitly typed self references do not automatically
change covariantly with inheritance. Therefore, they are a
good fit with standard subtyping, whereas mytype is a good
fit with matching [5].

4.2 Data Extensions
Linear extensions New data variants are added to the sys-
tem by including new visit methods into the Visitor trait
and by overriding the abstract type visitor with the ex-
tended Visitor trait. The next program extends Base by
adding a new Plus expression class.

trait BasePlus extends Base {
type visitor <: Visitor;
trait Visitor extends super.Visitor {
def visitPlus(left: Exp, right: Exp): unit;

}
class Plus(left: Exp, right: Exp) extends Exp {
def accept(v: visitor): unit =
v.visitPlus(left, right);

}

class Eval: visitor extends super.Eval
with Visitor {

def visitPlus(l: Exp, r: Exp): unit = {
result = apply(l) + apply(r);

}
}

}

The top-level trait BasePlus also defines a new Eval class
implementing the refined Visitor trait which can also han-
dle Plus objects.

In the same way, we can now create another extension
BaseNeg which adds support for negations.

trait BaseNeg extends Base {
type visitor <: Visitor;
trait Visitor extends super.Visitor {
def visitNeg(term: Exp): unit;

}
class Neg(term: Exp) extends Exp {
def accept(visitor: v): unit =
visitor.visitNeg(term);

}
class Eval: visitor extends super.Eval

with Visitor {
def visitNeg(term: Exp): unit = {
result = -apply(term);

}
}

}

Combining independent extensions We now compose the
two independent extensions BasePlus and BaseNeg such that
we have a system providing both, addition and negation
expressions. In the previous object-oriented decomposition
scheme such a combination was achieved using a simple
mixin composition. In the functional approach, a deep mixin
composition is required to achieve the same effect:

trait BasePlusNeg extends BasePlus with BaseNeg {
type visitor <: Visitor;
trait Visitor extends super.Visitor

with super[BaseNeg].Visitor;

class Eval: visitor extends super.Eval
with super[BaseNeg].Eval
with Visitor;

}

The program extends the previous extensions BasePlus and
mixes in the other extension BaseNeg. All concrete visitor
implementations such as Eval are also merged by mixin
composing their implementations in the two base classes.
The SCALA type system [25] requires that abstract types
such as visitor are refined covariantly. Since the bounds of
visitor in the two previous extensions are not compatible,
we have to explicitly override the abstract type definition of
visitor such that the new bound is a subtype of both old
bounds.

The following implementation shows how to use a lan-
guage in the functional decomposition scheme. As usual,
the scheme is the same for base language and extensions.
In every case, we close the operations under consideration
by fixing the visitor type with a type alias.

object BasePlusNegTest extends BasePlusNeg {
type visitor = Visitor;
val op: visitor = new Eval;
Console.println(op.apply(
new Plus(new Num(1), new Neg(new Num(2)))));

}

4.3 Operation Extensions
Adding new operations to a visitor-based system is straight-
forward, since new operations are implemented simply with
new classes implementing the visitor interface. The follow-
ing code shows how to add a new operation Dble to the
BasePlusNeg system. The Dble operation returns an expres-
sion representing the double value of a given expression.

trait DblePlusNeg extends BasePlusNeg {
class Dble: visitor extends Visitor {
var result: Exp = _;
def apply(t: Exp): Exp = {
t.accept(this); result }

def visitNum(value: int): unit = {
result = new Num(2 * value)

}
def visitPlus(l: Exp, r: Exp): unit = {
result = new Plus(apply(l), apply(r))

}
def visitNeg(term: Exp): unit = {
result = new Neg(apply(term))

}
}

}

In a similar fashion we can create a second, independent ex-
tension ShowPlusNeg which adds an operation for displaying
expressions in textual form.

trait ShowPlusNeg extends BasePlusNeg {
class Show: visitor extends Visitor {
var result: String = _;
def apply(t: Exp): String = {
t.accept(this); result

}
def visitNum(value: int): unit = {
result = value.toString()

}
def visitPlus(l: Exp, r: Exp): unit = {
result = apply(left) + "+" + apply(right)

}
def visitNeg(term: Exp): unit = {
result = "-(" + apply(term) + ")"

}
}

}

Combining Independent Extensions We can now imple-
ment a system which supports both operations Dble and
Show by using a simple shallow mixin class composi-
tion involving the two orthogonal independent extensions
DblePlusNeg and ShowPlusNeg:

trait ShowDblePlusNeg extends DblePlusNeg
with ShowPlusNeg;

This example illustrates a duality between functional and
object-oriented approaches when it comes to combining
independent extensions. The functional decomposition ap-
proach requires a deep mixin composition for merging data
extensions but only a shallow mixin composition for merg-
ing operation extensions. For the object-oriented approach,
the situation is reversed; data extensions can be merged us-
ing shallow mixin composition whereas operation exten-
sions require deep mixin composition.

Hence, the fundamental strengths and weaknesses of both
decomposition approaches still show up in our setting, albeit
in a milder form. A merge of extensions in a given dimension
which was impossible before now becomes possible, but at
a higher cost than a merge in the other dimension.

5. Binary Methods
The previous examples discussed operations where the tree
appeared as receiver or as method result. We now study
binary methods, where trees also appear as a non-receiver
arguments of methods. As an example, consider adding
a structural equality test eql to the expression language.
x eql y should evaluate to true if x and y are struc-
turally equal trees. The implementation given here is based
on object-oriented decomposition; the dual implementation
based on functional decomposition is left as an exercise for
the reader. We start with an implementation of the eql oper-
ation in the base language.

trait Equals extends Base {
type exp <: Exp;
trait Exp extends super.Exp {
def eql(other: exp): boolean;
def isNum(v: int) = false;

}
class Num(v: int) extends super.Num(v) with Exp {
def eql(other: exp): boolean = other.isNum(v);
override def isNum(v: int) = v == value;

}
}

The idea is to implement eql using double dispatch. A
call to eql is forwarded to a test method which is specific
to the receiver type. For the Num class this test method is
isNum(v: int). A default implementation of isNum which
always returns false is given in class Exp. This implemen-
tation is overridden in class Num.

5.1 Data Extensions
An extension with additional data types requires additional
test methods which are analogous to isNum. Hence, we need
to use a combination of our schemes for data and operation
extensions. Here is an extension of class Equals with Plus
and Neg types.

trait EqualsPlusNeg extends BasePlusNeg
with Equals {

type exp <: Exp;
trait Exp extends super[BasePlusNeg].Exp

with super[Equals].Exp {
def isPlus(l: exp, r: exp): boolean = false;
def isNeg(t: exp): boolean = false;

}
class Num(v: int) extends super[Equals].Num(v)

with Exp;
class Plus(l: exp, r: exp) extends Exp

with super.Plus(l, r) {
def eql(other: exp): boolean =
other.isPlus(l, r);

override def isPlus(l: exp, r: exp) =
(left eql l) && (right eql r)

}
class Neg(t: exp) extends Exp

with super.Neg(t) {
def eql(other: exp): boolean = other.isNeg(t);
override def isNeg(t: exp) = term eql t

}
}

This extension adds test methods of the form
isPlus(l: exp, r: exp) and isNeg(t: exp) to class
Exp. Since the addition of these test methods constitutes an
operation extension, we need to refine the abstract type exp,
similar to what was done in Section 3.4.

Note that SCALA allows any binary method to be used
as an infix operator. An expression such as left eql l is
syntactic sugar for left.eql(l).

Note also that the order of inheritance is reversed in
classes Plus and Neg when compared to class Num. This is
due to the restriction that the superclass A in a mixin com-
position A with B must be a subclass of the declared su-
perclass of the mixin B. In our example, Num’s superclass is
Num as given in Equals, which is a subclass of class Exp as
given in Equals. On the other hand, the superclass of Plus
is the current definition of Exp, which is a subclass of Exp
as given in BasePlusNeg. The difference in the inheritance
order is due to the fact that classes Num and Plus/Neg them-
selves come from different base classes of EqualsPlusNeg.
Num comes from class Equals whereas Plus and Neg come
from class BasePlusNeg.

5.2 Operation Extensions
A desirable property of binary methods is that they adapt
automatically to (operation) extensions. This property holds
in our setting, as is demonstrated by the following exam-

ple, which adds the show method to the classes in trait
EqualsPlusNeg by mixin-composing them with the contents
of class ShowPlusNeg from Section 3.4.

trait EqualsShowPlusNeg extends EqualsPlusNeg
with ShowPlusNeg {

type exp <: Exp;
trait Exp extends super[EqualsPlusNeg].Exp

with super[ShowPlusNeg].Exp;
class Num(v: int)
extends super[EqualsPlusNeg].Num(v)

with super[ShowPlusNeg].Num(v)
with Exp;

class Plus(l: exp, r: exp)
extends super[EqualsPlusNeg].Plus(l, r)

with super[ShowPlusNeg].Plus(l, r)
with Exp;

class Neg(term: exp)
extends super[EqualsPlusNeg].Neg(term)

with super[ShowPlusNeg].Neg(term)
with Exp;

}

As can be seen from this example, we apply precisely the
deep mixin composition scheme for merging operation ex-
tensions — compare with trait ShowDblePlusNeg in Sec-
tion 3.4. This shows that no special techniques are needed
to adapt binary methods to operation extensions.

We conclude with a main program which uses the eql and
show methods. Again, no special provisions are needed for
binary methods.

object EqualsShowPlusNegTest extends EqualsPlusNeg
with Application {

type exp = Exp;
val term1 = new Plus(new Num(1), new Num(2));
val term2 = new Plus(new Num(1), new Num(2));
val term3 = new Neg(new Num(2));
Console.print(term1.show + "=" +

term2.show + "? ");
Console.println(term1 eql term2);
Console.print(term1.show + "=" +

term3.show + "? ");
Console.println(term1 eql term3);

}

6. Discussion
We have presented two families of type-safe solutions to
the expression problem, which are dual to each other. One
family is based on object-oriented decomposition, the other
on functional decomposition using the visitor pattern. Either
family makes it easy to extend a system in one dimension —
data extensions for object-oriented decomposition and oper-
ation extensions for functional composition. Extensions in
the dual dimension are made possible by abstracting over a
type — the tree type in the case of object-oriented decom-
position and the visitor type in the case of functional de-

composition. Extensions in the dual dimension require a bit
more overhead than extensions in the primary dimension. In
particular, the merge of independent extensions in the dual
dimension requires a deep mixin composition as compared
to a shallow mixin composition for a merge in the primary
dimension.

This principle applies to several variants of operations:
simple operations that access the tree only as the receiver
of operation methods, tree transformers that return trees as
results, and binary methods that take trees as additional
arguments.

All implementation schemes discussed in this paper are
sufficiently simple to be directly usable by programmers
without special support for program generation. We con-
clude that they constitute a satisfactory solution to the ex-
pression problem in its full generality.

The examples in this paper also demonstrate that
SCALA’s abstract type members, mixin composition and ex-
plicitly typed self references provide a good basis for type-
safe extensions of software systems. Other approaches to
this problem have also been investigated; in particular family
polymorphism [10] based on virtual classes [20] or delega-
tion layers [26]. Compared with these approaches, SCALA’s
constructs expose the underlying mechanisms to a higher de-
gree. On the other hand, they have a clearer type-theoretic
foundation, and their type soundness has been established in
the νObj core calculus.

As Rémy [28] showed recently, it is possible to translate
the essence of our implementation into OCAML. While the
implementation in SCALA is based on a nominal type sys-
tem relying on abstract type members, mixins, and explic-
itly typed self references, the OCAML encoding is subject to
structural subtyping, making use of modules, module inclu-
sion, and class abstractions with explicitly typed self refer-
ences.

Acknowledgments Philippe Altherr, Vincent Cremet, Bu-
rak Emir, Stéphane Micheloud, Nikolay Mihaylov, Michel
Schinz, and Erik Stenman have contributed to the SCALA
design and implementation, which was partially supported
by grants from the Swiss National Fund under project NFS
21-61825, the Swiss National Competence Center for Re-
search MICS, Microsoft Research, and the Hasler Founda-
tion. We also thank Philip Wadler, Shriram Krishnamurthi,
Kim Bruce, Jonathan Aldrich, William Cook, Don Batory,
and Matthias Felleisen for useful discussions on the expres-
sion problem.

References
[1] G. Bracha. Personal communication, July 2002.
[2] G. Bracha and W. Cook. Mixin-based inheritance. In

N. Meyrowitz, editor, Proceedings of the Conference on
Object-Oriented Programming: Systems, Languages, and
Applications, pages 303–311, Ottawa, Canada, 1990. ACM
Press.

[3] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making
the future safe for the past: Adding genericity to the Java
programming language. In Proceedings of OOPSLA ’98,
October 1998.

[4] K. B. Bruce. Some challenging typing issues in object-
oriented languages. Electronic Notes in Theoretical Com-
puter Science, 82(8), 2003.

[5] K. B. Bruce, A. Fiech, and L. Petersen. Subtyping is
not a good “Match” for object-oriented languages. In
Proceedings of the European Conference on Object-Oriented
Programming, pages 104–127, 1997.

[6] K. B. Bruce, A. Schuett, and R. van Gent. PolyTOIL: A type-
safe polymorphic object-oriented language. In Proceedings of
the European Conference on Object-Oriented Programming,
pages 27–51, 1995.

[7] J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel.
Towards a taxonomy of software change. To appear in
Journal of Software Maintenance and Evolution: Research
and Practice (Special Issue on USE), 2004.

[8] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein.
MultiJava: Modular open classes and symmetric multiple
dispatch for Java. In Proceedings of the Conference on
Object-Oriented Programming: Systems, Languages, and
Applications, pages 130–145. ACM Press, October 2000.

[9] W. R. Cook. Object-oriented programming versus abstract
data types. In J. W. de Bakker, W. P. de Roever, and
G. Rozenberg, editors, Foundations of Object-Oriented
Languages, REX School/Workshop, Noordwijkerhout, The
Netherlands, May/June 1990, volume 489, pages 151–178.
Springer-Verlag, New York, NY, 1991.

[10] E. Ernst. Family polymorphism. In Proceedings of the
European Conference on Object-Oriented Programming,
pages 303–326, Budapest, Hungary, 2001.

[11] E. Ernst. Higher-order hierarchies. In Proceedings of the
European Conference on Object-Oriented Programming,
LNCS 2743, pages 303–329, Heidelberg, Germany, July
2003. Springer-Verlag.

[12] R. B. Findler and M. Flatt. Modular object-oriented
programming with units and mixins. In Proceedings of the
ACM International Conference on Functional Programming,
volume 34(1), pages 94–104, Baltimore, Maryland, 1999.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[14] J. Garrigue. Programming with polymorphic variants. In ML
Workshop, September 1998.

[15] J. Garrigue. Code reuse through polymorphic variants.
In Workshop on Foundations of Software Engineering,
Sasaguri, Japan, November 2000.

[16] C. Grothoff. Walkabout revisited: The Runabout. In
Proceedings of the 17th European Conference on Object-
Oriented Programming, Darmstadt, Germany, June 2003.

[17] S. Krishnamurthi, M. Felleisen, and D. Friedman. Synthesiz-
ing object-oriented and functional design to promote re-use.
In European Conference on Object-Oriented Programming,
pages 91–113, 1998.

[18] T. Kühne. The translator pattern—external functionality with

homomorphic mappings. In Proceedings of TOOLS 23, USA,
pages 48–62, July 1997.

[19] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon.
The Objective Caml system release 3.00, documentation and
user’s manual, April 2000.

[20] O. L. Madsen and B. Møller-Pedersen. Virtual Classes: A
powerful mechanism for object-oriented programming. In
Proceedings OOPSLA’89, pages 397–406, October 1989.

[21] T. Millstein, C. Bleckner, and C. Chambers. Modular
typechecking for hierarchically extensible datatypes and
functions. In Proceedings of the International Conference
on Functional Programming, Pittsburg, PA, October 2002.

[22] T. Millstein, M. Reay, and C. Chambers. Relaxed Multi-
Java: Balancing extensibility and modular typechecking. In
Proceedings of the Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, Anaheim, USA,
October 2003.

[23] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth,
S. Micheloud, N. Mihaylov, M. Schinz, E. Stenman, and
M. Zenger. An overview of the Scala programming language.
Technical report, EPFL, Switzerland, July 2004.

[24] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Micheloud,
N. Mihaylov, M. Schinz, E. Stenman, and M. Zenger. Scala
distribution. École Polytechnique Fédérale de Lausanne,
Switzerland, January 2004. http://scala.epfl.ch

[25] M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A nominal
theory of objects with dependent types. In Proceedings of
the European Conference on Object-Oriented Programming,
Darmstadt, Germany, July 2003.

[26] K. Ostermann. Dynamically composable collaborations with
delegation layers. In Proceedings of the 16th European
Conference on Object-Oriented Programming, Malaga,
Spain, 2002.

[27] J. Palsberg and C. B. Jay. The essence of the visitor pattern.
Technical Report 5, University of Technology, Sydney, 1997.

[28] D. Rémy and J. Garrigue. OCaml im-
plementation of the “Independently Extensi-
ble Solutions to the Expression Problem” code.
http://pauillac.inria.fr/ remy/work/expr/,
2004.

[29] N. Schärli, S. Ducasse, O. Nierstrasz, and A. Black. Traits:
Composable units of behavior. In Proceedings of the 17th
European Conference on Object-Oriented Programming,
Darmstadt, Germany, June 2003.

[30] C. Szyperski. Independently extensible systems – software
engineering potential and challenges. In Proceedings of the
19th Australian Computer Science Conference, Melbourne,
Australia, 1996.

[31] M. Torgersen. Virtual types are statically safe. In 5th
Workshop on Foundations of Object-Oriented Languages,
San Diego, CA, USA, January 1998.

[32] M. Torgersen. The expression problem revisited — Four
new solutions using generics. In Proceedings of the 18th
European Conference on Object-Oriented Programming,
Oslo, Norway, June 2004.

[33] M. Torgersen, C. P. Hansen, E. Ernst, P. vod der Ahé,
G. Bracha, and N. Gafter. Adding wildcards to the Java

programming language. In Proceedings SAC 2004, Nicosia,
Cyprus, March 2004.

[34] P. Wadler and et al. The expression problem. Discussion on
the Java-Genericity mailing list, December 1998.

[35] M. Zenger and M. Odersky. Extensible algebraic datatypes
with defaults. In Proceedings of the International Conference
on Functional Programming, Firenze, Italy, September 2001.

[36] M. Zenger and M. Odersky. Implementing extensible compil-
ers. In ECOOP Workshop on Multiparadigm Programming
with Object-Oriented Languages, Budapest, Hungary, June
2001.

	The Expression Problem
	Related Work
	Object-Oriented Decomposition
	Non-Solution
	Framework
	Data Extensions
	Operation Extensions

	Functional Decomposition
	Framework
	Data Extensions
	Operation Extensions

	Binary Methods
	Data Extensions
	Operation Extensions

	Discussion

