
Recursive Object-Oriented Modules

Keiko Nakata1 Akira Ito2 Jacques Garrigue1

1 Kyoto University Research Institute for Mathematical Sciences
2 Hitachi, Ltd.

keiko@kurims.kyoto-u.ac.jp, garrigue@math.nagoya-u.ac.jp

Abstract
ML-style modules and classes are complementary. The for-
mer are better at structuring and genericity, the latter at ex-
tension and mutual recursion. We investigate the conver-
gence of both mechanisms by designing an object-oriented
calculus based on a nominal module system with mutual re-
cursion. Our modules assume simultaneously the roles of
classes with subtyping, nested structures with type members,
and simple functors. Flexible inter-module recursion is ob-
tained by allowing free references not constrained by the or-
der of definitions. We closely examine the well-foundedness
of the recursion, in the presence of nesting and functors. The
presented type system is provably decidable, and ensures the
well-foundedness. We also define a call-by-value semantics,
for which type soundness is proved.

1. Introduction
ML-style modules offer excellent support for structuring
and genericity [7]. The nested structure of modules plays
a significant role in the decomposition of large programs.
Functors can express advanced forms of parametricity, and
abstraction can be controlled by signatures with transparent,
opaque, or translucent types [10]. However, they are weak at
extension and do not allow mutual recursion.

Classes offer better support for extension and mutual
recursion. Inheritance and overriding allow one to build a
new class only with extensions and changes to an existing
one. With subtyping, the new class can be used in place of
the previous one. Mutual recursion is in classes’ nature, and
thereby recursion at both of value and type level has to be
supported.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

FOOL 2005 15 January 2005, Long Beach, California
Copyright c© 2005 ACM . . . $5.00

Much work has been devoted to investigating how to
combine both mechanisms [12, 1, 8, 14].

Objective Caml is one example of orthogonal combina-
tion. The language is very expressive, but the result is quite
complex. Many concepts, such as structures, functors, sig-
natures, classes and class interfaces, are introduced in a sin-
gle language. Despite some features of modules and classes
overlap, they are not merged, and use different syntax. This
makes it mind-boggling to use both mechanisms simultane-
ously.

Recently, to get rid of the inconvenience of the former
approach, and to give a theoretical foundation which harmo-
nizes both mechanisms, much effort has been made investi-
gating their convergence. When designing such a language,
one has to give careful consideration to matters concerning
decidability and well-foundedness.

• As investigated in [12], dependent types play an impor-
tant role in unifying modules and classes. However, as
seen in [13], the combination of subtyping and depen-
dent types makes it a hard task to keep decidability of
type checking.

• The unification brings about mutual recursion into mod-
ules. We have to be careful about the well-foundedness
of the recursion, as recursion might cause circular depen-
dencies between modules [3, 8, 5].

Our ultimate goal is to design a language which unifies
modules and classes, and equip it with a sound and decid-
able type system, which ensures well-foundedness of the re-
cursion. In this paper, as a first step towards that goal, we
propose a calculus, calledRoom, based on a nominal mod-
ule system with mutual recursion. InRoom, modules assume
simultaneously the roles of classes, nested structures, and
simple functors. The characteristics of our modules are sum-
marized as follows.

Class role: Objects are created from modules, and modules
themselves are types of objects as with Java’s classes.
Mutual recursion between modules is allowed. Inheri-
tance (with method overriding) and subtyping are pro-
vided through an asymetric merging operator.

Structure role: Modules can be nested and have type mem-
bers.

Functor role: Modules can be parameterized.

To make the type system decidable, we put a restriction on
functor arguments that requires them to be unparameterized
(hence,Roomdoes not have higher-order functors), and to
have exactly the same inner modules as are prescribed by
the functor types. Although this restriction costs our modules
some forms of parametricity compared to ML-functors, we
still have enough parametricity at class level;i.e. classes
parameterized over types and superclasses can be expressed.

In Room, mutual recursion is offered bypaths. Paths
are our referencing mechanism. They allow one to refer to
any module at any level of nesting, upwards or downwards,
notwithstanding the order of the definitions. Moreover, sim-
ple cases of functor application are allowed in paths, where
the functor and its arguments themselves are paths. Paths
give one a high degree of freedom for reference, however
(or perhaps for this reason), we are required to pay extensive
consideration to the well-foundedness of the recursion.

As a module can be defined as an alias of another module
using a path, it might happen that module definitions end up
being circularly dependent. It is highly desirable to statically
reject such ill-founded modules in order to ensure proper
module elaboration,i.e. to produce a record of the meth-
ods defined in a module. The existing approaches on well-
founded recursion for recursive modules [3, 8, 5] do not suit
our situation, as their strict restriction on the order of access
to module components hinders mutual recursion as seen in
object-oriented programming. In this paper, we propose an
innovative approach, by considering topological sortability
of modules. The restriction on functor arguments enables its
static inspection. As a consequence, our type system, once
made decidable, ensures the absence of ill-founded modules.
The type system is also shown to be sound for a call-by-value
semantics.

The rest of this paper is organized as follows. In Sec-
tion 2, we overview the design ofRoom. Section 3 formally
definesRoom. Section 4 discusses the well-foundedness of
module systems. Section 5 presents the notion of normaliza-
tion of types. We give a decidable type system in Section 6.
Dynamic semantics and the type soundness result are in Sec-
tion 7. In Section 8, we review related work. Section 9 con-
cludes.

2. Overview
In this section, we overview the design ofRoom. We use
examples motivated by the Subject/Observer pattern. This
is a programming pattern seen in class-based programming.
It consists of an observed class, called the subject class, and
classes which observe that class, called observer classes, and
presents a control flow which ensures that changes in the
subject are properly reported to observers. This pattern is
often used in practice. For instance, when building an editor,
a Data object is observed by Monitor objects, and changes

SubObP =λV<:Value.{
Subject ={

V value,
up.Observerobsr,
void notifyObserver(){ obsr.update();},
void setValue(V v){

value= v;
notifyObserver();,

},
V getValue(){return value;},

}
Observer ={

up.Subjectsub,
up.SubjectgetSubject(){return sub;},
abstract void update(),

}
}

Figure 1. Subject/Observer pattern

in the Data object are reported to Monitor objects in order to
reflect the changes on the screen.

We begin by showing the module SubObP in Figure 1,
which expresses the pattern. SubObP packs 2 modules, Sub-
ject and Observer, and is parameterized by a module vari-
able V, which expresses the type of data handled by Subject.
Moreover, the methodupdatecontained in Observer is left to
be implemented. As in Java, we can declare abstract methods
by giving only their types.

To interact mutually, Subject and Observer refer to each
other, through variablesobsr of type Observer, andsubof
type Subject respectively. We usepaths to refer to modules.
For example, a path SubObP(M).Observer refers to the mod-
ule Observer contained in the module obtained by applying
SubObP to M. Using absolute access paths starting from the
top-most module, we can locate any modules at any level of
nesting. Relative access paths are also available. Here, in the
example,up is used to specify the enclosing context.

As seen in this example, types are paths or module vari-
ables. To simplify examples, we enrich the core types with
void andint.

One can build his own application from SubObP by in-
stantiating V with his own data type, and implementingup-
date.

V is instantiated by application. The interface of V,
namely the module Value, requires actual values correspond-
ing to V to be subtypes of Value.

Let Value and MyValue’ be defined as follows.

Value ={}
MyValue’ = {

int data,
int getData(){return data;}

}

We build the module MyValue by merging together the 2
modules.

MyValue = MyValue’⇀ Value

Merging is a counterpart to inheritance in class systems.
It also induces subtype relations between modules, as inheri-
tance does in Java. Here, MyValue is a subtype of MyValue’
and Value.

Then, we apply SubObP to MyValue, which yields My-
Subject as follows.

MySubject = SubObP(MyValue).Subject

MySubject is the module Subject contained in the module
obtained by applying SubObP to MyValue. SubObP(MyVa-
lue).Subject is also the type of objects created from it
with the new operator. Since our type system is nominal,
and such parametric types are invariant, if we apply Sub-
ObP to another module, say MaValeur, the resulting path
expresses another type,i.e. SubObP(MaValeur).Subject is
not equivalent, nor a subtype, nor a supertype of Sub-
ObP(MyValue).Subject, unless MaValeur was defined as an
alias for MyValue. As such, we provide some form of type
generativity.

Next, we would like to build MyObsr, which acts as the
observer of MySubject. Consider the following module.

MyObsr’ = {
void update(){

MyValuevalue= getSubject().getValue();
int i = value.getData();
...

},
abstract MySubjectgetSubject(),

}
MyObsr is created by merging together MyObsr’and

SubOb(MyValue).Observer.

MyObsr = MyObsr’⇀ SubOb(MyValue).Observer

MyObsr is a module, which has methodsupdatefrom My-
Obsr’ andgetSubjectfrom Observer. The abstract methods
in each module are given implementations by each other’s
identically named methods.

Finally, we get our own customized subject, MySubject,
and observer, MyObsr.

Note that our dependent type system can infer that the
type of the return value ofgetValuecontained in MySubject
is MyValue. Hence,updateof MyObsr can invokegetDate
from the value returned by MySubject’sgetValuewithout re-
quiring the method to be specified in advance in V’s inter-
face.

We have seen that by combining both mechanisms of
ML-modules and classes, the Subject/Observer pattern can
be naturally expressed, offering proper extensibility. The
unification of the two mechanisms eases their simultaneous
use. Moreover, our type system does not require one to

Observer =λC<:ObserverType.{
ObsrImp ={

Subjectsub,
void set(Subjects){sub= s; update();. . . ,},
SubjectgetSubject(){return sub;},
abstract void update(),

}
ObsrMixin = Ccoerce {getSubject, update}
Obsr =here.ObsrMixin⇀ here.ObsrImp
void main(){

here.Obsr obsr = newhere.Obsr
. . . ,

}
}
ObserverType ={

required void update
abstract SubjectgetSubject,

}

Figure 2. Mixin-style programming

explicit the types of recursive modules, whereas this is often
a cause of difficulty in existing languages featuring recursive
modules.

Next we will show that the combination also enables easy
mixin-style programming.

Observer given in Figure 2 is a module parameterized
over the implementation ofupdatethrough the module vari-
able C. Inside ObsrImpl, 2 methodssetandgetSubjectare
defined. By declaringupdateas an abstract method, we can
call this method insides bodies of other methods, as we do
in set. We usehere in paths to specify the current context.

The interface of the module variable C, namely Observer-
Type, mentions theupdatemethod asrequired. As C is a
concrete variable, this means thatObservermay only be ap-
plied to modules providing an implementation forupdate.
Additionally, the concreteness requires that they do not have
any abstract method other thangetSubject.

We have 2 kinds of module variables, virtual module vari-
ables and concrete module variables, to support flexible pa-
rameterization. Conceptually, the former are used to param-
eterize over types as we did in the first example, the latter
over implementations as we do here.

The implementation ofupdateis instantiated by applying
Observer. We coerce C togetSubject, updatebefore merging
it with ObsrImpl. The coercion operatorcoerce offers a
means of access control. ObsrMixin is a module having
the same methods as C, but onlygetSubjectandupdateare
accessible. This coercion is useful, as it avoids unexpected
interference even if, for example, C too had a method named
set.

An object is created inmain from Obsr with thenew
operator. The restriction imposed by ObserverType on actual

values corresponding to C, ensures that Obsr has no abstract
methods.

3. Syntax
The syntax forRoom is given in Figure 3.M,m, and x
are metavariables which range over module names, method
names, and variable names, respectively.Namesis the set
of module names. The special variablethis is assumed to
be included in the set of variables. We writeM or [Mi]ni=1

as a shorthand forM1, · · · ,Mn (n ≥ 0); M = E or
[Mi = Ei]ni=1 for M1 = E1, · · · ,Mn = En; λX<:p.E or
λ[Xi<:pi]ni=1.E for λX1<:p1.λX2<:p2. · · · .λXn<:pn.E;
p.M(q) or p.M([qi]ni=1) for p.M(q1) · · · (qn).

A module systemS is a record of module definitions,
method definitions, and method declarations. Modules are
defined by module expressions, which are one ofpath, basic
module, coercion, or merging.

A pathp is a reference to a module, which is obtained by
combination of dot notation (access to a module component)
and functor application. We use syntactic sugarhere and
up to abbreviate respectively the current and the enclosing
context, as in Figures 1 and 2. In the module pointed to
by p.M(p′), a pathhere.q (resp.up.q) is a shorthand for
p.M(p′).q (resp.p.q). A path prefixed with a sequence of
up’s, such asup.up.M , can be defined similarly. We usually
omit the leading “ε.” when writing paths.

A basic moduleis a record of module definitions, method
definitions, and method declarations. It can be parameterized
by module variables, constrained by their interfaces. Inter-
faces are paths, and denote upper type bounds of modules to
which the parameterized modules are to be applied.

Coercionallows visibility control. Programmers may cre-
ate a new module by hiding some components of an existing
one.

Merging is used to define a module by merging together
two existing modules. For methods implemented in both
modules, the resulting module contains the implementation
from the left-hand side of the operator⇀, i.e. the left-hand
side overrides the right-hand side.

We have two types of module variables, namelyvirtual
module variables V and concrete module variables C. A
virtual module variable may only be used as a type, which
is either a path or a module variable, while concrete module
variables may freely be used in paths. For instance, one may
not create a new object from a virtual variable, but this is al-
lowed with concrete variables as we did in Figure 2. Concep-
tually, they respectively provide parameterization over types
and implementations.

Methods are either defined or declared. We have two
qualifiers for method declarations,abstract andrequired.
Usingrequired in interfaces, we can express implementa-
tion requirements on parameters, as we did in Figure 2.

Program expressions are either variables, method calls, or
object creations.

S ::= {M = E,met} module system
E ::= p path

| λX <: p.{M = E,met} basic module
| p coerce {M, m} coercion
| p ⇀ p merging

p, q, r ::= ε | C | p.M | p(p) | p(V) path
X ::= C | V module var.
τ ::= p | V type
met ::= τ m(τ x){e} met. definition

| abstract τ m(τ x) abstract met.
| required τ m(τ x) required met.

e ::= x | e.m(e) | new p program expr.
P ::= (S, e) program

Figure 3. Syntax forRoom

A program is a pair of a module system and a program
expression.

Any module system is assumed to satisfy the following
three conditions: 1) all module variables are bound, where
the definition of bound variables is as usual; 2) all bound
variables differ from each other; 3) all basic modules con-
tain no duplicate method declarations and definitions for any
method name, no duplicate module definitions for any mod-
ule name.

For simplicity, we leave out several features, which would
be important to build a practical language fromRoom,
like static methods, instance and class variables, the “su-
per”operator, constructors and others.

4. Well-founded module system
Paths give one a high degree of freedom for references, with
absolute or relative access, allowing functor application in it.
We can naturally express mutual recursion with them, in the
presence of functors and nesting. However, we have to make
sure that module systems are properly defined.

As a module itself may be defined as an alias or a com-
position of other modules using paths, it might happen that
module definitions end up being mutually dependent. For ex-
ample, consider the following module system,

{M1 = M2 ⇀ M3,
M2 = M1 ⇀ M4}

which is clearly ill-founded.
It is highly desirable to statically reject such ill-founded

module systems while accepting mutual recursion in gen-
eral. The question is how to define decidable “well-founded-
ness” in our situation. On the one hand, we would like to
access to components of partially evaluated modules,i.e ac-
cess to components of a module should be allowed before
the evaluation of some other components of the module is
yet completed. This is necessary to support mutual recursion
as seen in object-oriented programming. On the other hand,
we would like to statically reject circular dependencies be-

dp(p, λX<:q.E) = dp(p, q) ∪ dp(p, E) ∪ dp(X, q)
dp(p, {[Mi = Ei]ni=1,met}) =

⋃
1≤i≤n dp(p.Mi, Ei)

dp(p, q1 ⇀ q2) = dp(p, q1) ∪ dp(p, q2)
dp(p, q coerce {M, m}) = dp(p, q)
dp(p, q) = {(p, r) | r ∈ flats(q)}
flats(p) = flat(p) ∪⋃

q∈args(p) flats(q)
flat(ε) = ε
flat(X) = X
flat(p.M) = flat(p).M
flat(p(V)) = flat(p)
flat(p(q)) = flat(p)

args(ε) = ∅
args(X) = ∅
args(p.M) = args(p)
args(p(q)) = {q} ∪ args(p)
args(p(V)) = {V } ∪ args(p)

Figure 4. Extraction of the base relation

tween modules in order to ensure proper module elaboration,
i.e. to produce a record of the methods defined in a module.

Our definition of well-foundedness for module systems is
based on the well-foundedness of a relation approximating
dependencies between modules. This ensures that modules
can be sorted topologically. For example, while the above
example is unsortable asM1 andM2 are circularly depen-
dent, the following example is sortable,

{M1 = {M11 = M2.M22, M12 = {. . .}},
M2 = {M21 = M1.M12, M22 = {. . .}}}

as we only haveM1.M11 depending onM2.M22 andM2.M21

depending onM1.M12, which is not circular. Moreover, we
only consider dependencies at the value level. For exam-
ple, in Figure 1, Subject does not depend on Observer as
Observer is used only at the type level in Subject.

In the rest of this section, we formally define the (approx-
imated) dependency relation.

Dependency relation

Our approach is to extract adependency relationfrom a
module systemS, then check whether the relation is well-
founded or not.

LetS be a module system, the dependency relation ofS is
a binary relation on flat paths, where a flat path is a path con-
taining no application. The construction of the dependency
relation takes two steps: 1) extract a base relation fromS;
2) expand the base relation in order to take into account the
dependencies that do not explicitly appear inS.

The base relation ofS is extracted by the functiondp
given in Figure 4. Given a flat pathp and a module expres-
sionE, dpcalculates dependencies assuming thatp depends

on E. WhenE is of form λX<:q.E, it recursively calcu-
lates dependencies assuming thatp depends onq and E,
and X on q. When E is of form {[Mi = Ei]ni=1,met},
p.Mi depends onEi. Note that, instead of regardingp
as depending onEi, it employs more precise dependen-
cies. Although this make the dependencies more com-
plex, it gives more freedom for recursion between mod-
ules. Coercion and merging are straightforward. Finally,
if E is a pathq, dp approximates functor applications in
q by making p depend on all flat paths appearing inq.
The functionflats returns the set of flat paths appearing in
a path. For example,flats(M1.M2(M3(M4.M5)).M6) =
{M1.M2.M6, M3, M4.M5}. It should be pointed out that
object creation using path references does not entail depen-
dencies. Our “well-foundedness” concerns recursion at mod-
ule level, not at object level.

The base relation ofS is defined asdp(ε, S). Then the de-
pendency relation ofS is defined as thepostfix and transitive
closureof the base relation.

Definition 1 Let D be a binary relation on flat paths. The
postfix and transitive closure ofD, denoted asD̃, is the
smallest transitive relation which containsD and meets the
following condition: if(p, q) is in D̃ andM in Names, then
(p.M, q.M) is also inD̃.

We call postfix closure ofD the smallest relation that
satisfies only the second condition.

Example 1 Consider the following module systemS,

{M1 = {M11 = {· · ·}, M12 = here.M13.N, M13 = M2.M21}
M2 = {M21 = {N = {· · ·}, · · ·},M22 = M1.M11}}

The base relation ofS is:
{(M1.M12, M1.M13.N), (M1.M13, M2.M21),
(M2.M22, M1.M11)}.

Then the dependency relation is the postfix closure of the
following set:
{(M1.M12, M1.M13.N), (M1.M13, M2.M21),
(M2.M22, M1.M11), (M1.M13.N, M2.M21.N),
(M1.M12, M2.M21.N)}.

Definition 2 Let D be a binary relation on flat paths.D is
well-founded if and only ifD does not contain an infinite
descending sequence,i.e. there does not exists an infinite
sequence{pi}∞i=1 such that, for alli in [1,∞), (pi, pi+1)
is in D.

Definition 3 A module systemS is well-founded if and
only if the postfix and transitive closure ofdp(ε,S) is well-
founded. Moreover, we say a program(S, e) is well-founded
if and only ifS is well-founded.

Proposition 1 It is decidable whether a module systemS is
well-founded or not.

[N-ROOT]
nlz (ε, ε).

[N-VAR]
nlz (X, X).

[N-APP]
nlz (p(q), p′(q′))

:- nlz (p, p′),nlz (q, q′).

[N-ExPV]
nlz (p.M, p′.M)

:- nlz (p, p′),
src(p′.M, E),
¬(E ≡ q).

[N-PV]
nlz (p.M, q)

:- nlz (p, p′),
src(p′.M, r),
subst(p′, θ),
nlz (θ(r), q).

[N-CRC]
nlz (p.M, q)

:- nlz (p, p′.N),
src(p′.N, r coerce {M, m}),
M ∈ {M},
subst(p′, θ),
nlz (θ(r).M, q).

[N-MRG1]
nlz (p.M, q)

:- nlz (p, p′.N),
src(p′.N, r ⇀ r′),
subst(p′, θ),
nlz (θ(r).M, q).

[N-MRG2]
nlz (p.M, q)

:- nlz (p, p′.N),
src(p′.N, r ⇀ r′),
subst(p′, θ),
nlz (θ(r′).M, q).

[N-INF]
nlz (p.M, q)

:- nlz (p, C),
nlz (∆(C).M, q).

Figure 5. Normalization of paths

src(ε, S).
src(p.M([Mi]ni=1).N, E) :- src(p.M, λ[Xi:qi]ni=1.{· · · , N = E, · · ·}).

subst(ε, id).

subst(p.M, θ) :- subst(p, θ), src(p.M, λX:q.{met , D}).
subst(p(q), θ[X : q]) :- params(p, X :: L), subst(p, θ).

params(p.M, X) :- src(p.M, λX:q.{met , D}).
params(p.M, []) :- src(p.M, q coerce {m,M}).
params(p.M, []) :- src(p.M, q1 ⇀ q2).
params(p(q), L) :- params(p, X :: L).
params(X, []).

Figure 6. Source predicates

In the following sections, we fix a well-founded program
(S, e).

5. Normalization of types
Types are paths or module variables. We judge the equiva-
lence of types by the equality of the modules they refer to.
For example, consider the following module systemS1,

{M1 = {M11 = {N = {· · ·}}},
M2 = {· · ·},
M3 = λC<:M1.{M31 = C.M11},
M4 = M2 ⇀ M1}

M1.M11, M4.M11 andM3(M4).M31 are equivalent types
as they all refer to the moduleM11 contained in moduleM1.

In this section, we introduce the notion of normalization
of types. We formally define the equivalence of types by the
equality of their normal forms.

Normalization is defined using the predicatenlz given in
Figure 5, and auxiliary predicates in Figure 6.∆ is the finite
mapping, which maps module variables to their interfaces.
For example,∆(C) = M1 holds in the above module system
S1. All variables of the module system are assumed to have
different names.

We use Horn clauses in Prolog-like syntax to define our
predicates and their inference rules. The clauseA:-B,C. is
read as “if B and C hold, then A holds”. Another possible

notation would be
B C

A , but we prefer the first one in most
cases, as it is more versatile and lets us use explicit names
for predicates.

We give a brief account of the predicates in Figure 6.
If p is in normal form other than module variables, the
module definition ofp is looked up in the module system
S with the predicatesrc. For example,src(M1.M11, {N =
{· · ·}}) holds inS1, meaning that the module referred to by
M1.M11 is defined by the module expression{N = {· · ·}}1.
Substitutions of types for module variables are constructed
from normal forms with the predicatesubst, where id is
the identity substitution. The metavariableθ ranges over
the substitutions. Whensubst(p, θ) holds, we callθ the
substitution extracted fromp. The predicateparamsdenotes
the formal parameters of the module referred to byp. For
example,subst(M3(M1), [C 7→ M1]) andparams(M3, C)
hold inS1.

Definition 4 A type q is a normal form of a typep if
nlz (p, q) holds.

For untyped module systems, some typep may have no
normal form or have several different normal forms. More-
over the normalization ofp may not terminate. The follow-
ing two examples show typical cases.

Example 2 In the following, the normalization ofM1.M2

does not terminate.

{M1 = M2.M3,
M2 = M1}

Example 3 In the following, the normalization of
M1.M2(M1).M3 does not terminate.

M1 = {M2 = λC<:M′
2.{M3 = C.M2(C).M3}}

As our type system relies on normalization for judging
type equalities, we sometimes need to use normalization on
types for not-yet-typed module systems. In order to keep
typing decidable, we define a semi-ground normalization
that, contrary to the above “direct” normalization, is guar-
anteed to terminate. Semi-ground normalization meets the
following two requirements whenS is well-founded.

• Semi-ground normalization of types always terminates2.
Moreover we have an algorithm to calculate the set of
semi-ground normal forms of types.

• If S is well-typed then, both semi-ground normalization
and direct normalization always terminate, and they lead
to the same normal form.

1 src (and other predicates we will define in the following sections) should
also take the module system we are considering as parameter, but we omit
it throughout this paper, supposing a fixed well-founded module system.

[S-VAR]
nlz (∆(X), τ)

X ≤0 τ

[S-MRG]
src(p.M, q1 ⇀ q2) subst(p, θ) nlz (θ(qi), τi)

p.M ≤0 τi for i = 1, 2

Figure 7. Subtype relation

Using semi-ground normalization, we can decide the typa-
bility of a module system in 3 steps.

1. Check for well-foundedness of the dependency relation
(we already know this is decidable.)

2. Check the typing using semi-ground normalization in
place of direct normalization (normalization is no longer
a cause of undecidability.)

3. This typing is also valid with direct normalization (noth-
ing to do.)

The formal definition of semi-ground normalization and
the statements of these properties are found in Appendix A.

Basically, semi-ground normalization uses the corre-
sponding interfaces instead of functor arguments when ac-
cessing inner modules of variables (hence it is ground.) Re-
maining variables are substituted with arguments only at the
end of this process, once all accesses are solved (hence it
is only semi-ground.) Our restriction on functor arguments,
which is detailed in Section 6, makes it a valid normalization
strategy.

6. Type system
In this section, we define our type system. As defined in
Section 3, types are paths or module variables. Let us begin
by defining the subtype relation over types. As we judge the
equivalence of types by the equality of their normal forms,
we first define the subtype relation on normal forms then
extend it to any types.

The subtype relation≤0 on normal forms is the smallest
reflective and transitive relation containing the rules given in
Figure 7. Subtyping basically arises from merging[S-MRG] .
[S-VAR] denotes thatX is a subtype of a normal form of
its interface∆(X). There are no variance rules associated
with parametric types, meaning that parametric types are
invariant.

Then, the subtype relation is naturally extended to any
types.

Definition 5 (subtype relation) τ1 is a subtype ofτ2, de-
notedτ1 ≤ τ2, if there are typesτ ′1, τ

′
2 such thatnlz (τ1, τ ′1),

nlz (τ2, τ ′2) andτ ′1 ≤0 τ ′2 hold.

2 Note that our well-foundedness criterion for a module systemS is only a
sufficient condition for this termination. The converse does not hold.

Module definition typing

ε ` met ¦ ε ` D ¦
` {met , D} ¦ [T-ROOT]

E 6≡ λX<:q.{met , D} ` E ¦
p ` M = E ¦ [T-ExBM]

` q1 ¦ . . . ` qn ¦ p.M([Xi]ni=1) ` met ¦ p.M([Xi]ni=1) ` D ¦
p ` M = λ[Xi<:qi]ni=1.{met , D} ¦ [T-BM]

Module expression typing

valid(p)
` p ¦

` p1 ¦ ` p2 ¦
mergeable(p1, p2)

` p1 ⇀ p2 ¦

` p ¦
coercible(p, {m,M})
` p coerce {m,M} ¦

Method typing

` τ ¦ ` τ ′ ¦
this : p, x : τ ′ ` e : τ

p ` τ m(τ ′ x){e} ¦
` τ ¦ ` τ ′ ¦

p ` abstract τ m(τ ′ x) ¦
` τ ¦ ` τ ′ ¦

p ` required τ m(τ ′ x) ¦
Expression typing

Γ ` e : τ ′ τ ′ ≤ τ ` τ ¦
Γ ` e : τ

[T-SUB] Γ ` x : Γ(x) [T-VAR]

` p ¦ nlz (p, p′) sig(p′,A,R, I, b) N(A) ∪N(R) ⊆ N(I)
Γ ` new p : p

[T-NEW]

Γ ` e : p nlz (p, p′)
sig(p′,A,R, I, b) (m, τ ′, τ) ∈ A ∪R ∪ I Γ ` e′ : τ ′

Γ ` e.m(e′) : τ
[T-MTD]

Figure 8. Typing rules

Figure 8 provides the typing rules forRoom. They use
auxiliary predicates to be found in Figure 9 to 13.

Before examining these rules, we explain the predicate
sig (Figure 9), which is frequently used. This predicate is
meant to give information about themethod signatures of a
module. A method signature is a tuple(m, τ, τ ′) wherem
is a method name andτ, τ ′ are types. The metavariablesA,
R, I range over sets of method signatures, andb ranges over
false or true. Whensig(p,A,R, I, b) holds,A,R andI give
respectively the sets of abstract methods, required methods,
and implemented methods, provided by modulep. We give
details on the use ofb later. Note that, since a concrete mod-
ule variable may only be instantiated by modules implement-
ing all required methods, in[Sig-VAR] required methods are
added to the set of implemented methods.

The type judgmentp ` M = E ¦ states that “the module
definitionM = E is well-typed in the contextp”, and` E ¦
states that “the module expressionE is well-typed”. The
type judgmentp ` met ¦ is read similarly.

A type environmentΓ is a finite mapping from program
variables to types. The type judgmentΓ ` e : τ states that
“the program expressione has typeτ in the type environ-
mentΓ”.

Module definition typing

A module systemS is well-typed when each component of
S is well-typed in contextε.

If a module is defined by a basic module, its module
definition is well-typed if each component defined in the
basic module is well-typed in the context of this module.

Otherwise the module definition is well-typed if the mod-
ule expression defining it is well-typed.

Module expression typing

A module expressionp is well-typed whenp is valid. The
formal definition of the validity of paths is given in Fig-
ure 10. Roughly,valid(p) checks thatp has a normal form,
and any application contained inp matches the correspond-
ing interface.

match is formally defined in Figure 11. We distinguish
the matching of virtual module variables from that of con-
crete modules variables. Whenq is the interface of a virtual
module variable[Mat-V] , thenp matchesq providedp is a
subtype ofq. Whenq is the interface of a concrete module
variable[Mat-C] , the condition is stricter. Since a concrete
module variable may be used in expressions such as “new
C” or “ C.M ”, we must check that all required methods are
implemented, and that the identity condition on inner mod-

[Sig-BM]
sig(p, {[(m1i, θ(τ ′1i), θ(τ1i))]n1

i=1},
{[(m2i, θ(τ ′2i), θ(τ2i))]n2

i=1},
{[(m3i, θ(τ ′3i), θ(τ3i))]n3

i=1}, false)
:- p ≡ p1.M([qi]ni=1), subst(p, θ)

src(p1.M, λ[Xi<:q′i]
n
i=1.{

[abstract τ1i m1i(τ ′1i x1i)]n1
i=1,

[required τ2i m2i(τ ′2i x2i)]n2
i=1,

[τ3i m3i(τ ′3i x3i){ei}]n3
i=1, D}).

[Sig-MRG]
sig(p.M,A1 ∪ A2,R1 ∪R2, I1 ∪ I2, b1 ∨ b2)

:- src(p.M, q1 ⇀ q2), subst(p, θ),
nlz (θ(q1), q′1), sig(q′1,A1,R1, I1, b1),
nlz (θ(q2), q′2), sig(q′2,A2,R2, I2, b2).

[Sig-CRC]
sig(p.M,A |{m},R |{m}, I |{m}, false)

:- src(p.M, q coerce {m,N}), subst(p, θ),
nlz (θ(q), q′), sig(q′,A,R, I, b).

whereM |{m}= {(m, τ ′, τ) ∈M | m ∈ {m}}.

[Sig-VAR]
sig(C,A,R, I ∪ R, true)

:- nlz (∆(C), q),
sig(q,A,R, I, b).

Figure 9. Method signature lookup

valid(ε).

valid(X).

valid(p.M) :- valid(p), nlz (p.M, q).

valid(p(q)) :- valid(p), valid(q),nlz (p, p′),nlz (q, q′),
params(p′, X :: L), subst(p′, θ),
match(q′, (X, θ(∆(X)))).

Figure 10.Validity of paths

[Mat-V]
match(p, (V, q)) :- p ≤ q.

[Mat-C]
match(p, (C, q)) :- p ≤ q,

∀M(Nlz (p.M) = Nlz (q.M)),
sig(p,A1,R1, I1, b1),
nlz (q, q′), sig(q′,A2,R2, I2, b2),
N(A1)\N(I1) ⊆ N(A2)\N(I2),
N(R1) ⊆ N(I1).

Figure 11.Conditions for matching

[Mrg-FF]
mergeable(p1, p2)

:- ∀M(Nlz (p1.M) = ∅ ∨Nlz (p2.M) = ∅),
nlz (p1, p′1), sig(p′1,A1,R1, I1, false),
nlz (p2, p′2), sig(p′2,A2,R2, I2, false),
∀m((m, τ1, τ ′1) ∈ A1 ∪R1 ∪ I1

∧(m, τ2, τ ′2) ∈ A2 ∪R2 ∪ I2

⇒ nlz (τ1, τ) ∧ nlz (τ2, τ)
∧nlz (τ ′1, τ ′) ∧ nlz (τ ′2, τ ′)).

[Mrg-FT]
mergeable(p1, p2)

:- ∀M(Nlz (p1.M) = ∅ ∨Nlz (p2.M) = ∅),
nlz (p1, p′1), sig(p′1,A1,R1, I1, false),
nlz (p2, p′2), sig(p′2,A2,R2, I2, true),
∀m((m, τ1, τ ′1) ∈ A1 ∪R1 ∪ I1

⇒ (m, τ2, τ ′2) ∈ A2 ∪R2 ∪ I2

∧nlz (τ1, τ) ∧ nlz (τ2, τ)
∧nlz (τ ′1, τ ′) ∧ nlz (τ ′2, τ ′)).

[Mrg-SYM]
mergeable(p1, p2) :- mergeable(p2, p1).

Figure 12.Mergeability

ules is satisfied. The former translates to the two following
requirements: all required methods ofq are implemented in
p, and the abstract methods ofp are a subset of the abstract
methods ofq. HereN(M) = {m | (m, τ, τ ′) ∈ M} ex-
tracts method names from method signatures.

The latter is done by checking that for every module name
M , either bothp andq have a submodulep.M , defined iden-
tically, or they both lack it. For this we use the set of normal
forms of p, defined asNlz (p) = {q | nlz (p, q)}3. When
this condition is satisfied for all modules, direct normaliza-
tion and semi-ground normalization coincide. This restric-
tion means that we should pass functor arguments as several
flat modules rather than one module containing all of them.

A module expressionp1 ⇀ p2 is well-typed when both
p1 andp2 are well-typed and the following two conditions
are satisfied: 1)p1 andp2 do not contain modules with the
same names, 2) if bothp1 andp2 contain identically named
methods, then these methods have the same signatures. We
formally define these conditions in Figure 12.

We must pay particular attention to modules derived from
non-coerced concrete module variables, as they might have
more methods than described in their interfaces. The 5th ar-
gument ofsig is used for that purpose. It is set to true for
modules derived from non-coerced module variables, false
otherwise. Rule[Mrg-FT] states that when one of the mod-
ules inherits from a non-coerced module variable, this mod-

3 As direct normalization does not always terminate,Nlz (p) works as an
oracle in typing derivations. However, semi-ground normalization always
terminates, and we have an algorithm that calculates the set of semi-ground
normal forms of paths.

coercible(p, {m,M})
:- ∀M(M ∈ {M} ⇒ nlz (p.M, q)),

nlz (p, p′), sig(p′,A,R, I, b),
N(A) ∪N(R) ⊆ {m} ∪N(I),
{m} ⊆ N(A) ∪N(R) ∪N(I).

Figure 13.Coercibility

ule should have signatures for all the methods in the other
module. This way we make sure that the typing is consis-
tent. For the same reason, we cannot merge two modules,
both derived from non-coerced module variables.

A module expressionp coerce {m, M} is well-typed
whenp is well-typed and the following three conditions are
satisfied: 1) for allM in {M}, p contains a module named
M , 2) for allm in {m}, p contains a method namedm, 3) all
the not-yet-implemented methods ofp are contained in{m}.
The last condition is needed to avoid hiding unimplemented
methods, as hidden methods cannot be overridden. The for-
mal definition of these conditions is given in Figure 13.

Program expression typing

The typing rules for program expressions are classical.
Hence, we only give a brief account.

The rule [T-SUB] is the subsumption rule. The rule for
program variables[T-VAR] is as usual. The rule for object
creation[T-NEW] checks that all methods are implemented.
The rule for method invocation[T-MTD] first checks thate
has typep, andp has a methodm with signature(m, τ ′, τ).
Then, it checks thate′ has typeτ ′. If all of these conditions
are satisfied, thene.m(e′) has typeτ .

Definition 6 The module systemS is well-typed if and only
if ` S ¦ holds. Moreover, the program(S, e) has typeτ ,
denoted as̀ (S, e) : τ if and only ifS is well-typed,e does
not contain module variables, and̀e : τ holds.

In Appendix A, we establish the result that, if we use
semi-ground normalization instead of direct normalization,
then type checking of a well-founded module system is de-
cidable. Moreover, type checking with direct normalization
and semi-ground normalization are equivalent.

7. Operational semantics
In this section, we provide the operational semantics for
Room. The purpose of the semantics is to reduce a program
expression to avalue. A value is a referenceobj(`, w) to
an object, wherè is a location, which is an element of an
infinite enumerable setLoc, andw is a method dictionary,
which is a finite mapping over method names.

Values refer to objects. An object inRoomis a collec-
tion of labeled components[m1 = ζ1, . . .mn = ζn] where
mi is a method name andζi is a closure. A closure is a 4-
tuple (p, w, x, e): p is a path, meant for an evaluation con-
text,w is a method dictionary,x is a program variable, meant

subst(p, θ) nlz (θ(q), q′)
elb(q′, {[(mi, ζi)]ni=1}) ` 6∈ dom(κ)
ι; κ; p |= new q ⇓ (obj(`, id), ι, κ′)
whereκ′ ≡ κ[` 7→ {[mi = ζi]ni=1}]

ι; κ; p |= e ⇓ (obj(`, w0), ι0, κ0)
κ0(`).w0(m) = (p1, w1, x, e′′)
ι0; κ0; p |= e′ ⇓ (v1, ι1, κ1)

this : obj(`, w1), x : v1; κ1; p1 |= e′′ ⇓ (v2, ι2, κ2)
ι; κ; p |= e.m(e′) ⇓ (v2, ι1, κ2)

ι; κ; p |= x ⇓ (ι(x), ι, κ)

Figure 14.Operational semantics

for a formal parameter,e is a program expression, meant
for a method body. We take into account hiding of methods
caused by coercion by adding method dictionaries to clo-
sures. Any method invocation on self, which is expressed as
this.m, is done by looking up its actual name in the method
dictionary.

Given anobject storeκ, which is a finite mapping from
locations to objects, a valueobj(`, w) refers to an object
stored in the locatioǹ of κ, denotedκ(`), and any method
invocation onobj(`, w) is done consultingw.

An execution stateis a couple(ι, κ): ι is a finite mapping
from program variables to values,κ is an object store.

Our operational semantics is given in terms of a reduction
relation⇓. We writeι; κ; p |= e ⇓ (v, ι′, κ′) to mean that
in the contextp with the execution state(ι, κ), e is evaluated
to the valuev and the execution state transits to(ι′, κ′).
The rules for the semantics are given in Figure 14 with an
auxiliary predicate in Figure 15.

The first rule of the semantics describes object creation.
In order to evaluatenew q in contextp, the moduleθ(q)
should beelaborated, whereθ is the substitution extracted
from p. Elaboration is defined by means of the predicateelb
given in Figure 15. It traverses, with allowance for method
hiding, all modules which contribute to the module referred
to by a path, in order to collect all the methods constituting
the module.elb(p, {(m1, ζ1), . . . , (m1, ζn)}) means that
the modulep has methodsmi with closuresζi. If the elabo-
ration ofθ(q) resolves, the result is added to the object store
κ. The second rule describes method invocation. In order to
evaluatee.m(e′), we should first calculate the result ofe,
check that the result refers to an object which has the target
methodm seen through the method dictionary, calculate the
result ofe′, and then evaluate the invocated method’s body.
The third rule implements access to variables. Note that, run-
time elaboration is not needed actually, as we statically know
which paths should be elaborated.

[Elb-BM]
elb(p, {[(mi, (p, id, xi, ei))]ni=1)})

:- p ≡ p1.M([qi]n
′

i=1),
src(p1.M, λ[Xi<:ri]n

′
i=1.{

abstract τ m(τ x),
required τ m(τ x),
[τ1i mi(τ2i xi){ei}]ni=1, D}).

[Elb-CRC]
elb(p.M, {[(w(mi), (pi, w ◦ wi, xi, ei))]ni=1)})

:- src(p.M, q coerce {m, M}), subst(p, θ),
nlz (θ(q), q′), elb(q′, {[(mi, (pi, wi, xi, ei))]ni=1)}).

wherew is a mapping which renames method names
in {[mi]ni=1} \ {m} to fresh names.

[Elb-MRG]
elb(p.M, M)

:- src(p.M, q1 ⇀ q2), subst(p, θ)
nlz (θ(q1), q′1),nlz (θ(q2), q′2),
elb(q′1, M1), elb(q′2, M2)
M = M1 ∪ (M2 |N(M2)\N(M1)).

whereN(M) = {m | (m, ζ) ∈M}.

Figure 15.Elaboration

The following proposition states that the type system
guarantees the module elaboration.

Proposition 2 If the module systemS is well-founded and
well-typed, and̀ p ¦ holds, then the elaboration ofp is
always successful.

As we have an algorithm that checks whetherS is
well-founded or not, and a decidable type system(see Ap-
pendix A), we can statically guarantee all the elaboration
needed during evaluation.

Type Soundness

Our type soundness states that if a program has a type, then
either it reduces to a value of the same type, or its evalua-
tion does not terminate. In the following of this section, we
assume that the program(S, e) is well-founded and well-
typed.

To reason about type soundness, we extend program ex-
pression typing to account for the context in which the ex-
pression is type checked, and define a judgment for value
typing. We writeV (p) to denote the set of module variables
contained inp.

The type judgmentp; Γ ` e : τ states that the program
expressione has typeτ in contextp under the type environ-
mentΓ.

Definition 7 p; Γ ` e : τ holds ifΓ ` θ(e) : τ holds, where
θ is the substitution extracted fromp.

The judgmentκ ` v : τ asserts that the valuev has typeτ
under the object storeκ. It checks that the object referred to
by v has signatures for all the methods the module referred
to by τ has.

Definition 8 κ ` v : τ holds if v ≡ obj(`, w), nlz (τ, τ ′),
sig(τ ′,A,R, I, b), and for all (m, τ ′1, τ1) ∈ A ∪ R ∪ I,
κ(`).w(m) = (p, w′, x, e) andp; this : p, x : τ ′1 ` e : τ1

The following theorem states type soundness formally.

Theorem 1 If the well-founded program(S, e) has type
τ , then either the evaluation ofe does not terminate, or
∅; ∅; ε |= e ⇓ (v, ι′, κ′) andκ′ ` v : τ hold.

Our type system also ensures the progress property,i.e.
well-typed terms do not get stuck due to the absence of
applicable rules. This result is shown in [11], by introducing
run-time errors which distinguish incorrect termination.

8. Related Work
In this section, we examine related work. We first take up
languages and calculi which have mechanisms for both ML-
style modules and classes, then compare our approach to
existing approaches to recursive modules in terms of well-
foundedness of the recursion.

νObj [12] is a calculus for objects and classes. It identi-
fies objects with modules, and classes with functors. Most
mechanisms of ML-modules and classes are supported in
νObj , including higher-order functors, which are missing in
Room. On the one hand, our subtype relation is weaker than
that of νObj , which is a reason why we have a decidable
type system, and they do not. On the other hand, their sup-
port for mutual recursion is less flexible than ours, while we
retain decidability.

Objective Caml [9] and Moscow ML [14] are real lan-
guages, that support recursion between modules. As their
type systems do not guarantee well-foundedness of the re-
cursion, run-time errors might occur because of cycles in
module import dependency graphs.

Moby [6] and Loom [4] have both of modules and classes,
however they lack inter-module recursion, which is the main
motivation forRoom.

Mixin modules (hereafter, “mixins”) are modules equipp-
ed with class mechanisms such as mutual recursion or over-
riding. Ancona&Zucca notably developed a calculus for
mixins [2], and, based on it, constructed a module system,
called JAVA MOD [1], on top of a Java like language. In
JAVA MOD, they face the problem of cycles in the inher-
itance hierarchy. Yet, as the modules of JavaMod are not
hierarchical, the problem is much simpler and easily solved.
Hirschowitz&Leroy investigated a mixin calculus in a call-
by-value settings [8], which requires them to statically reject

ill-founded recursion between mixins. They employ a dif-
ferent approach from ours, which we review in detail below.
They do not consider nested structures and type members.

Boudol [3], Hirschowitz&Leroy [8] and Dreyer[5] have
investigated type systems for well-founded recursion. They
track recursively used variables while checking that they are
protected under lambda abstraction. On the one hand, we can
access to components of a module before the evaluation of
the module is yet completed, which is illegal in their sys-
tems. On the other hand, their modules can recursively re-
fer to themselves inside their own definition if the reference
is protected under a lambda abstraction, which is illegal in
Roomregardless of whether there is a lambda abstraction or
not. For example, the following module system:

{M = {M1 = N.N2, M2 = {· · ·}},
N = {N1 = M.M2, N2 = {· · ·}}}

is accepted inRoom, but rejected in theirs. On the other hand,
our definition of well-foundedness excludes the module sys-
temM = λX<:N.{M1 = M}, which is legal in their sys-
tems. Module systems of the former form are needed to sup-
port mutual recursion as seen in object-oriented program-
ming. However, the absence of the latter form means that we
have no way to define modules as fixpoints of functors.

9. Conclusion
In this paper, we presented an object-oriented module calcu-
lus, which unifies classes, nested structures, simple functors,
and their types. The unification eases the simultaneous use
of ML-style module and class mechanisms.

Mutual recursion is fundamental to classes, yet, it might
allow undesirable modules which have circular dependen-
cies or are inconsistent, when we introduce it into an ML-
style module setting. We defined a decidable type system,
which ensures the absence of such ill-founded modules. De-
cidability is reached by first eliminating ill-found module
systems by verifying their dependency relation on flat paths,
and then checking types with a variant of normalization
guaranteed to terminate when this relation is well-founded.

There are two points we would like to improve inRoom.
First, it would be nice to make it more liberal with recur-
sion. Roomis flexible enough for mutual recursion, yet it
lacks the ability to define modules as fixpoints of functors. A
possible approach would be to introduce two kinds of func-
tor applications, one for virtual module variables, the other
for concrete module variables. This approach seems to work
well, but would make our calculus more verbose. We are still
looking for a better solution. Second, the condition on inner
modules of functor arguments seems to be overly restrictive:
actual values of concrete module variables must have exactly
the same inner modules as their corresponding interfaces.
This is not an essential restriction, as one can always pass
inner modules as independent parameters, but we would like
to relax it, to make our calculus more general.

References
[1] D. Ancona and E. Zucca. True Modules for Java-like

Languages. InProc. ECOOP’01, number 2072 in Springer
LNCS, pages 354–380, 2001.

[2] D. Ancona and E. Zucca. A Calculus of Module Systems.
Journal of Functional Programming, 12(2):91–132, 2002.

[3] Gerard Boudol. The recursive record semantics of objects
revisited.Journal of Functional Programming, 14:263–315,
2004.

[4] K. Bruce, L. Petersen, and J. Vanderwaart. Modules in
LOOM: Classes are not enough. http://www.cs.williams.edu/kim,
1998.

[5] Derek Dreyer. A Type System for Well-Founded Recursion.
In Proc. POPL’04, 2004.

[6] Kathleen Fisher and John H. Reppy. The Design of a Class
Mechanism for Moby. InProc. PLDI’99, pages 37–49, 1999.

[7] R. Garcia, J. J̈arvi, A. Lumsdaine, J. Siek, and J. Willcock.
A Comparative Study of Language Support for Generic
Programming. InProc. OOPSLA’03, pages 115–134, 2003.

[8] Tom Hirschowitz and Xavier Leroy. Mixin modules in a
Call-by-Value Setting. InProc. ESOP’02, number 2305 in
Springer LNCS, pages 6–20, 2002.

[9] X. Leroy, D. Doligez, J. Garrigue, and J. Vouillon. The
Objective Caml system. Software and documentation
available on the Web, http://caml.inria.fr /.

[10] Xavier Leroy. Manifest types, modules, and separate
compilation. InPOPL’94, pages 109–122. ACM Press, 1994.

[11] Keiko Nakata, Akira Ito, and Jacques Garrigue. Re-
cursive Object-Oriented Modules. Extended version.
http://www.kurims.kyoto-u.ac.jp/˜keiko/.

[12] Martin Odersky, Vincent Cremet, Christine Röckl, and
Matthias Zenger. A Nominal Theory of Objects with
Dependent Types. InProc. ECOOP’03, 2003.

[13] Benjamin C. Pierce. Bounded quantification is undecidable.
In C. A. Gunter and J. C. Mitchell, editors,Theoretical
Aspects of Object-Oriented Programming: Types, Semantics,
and Language Design, pages 427–459. The MIT Press,
Cambridge, MA, 1994.

[14] S. Romanenko, C. Russo, N. Kokholm, and P. Sestoft.
Moscow ML. Software and documentation available on
the Web, http://www.dina.dk/ sestoft/mosml.html.

A. Appendix
In this section, we define semi-ground normalization and
establish technical results on it.

The intuition of semi-ground normalization is to look at
interfaces instead of actual values when pulling out inner
modules from module variables. This works well because
our type system ensures that the inner modules of actual val-
ues coincide with the inner modules of their corresponding
interfaces.

Formally, semi-ground normalization is defined by the
predicategnlz given in Figure 16, and the functionη given
in Figure 17, wherẽ∆ replaces a variable by its interface un-
til it obtains an absolute path (i.e.not starting by a variable).

[P-ROOT]
gnlz (ε, ε).

[P-VAR]
gnlz (X,X).

[P-APP]
gnlz (p(q), p′(q′))

:- gnlz (p, p′), gnlz (q, q′).

[P-ExPATH]
gnlz (p.M, p′.M)

:- gnlz (p, p′),
src(p′.M, E),
E ≡ C ∨ ¬(E ≡ q).

[P-PATH]
gnlz (p.M, q)

:- gnlz (p, p′),
src(p′.M, r),
¬(r ≡ C),
subst(p′, θ),
gnlz (θ(r), q).

[P-CRC]
gnlz (p.M, q)

:- gnlz (p, p′.N),
src(p′.N, r coerce {M, m}),
M ∈ {M},
subst(p′, θ),
gnlz (θ(∆̃(r)).M, q).

[P-MRG1]
gnlz (p.M, q)

:- gnlz (p, p′.N),
src(p′.N, r ⇀ r′),
subst(p′, θ),
gnlz (θ(∆̃(r)).M, q).

[P-MRG2]
gnlz (p.M, q)

:- gnlz (p, p′.N),
src(p′.N, r ⇀ r′),
subst(p′, θ),
gnlz (θ(∆̃(r′)).M, q).

[P-PAR]
gnlz (p.M, q)

:- gnlz (p, p′.N),
src(p′.N, C),
subst(p′, θ),
gnlz (θ(∆̃(C)).M, q).

[P-INF]
gnlz (C.M, q) :- gnlz (∆(C).M, q).

Figure 16.Ground-normalization

η(X) = X

η(p.M) =
{

η(θ(C)) if src(p.M, C) andsubst(p, θ) hold
η(p).M otherwise

η(p(q)) = η(p)(η(q))

Figure 17.Variable normalization

It is defined as follows:

∆̃(p) =

∆̃(∆(X)) (p ≡ X)
∆̃(∆(C)(q).r) (p ≡ C(q).r)
p (otherwise)

Definition 9 A pathq is a semi-ground normal form ofp if
gnlz (p, q′) andη(q′) = q hold.

We use subscriptW to denote type judgments with semi-
ground normalization,e.g.`W S ¦ denotes thatS is well-
typed when type checked with semi-ground normalization.

Theorem 2 Let (S, e) be a well-founded program, it is de-
cidable whether̀ W (S, e) : τ holds or not. Moreover,
`W (S, e) : τ holds if and only if̀ (S, e) : τ holds.

Above theorem is a direct result from the following
proposition.

Proposition 3 Let (S, e) be a well-founded program, then

• semi-ground normalization of paths always terminates.
• the set of semi-ground normal forms of any path is finite,

and we have an algorithm that calculates this set.
• it is decidable whether̀ W S ¦ holds or not.
• for any pathp, it is decidable whether̀ W p ¦ holds or

not.
• if ` S ¦ then`W S ¦, and vice versa.
• if ` S ¦, then` p ¦ holds if and only if̀ W p ¦ holds.
• if ` S ¦ and` p ¦, then the normal form ofp coincides

with the semi-ground normal form ofp.
• if ` S ¦ and` p ¦, then the elaboration ofp is always

successful.

For reasons of space, we refer the proof for the proposition
to the extended version [11].

