
Wild FJ

Mads Torgersen

University of Aarhus, Denmark

madst@daimi.au.dk

Erik Ernst

University of Aarhus, Denmark

eernst@daimi.au.dk

Christian Plesner Hansen

OOVM, Aarhus, Denmark

plesner@quenta.org

Abstract
This paper presents a formalization of wildcards, which is
one of the new features of the Java programming language in
version JDK5.0. Wildcards help alleviating the impedance
mismatch between generics, or parametric polymorphism,
and traditional object-oriented subtype polymorphism. They
do this by quantifying over parameterized types with differ-
ent type arguments. Wildcards take inspiration from several
sources including use-site variance, and they could be con-
sidered as a way to introduce a syntactically light-weight
kind of existential types into a main-stream language. This
formalization describes the mechanism, in particular the
wildcard capture process where the existential nature of
wildcards becomes evident.

1. Introduction
This paper presents a formalization of thewildcardsfeature
of the forthcoming release of the Java 2 Standard Edition
Development Kit version 5.0 (J2SE 5), along with a descrip-
tion and motivation of the choices in the design process that
gave rise to this particular formalization, and some formal
safety properties.

The core idea of wildcards is quite simple. Plain gener-
ics in the Java programming language allows classes like
the Java platform API classList to be parameterized
with different element types, e.g.,List〈Integer〉 and
List〈String〉. Plain generics does not provide a general
way to abstract over such different kinds of lists to ex-
ploit their common properties as lists, although polymor-
phic methods may provide an approximation of such an ab-
straction in specific situations. A wildcard is a special type
argument ‘?’ ranging over all possible specific type argu-
ments, so thatList〈?〉 is the type of all lists, regardless of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

FOOL 2005 15 January 2005, Long Beach, California
Copyright c© 2005 ACM . . . $5.00

their element type. Moreover, wildcard type arguments may
be equipped with bounds, e.g.,List〈? extends Number〉
is the type of all lists whose type argument is a subtype of
Number. Wildcards make subtype polymorphism and para-
metric polymorphism play together more smoothly.

Subtype polymorphism originated in the object-oriented
world, in SIMULA [11]. Parametric polymorphism—also
known as genericity or generics—originated in the world of
functional programming [21]. Both are powerful abstraction
mechanisms, but there is a certain impedance mismatch be-
tween them, giving rise to the need for some kind of media-
tor.

In the mean time, various forms of parametric polymor-
phism have been added to a number of object-oriented lan-
guages over the past two decades [20, 28, 14]. Similarly,
a process has been ongoing to extend the Java program-
ming language with parametric polymorphism in the form
of parameterized classes and polymorphic methods, i.e.,
classes and methods with type parameters. Moreover, a sim-
ilar mechanism is specified in the upcoming future standard
of C# [12, 13].

The process towards parametric polymorphism in the
Java programming language involved many contributions
from several research groups. A number of proposals were
presented, including GJ and others [26, 2, 23, 4, 8]. The
proposals explored the design space and advanced the field
of programming language research. However, it became in-
creasingly clear that parametric polymorphism on its own
lacked some of the flexibility that we enjoy with object-
oriented subtype polymorphism, thus calling for a better
integration of the two.

These integration problems can be reduced in various
ways, as demonstrated by several proposed designs [10, 9,
3, 5, 6]. An approach by Thorup and Torgersen [29], known
as use-site variance, seems particularly successful in inte-
grating the two types of polymorphism without unwanted ef-
fects on other parts of the language. The approach was later
developed, formalized, and proven type sound by Igarashi
and Viroli [17] in the context of the Featherweight GJ cal-
culus [16]. This work addressed typing issues, but was never
implemented full-scale. The present formalization exposes
the differences between the outcome of the actual language
design process and the formal model in [16], including a

number of cases where the expressive power and flexibility
have been enhanced.

The wildcards feature was developed in a joint project
between a group of researchers (which includes the authors
of this paper) from the University of Aarhus, Denmark,
and Sun Microsystems, Inc., CA, in which we set out to
investigate if the theoretical proposals could be adapted and
matured to fit naturally into the Java language, and to initiate
a robust and efficient implementation.

The project was successful in both regards. The core lan-
guage mechanism has been reworked syntactically and se-
mantically into wildcards. The wildcards construct has been
fully integrated with other language features—in particular
with polymorphic methods and type inference—and it has
been applied extensively in the Java platform APIs, lead-
ing to enhanced expressiveness, simpler interfaces, and more
flexible typing.

The implementation within the Java compiler is an ex-
tension of the generics implementation based on GJ. GJ en-
hances the type checker to handle type arguments of classes
and methods, and it erases parametric information to pro-
duce type safe non-generic bytecode. Our implementation
of wildcards further extends the type checker, and the asso-
ciated modifications are part of the J2SE 5 release.

Although the implementation is specific to the Java pro-
gramming language, wildcards should also be well suited
for other object-oriented languages having or planning an
implementation of parametric polymorphism, including e.g.
C#and Scala [24].

The development process has raised a wealth of issues
whose resolution have interesting theoretical consequences,
which we describe by means of the formal calculus pre-
sented in this paper. The contributions described in this paper
include:

• The formalization of the wildcard mechanism by means
of a formal calculus in the style of Featherweight Java [16]

• A new usage of existential types, formalizing the so-
called capture conversion process of J2SE 5

• Some safety properties, as well as an argument that safety
properties of this calculus support similar properties of
the actual implementation

Section 2 informally reviews wildcards by example. A
more thorough presentation at the language level can be
found in [30]. In Sect. 3 we describe the design process that
lead to the calculus and its inference rules. Section 4 presents
the calculus by its syntax, typing rules, dynamic semantics,
and safety properties. Related work is covered in Sect. 5, and
Sect. 6 concludes.

2. Some Examples
Without type parameters, a collection type such asListmay
hold any kind of objects. However, often all elements in-
serted into such a list have a non-trivial common supertype,

and elements extracted from the list will be used under that
type via a dynamic cast. The addition of type parameters
allows for types on the formList〈T 〉 whereT is the ele-
ment type, thus making this convention explicit and ensur-
ing type safety. Objects inserted must then have that type,
and in return extracted objects are known to have that type,
avoiding the unsafe cast. However, the improved precision
in the typing makes it harder to treat a list as “just a list”,
even when the specific element type is irrelevant or need not
be known exactly. For instance, a method could take aList
as an argument and only be interested in clearing it or read-
ing properties like the length where the type argument is of
no importance. As long as the element type is known at the
call site, this may be expressed with plain generics using a
polymorphic method with a dummy type variable:

〈X〉 void m1(List〈X〉 list) { ... }

The solution is to give a name to the actual element type
of the list and then ignore it in the body of the method.
This works as long as inference can provide the actual type
argument at each call site, but it is not a clean solution.

Moreover, plain generics cannot be used to declare a field
or local variable with a type which denotes some kind of
List, with no knowledge or only partial knowledge about
the element type. This is obviously a problem in cases where
the generic class provides many features which are inde-
pendent of the actual type parameters, such as the now
generic classesjava.lang.Class and java.lang.Enum
in the Java platform APIs; but it is also a problem in general
because of the lack flexibility and abstraction in the plain
generic type. This problem can be solved by using awild-
card, ‘?’, in place of the type parameter:

private List〈?〉 list1;

This expresses thatlist is some type of list whose element
type is irrelevant; with a bound, e.g.,? extends Number, it
would express that the element type is allowed to vary within
a set of subtypes or supertypes (here: subtypes ofNumber).
Similarly, a method can be declared to take an argument
which is aList of anything:

void m2(List〈?〉 list) { ... }

The typeList〈?〉 is a supertype ofList〈T 〉 for any T ,
which means that any type of list can be assigned into the
list field or given as an argument to the method. Moreover,
we cannot put objects into the list since we do not know
the actual element type. However, we are allowed to extract
objects from it typed asObject: even though we do not
know the exact type of the elements, we do know that they
will be Objects.

In general, assume that the parameterized classC is de-
clared as follows:

class C〈X extends B 〉 { ... }

When calling a method on an object of typeC〈?〉, methods
that returnX will have a return type taken from the declared
bound ofX, namelyB , whereas a method that expects an
argument of typeX can not be called1.

A wildcard ‘?’ should not be considered to be the name
of a specific type. For instance, the two occurrences of ‘?’
in Pair〈?,?〉 are not assumed to stand for the same type,
and even for thelist shown above, the ‘?’ in its type may
stand for two different types before and after an assignment,
as inlist = new List〈String〉() followed bylist = new
List〈Integer〉().

Unbounded wildcards solve a number of problems with
abstraction over generic types, but one capability known
from polymorphic methods is missing, namely the ability to
specify bounds on the type arguments. For example, plain
generics can be used to define the following polymorphic
method which takes an argument which is a list whose ele-
ment type is a subtype ofNumber:

〈X extends Number〉 void m3(List〈X〉 list) { .. }

As before, this only works for methods and not for fields,
because it depends on a specific choice ofX at each call
site rather than expressing thetype of those lists whose
type argument is a subtype ofNumber. On the other hand,
wildcards withboundsdo express that type directly and may
be used with fields, too:

List〈? extends Number〉 list2 = ...;
void m4(List〈? extends Number〉 list) { ... }

This expresses thatlist2 is some list whose element type is
a subtype ofNumber, and the methodm4 can be called with
any list as long as its element type is a subtype ofNumber,
including list2 even though the exact type argument of
list2 is not known. As before, code usinglist2 and code
in the body ofm4 using the argumentlist cannot write
(anything butnull) to the lists since the actual element types
are unknown, but we are now allowed to read objects under
the typeNumber:

list2.set(0,new Float(0.0)); // Compile error

Number num = list2.get(0); // OK

Parameterized types withextends-bounded wildcards are
covariant in the bounds:List〈? extends Integer〉 is a
subtype ofList〈? extends Number〉, which is only natural
because all objects having the former type will also have the
latter type. In our calculus, this is expressed by means of a
subtyping relationship between existential types.

An extends-bounded wildcard sets an upper bound on
the corresponding unknown type argument, and alower
bound can be expressed usingsuper. For example, the type
List〈? super String〉 is a supertype ofList〈T 〉 if T is

1 Except with the argumentnull, which has all class types. This is of little
practical value, and [17] actually disallows it, but it is a natural consequence
of our subtyping rules and we did not want to complicate these rules in order
to disallow corner cases.

a supertype ofString. References of this type may re-
fer to aList〈String〉, a List〈Comparable〈String〉〉 or
a List〈Object〉2. In contrast toextends-bounds,super-
bounds give rise to contravariant subtyping. For instance,
the type Comparator〈? super Number〉 is a subtype of
Comparator〈? super Integer〉.

A super-bound is useful in many places, for instance with
consumers of objects such asComparators. The Java plat-
form classTreeSet represents a set by an ordered tree. One
way to define the ordering is to construct theTreeSet with
a specificComparator object implementing the following
interface:

interface Comparator〈X〉 {
int compare(X fst, X snd);

}

To construct aTreeSet〈String〉we provide aComparator
capable of comparingStrings. A Comparator〈String〉
could do this, but so could e.g. aComparator〈Object〉,
sinceStrings areObjects. Hence, an appropriate type is
Comparator〈? super String〉, because it contains exactly
the comparators which are able to compare strings.

The task of choosing appropriate types can be moved
from the programmer to the compiler, in connection with
type inference at polymorphic method invocations. As-
suming the definitions below, type inference for the in-
vocationchoose(intSet, stringList) has to select a
type for X that is a supertype of bothSet〈Integer〉 and
List〈String〉:

〈X〉 X choose(X a, X b) { ... }
Set〈Integer〉 intSet = ...
List〈String〉 stringList = ...

With plain generics, different parameterizations of the same
class are incomparable, so the only such type isObject.
This is so even thoughSet〈X〉 andList〈X〉 share the super
interfaceCollection〈X〉. With wildcards it is possible to
express this commonality through the typeCollection〈?〉,
and hence a more specific type thanObject can be inferred.
Moreover, sinceX is also the return type, the improved in-
ference establishes that aCollection is returned, which al-
lows the call site to use it as such without a cast.

In general, given two parameterized classes with different
type arguments at the same parameter position, plain gener-
ics cannot unify the two to infer a type involving that param-
eter. With wildcards it becomes possible:? can always be
used and a more precise bound may be available. The result
is more accurate type inference, and better preservation of
information about returned results.

The abovementioned implementation ofjavac contains
the improved type inference. In this paper we do not model
the improved inference directly. Rather, we assume that in-

2 In fact it may even refer to aList〈Comparable〈?〉〉, since
Comparable〈?〉 is also a supertype ofString.

ference has taken place in such a way that type arguments
to polymorphic method invocations have been chosen and
expressed explicitly in the syntax; however, we also assume
that this type inference inserts a special marker ‘?’ at the po-
sitions where the so-called wildcard capturing invocations
of polymorphic methods occur. This makes it possible for us
to model wildcard capture explicitly, cleanly separated from
type inference in general.

3. Background
The technique of use-site variance was first proposed by
Thorup and Torgersen in [29] as a kind of covariant “mode”
of type parameter passing to generic classes, denoted by a
leading ‘+’ on type arguments. In this proposal, the type
List<+Number> would be a common supertype for all
Lists whose element types are subtypes ofNumber, e.g.
List<Integer> and List<Float>. Since the exact ele-
ment type of aList<+Number> is unknown at any specific
time, the type system must statically forbid contravariant
access, i.e. method calls with the element type in argument
position, such as e.g.add(). This proposal is referred to as
use-site covariancebecause it applies a covariance annota-
tion at the site where a generic class isusedrather than where
it is declared. Covariant types also enjoy a covariant suvb-
type relation, e.g.,List<+Integer> <: List<+Number>.

The proposal was informal, but in [17] Igarashi and Vi-
roli not only formalized the mechanism, but also introduced
a dual contravariant mode, denoted by ‘-’ and a combined
so called “bivariant” mode denoted by ‘*’. Moreover they
produced some safety results including soundness. This pro-
posal we refer to asvariant parametric types, following the
terminology of Igarashi and Viroli.

The wildcards project started out as an attempt to inte-
grate the typing benefits offered by variant parametric types
in the full-blown Java language, to see if a construct suitable
for inclusion in a subsequent Java release could be devel-
oped. Indeed the first versions used a syntax similar to the
proposal of Igarashi and Viroli.

However, we quickly felt that the type system of Igarashi
and Viroli was too constraining in practice. Especially the
“generification” of the core libraries (such as the Collection
API) led to this conclusion.

A number of seemingly different limitations—discussed
in the following subsections—turned out to share a common
solution: a pervasive redesign which became reflected in
both the syntax, the implementation and the name of the
mechanism. “Wildcards”, as it came to be called, unifies the
three variant modes of parameterization into a single one,
focusing with the wildcard parameter “?” on the fact that
the particular type argument is unknown, and reducing the
“variances” to optional bounds delimiting the range of the
wildcard. In our calculus, the somewhat arbitrary restriction
that bounds should beeitherupper or lower is also lifted.

In this section we investigate how the so-calledcapture
conversionwhich is described in the Java Language Spec-
ification (JLS for short) [15] addresses all these issues by
introducing symbolic representatives of the unknown types
“hidden” behind wildcards, in the form of synthetic type
variables generated “under the hood” by the compiler. This
is a rather unconventional approach, and naturally raises the
question: “Is it safe?” It is therefore interesting to investigate
it formally, and we proceed by describing how this approach
in our calculus is transformed to an essentially equivalent
one based on a variant of existentially quantified types.

3.1 Capture Conversion

Inspired by existential types, the type system of Igarashi and
Viroli uses an approach of “opening” variant parameters to
type variables with appropriate bounds. Consider the follow-
ing declarations:

class Box<X extends Object> {
void put(X x) { ... }
X get() { ... }

}
Box<+T> box;

To type the callbox.get() the type signature of the method
get() is looked up in a classBox<Y> where the fresh type
variable Y is designated by the type environment of the
lookup to have the upper boundT. Thus, the found type of
get() is ()→Y. However, to get the type ofbox.get()
we must “close” the return type so as not to contain any of
the fresh type variables (i.e.Y in this case). This is done by
promoting the return typeY to its (Y-free) upper boundT.

If we tried the same with aBox<-T> we would find that
no promotion was defined for the close operation, so calling
theget() method would not be well typed.

The type system of the Java programming language (as
described in the JLS), takes a more radical approach, called
“capture conversion”. The “open” process above is applied
to every expression. The fresh type variables are made glob-
ally accessible, and the opened type is never closed again.
Given the aboveBox class and a corresponding declaration

Box<? extends T> box;

The type of the expressionbox is thenBox<Y> whereY <: T
is a globally fresh type variable. By standard rules the type
of box.get() is thusY.

The justification for this approach is as follows. If an ex-
pression has typeBox<? B> whereB is a possibleextends-
or super-bound, then at runtime this expression must eval-
uate to aBox of somespecific typeS satisfying the bound
B. The freshly introduced type variableY is simply a sym-
bolic representation of that typeS, summarizing what we
know about it. Compared to Igarashi and Viroli, we main-
tain names for the unknown types such asS, whereas the
typing rules in [17] apply both open and close immediately

in the same rule, thus forgetting about some relations be-
tween types.

This approach means that the type of an expression never
contains wildcards at the top level. Therefore, typing of
expressions may in a lot of situations be performed exactly
as with plain generics. Some consequences:

• Subtyping is defined so that top-level wildcards only oc-
cur on the right-hand site, whereas the left hand side is
always capture converted. This simplifies the subtype re-
lation a good deal compared to variant parametric types.

• Type inference does not need to be complicated by wild-
cards in expression types, although it must of course still
be improved to be able toinfer types with wildcards.

• The type system must be extended a little bit to be able
to handle type variables with lower bounds (incurred by
super-bounded wildcards).

On top of this, however, capture conversion leads to a num-
ber of “free” generalizations of the type system which ad-
dress a number of practical problems with variant parametric
types. These will be discussed one-by-one in the following.

3.1.1 Read-only and write-only

As we saw above, the approach of Igarashi and Viroli in
effect stipulates the removal of certain methods from the
interface of classes with variant parameters. For instance,
Box<-T> is considered write-only, and therefore does not
give access to theget() method. We found the read-
only/write-only interpretation of co- and contravariance to
be somewhat misleading, since you can still e.g. modify a
“read-only” list by e.g. calling itsclear() method.

But furthermore it is also unnecessarily restrictive. There
is no reason why we shouldn’t be able to read from aBox<?
super T>, even if we know only that we are reading some
kind of Objects. We therefore extend capture conversion so
that the fresh type variable acquires not only the bounds of
the wildcard, but also the declared bounds of the correspond-
ing type argument in the generic class. An example:

Box<? super T> contrabox;

The type of the expressioncontrabox is Box<Z> whereZ
is globally freshandZ :> T (the bound from the wildcard)
andZ <: Object (the bound from the declaration ofBox).
Therefore the assignment

Object o = contrabox.get();

is allowed, because the type ofcontrabox.get() is Z, and
Z <: Object by declaration.

3.1.2 F-bounds

At first glance, one might envision the above expressiveness
obtained in the Igarashi/Viroli system by allowing the close
operation to promote a type variable such asZ above to
its upper bound. However, consider the situation where the

declared bound of the type parameter is an F-bound; i.e.
refers to the parameter itself, as in:

class PandoraBox<X extends Box<X>>
extends Box<X> { ... }

PandoraBox<?> pbox;

We may openpbox to the typePandoraBox<Z> whereZ <:
Box<Z>, but how do we close the typeZ of the expression
pbox.get()?Z occurs in its own upper bound, so there is no
obviousZ-free supertype (save the uninterestingObject).
KeepingZ around means that the type ofpbox.get() re-
mains precisely described, and allows assignments such as:

Box<?> box = pbox.get();

3.1.3 Type promotion

Even when the close operation does succeed, it sometimes
needs to discard some type information in order to provide
an expressible type. More precisely, whenever a close oper-
ation on a type seeks to eliminate a type variable that oc-
curs as a type argument of that type, the type variable must
be re-promoted to a variant parameter. If however it occurs
more than once, the information is lost that all occurrences
denoted the same type. Even worse, if it occurs in nested pa-
rameterizations, the promotion must be applied also to en-
closing types. Let us giveBox a few more methods:

class Box<X extends Object> {
Pair<X,X> asPair() { ... }
Box<Box<X>> nest() { ... }

}

Given a covariantBox<+T> box, the type rules of variant
parametric types would promote the type ofbox.asPair()
to Pair<+T,+T>, forgetting that the two elements of the
pair are known to have the same type. In the expres-
sion box.nest() the naive promotion toBox<Box<+T>>
does not work, since this is not necessarily a supertype of
Box<Box<Z>> for anyZ <: T. Hence, the result type must
be further weakened toBox<+Box<+T>>, forgetting the in-
variance of the outerBox. Igarashi and Viroli describe more
contrived situations in which no most specific supertype ex-
ists, so that an arbitrary choice must be made.

Wildcards in Java sidestep all these issues by avoiding
the promotion step altogether. With a covariantBox<? ex-
tends T> box the expressionbox has the typeBox<Z> for
a globally freshZ where Z <: T. Thus, box.asPair()
simply has the typePair<Z,Z>, maintaining the informa-
tion that both components of the pair have the same type,
whereasbox.nest() retains its invariance with the type
Box<Box<Z>>.

3.1.4 Wildcard capture

A place where capture conversion has a large impact is in the
type inference applied to polymorphic method calls in Java.
A function like

<X> List<X> immutableList(List<X> l)

from the java.util.Collections class seems to be
callable only with an invariant (non-wildcard) list. Indeed
that is the case with variant parametric types. In order to
provide for variant lists one would have to give the weaker
signature

List<*> immutableList(List<*> l)

which when called with invariantLists would lose the in-
formation that the returned list has the same element type as
the argument. Alternatively one would have to provide both
signatures (plus one each for co- and contravariant types!)
to cater for all possibilities with code duplication as a result.
According to personal communication [25] this issue was
part of the reason for abandoning the adoption of use-site
variance in the Scala language.

However, with wildcards alist declared asList<?>
list will have the typeList<W> for fresh type variable
W, so in a callimmutableList(list), the method will
simply be inferred to have the type parameterW, wherefore
the return type of the method call will beList<W>. This
means that polymorphic methods can be used as a means to
provide names for the types hidden behind wildcards within
the scope of their body, much in the same way as theopen
operation on existential types.

As an example consider a stack implementation and an
external function to swap the top elements:

class Stack<X> {
void push(X x) { ... }
X pop() { ... }

}
private <Y> void doSwap(Stack<Y> s) {
Y y1 = s.pop();
Y y2 = s.pop();
s.push(y1);
s.push(y2);

}
void swap(Stack<?> s) { doSwap(s); }

Here the polymorphicdoSwap() function uses its type argu-
mentY to type the temporary variables of its body. However,
the applicability of the method to all stacks is advertised by
the much simpler signature of theswap() function, which
uses wildcard capture to delegate to the privatedoSwap().

Real examples of this approach can be found in the
java.util.Collections utility methodsshuffle() and
reverse().

Capture may also involve multiple type variables with
non-trivial, mutually dependent bounds. Consider the fol-
lowing classes:

class Node<N extends Node<N,E>,
E extends Edge<N,E>> { ... }

class Edge<N extends Node<N,E>,
E extends Edge<N,E>> { ... }

class Graph<N extends Node<N,E>,
E extends Edge<N,E>> {

N n; E e;
Graph(N n, E e) { this.n=n; this.e=e; }

}

Using these classes we can write some polymorphic methods
and use them:

<N extends Node<N,E>, E extends Edge<N,E>>
void copy(Graph<N,E> g) {

create(g.n,g.e);
}
<N extends Node<N,E>, E extends Edge<N,E>>
Graph<N,E> create(N n, E e) {

return new Graph<N,E>(n,e);
}
Graph<?,?> builder() {

Graph<?,?> g = ...;
return copy(g);

}

The point is that it is possible3 to package multiple mutually
dependent types as type arguments to a wrapper object,
g; to use types with wildcards,Graph〈?,?〉, to hide the
precise type arguments; and to use wildcard capture, in the
call to copy, to regain named use of these type arguments.
Thus, consistency is ensured without burdening client code
with dependencies upon the exact values of those mutually
dependent type arguments.

3.2 Wild FJ

In order to explain and reason about the properties of wild-
cards we have developed a descendant of Featherweight GJ
(FGJ) formalizing the type rules described above in a small
and manageable theoretical setting. Here we discuss our rea-
sons for shaping the calculus the way we do, whereas Sec-
tion 4 presents the details of the calculus, which we callWild
FJ (WFJ).

We take FGJ as a starting point rather than the core calcu-
lus developed by Igarashi and Viroli for variant parametric
types, because our modeling of wildcards is fundamentally
different from their treatment of variance. As compared to
FGJ we have omitted constructors, which are only there in
order to be a subset of Java, and we have skipped the treat-
ment of casts, which in FGJ play a central role in proving
correctness of the erasure approach to generics implementa-
tion, but shed no light on wildcards.

3.2.1 Bounds

Compared to Java (with wildcards) as well as FGJ we have
generalized the treatment of bounds. In general, everywhere
bounds occur we allow (but do not require) both upper and

3 In fact, the current J2SE 5 compiler contains a bug which makes it reject
this example, but the formalization in this paper does support this kind of
wildcard capture, and a bug fix for the compiler is upcoming.

lower bounds simultaneously; i.e. in the declarations of type
variables for classes and methods, in wildcards and in type
environments. We need combined upper and lower bounds
to model synthetic type variables anyway, and this scheme
has proven to extend nicely (i.e. with negligible overhead) to
the rest of the calculus.

The elements of a type environment are therefore of the
form X∈B/B. whereB/ andB. are optional upper and lower
bounds of the form/S and.T (readextends S andsuper T)
for typesS andT.

3.2.2 Modeling capture conversion

Capture conversion is described above as introducing fresh
type variables into the global scope as a result of local typ-
ing. While this provides a tremendously lightweight im-
plementation strategy for a compiler written in an object-
oriented language, it is not in good accordance with the tra-
ditional compositional nature of formal typing rules.

In order to approach compositionality, we may observe
that, being globally fresh, type variables introduced by cap-
ture conversion can only occur in the type of an expression
if they are introduced by a subexpression (or the expression
itself). It is therefore reasonable to let the typing rules re-
turn these new type variables and their bounds along with
the type of a given expression. The type variables can then
be propagated upwards as necessary.

A set of unknown, bounded type variables (i.e. a type
environment) wrapped with a type in which they occur free:
this calls for an existential notation, as in:

∃(Z / T).Box<Z>

Note that this does not mean that we add existential types
to the syntax of Wild FJ. Instead we keep a separate level
of semantic types which are syntactic types wrapped up
with type environments in this existential fashion. Thus,
existential types are always at the top-level and may not
occur nested within other types.

The equivalent of capture conversion is a helper function
snap, which given a syntactic type converts all its top-level
wildcards into type variables and produces a semantic (exis-
tential) type instead. This process of conversion into a more
general type scheme models the fact, odd as it may seem,
that expressions in Java can have types that are not express-
ible within the language itself. While it is at odds with tra-
ditional notions of linguistic purity, it does not create prob-
lems as such in our calculus. It does however suggest that the
transformation could be performed as a preprocessing step
of Wild FJ source code into an alternative syntax (“∃J”?)
based entirely on existential types. In order not to depart too
much from the specification of Java wildcards we choose
however to perform the translation “on demand” within the
type system itself.

3.2.3 Type inference

FGJ does not model type inference as part of the calculus.
Rather, type parameters for polymorphic methods are ex-
plicit, thought to have been inferred by a preprocessing step.
Indeed, building type inference into the type system itself
would break its soundness proof. This is because soundness
is based on a subject-reduction theorem which takes the type
of the program at every evaluation step and shows that it is
a subtype of the previous one. Type inference guesses type
parameters based on the best available type information, but
as type information improves during program evaluation, in-
ference might guess differently (better) for each step, mak-
ing subsequent types of the evaluating program incompatible
with previous ones.

Unfortunately, wildcard capture as described above hinges
on the ability of type inference to pass on synthetic type vari-
ables that by design cannot be expressed explicitly in syntax.
This seems to call for type inference to be present as part of
the type system itself, which conflicts with the above line of
argument.

Our solution is a compromise: we generally expect type
inference to be performed as a batch process, but allow it to
insert a special marker ’?’ for method type arguments that
are to be determined by wildcard capture. The type system
then contains a severely watered-down version of inference,
represented by thecapture function, that serves to replace
these stars with types derived from the value arguments to
the method. Since this involves no guessing, and hence no
opportunity to improve over time (it is already precise) it is
not in conflict with the above observations.

3.2.4 Subtyping

In the Java compiler, the type system is of course only em-
ployed before the execution of the program. This means es-
pecially that subtyping is only applied between the types
of expressions (expressed as capture converted types with-
out top-level wildcards) as subtypes and the types of vari-
ables and method arguments, to which the expressions are
assigned, as supertypes.

In a calculus, however, in order to prove subject reduc-
tion we must show subtyping between the types of two dif-
ferent expressions, namely the program before and after a
given evaluation step. These existential types may be very
different, having chosen different fresh type variables dur-
ing the typing process etc. We might have chosen to deal
with this by stating the subject reduction property in much
more convoluted terms, prescribing how the two types were
to be matched up. However, convoluted properties involve
convoluted proofs, and it would then remain to be shown
that this was in fact still a subject reduction property despite
its alternative formulation.

We have chosen instead to describe subtyping itself in
terms of existential types. Rather than having capture con-
verted types on the left hand side as in Java, we have existen-

tial types on both sides. Note that this means that, in contrast
to Igarashi and Viroli [17], we do not need subtyping rules
concerned with types with wildcard arguments.

The subtyping rules are rather standard for existential
types, which means that they deal naturally with differently-
named or unused type variables. Thus, subject reduction can
be stated in straightforward terms. This does mark a depar-
ture from subtyping as described by the JLS, albeit one that
actually simplifies the rules, and it remains an interesting ap-
plication of the calculus to show that its subtyping relation
does in fact generalize the JLS semantics.

4. The Calculus
In the following we present the syntax, semantics, and typing
rules for the WFJ calculus.

4.1 Syntax and Auxiliary Functions

In this section we present the syntax of the WFJ calculus and
the auxiliary functions used by the type system and the dy-
namic semantics. The syntax of the WFJ calculus is shown in
Fig. 1. We generally follow well-known notational conven-
tions, especially from [16]. In particular, we indicate the syn-
tactic structure of an expression by means of metavariables,
which are the non-terminals in the grammar along with the
lexical metavariables shown at the bottom of Fig. 1. We use
overbars, as inT, to indicate a sequence of elements.

Expressions are variables, field lookup, method invoca-
tions (e.<P>m(e)), or object creation (new N(e)). Method in-
vocations are always annotated with explicit type arguments,
which may be types or the special marker? that indicates a
request for wildcard capture. A type is either a type variable
(X) or an application of a parameterized class to type argu-
ments (C<A>), which are again types or wildcards. We some-
times writeC for C<>. A subset of the types must be sepa-
rately recognizable, namely class typesN applied solely to
types, not wildcards, and the unionK of these types and type
variables. Bounds (B) consist of upper and lower bounds,
and they may be present or absent (•). Class declarations
(Q) contain type variables with bounds, a superclass, field
and method declarations. A constructor is implicit, taking
one argument for each field. Method declarations (M) con-
tain type variables with bounds, return type, method name,
arguments, and a body that returns the result of evaluating
an expression.

Type environments∆ map type variables to bounds. An
entry is writtenX∈ B and type variables are looked up by
application ∆(X). dom(∆) signifies the domain of∆, and
type environments are concatenated using juxtaposition∆∆′.
Since type environments are mappings, we require that con-
catenated environments have disjoint domains.

Variable environmentsΓ map formal method arguments
to their syntactic types. An entry is writtenx: T, and vari-
ables are looked up by applicationΓ(x).

Finally, existential types are of the form (∃∆.K), where
the type variables indom(∆) may occur freely inK. Through-
out the calculus we assume an implicitα-conversion rule for
existential types, allowing for a consistent renaming of the
type variables in∆, as well as the adding and removal of
type variables to∆ which are unused (do not occur free) in
K. In the following, sometimes we concatenate type environ-
ments originating from several existential types. Here theα-
conversion ensures that type variables are transparently re-
named when necessary to make the concatenation possible,
i.e., to ascertain that the domains of the concatenated envi-
ronments are disjoint.

The auxiliary functions are shown in Fig. 2. The function
fields is used to obtain the fields of a given class along
with their types. It yields the empty result for the predefined
classObject, and for a class type it inserts the actual type
argumentsT to get the fields of the class itself, adding them
to the inherited fields from the recursive application offields.

The functionmtypeprovides the type of a method in con-
text of a class type, represented by its formal type arguments
with bounds followed by the types of its value arguments
and its return type. The two cases handle methods defined
directly in the class and methods inherited from a superclass,
respectively.

The functionmbodyis used to obtain the list of arguments
(x) along with the method body (e0), again in context of a
class type and with two cases corresponding to the ones for
mtype. Note thatmbodyis invoked with types (V) rather than
the mixture of types and? (P), because wildcard capture has
already occurred when this function is applied.

The functionbound1 extracts the declared upper bound of
a type variableX from an environment∆. If X exists in∆, but
the upper bound is absent, the result isObject. The function
lbound1 is similar, but returns the declared lower bound and
is undefined when the lower bound is absent.

The functionboundrecursively appliesbound1 to find the
least class type that is an upper bound of the given class type
or variable, based on the environment∆. A short hand for
applyingboundto existential types is also provided.

The calculus is based on existential types, and they are
created from syntactic types by means of thesnap func-
tion. The effect ofsnapon class types is to convert all top-
level wildcard arguments to type variables, which are then
inserted in the type environment of the resulting existential
type. The actual conversion is done by the helper function
fix, which scans through a list of type arguments producing
new type variables and bounds for every wildcard it encoun-
ters. The bounds are obtained by callingmergewith the wild-
card bound (if present) and the declared bound (if present) of
the given type parameter. Given both,mergewill select the
wildcard bound, which is ensured by well-formedness to be
a tighter bound than the declared bound. The type variables
and bounds produced byfix andmergeare reassembled by

Syntax:
d,e ::= x | e.f | e.<P>m(e) | new N(e) expressions
S,T,U,V ::= C<A> | X types
A ::= T | ? B type arguments
P ::= T | ? method type parameters
N ::= C<T> class types
K,L ::= N | X class types and var.s
B ::= B/ B. bounds
B/ ::= /T | • upper bounds
B. ::= .T | • lower bounds
Q ::= class C<X B>/N { T f; M } class declarations
M ::= <X B> T m(T x) { return e; } method declarations

E,F ::= ∃∆.K existential types
∆ ::= /0 | ∆,X∈B type environments

Metavariables:
f field names
C,D class names
X,Y,Z type variables
x,y,z variables
m method names

Figure 1. Syntax of the WFJ calculus

snapinto the type environment used in the resulting existen-
tial type.

Note that the work ofsnap and its helper function is
purely syntactic—there is no analysis of the semantics of the
involved types. This supports the suggestion of Sect. 3.2.2
that the translation from syntactic to existential types would
be well suited for a preprocessing step instead of being
embedded in the calculus.

Finally, thecapturefunction formalizes the wildcard cap-
ture process. Its role is to perform the simple type inference
of method type arguments which is needed when a provided
argument is ‘?’, as explained in Sect. 3.2.3. This function is
used in a context where there is an invocation of a method,
which in this calculus implies that there is a list of actual
type arguments as well as a receiver, a method name, and
some actual value arguments. The intuition behind the five
arguments ofcapture∆(P,X,T,K) are as follows:

• The type environment∆ provides bounds for the free type
variables in the remaining four arguments.

• P is an actual type argument which is being translated. It
is a typeU or a capture marker?; the former is passed
through unchanged, and the latter is resolved using the
rest of the arguments.

• X is the formal type argument taken from the method
declaration. It is used to find a location in the value
argument types of the method where the ‘captured’ type
can be found.

• T is the list of formal value argument types, and it is
searched in order to find the position of the formal
type argumentX as a top-level type argument to a class
C<. . .X . . .>.

• K is the list of actual value argument types. Using the
above information, this is where the result is extracted.

In summary, the wildcard capture process proceeds as fol-
lows: Choose a formal value argument typeTi which is a
class typeC<A> usingX as one of its top-level type argu-
ments (A j). Find the class type at the same position in the
list of actual argument typesK j . Find a supertypeC<A′> of
K j which is an instance of the class typeC where we found
X above. Finally, select the type argument inA′ from the po-
sition j whereX was found inA. If A′j is a type then it is the
result of the capture operation.

Note that ifX occurs in more than one position, the type
rule for method invocation ensures that the types found at
these positions are equal.

4.2 Subtyping rules

The WFJ subtype rules are shown in Fig. 3. Subtyping gener-
ally takes place in the realm of existential types (∃∆.K), and
subtyping for syntactic types (T) is lifted to existential types
by means ofsnap, as shown in rule (WS-SYNTACTIC).

The existential subtype rules are as follows. (WS-TRANS)
gives transitivity. (WS-VAR) and (WS-LVAR) perform en-
vironment lookup. (WS-SUBCLASS) uses the declared sub-
classing relation to construct a corresponding subtyping

Field lookup:

fields(Object) = • (F-OBJECT)

class C<X B>/N { S f; M } fields([T/X]N) = U g
(F-CLASS)

fields(C<T>) = U g, [T/X]S f

Method type lookup:

class C<X B>/N { S f; M } <Y B′> U m(U x) { . . . } ∈ M
(MT-CLASS)

mtype(m,C<T>) = [T/X](<Y B′>U→U)

class C<X B>/N { S f; M } m 6∈ M
(MT-SUPER)

mtype(m,C<T>) = mtype(m, [T/X]N)

Method body lookup:

class C<X B>/N { S f; M } <Y B′> U m(U x) { return e0; } ∈ M
(MB-CLASS)

mbody(<V>m,C<T>) = x.[T/X,V/Y]e0

class C<X B>/N { S f; M } m 6∈ M
(MB-SUPER)

mbody(<V>m,C<T>) = mbody(<V>m, [T/X]N)

Upper bounds:

∆(X) = • B.

bound1∆(X) = Object

∆(X) = /T B.

bound1∆(X) = T

∆(X) = B/ .T

lbound1
∆(X) = T

bound1∆(X) = C<A>

bound∆(X) = C<A>

bound1∆(X) = Y bound∆(Y) = C<A>

bound∆(X) = C<A>
bound∆(C<A>) = C<A>

bound∆∆′(K′) = C<A> snap(C<A>) = ∃∆′′.N

bound∆(∃∆′.K′) = ∃∆′∆′′.N

Creating existential types:

snap(X) = ∃.X
class C<Y B0>�N {...} fix(A,B0) = (T,X,B) ∆ = X∈ [T/Y]B

snap(C<A>) = ∃∆.C<T>

fix(A,B0) = (T,X,B)

fix(T :: A,B0 :: B0) = (T :: T,X,B)

fix(A,B0) = (T,X,B) X fresh

fix(? B :: A,B0 :: B0) = (X :: T,X :: X,merge(B,B0) :: B)

fix(•,•) = (•,•,•)

merge(• •,B/ B.) = B/ B. merge(/T •,B/ B.) = /T B. merge(• .S,B/ B.) = B/ .S
merge(/T .S,B/ B.) = /T .S

Capture:

capture∆(U,X,T,K) = U
Ti = C<A> A j = X ∆ ` Ki <: C<A′> A′ j = V

capture∆(?,X,T,K) = V

Figure 2. Auxiliary functions

∆ ` ∃∆′.X <: ∃∆′.bound1∆∆′(X) (WS-VAR) ∆ ` ∃∆′. lbound1
∆∆′(X) <: ∃∆′.X (WS-LVAR)

∆ ` E <: E′′ ∆ ` E′′ <: E′
(WS-TRANS)

∆ ` E <: E′

class C<X B>/N { . . . }
(WS-SUBCLASS)

∆ ` ∃∆′.C<T> <: ∃∆′. [T/X]N

∆∆′ ` U ∈ [U/X]B
(WS-ENV)

∆ ` ∃∆′. [U/X]K <: ∃X∈B.K
∆ ` snap(S) <: snap(T)

(WS-SYNTACTIC)
∆ ` S <: T

∆ ` T ∈ • • (WB-NONE)
∆ ` S <: T

(WB-LOWER)
∆ ` T ∈ • .S

∆ ` T <: S ∆ ` T ∈ • B.
(WB-UPPER)

∆ ` T ∈ /S B.

Figure 3. WFJ subtyping and bounds checking rules

relation. (WS-ENV) essentially expresses that any correct
instantiation (i.e., choice of type arguments satisfying the
bounds) creates a subtype. Note that there is no reflexivity
rule—it emerges as a special case of (WS-ENV), usingX for
U andX∈B for ∆′. Moreover, by (WS-ENV), α-equivalent
existential types are also mutual subtypes, as we would ex-
pect.

The bounds check rules simply state that any type satis-
fies the missing bounds, that a typeT satisfies a lower bound
if that lower bound is a subtype ofT, analogously for up-
per bounds, and for two bounds additionally that the lower
bound must be a subtype of the upper bound.

4.3 Well-formedness

Well-formedness is required in the premises of typing rules,
and the meaning of these requirements are specified in
Fig. 4. In particular, type variables are well-formed if defined
in the environment, the classObject is well-formed, and
classes applied to general type arguments are well-formed
if the type arguments are well-formed and thesnapof them
satisfies the bounds. Wildcard arguments are well-formed if
the types mentioned in their bounds are well-formed. Well-
formedness thus ensures that wildcard bounds are either ab-
sent or are tight enough to satisfy the declared bounds of the
class they occur in.

4.4 Typing rules

The WFJ typing rules are shown in Fig. 5. A variable is
typable with thesnap of the syntactic type it has in the
variable environmentΓ.

A field lookup is typed by finding the type of the receiver
(e0), taking the upper bound of that (to find the least upper
bound which is an existential type over a class type), looking
up the fields of that class, and takingsnapof the type of the
field.

Method invocation is typed by finding the class of the up-
per bound of the receiver type as before, using that to find a
method type, capturing any? markers in the type arguments

P, checking that the resulting actual type argumentsV satisfy
the declared bounds for the method type arguments, that the
actual argumentse have types that are subtypes of the value
argument typesU, and applyingsnapto the return type. The
resulting existential type must include all the type environ-
ments thatKmay depend on, i.e.,∆0 from the receiver bound,
∆ from the actual value arguments, and∆′ from thesnapof
the method return type. The implicitα-conversion can take
care of eliminating unused type variables from the resulting
type environment.

4.5 Reduction rules

The WFJ reduction rules are shown in Fig. 6. We have
made the evaluation order more explicit than in other pa-
pers including [16], because this is necessary in order to
make wildcard capture work. In particular, all value argu-
ments to a method invocation must be fully evaluated before
(WR-INVK) can be applied, i.e., before the method can be
called. Otherwise, the reduction rules are rather straightfor-
ward. For field lookup the receiver is a value and its class is
available, so we can find the fields of that class and select
the corresponding constructor argument. For method invo-
cation the receiver classN is known, so it is easy to find the
method type. The actual value arguments,v, are values, so
their classes are available, too, in empty type environments.
Wildcard capture also works in the empty environment, be-
causeN does not contain type variables, and similarly for the
method body. Finally, the method invocation works likeβ-
reduction, by substituting actuals for formals (including the
receiver) in the body of the method. The concruence rules
are standard.

4.6 Properties

We state the subject reduction theorem. A proof is in
progress, and we expect to publish it in a later version of
this work. This of course is an entirely vacuous statement as
far as validity of the theorem goes, but we are nevertheless
optimistic.

∆ ` • • ok
∆ ` T ok

∆ ` • .T ok

∆ ` T ok

∆ ` /T • ok

∆ ` T ok ∆ ` S ok ∆ ` S <: T

∆ ` /T .S ok

∆ ` B ok
(WF-?)

∆ ` ? B ok
∆ ` Object ok (WF-OBJECT) ∆ ` ? ok (WF-STAR)

X ∈ dom(∆)
(WF-VAR)

∆ ` X ok

class C<X B>�N {...} ∆ ` A ok snap(C<A>) = ∃∆′.C<T> ∆∆′ ` T ∈ [T/X]B
(WF-CLASS)

∆ ` C<A> ok

if mtype(m,N) = <Y′ B′>T′ → T′ then B = [Y/Y′]B′ ∧ T = [Y/Y′]T′ ∧ Y∈B ` T <: [Y/Y′]T′
(WF-METHOD)

override(m,N,<Y B>T→T)

Figure 4. WFJ well-formedness rules

Expression Typing:

∆;Γ ` x : snap(Γ(x)) (WT-VAR)

∆;Γ ` e0 : E0 bound∆(E0) = ∃∆0.N0

fields(N0) = T f snap(Ti) = ∃∆′.K
(WT-FIELD)

∆;Γ ` e0.fi : ∃∆0∆′.K

∆ ` P ok ∆;Γ ` e0 : E0 bound∆(E0) = ∃∆0.N0 ∆;Γ ` e : ∃∆.K
∆1 = ∆∆0∆ mtype(m,N0) = <YB>U→ U V = capture∆1(P,Y,U,K)

∆1 ` V ∈ [V/Y]B ∆1 ` K <: [V/Y]U snap([V/Y]U) = ∃∆′.K
(WT-INVK)

∆;Γ ` e0.<P>m(e) : ∃∆0∆∆′.K

∆ ` N ok fields(N) = T f ∆;Γ ` e : E ∆ ` E <: snap(T)
(WT-NEW)

∆;Γ ` new N(e) : ∃.N

Method Typing:

∆ ` B′,T,T ok ∆ = Y∈B′,X∈B
∆; x : T,this : C<X> ` e0 : E ∆ ` E <: snap(T)

class C<X B>/N { . . . } override(m,N,<Y B′>T→ T)
(WT-METHOD)

<Y B′> T m(T x) { return e0; } OK in C<X B>

Class Typing:

X∈B ` B,N,T ok M OK in C<X B>
(WT-CLASS)

class C<X B>/N { T f; M } OK

Figure 5. WFJ typing rules

Computation:

/0; /0 ` v : ∃.N
fields(N) = T f

(WR-FIELD)
v.fi → vi

/0; /0 ` v : ∃.N /0; /0 ` v : ∃.N mtype(m,N) = <Y B>U→ U
V = capture/0(P,Y,U,N) mbody(<V>m,N) = x.e0

(WR-INVK)
v.<P>m(v)→ [v/x,v/this]e0

Congruence:

e→ e′
(WRC-FIELD)

e.f→ e′.f

e→ e′
(WRC-INV-RECV)

e.<P>m(e)→ e′.<P>m(e)

ei → e′i
(WRC-INV-ARG)

e.<P>m(...ei ...)→ e.<P>m(...e′i ...)

ei → e′i
(WRC-NEW-ARG)

new C(...ei ...)→ new C(...e′i ...)

Figure 6. WFJ reduction rules

THEOREM 1 (Subject Reduction).If /0; /0 ` e : E ande→ e′

then /0; /0 ` e′ : E′ for someE′ such that/0 ` E′ <: E

4.6.1 Transferring results to Java

The subtyping rules in the JLS [15] have been formalized in
Fig. 7. The rules for reflexivity, transitivity, variable lookup,
and subclassing are straightforward. The rule (JS-SNAP)
expresses that the JLS approach to performingsnap is to
do it on the left hand side of a subtyping judgement. This
corresponds to doing it whenever the type of an expression
evaluation must be computed, whereas the right hand side is
never subject to this treatment.

The following theorem says that the JLS notion of sub-
typing includes WFJ subtyping. In other words, programs
which are correct WFJ programs will also be correct pro-
grams in a calculus that only differs from WFJ by using JLS
subtyping. A proof of this property is under construction, but
is not yet complete.

THEOREM 2 (WFJ subtype implies JLS subtype).Assume
that ∆ ` S <: T, then ∆ ` S <:JLS T.

5. Related and Future Work
Our WFJ calculus builds upon earlier work about feather-
weight languages. It follows the approach and style of [16],
and [17] was inspirational even though our formalization dif-
fers considerably because of the prominent role played by
existential types.

The language design effort behind wildcards has been in-
fluenced by the BETA programming language and the vir-
tual class members of that language [18, 19], via traditional
declaration-site variance [3] and use-site variance [29, 17].
Scala [24] supports types as members of objects, thus en-
abling approaches similar to BETA, but on a more function-
ally oriented ground. To our knowledge, the wildcards lan-
guage feature presented in [31] is novel in that it allows for a

non-trivial subset of the possibilities of full-fledged existen-
tial types, but in a much more light-weight syntactic form;
we find it likely that full-fledged existentials would not have
been accepted into a main-stream language.

Existential types were introduced by Cardelli and Weg-
ner in [7] and are often associated with [22] by Mitchell
and Plotkin, establishing an interpretation of them as a tool
for information hiding and abstraction. Such types are intro-
duced by a ‘pack’ or ‘ close’ operation and eliminated by
an ‘unpack’ or ‘ open’ operation. Several years later, Abadi
and Cardelli existential types were used to describe the type
of self in an object calculus [1, Ch.13], using syntactic vari-
ants ofpack andunpack.

To our knowledge, it is a novel contribution of our cal-
culus that it is based on a version of existential types where
the quantification variables are implicitly propagated into the
environment rather than being controlled by explicitpack
andunpack constructs. Traditionally, this is considered un-
sound, but we believe that this problem is solved by ensuring
that such propagated variables are distinct, and by ensuring
that every expression evaluation produces its own fresh vari-
ables.

Note that the wrapping technique which is illustrated at
the end of Sect. 3.1.4 makes the connection to traditional ex-
istential types even closer: Assignment of a wrapper object
to a reference with a wildcarded type corresponds topack,
and a wildcard captured method call corresponds tounpack.
This supports the claim that no expressive power is lost by
using wildcards, compared to traditional existential types.

We still need to finish the proof of soundness, and in this
sense the present paper is work in progress. However, we
also believe that the formalization already without complete
proofs represents a worthwhile contribution because of this
novelty in the treatment of existential types, and more gen-
erally its provision of a formal basis for a now widely dis-

∆ ` X <:JLS bound1∆(X) (JS-VAR) ∆ ` lbound1
∆(X) <:JLS X (JS-LVAR) ∆ ` T <:JLS T (JS-REFL)

∆ ` S <:JLS T ∆ ` T <:JLS U
(JS-TRANS)

∆ ` S <:JLS U

class C<X B>/N { . . . }
(JS-SUBCLASS)

∆ ` C<T> <:JLS [T/X]N

snap(C<A>) = ∃∆′.C<T> ∆∆′ ` C<T> <:JLS T
(JS-SNAP)

∆ ` C<A> <:JLS T

∆ ` T ⊂: A
(JS-WILD)

∆ ` C<T> <:JLS C<A>

(JC-REFL)
∆ ` T ⊂: T

∆ ` T ∈ B
(JC-BOUND)

∆ ` T ⊂: ? B

Figure 7. JLS subtyping rules

seminated typing feature. While we do not expect the proofs
to reveal unsoundness of the mechanism itself (who does?)
they may reveal errors in the formalization which will lead
to subtle changes in the future.

6. Conclusion
We have presented a formalization of wildcards, including
the syntax, dynamic semantics, and type system, and stated
some safety properties. The paper describes how the distin-
guishing features of wildcards have been preserved in the
calculus, and the formalization itself serves to document the
nature of these properties. In particular, the usage of exis-
tential types in the calculus reflects the existential nature of
wildcard capture. The proofs of safety properties have not
yet been finished, but we believe that the formulation of the
formalization itself is a useful result because it reveals the
underlying structure of wildcards and allows for a compari-
son with other work.

Acknowledgements

Gilad Bracha, Neal Gafter, and Peter von der Ahé also par-
ticipated in the wildcards implementation project, and they
have always responded in a helpful way when we needed it.
Moreover, we thank Phil Wadler for several comments on
this work, in particular suggesting some significant and in-
teresting changes which we have not yet carried out.

References
[1] M. Abadi and L. Cardelli.A Theory of Objects. Springer-

Verlag, New York, 1996.

[2] Ole Agesen, Stephen N. Freund, and John C. Mitchell.
Adding type parameterization to the Java programming
language. InObject Oriented Programming: Systems,
Languages and Applications, Atlanta, Georgia, October
1997. OOPSLA97, ACM Press. Toby Bloom, editor.

[3] Pierre America and Frank van der Linden. A parallel object-
oriented language with inheritance and subtyping. InObject
Oriented Programming: Systems, Languages and Applica-

tions/European Conference on Object-Oriented Program-
ming, pages 161–168, Ottawa, Canada, October 1990. OOP-
SLA/ECOOP90, ACM Press. Norman K. Meyrowitz, editor.

[4] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip
Wadler. Making the future safe for the past: Adding genericity
to the Java programming language. In OOPSLA98 [27].

[5] Kim Bruce. Subtyping is not a good match for object-
oriented programming languages. InEuropean Conference
on Object-Oriented Programming, Jyv̈askyl̈a, Finland, June
1997. ECOOP97, LNCS 1241, Springer Verlag. Mehmet
Akşit and Satoshi Matsuoka, editors.

[6] Kim Bruce, Martin Odersky, and Philip Wadler. A statically
safe alternative to virtual types. InEuropean Conference
on Object-Oriented Programming, Brussels, Belgium, July
1998. ECOOP98, LNCS 1445, Springer Verlag. Eric Jul,
editor.

[7] L. Cardelli and P. Wegner. On understanding types, data
abstraction and polymorphism.ACM Computing Surveys,
17(4):480–521, December 1985.

[8] Robert Cartwright and Guy L. Steele. Compatible genericity
with runtime-types for the Java programming language. In
OOPSLA98 [27].

[9] W. Cook, W. Hill, and P. Canning. Inheritance is not
subtyping. InPrinciples of Programming Languages, pages
125–135, San Francisco, California, January 1990. POPL90,
ACM Press. Paul Hudak, editor.

[10] William Cook. A proposal for making Eiffel type-safe. In
European Conference on Object-Oriented Programming,
pages 57–70, Nottingham, England, July 1989. ECOOP89,
Cambridge University Press. Stephen Cook, editor.

[11] Ole Johan Dahl and Kristen Nygaard. SIMULA, an algol-
based simulation language.Communications of the ACM,
9(9):671–678, 1966.

[12] ECMA. C# language specification.http://www.
ecma-international.org/publications/standards/

Ecma-334.htm, 2002.

[13] ECMA. C# language specification. ECMA TC39-
TG2/2004/14: C# language specification, Working Draft
2.7, June 2004.

[14] Margaret A. Ellis and Bjarne Stroustrup.The Annotated C++
Reference Manual. Addison-Wesley, 1990.

[15] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.The
Java Language Specification – Third Edition. The Java
Series. Addison-Wesley, third. edition, 2004.

[16] Atshushi Igarashi, Benjamin Pierce, and Philip Wadler.
Featherweight Java: A minimal core calculus for Java and
GJ. InObject Oriented Programming: Systems, Languages
and Applications, pages 132–146, Denver, Colorado, October
1999. OOPSLA99, ACM Press. Linda Northrop, editor.

[17] Atsushi Igarashi and Mirko Viroli. On variance-based
subtyping for parametric types. pages 441–469. Revised
version with proofs athttp://www.sato.kuis.kyoto-u.
ac.jp/~igarashi/papers/pdf/variance.full.p%df.

[18] Ole Lehrmann Madsen and Birger Møller-Pedersen. Virtual
classes: A powerful mechanism in object-oriented program-
ming. InObject Oriented Programming: Systems, Languages
and Applications, New Orleans, Louisiana, October 1989.
OOPSLA89, ACM Press. Norman K. Meyrowitz, editor.

[19] Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen
Nygaard. Object-Oriented Programming in the BETA
Programming Language. Addison-Wesley, 1993.

[20] Bertrand Meyer. Genericity versus inheritance. InObject
Oriented Programming: Systems, Languages and Applica-
tions, pages 391–405, Portland, Oregon, November 1986.
OOPSLA86, ACM Press. Norman K. Meyrowitz, editor.

[21] Robin Milner. A theory of type polymorphism in program-
ming. Journal of Computer and System Sciences, 17:348–
375, August 1978.

[22] John C. Mitchell and Gordon D. Plotkin. Abstract types
have existential types.ACM Transactions on Programming
Languages and Systems, 1988.

[23] Andrew Myers, Joseph Bank, and Barbara Liskov. Param-
eterized types for Java. InConf. Proceedings of the 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL), Paris, France, January 1997.
POPL97, ACM Press. Neil D. Jones, editor.

[24] Martin Odersky. Report on the programming language Scala.
Technical report, EPFL, Lausanne, 2002.

[25] Martin Odersky. Personal communication, Summer 2004.

[26] Martin Odersky and Philip Wadler. Pizza into Java:
Translating theory into practice. InConference Record of
POPL ’97: The 24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 146–159,
Paris, France, 15–17 January 1997.

[27] OOPSLA98. Object Oriented Programming: Systems,
Languages and Applications, Vancouver, BC, October 1998.
ACM Press. Craig Chambers, editor.

[28] David Stoutamire and Stephen Omohundro. The Sather 1.1
specification. Technical Report TR-96-012, International
Computer Science Institute, Berkeley, CA, August 1996.

[29] Kresten Krab Thorup and Mads Torgersen. Unifying
genericity. pages 186–204.

[30] Mads Torgersen, Erik Ernst, Christian Plesner Hansen,
Peter von der Ah, Gilad Bracha, and Neal Gafter. Adding
wildcards to the Java programming language.Journal of

Object Technology, 3(11):97–116, December 2004.http:
//www.jot.fm/issues/issue_2004_12/article5.

[31] Mads Torgersen, Christian Plesner Hansen, Erik Ernst, Peter
von der Ah́e, Gilad Bracha, and Neal Gafter. Adding
wildcards to the Java programming language. InProceedings
of the ACM Symposium of Applied Computing, 2004.

