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Abstract
In this paper we investigate the addition of first-class re-
lationships to a prototypical object-oriented programming
language (a “middleweight” fragment of Java). We provide
language-level constructs to declare relationships between
classes and to manipulate relationship instances. We allow
relationships to have attributes and provide a novel notion of
relationship inheritance. We formalize our language giving
both the type system and operational semantics and prove
certain key safety properties.

1. Introduction
Object-oriented programming languages, and object mod-
elling techniques more generally, provide software engineers
with useful abstractions to create large software systems.
The grouping of objects into classes and those classes into
hierarchies provides the software engineer with an extremely
flexible way of representing real-world semantic notions di-
rectly in code.

However, whilst object-oriented languages easily repre-
sent real-world entities (e.g. students, lectures, buildings),
the programmer is poorly served when trying to represent
the many naturalrelationshipsbetween those entities (e.g.
‘attends lecture’, ‘is taught in’).

Relationships clearly can be represented in object-oriented
languages—indeed patterns have been established for the
purpose [8]—but this important abstraction can get lost in
the implementation that is forced upon the programmer by
the lack of first-class support. Different aspects of the rela-
tionship can be implemented by fields and methods of the
participating classes, but this distributes information about
the relationship across various classes. Alternatively, small
classes can be defined to contain references to the two re-
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Figure 1. Relationships represented as UMLassociation
classes

lated objects along with any attributes of the relationship.
In both cases, without great care the structure can become
internally inconsistent, especially in the presence of alias-
ing. Furthermore, we argue that the application of standard
class-based inheritance to these ‘relationship classes’ does
not adequately capture the intuitive semantics of relationship
inheritance, which must otherwise be encoded in standard
Java. Such an encoding can only lead to further complexity
and more opportunities for inconsistency.

The importance of relationships is clearly reflected by
their prominence in almost all modelling languages: from
(Extended) Entity-Relationship Diagrams (ER-Diagrams) [4]
to Unified Modelling Language (UML) [7]. In Figure 1 we
give some examples of relationships expressed in UML (we
use these as running examples throughout this paper).

We argue that such important abstractions deserve first-
class support from programming languages. We are the not
the first to do so; Rumbaugh also pointed out the importance
of first-class language support for relationships [11]. No-
ble and Grundy also proposed that relationships should per-
sist from the modelling to the implementation stage of pro-
gram development [9]. Albano et al. propose a similar exten-
sion to a language for managing object-oriented databases
(OODB) [1], but do so in a much richer data model and do
not give a full description of their language.



In contrast to these works, our approach is more for-
mal. We believe that such a formal, mathematical approach
is essential to set a firm foundation for researchers, users
and implementors of advanced programming languages. To
that end we describe precisely how Java (or any other class-
based, strongly-typed, object-oriented language) can be ex-
tended to support first-class relationships. Our tool is a small
core language,RelJ, which is a subset of Java (much like
Middleweight Java [3]) with suitable extensions for the sup-
port of relationships.RelJ provides means to define relation-
ships between objects, to specify attributes associated with
those relationships, and to create hierarchies of relationships.
RelJ is intended to capture the essence of these extensions
to Java, yet is small enough to formalize completely. Other
features could be added toRelJ to make it a more complete
language, but these would not impact on the extensions for
relationships.

The remainder of the paper is organized as follows. In§2
we introduce our calculus and give a grammar. The type sys-
tem ofRelJ is defined in§3, where the formal notion of sub-
typing is discussed and well-typedRelJ programs are char-
acterized.§4 gives the dynamics ofRelJ with a small-step
operational semantics. We outline a proof of type soundness
for RelJ in §5. §6 describes an extension toRelJ which al-
lows the addition of UML-style multiplicity restrictions to
relationships. Finally, in§7, we conclude and consider fur-
ther and related work.

2. TheRelJ calculus
As mentioned earlier, the core ofRelJ is a subset of Java,
similar to other fragments of Java-like languages [3, 5, 6].
The fragment we use consists of simple class declarations
that contain a number of field declarations and method dec-
larations. The exact form of the class declarations will be
made more precise later.

Relationship Model

The main feature ofRelJ is its support for first-class rela-
tionships. In addition to class declarations, therefore, aRelJ
program consists of a number of relationship declarations,
which are written:

relationship r extends r ′

from n to n′
{ FieldDecl∗}

This defines a new relationship,r , with a number of
type/field name pairs,FieldDecl∗. To simplify the presenta-
tion, and to save space, we do not allow relationships to have
methods (though these can be easily added in the obvious
way). The relationship is betweenn andn′ wheren, n′ range
over classesand relationships. This provides a means for
relationship instances to participate in further relationships.
This feature is known asaggregationin E/R modelling [12].
An example is shown in Figure 2: theRecommends relation-
ship specifies that aTutormay recommend aStudent to at-

tend a particularCourse by relating an instance ofTutor to
an instance ofAttends, the relationship that specifies which
students attend which courses.

We relate two objects,o1 ando2, with a relationship,r ,
by creating an instance ofr , which then existsbetween o1
ando2, and stores the values forr ’s fields. Relationship in-
stances are first-class runtime objects inRelJ and so can, for
example, be stored in variables and fields. This immediately
introduces design issues relating to the removal of relation-
ship instances and consequent creation of dangling pointers:
these are discussed later.

We also support relationship inheritance, which is de-
noted idiomatically as inheritance between association
classes (Figure 1b). To the best of our knowledge, our sup-
port for this inheritance is novel and, as we will detail later,
is significantly different from the standard class-based inher-
itance model.

Class inheritance vs relationship inheritance

While class inheritance inRelJ is identical to that in Java,
RelJ’s relationship inheritance is based on a restricted form
of delegation, as found in languages such as Self [14] and,
more recently,δ [2]. Consider theRelJ code for a simple
example, adapted from Pooley and Stevens [13], which is
shown in Figure 2.

When alice and programming are placed in the
Attends relationship, an instance ofAttends is created
between those objects. Subsequently, whenalice and
programming are further placed inReluctantlyAttends,
an instance of ReluctantlyAttends is created be-
tween alice and programming, but containsonly the
missedLectures field. If that ReluctantlyAttends in-
stance receives a field look-up request formark, it passes—
delegates—the request to theAttends instance—thesuper-
instance—that exists between those same objects.

To ensure all instances are ‘complete’, specifically that
they have all the fields one would expect by inheritance, we
impose the following invariant:

INVARIANT 1. Consider a relationship r2 which extends

r1. For every instance of relationship r2 between objects o1
and o2, there is an instance of r1, also between o1 and o2, to
which it delegates requests for r1’s fields.

By this invariant, if alice and programming were
placed in theReluctantlyAttends relationship without
first having been placed in theAttends relationship, then
an Attends instance would be implicitly created between
them.

INVARIANT 2. For every relationship r and pair of objects
o1 and o2, there is at most one instance of r between o1 and
o2.

According to this second invariant, ifalice
and programming were later placed in the
CompulsorilyAttends relationship, then its instance



class Student {

String name;

}

class LazyStudent extends Student {

int hoursOfSleep;

}

class Course {

String title;

}

class Tutor {

String name;

}

relationship Attends

from Student to Course {

int mark;

}

relationship ReluctantlyAttends

extends Attends

from LazyStudent to Course {

int missedLectures;

}

relationship CompulsorilyAttends

extends Attends

from Student to Course {

String reason;

}

relationship Recommends

from Tutor to Attends {

String reason;

}

...

alice = new LazyStudent();

programming = new Course();

typeSystems = new Course();

alice.Attends += programming;

// Alice attends Programming

alice.ReluctantlyAttends += typeSystems;

// Alice reluctantly attends Type Systems

for (Course c : alice.Attends) {

print "Attends: " + c.title;

};

// Prints:

// Attends: Programming

// Attends: Type Systems

alice
CompulsorilyAttends

programming

Attends

ReluctantlyAttends

Relation

Figure 2. ExampleRelJ code and possible instantiation

and that ofReluctantlyAttends would share a common
super-instance: theAttends instance betweenalice and
programming. This situation is shown at the bottom of
Figure 2, with the dotted lines indicating delegation of field
lookups.

The motivation for such a mechanism is based on what
one might intuitively expect from relationships: Clearly, if
Alice reluctantly attends a course, then she also attends it
and will receive a mark, thus we require sub-relationships to
be included in their super-relationship, giving rise to Invari-
ant 1. Also, if Alice is both compulsorily and reluctantly at-
tending some course, the mark will be the same regardless of
whether one views her attendance as reluctant, compulsory
or without any annotation. Thus, for each pair of related ob-
jects, there should be only one instance of each relationship
so that relationship properties are consistent, hence Invari-
ant 2.

RelJ also allows the removal of relationship instances.
For example, we could extend the code of Figure 2 to remove
the fact thatAlice attendsprogramming:

...

alice.Attends -= programming;

// Remove Alice attending programming

for (Course c : alice.Attends){

print "Attends: " + c.title;

}

// Prints:

// Attends: Type Systems

In fact, both the relationship addition and removal operations
arestatement expressions. When used as an expression,+=
returns the relationship instance that was created: this pro-
vides a short-cut for setting the new instance’s fields. For
regularity,-= returns the value of the expression on the right,
in common with other assignments.

We return now to the issue raised earlier concerning rela-
tionship instance removal. Consider the following code:

bob = new Student();

bob.name = "Bob";

databases = new Course();

databases.title = "DB 101";

bobdb = (bob.Attends += databases);

bobdb.mark = 99;

for (Course cs : bob.Attends) {

print cs.title;

};

// Prints DB 101

print bobdb.mark;

// Prints 99

bob.Attends -= databases;

// Remove bob from databases

for (Course cs : bob.Attends) {

print cs.title;

};

// Prints nothing



The second iteration shows that the relationship between
bob anddatabases has been correctly removed. We must
then choose the fate of the reference to theAttends-instance
in bobdb: what happens if we append the statementprint
bobdb.mark;?

There are clearly a number of options: either the instance
is removed, in which case we would expect a runtime er-
ror; or the runtime maintains some liveness information so
that an access to the variablebobdb would generate a spe-
cific relationship exception; or finally, we could choose not
to remove the relationship instance at all, in which case the
code would print99. We have opted for the third case. Thus,
in RelJ, the relationship instance itself is not removed upon
deletion, but rather is treated like any other runtime value
and is removed by garbage collection. More experience in
relationship programming is needed before we can deter-
mine if this is the correct design decision.

Language Definition

We give the grammar forRelJ programs and types in Fig-
ure 3.

The Java types used inRelJ are class names and a single
primitive type,boolean (the inclusion of further primitive
types does not impact on the formalization). As discussed,
we provide relationship names as types. To allow relation-
ship processingRelJ has a (generic) set typeset<n>, that
denotes a set of values of typen. This set type isnota generic
class type, but is a generic value type, much like the generic
literal types used by the ODMG [10].1 RelJ does not support
nested sets—sets of sets are not permitted.RelJ offers afor
iterator over set values (we adopt the same syntax as Java 5.0
offers for iterating over collections). We also provide oper-
ators for explicitly adding an element to a set (+=), and for
removing an element (-=).

For simplicity, we require some regularity in the class
(and relationship) declarations ofRelJ programs: (1) we in-
sist that all class declarations include the supertype; (2) we
write out the receiver of field access or method invocation in
full; (3) all methods take just one argument; (4) all method
declarations end with areturn statement; and (5) we as-
sume that in aRelJ program exactly one class supports a
main method. To be concise, we do not consider construc-
tor methods; field initialization, other than the provision of
type-appropriate initial values, is performed explicitly.

The metavariablec ranges over the set of class names,
ClassName; r ranges over the set of relationship names,
RelName; n ranges over bothClassName andRelName; f
ranges over the set of field names,FldName; m ranges over
the set of method names,MethName; andx ranges over the
set of variable names,VarName, which we assume contains
the elementthis, which cannot be on the left-hand side of
an assignment. We use the notations to denote a possibly

1 Having sets as a generic value type allows us to soundly support
covariance—this is discussed in more detail in§3.

empty sequence of statements. Metavariables may not take
the undefined value.

As usual for such language formalizations, we assume
that given aRelJ program, P, the class and relationship
declarations give rise to class and relationship tables that
are denoted byCP andRP, respectively. (We will drop the
subscript when it is unambiguous.) A class (relationship)
table is then a map from a class (relationship) name to a
class (relationship) definition. Signatures for these maps are
to be found in Figure 4.

A class definition is a tuple,(c,F,M), wherec is the
superclass;F is a map from field names to field types; and
M is a map from method names to method definitions.
Method definitions are tuples(x,L, t1, t2, mb) wherex is
the parameter;L is a map from local variable names to their
types;t1 is the parameter type;t2 is the return type; andmb
is the method body. For brevity, we writeFc andMc for the
field and method definition maps of classc.

Relationship definitions are tuples(r ′, n, n′,F) wherer ′

is the super-relationship;n and n′ are the types between
which the relationship is formed (thesourceanddestination
respectively); andF is a field map, as found in class defi-
nitions. As for classes, we writeFr for r ’s field definition
map.

In summary,RelJ offers the following operations to ma-
nipulate relationships:e.r finds the objects related to the re-
sult of e through relationshipr ; e:r finds the instances ofr
that exist between the result ofe and the objects to which
it is related; and the pseudo-fieldsfrom andto are made
available on relationship instances, and return the source and
destination objects between which the instance exists (or ex-
isted). These are further described in the following sections.

3. Type System
We provideObject for the root of the class hierarchy as
usual, andRelation as its counterpart in the relationship hi-
erarchy, and assume appropriate entries inC andR respec-
tively. We define the usual subtyping relationP ` t ≤ t ′

wheret is a subtype oft ′, directly populated with the infor-
mation about immediate super-types provided byC andR,
then closed under transitivity and reflexivity.P is omitted
where the context makes it unambiguous.

We leave the less important typing rules to Appendix A,
but two rules worth particular note are shown here:

(STCOV)

` n1 ≤ n2
` set<n1> ≤ set<n2>

(STOBJECT)

` Relation ≤ Object

STCOV makes set types covariant with their contained type.
If set< − > types were generic classes, then this kind of
covariance would be unsound. However,set<−> is a value
type, thus such values are not referenced or mutated, only
copied.



p ∈ Program ::= ClassDecl∗ RelDecl∗

ClassDecl ::= class c extends c′
{ FieldDecl∗ MethDecl∗ }

RelDecl ::= relationship r extends r ′

from n to n′
{ FieldDecl∗ }

n ∈ NominalType ::= c | r

t ∈ Type ::= boolean | n | set<n>

FieldDecl ::= t f ;

MethDecl ::= t m(t ′ x) mb

mb∈ MethBody ::= { s return e; }

v ∈ Value ::= true | false | null | empty

l ∈ LValue ::= x |

e. f | field access

e.r related object access

e ∈ Expression ::= v | value

l | l-value

e1 == e2 | equality test

e:r | relationship access

e.from | relationship source

e.to | relationship destination

se statement expression

se∈ StatementExp ::= new c() | instantiation

x = e | e. f = e′
| assignment

e.m(e′) | method call

l += e | set addition

l -= e set removal

s ∈ Statement ::= ; | skip

se; | expression

if (e) {s1} else {s2}; | conditional

for (n x : e) {s}; set iteration

Figure 3. The grammar ofRelJ types and programs

C ∈ ClassTable : ClassName → ClassName × FieldMap × MethMap
R ∈ RelTable : RelName → RelName × NominalType × NominalType × FieldMap
F ∈ FieldMap : FldName → Type
M ∈ MethMap : MethName → VarName × LocalMap × Type × Type × MethBody
L ∈ LocalMap : VarName → Type

Figure 4. Signatures of class and relationship tables



To unify the relationship and class hierarchies—desirable
in the absence of generics—we takeRelation as a subtype
of Object in rule STOBJECT.2

WhileFc andMc give us the fields and methods declared
directly in c, we defineFDc andMDc to provide us with
all the fields and methods available forc’s instances, includ-
ing those inherited from its superclasses, so that their types
might be checked in the later type rules:

FDP,c( f ) =


FP,c( f ) if f ∈ dom(FP,c)

FDc′( f ) if f 6∈ dom(FP,c)

andCP(c) = (c′, , )

⊥ otherwise

MDP,c(m) =


MP,c(m) if f ∈ dom(MP,c)

MDP,c′(m) if f 6∈ dom(MP,c)

andCP(c) = (c′, , )

⊥ otherwise

FD can be defined similarly for relationships, usingR in
place ofC.

We type expressions and statements in the presence of
a typing environment,0, which assigns types to variable
names. Selected typing judgements forRelJ expressions are
given below:

(TSRELOBJ)

0 ` e: n1
R(r ) = ( , n2, n3, )

` n1 ≤ n2
0 ` e.r : set<n3>

(TSRELINST)

0 ` e: n1
R(r ) = ( , n2, , )

` n1 ≤ n2
0 ` e:r : set<r>

TSRELOBJ types the lookup of objects related throughr
to the result ofe. As our relationships are implicitly many-to-
many, the result of this lookup is a set ofr ’s destination type,
n2. The relationship instances that sit between the result
of e and the result ofe.r are accessed throughe:r . The
result of such a lookup is a set ofr -instances, as specified
in TSRELINST. There is a bias here between the source and
destination of a relationship: the relationship instances may
only be accessed from the source object. It is not difficult
to extend the language so that access from the destination
objects is also possible.

(TSFROM)

0 ` e: r
R(r ) = ( , n, , )

0 ` e.from : n

(TSTO)

0 ` e: r
R(r ) = ( , , n, )

0 ` e.to : n

Given anr -instance, the objects between which it exists
(or between which it once existed) can be accessed with the
from andto properties. TSFROM and TSTO assign types
according to the relationship’s declaration—therefore, these
are typed covariantly with the relationship type, but this is
sound as they are immutable for all instances of such a
relationship.

2 If we added generics toRelJ it would be possible to remove this typing
rule.

(TSRELADD)

R(r ) = ( , n1, n2, )

0 ` e1 : n3
0 ` e2 : n4
` n3 ≤ n1
` n4 ≤ n2

0 ` e1.r += e2 : r

(TSRELSUB)

R(r ) = ( , n1, n2, )

0 ` e1 : n3
0 ` e2 : n4
` n3 ≤ n1
` n4 ≤ n2

0 ` e1.r -= e2 : n4

Finally, TSRELADD and TSRELSUB specify typing of
the operators that relate and unrelate objects. In both cases,
e1 ande2 must be of the source and destination type, respec-
tively, of relationshipr . For TSRELADD, the result will be
an instance ofr : the instance that was created. For TSREL-
SUB, the result ofe2 is returned.

The type-checking relation for statements is of the form
0 ` s, the rules for which are largely routine. We show some
examples, however:

(TSEXP)

0 ` se: t
0 ` se;

(TSFOR)

0 ` e: set<n1>

0[x 7→ n2] ` s
` n1 ≤ n2 x 6∈ dom(0)

0 ` for (n2 x : e) {s};

TSEXP allows type-correct statement expressions to be
used as statements, while TSFOR checks that thefor con-
struct is only asked to iterate over a set of object references.
Note that we require an explicit type for the iterating vari-
able to be consistent with the Java 5.0 syntax; although there
is no reason why this type couldn’t be inferred. For simplic-
ity, we also require that the iteration variable is not already
in scope.

The setvalidTypesP specifies the types that may be as-
signed to fields and variables:

validTypesP = {boolean}

∪ dom(CP) ∪ dom(RP)

∪ {set<n> | n ∈ dom(CP) ∪ dom(RP)}

In the following two rules, we check fields and methods
in the presence of their enclosing class or relationship:

(TSFIELD)

C(n) = (n′, , ) ∨ R(n) = (n′, , , )
1. f 6∈ dom(FDn′)
2. Fn( f ) ∈ validTypesP
3. R( f ) = ( , n1, n2, ) ⇒ 6` n ≤ n1

P, n ` f

TSFIELD checks thatf is a good field for class or relation-
shipn by verifying (1) that f is not defined in any super-type
of n; (2) that f ’s type is valid in a well-typed program and
(3) that there is no relationship with the same name asf that
might make references tof ambiguous.



(TSMETHOD)

CP(c) = (c′, ,Mc)

Mc(m) = (x,L, t1, t2, { s return e; })
1. t1 ∈ validTypesP
2. this, x 6∈ dom(L)
3.

{x 7→ t1, this 7→ c} ∪ L ` s
4.

{x 7→ t1, this 7→ c} ∪ L ` e: t ′2
5.

` t ′2 ≤ t2
6. MDc′(m) = ( , , t3, t4, ) ⇒ ` t3 ≤ t1 ∧ ` t2 ≤ t4

P, c ` m

TSMETHOD checks (1) that the input type of methodm in
classc is valid; (2) that the parameter name andthis do
not clash with any local variables; (3) that the method body
is well-typed when the parameter,this and the local vari-
ables are assigned the types specified in the class’ method
table; (4, 5) that thereturn expression has a subtype of the
method’s declared return type; and (6) that the input type of
this method is a supertype of any previous declaration ofm
in a superclass ofc, and that the return type ofm is a subtype
of any previous method declaration: that is, that this defini-
tion of m may be used anywhere a superclass’ version of
m can be used. We then specify the validity of classes and
relationships:

(TSCLASS)

C(c) = (c′
6= c,F ,M)

P ` c′

∀ f ∈ dom(F) : P, c ` f
∀m ∈ dom(M) : P, c ` m

P ` c

TSCLASS specifies that a class type is well-formed if its
superclass is well-formed, and if all of its methods and fields
are well-typed. Relationships are similarly checked:

(TSRELATIONSHIP)

RP(r ) = (r ′
6= r, n1, n2,F)

r ′
∈ validTypesP

1. RP(r ′) = ( , n′
1, n′

2, )
2.

` n1 ≤ n′
1

3.
` n2 ≤ n′

2
∀ f ∈ dom(F) : P, r ` f

P ` r

TSRELATIONSHIP imposes many of the same restrictions
as TSCLASS, except without method checking, and with the
addition of conditions 1–3, which check the types related by
r ’s super-relationship are supertypes of those thatr relates.

4. Semantics
We specify evaluation rules for a small-step semantics. We
use evaluation contexts to specify evaluation order [15], and
use variable renaming to avoid the need for an explicit frame
stack [5].

The meta-variables used in the semantics range over ad-
dresses, values, errors, objects and stores as follows:

ι ∈ Address
ιnull ∈ Address ∪ {null}

u ∈ DynValue = {null, true, false}
∪ Address ∪ P(Address)

w ∈ Error = {NullPtrError}
o ∈ Object
σ : Address → Object
ρ : (Address × Address × RelName) → Address
λ : VarName → DynValue

Objects, ranged over byo, are either class instances or
relationship instances. We write class instances as an an-
notated pair,〈〈c|| f1 : v1, . . . , fi : vi 〉〉, containing a map-
ping from field names to values, and the object’s dynamic
type, c. Relationship instances are written as an annotated
5-tuple,〈〈r, ιnull, ι1, ι2|| f1 : v1, . . . , fi : vi 〉〉, containing the
familiar field value map and dynamic type, as well as the ob-
ject addresses the instance relates,ι1 andι2, and a reference
to the relationship instance’ssuper-instance, ιnull; specifi-
cally, the instance ofr ’s super-relationship which relates the
same object addressesι1 andι2. Wherer = Relation, there
is no super-relationship and this reference isnull. For both
types of object, we takeo( f ) anddom(o) as if they were
applied too’s field value map.

Dynamic values (as opposed to syntactic value literals),
ranged over byu, are either addresses, ranged over byι, sets
of addresses, ortrue, false or null. A small-step seman-
tics means that expressions may at times be only partially
evaluated, so we include these run-time values and partially-
evaluated method bodies in language expressions by extend-
ing Expression as follows:

e ∈ DynExpression ::=

u | dynamic values

mb | method body

. . . terms fromExpression grammar

DynLValue andDynStatement are generated fromLValue
andStatement in the obvious way, ande, l ands will range
over these new definitions from this point onward.

A store,σ , is a map from addresses to objects, while lo-
cal variables are given values by a locals store,λ. A relation-
ship store,ρ maps relationship tuples to addresses such that
ρ(r, ι1, ι2) indicates the address of the instance ofr which
exists betweenι1 andι2.

During execution, the store and its constituent objects are
modified by updating the relevant map. Update of some map
f is written f [a 7→ b] such that f [a 7→ b](a) = b and
f [a 7→ b](c) = f (a) wherea 6= c. Such substitutions are
commonly applied to stores (σ [ι 7→ onew]) and to objects
(o[ f 7→ vnew]).

Substitution of variables in program syntax uses the stan-
dard notation,e[x′/x], for the replacement of all variables
x in e with x′, and similarly with statements,s[x′/x], and
statement sequences,s[x′/x].



El ∈ LValContext ::=

Ee. f field
| Ee.r relation

Ee ∈ ExpContext ::=

• hole
| El l-value
| Ee == e | u == Ee equality test
| Ee:r relationship access
| Ee.from | Ee.to relationship from/to

Ee, Ese ∈ SExpContext ::=

{ E return e; } method body
| { return Ee; } method body
| Ee. f = e | x = Ee | u. f = Ee assignment
| Ee.m(e′) | u.m(Ee) method call
| El += e | x += Ee set addition
| u. f += Ee | u.r += Ee
| El -= e | x -= Ee set removal
| u. f -= Ee | u.r -= Ee

Es ∈ StatContext ::=

Ese; expression
| for (n x : Ee) {s}; set iteration
| if (Ee) {s1} else {s2}; conditional

E ∈ Context ::=

Es s statement sequence

Figure 5. Grammar for evaluation contexts

Figure 5 gives the evaluation contexts forRelJ expres-
sions and statements. All contextsE contain a hole, denoted
•, which indicates the position of the sub-expression to be
evaluated first—in this case the left-most, inner-most. It can
be shown that all (non-value) expressions and statements
may be decomposed into a context with a (strictly smaller)
expression in hole position.

A configuration in the semantics is a 5-tuple of typ-
ing environment, heap, relationship store, locals map, and a
statement sequence:〈0, σ, ρ, λ, s〉. An error configuration
is a configuration〈0, σ, ρ, λ, w〉, with an error in place of
a statement sequence.0 is included for the proof of type
soundness.

Expression execution proceeds when a sub-expression
in hole position may be reduced, as specified by OSCON-
TEXTE, below, which also lifts to statement contexts:

(OSCONTEXTE)
〈0, σ, ρ, λ, e〉 P 〈0′, σ ′, ρ′, λ′, e′

〉

〈0, σ, ρ, λ, Ee[e]〉
P 〈0′, σ ′, ρ′, λ′, Ee[e′

]〉

We also define OSERROR, which propagates an error raised
by a sub-expression upward through the syntax:

(OSERROR)
〈0, σ, ρ, λ, e〉 P 〈0′, σ ′, ρ′, λ′, w〉

〈0, σ, ρ, λ, E[e]〉 P 〈0′, σ ′, ρ′, λ′, w〉

It remains now to define the base cases for the operational
semantics. Firstly, OSSEQ1 strips ‘skip’ statements from the
front of statement sequences, while OSSEQ2 executes the
statement at the head of a statement sequence:

(OSSEQ1)
〈0, σ, ρ, λ, ;s〉 P 〈0, σ, ρ, λ, s〉

(OSSEQ2)
〈01, σ1, ρ1, λ1, s1〉

P 〈02, σ2, ρ2, λ2, s2〉

〈01, σ1, ρ1, λ1, s1 s〉 P 〈02, σ2, ρ2, λ2, s2 s〉

RelJ provides two relationship operations on an expres-
sion,e, returning an object address,ι: firstly, the objects re-
lated toι by relationshipr may be accessed usinge.r ; sec-
ondly, the instances ofr that relate those objects toι may be
accessed withe:r so that relationship attributes may read or
modified:
(OSRELOBJ) 〈0, σ, ρ, λ, ι.r 〉

P 
〈0, σ, ρ, λ, {ι′ | ∃ι′′ : ρ(r, ι, ι′) = ι′′}〉

(OSRELOBJN) 〈0, σ, ρ, λ, null.r 〉
P 
〈0, σ, ρ, λ,NullPtrError〉

(OSRELINST) 〈0, σ, ρ, λ, ι:r 〉
P 

〈0, σ, ρ, λ, {ι′′ | ∃ι′ : ρ(r, ι, ι′) = ι′′}〉

OSRELOBJ and OSRELOBJN give the semantics for
obtaining the objects related toι throughr . Notice that the
result is not just a matter of looking-up the result in a table;
the objects are found by queryingρ. If null is the target of
the lookup, a null-pointer error occurs. Similar rules are left
for the appendix.

The pseudo-fieldsfrom andto provide access to the ob-
jects between which a relationship instance exists, returning
the source and destination objects respectively:
(OSFROM) 〈0, σ, ρ, λ, ι.from〉

P 〈0, σ, ρ, λ, ι′〉

where
σ(ι) = 〈〈 , , ι′, || 〉〉

(OSTO) 〈0, σ, ρ, λ, ι.to〉
P 〈0, σ, ρ, λ, ι′〉

where
σ(ι) = 〈〈 , , , ι′|| 〉〉

OSRELADD and OSRELSUB give semantics to the re-
lationship addition and removal operators+= and-= respec-
tively, and are based entirely onaddRel anddelRel from Fig-
ure 6:
(OSRELADD) 〈0, σ1, ρ1, λ, ι1.r += ι2〉

P 〈0, σ2, ρ2, λ, ι3〉

where
(σ2, ρ2) = addRelP(r, ι1, ι2, σ1, ρ1)

ι3 = ρ2(r, ι1, ι2)

(OSRELSUB) 〈0, σ, ρ1, λ, ι1.r -= ι2〉
P 〈0, σ, ρ2, λ, ι2〉

where
ρ2 = delRelP(r, ι1, ι2, ρ1)

addRel adds an instance ofr betweenι1 and ι2 if such
an instance does not already exist. With a recursive call, it
also ensures that instances ofr ’s super-relationships exist
betweenι1 andι2, ensuring Invariant 1 is maintained.

delRel removes an instance ofr from betweenι1 and
ι2, but doesnot alter the heap, only the relationship store,
ρ. Again, to maintain Invariant 1, all instances of sub-
relationships tor are similarly removed from betweenι1 and
ι2.

In the case of a relationship addition in expression con-
text, a reference is returned to the relationship instance that
was added. Relationship removal simply evaluates to the



newPartP(r, ιnull, ι1, ι2) = 〈〈r, ιnull, ι1, ι2|| f1 : v1, f2 : v2, . . . , fi : vi 〉〉

where{ f1, f2, . . . , fi } = dom(FP,c)

vi = initialP(FP,r ( fi ))

addRelP(r, ι1, ι2, σ1, ρ1) =


(σ1, ρ1) if ρ(r, ι1, ι2) = ι′′

(σ1[ι 7→ newPartP(r, null, ι1, ι2)], ρ1[(r, ι1, ι2) 7→ ι]) if r = Relation

(σ3, ρ3) otherwise
whereι 6∈ dom(σ1) or dom(σ2)

r 6= Relation ⇒ RP(r ) = (r ′, , , )

(σ2, ρ2) = addRelP(r ′, ι1, ι2, σ1, ρ1)

σ3 = σ2[ι 7→ newPartP(r, ρ2(r ′, ι1, ι2), ι1, ι2)]

ρ3 = ρ2[(r, ι1, ι2) 7→ ι]

delRelP(r, ι1, ι2, ρ) = ρ \ {((r ′, ι1, ι2) 7→ ι) | ` r ′
≤ r }

fldUpd(σ, f, ι, u) =


σ [ι 7→ σ(ι)[ f 7→ u]] if f ∈ dom(σ (ι))

fldUpd(σ, f, ι′, u) if f 6∈ dom(σ (ι)) ∧ σ(ι) = 〈〈r, ι′, , || . . .〉〉

⊥ otherwise

Figure 6. Definitions of auxiliary functions for creating relationship instances (newPart, in which ιnull ranges over addresses
and the undefined value), for putting objects in relationships (addRel) and for removing objects from relationships (delRel).
fldUpd demonstrates delegation of field updates to super-relationship instances.

right-hand side of the assignment, in common with other as-
signment operators.

Field update is performed with an auxiliary function
fldUpd, also found in Figure 6, which demonstrates the del-
egation of field lookup to super-relationship instances:
(OSFLDASS) 〈0, σ, ρ, λ, ι. f = u〉

P 
〈0, fldUpd(σ, ι, f, u), ρ, λ, u〉

We conclude our discussion of the operational semantics
with the two circumstances in which variables are scoped—
method call, and thefor iterator.

The semantics for method call is given in OSCALL :
(OSCALL ) 〈01, σ, ρ, λ1, ι.m(u)〉 P 

〈02, σ, ρ, λ2, { s2 return e2; }〉

where
σ(ι) = 〈〈c|| . . .〉〉
MDP,c(m) = (x,L, t1, , s1 return e1;)

dom(L) = {x1, . . . , xi }

x′, x′
this, x′

1, . . . , x′
i 6∈ dom(λ1)

02 = 01[x′
7→ t1][x′

this 7→ c]
[x′

1..i 7→ L(x1..i )]

λ2 = λ1[x′
7→ u][x′

this 7→ ι]

[x′
1..i 7→ initial(02(x′

1..i ))]

s2 = s1[x′/x][x′
1..i /x′

1..i ][x
′
this/this]

e2 = e1[x′/x][x′
1..i /x1..i ][x

′
this/this]

Access to the formal parameter,x, local variables,x1..i , and
this must be scoped within the body ofm, so we freshen
these syntactic names tox′, x′

1..i and x′
this in the style of

Drossopoulou et al. [5]. We extend the typing environment,
02, with new local variable type bindings for the fresh
names (as well as those for the formal parameter andthis),
and include appropriate initial values in the locals store,λ2.
Finally, the old syntactic names are updated in the method
body,s, andreturn expression,e, by substitution.

A similar strategy is used to avoid binding clashes for the
for iterator:
(OSFOR1) 〈0, σ, ρ, λ, for (n x : ∅) {s};〉 P 

〈0, σ, ρ, λ, ;〉

(OSFOR2) 〈01, σ, ρ, λ1, for (n x : u) {s1};〉
P 

〈02, σ, ρ, λ2, s2 for (n x : (u \ ι)) {s};〉
where

u ∈ P(Address), ι ∈ u
x′

6∈ dom(λ1)

02 = 01[x′
7→ x]

λ2 = λ1[x′
7→ ι]

s2 = s1[x′/x]

Iteration of the empty set evaluates immediately to ‘skip’,
while iteration over the non-empty set picks an element
from the set, assigns this to the iterator variable, and unfolds
the statement block, in which the bound iterator variable is
freshened. We do not specify the order in which the elements
of u are bound tox.

5. Soundness
In this section we outline proofs of two key safety properties:
that no type-correct program will get ‘stuck’—except in a
well-defined error state—and that types are preserved during
program execution.

Firstly, however, we define some well-formedness prop-
erties of stores and values, so that we can check type preser-
vation through subject reduction.

Value typing and well-formedness

We redefine our typing relation to include the store,σ , so
that values may be typed—particularly important for show-
ing subject-reduction. Typings oftrue and false with



boolean, and of null with any valid nominal type are
elided.

Firstly, an address has a type,n, if the object at that
address in the store has a dynamic type (writtendyn-
Type(σ (ι))) subordinate ton. This condition is then mapped
over the members of a set of addresses in DTSET:

(DTADDR)
` dynType(σ (ι)) ≤ n

P, 0, σ ` ι : n

(DTSET)
∀ j ∈ 1..i : P, 0, σ ` ι j : n

P, 0, σ ` {ι1, . . . , ιi } : set<n>

We also provide a typing rule for the method body con-
struction introduced in Figure 5:

(DTMETHBODY)
P, 0, σ ` s

P, 0, σ ` e : t
P, 0, σ ` { s return e; } : t

We make use of a ‘well-formed object’ relation,P, σ `

o �inst , wheno is a well-formed object in some store, the
rules for which follow:

(WFFIELD)

dynType(o) = n
FDP,n( f ) = t

P, ∅, σ ` o( f ) : t
P, σ, o ` f �fld

WFFIELD checks that the fieldf stores a value of appropri-
ate type for its definition in class or relationshipn, accord-
ing the dynamic typing relation given above. This relation is
mapped across the fields of classes and relationships in the
following rules:

(WFOBJECT1)
P, σ ` 〈〈Object||〉〉 �inst

(WFOBJECT2)
{ f1, . . . , fi } = dom(FDP,c)

∀ j ∈ 1..i : P, σ, o ` f j �fld
P, σ ` 〈〈c|| f1 : v1, . . . , fi : vi 〉〉 �inst

(WFRELINST1)
ι1, ι2 ∈ dom(σ )

P, σ ` 〈〈Relation, null, ι1, ι2||〉〉 �inst

(WFRELINST2)

{ f1, . . . , fi } = dom(FP,r )

∀ j ∈ 1..i : P, σ, o ` f j �fld
RP(r ) = (dynType(σ (ι)), n1, n2, )

` dynType(σ (ι1)) ≤ n1
` dynType(σ (ι2)) ≤ n2

P, σ ` 〈〈r, ι, ι1, ι2|| f1 : v1, . . . , fi : vi 〉〉 �inst

WFOBJECT1 and WFRELINST1 specify that instances of
Object and Relation, respectively, are valid. WFOB-
JECT2, requires that all fields are well-formed and that the
class instance has precisely those fields that were declared
or inherited. WFRELINST2, checks that only those fields
immediatelydeclared inr are present in the relationship
instance; that those fields are well-formed; that the super-
instance, atι, is present, and has a dynamic type equal tor ’s
supertype; and that ther -instance sits between two instances
of appropriate type according tor ’s definition.

We check that the relationships are properly specified in
ρ according to the following two rules:

(WFRELATION1)

σ(ρ(Relation, ι1, ι2)) = 〈〈Relation, null, ι1, ι2||〉〉

P, σ, ρ ` (Relation, ι1, ι2) �rel

(WFRELATION2)

RP(r ) = (r ′, , , )

(r ′, ι1, ι2) ∈ dom(ρ)

σ (ρ(r, ι1, ι2)) = 〈〈r, ρ(r ′, ι1, ι2), ι1, ι2|| . . .〉〉

P, σ, ρ ` (r, ι1, ι2) �rel

WFRELATION2 ensures that ther -instance betweenι1
andι2 has a super-instance that also sits betweenι1 andι2.
WFRELATION1 acts as a base-case forRelation, instances
of which do not take a super-instance.

We then map the conditions for well-formed instances,
relations and local variables over the heap,σ , the relation-
ship heap,ρ, and the locals map,λ:

(WFHEAP)

∀ι ∈ dom(σ ) : P, σ ` σ(ι) �inst
P ` σ �heap

(WFRELHEAP)

∀(r, ι1, ι2) ∈ dom(ρ) : P, σ, ρ ` (r, ι1, ι2) �rel
P, σ ` ρ �relheap

(WFLOCALS)

∀x ∈ dom(0) : P, 0, σ ` λ(x) : 0(x)

P, 0, σ ` λ �locals

We consider a configuration〈0, σ, ρ, λ, s〉 to be well-
formed whenσ , ρ andλ are well-formed, and wheres is
type-correct. Error configurations,〈0, σ, ρ, λ, w〉, are well-
formed under similar conditions.

Safety

Type safety is shown by a subject reduction theorem, central
to which is the idea that context substitution respects types:

LEMMA 1 (Substitution).For expressions e1 and e2, which are
typed t1 and t2 respectively, where t2 is a subtype of t1 and where
E[e1] is typed t3, thenE[e2] has a subtype of t3.

The proof follows by induction on the structure of the typing
derivation. Next, we show type preservation, which follows
naturally from the previous lemma, and by induction on the
structure of the derivation of execution:

THEOREM 2 (Subject Reduction).In a well-typed program,
P, where 〈01, σ1, ρ1, λ1, s1〉 executes to a new configuration
〈02, σ2, ρ2, λ2, s2〉, that configuration will be well-formed. Fur-
thermore,01 ⊆ 02 and all objects inσ1 retain their dynamic type
in σ2.

Similarly where the original configuration executes to an error
configuration.

Finally, we show that a well-typed program may always
perform an execution step:

THEOREM 3 (Progress).For all well-typed programs, P, all
well-formed configurations〈01, σ1, ρ1, λ1, s1〉 execute to either:

i. an error configuration〈02, σ2, ρ2, λ2, w〉, or

ii. a new statement configuration〈02, σ2, ρ2, λ2, s2〉



By Theorems 2 and 3, any well-typed program can make
a step to a new well-formed configuration: well-typed pro-
grams do not go wrong.

6. Restricting Multiplicities
In UML, associations can be annotated withmultiplicities,
which restrict the number of instances that may take part
in any given relation. For example, it could be that every
student attends exactly eight courses, but that a course may
have any number of students:

Student Course
* 8attends

More exotic multiplicities can include ranges (‘1..7’), and
comma-separated ranges (‘1..7, 10..*’). There are a number
of ways in which such restrictions could be expressed in
RelJ. Here, we describe both a flexible, but dynamically
checked approach, as well as a more restricted, statically
checked approach:

Dynamic approach

The use of a run-time check at every relationship addition
would allow us to represent most of the possible multiplic-
ities that can be expressed in UML. When, say, too many
courses are added to theAttends relationship, an exception
could be raised:

relationship Attends
from many Student to 2 Course {

int mark;
}
...
alice.Attends += Programming;
alice.Attends += Semantics;
alice.Attends += Types; // Exception!

We deviate from UML slightly: an association annotated at
one end with ‘2’ would always have exactly two associated
instances. Instead, we interpret our2 annotation onCourse
as ‘0..2’ in UML notation: that is, courses start without any
students.

Static approach

Our preference, however, is for a static approach to the ex-
pression of multiplicities. While less flexible, we need not
generate wrapper code for relationship additions, and we
provide more robust guarantees that the multiplicity con-
straints are satisfied. Rather than give the formal details, we
shall give an overview of this extension toRelJ.

We only allowone andmany annotations. The former is
equivalent to ‘0..1’ in UML, the latter to ‘0..*’:

relationship Attends
from many Student to many Course;

relationship Failed
from many PassedStudent to one Course;

In the declarations above, we see that students’ course atten-
dance is unrestricted, but that aPassedStudent may have
failed at most one course.

We further restrict relationship inheritance so that a
many-to-one relationship may only inherit from a many-to-
one or many-to-many relationship. We impose similar re-
strictions on many-to-many and one-to-many relationship
definitions. We then add to the invariants of§2.

INVARIANT 3. For a relationship r, declared
“ relationship r from n1 to n2”, where n1 is
annotated withone, there is at most one n1-instance related
through r to every n2-instance. The converse is true where
n2 is annotated withone.

There is a tension between Invariants 1 and 3. Consider
the following relationship definitions, where a course can
only be taught by a single lecturer, and where lecturers enjoy
teaching hard courses, but teach them slowly:

relationship Teaches
from one Lecturer to many Course;

relationship ExcitedlyTeaches extends Teaches
from one Lecturer to many HardCourse;

relationship SlowlyTeaches extends Teaches
from one Lecturer to many HardCourse;

charlie = new Lecturer();
deirdre = new Lecturer();
advancedWidgets = new HardCourse();

Suppose that charlie ExcitedlyTeaches
advancedWidgets, then by Invariant 1,charlie also
Teaches advancedWidgets.

Now suppose thatdeirdre is to slowly teach
advancedWidgets:

deirdre.SlowlyTeaches += advancedWidgets;

By Invariant 1, deirdre must also be related to
advancedWidgets via Teaches. However, by Invari-
ant 3, charlie and deirdre cannot both Teach
advancedWidgets. In our formalised semantics, we re-
movecharlie from Teaches with advancedWidgets: the
+= becomes an assignment, rather than an addition, in this
case. Furthermore, by Invariant 1,charlie cannot be in
ExcitedlyTeaches with advancedWidgets once he has
been removed fromTeaches—therefore, he is also removed
from ExcitedlyTeaches.

This behaviour, where not only sub-relationships ofr are
altered by a change tor ’s contents, but possibly also the con-
tents of parents and siblings ofr , might seem unexpected. At
the same time, they make sense when examining examples,
and provide a means for avoiding run-time checks.

7. Conclusion
In this paper, we have presentedRelJ, a core fragment of
Java that offers first-class support for first-class relation-



ships. Unlike other work, we have formally specified our
language; giving mathematical definitions of its type sys-
tem and operational semantics. Given such definitions we
are able prove an important correctness property of our lan-
guage.

Related Work

Modelling languages like UML [7] and ER Diagrams [4]
provide associations and relationships as core abstractions.
Several database systems, for example object databases ad-
hering to the ODMG standard [10], also provide relation-
ships as primitive. Unfortunately the language access to such
primitives is compromised by the lack of first-class support
in the language, and so is limited to weak API access.

As we mentioned earlier, Rumbaugh [11] was the first to
point out that relationships have an important rôle to play
in general object-oriented languages, and gave an informal
description of a language based on Smalltalk. However, the
matter of relationship inheritance was mentioned only as an
analogue to class inheritance, and no formal treatment for
this or the language as a whole was provided.

Noble has presented some patterns for programming with
relationships [8]. In fact, many of these patterns could be
used in translatingRelJ programs in ‘pure’ Java. Noble and
Grundy also suggested that relationships should be made ex-
plicit in object-oriented programs [9]. Again neither works
provide any concrete details of language support for rela-
tionships.

After completing this work we discovered the paper by
Albano, Ghelli and Orsini [1], which specifies a language
for use in an object-oriented database environment. They
offer many of the same constructions as well as a richer set
of available constraints, but build on a data model that is
much richer than that of Java and similar languages. They
give no formal description of the language. A more detailed
comparison between our approaches is future work.

Interest in relationships is not restricted to modelling and
programming languages. In the timeframe of the next gener-
ation of Microsoft Windows, code-named ‘Longhorn’, the
Windows storage subsystem will be replaced with a new
system calledWinFS. WinFS provides a database-like file
store, the core of which is a collection ofitems, like ob-
jects, which represent data such as images, Outlook con-
tacts, and user-defined items. The other key component of
the WinFS data model is relationships, which are defined
between items. WinFS thus represents a move away from
the traditional tree-based file system hierarchy to an arbi-
trary graph-based file system, where the key abstraction is
the relationship. At the time of writing, details of the API
for WinFS are scarce, but it is clear that a language such
asRelJ would provide a more direct programming frame-
work, where various compile-time checks and optimizations
would be possible. When the details of WinFS are finalized
and made public, it would be interesting to compare vari-

ous systems routines written in a language such asRelJ with
those written using the APIs.

Further work

ClearlyRelJ is just a first step in providing comprehensive
first-class support of relationships in an object-oriented lan-
guage. There are several features available in modelling lan-
guages, such as UML, that cannot be currently expressed in
RelJ; notably, we only support relationships that are one-
way. We hope to add relationships that may be traversed in
both directions safely, as well as further investigating multi-
plicities.

In this paper we have not given details of howRelJ can
be implemented. To support it directly in the runtime would
require considerable extensions to the JVM. The design and
evaluation of such extensions is interesting future work. In
the short term, one can systematically ‘compile’RelJ pro-
grams into ‘pure’ Java. In future work we plan to specify
such a compilation formally, and consider techniques for
verfying the correctness of such a compilation.

Finally, we conclude by recording our hope that our lan-
guage may provide a first step in the process of principled
unification of modelling languages (UML, ER-diagrams),
programming languages (Java, C]), and data query and spec-
ification languages (SQL, schema design).
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A. Details of Type System and Semantics
This appendix contains the details of the semantics not cov-
ered in the main body of the paper.

A.1 Typing Rules

In addition to the subtyping rules given in Section 3, the fol-
lowing rules populate the subtyping relation with the imme-
diate supertypes provided by the language syntax, and give
the reflexive, transitive closure:

(STREF)

` t ≤ t

(STTRANS)

` t1 ≤ t2
` t2 ≤ t3
` t1 ≤ t3

(STCLASS)

C(c1) = (c2, , )

` c1 ≤ c2

(STREL)

R(r1) = (r2, , , )

` r1 ≤ r2

Next, we provide rules for typingRelJ expressions.

(TSBOOLNULL )

0 ` true : boolean

0 ` false : boolean

0 ` null : n
0 ` empty : set<n>

(TSVAR)

0(x) = t
0 ` x : t

Literal values are typed with rules TSBOOL and TSNULL .
Variables are typed by TSVAR simply by look-up in the
typing environment. Note that TSVAR covers the type of
this by its inclusion inVarName.

(TSNEW)

0 ` new c() : c

(TSEQ)

0 ` e1 : n
0 ` e2 : n′

0 ` e1 == e2 : boolean

(TSFLD)

0 ` e: n
FDn( f ) = t
0 ` e. f : t

New class-instance allocation is typed in the obvious way.
The equality test is valid as long as both expressions are
addresses. (Similar rules are required fore1 ande2 asset<−

> or boolean types, but these are obvious and omitted.)
Field look-up is typed from the field table of the receiver’s
static type. Rules TSVARADD to TSFLDSUB demonstrate
object addition and removal from set values:

(TSVARADD)

0 ` e1 : n1
0(x) = set<n2>

` n1 ≤ n2
0 ` x += e1 : n1

(TSVARSUB)

0 ` e1 : n1
0(x) = set<n2>

` n1 ≤ n2
0 ` x -= e1 : n1

(TSFLDADD)

0 ` e1 : n1
0 ` e2 : n2

FDn1( f ) = set<n3>

` n2 ≤ n3
0 ` e1. f += e2 : n2

(TSFLDSUB)

0 ` e1 : n1
0 ` e2 : n2

FDn1( f ) = set<n3>

` n2 ≤ n3
0 ` e1. f -= e2 : n2

In all cases, the right-hand operand must be the address of
an object with a type subordinate to the set’s static type.
The entire expression takes the right-hand operand’s type:
unlike the use of+=/-= on relationships, no new instances
are created.

(TSASS)

0 ` x : t1
0 ` e: t2
` t2 ≤ t1 x 6= this

0 ` x = e: t2

(TSFLDASS)

0 ` e1 : n1
0 ` e2 : t1

FDn1( f ) = t2
` t1 ≤ t2

0 ` e1. f = e2 : t1

Variables and fields may be assigned, but note that no such
rule exists for relationships. As usual, values of type subor-
dinate to a field’s type may be assigned to such a field.

(TSCALL )

0 ` e1 : n1
0 ` e2 : t1

Mn1(m) = (x,L, t2, t3, )

` t1 ≤ t2
0 ` e1.m(e2) : t3

Method call is typed directly from the method look-up table.
The for statement was typed in the body of the paper.

The ‘skip’ statement is always well-typed. The conditional’s
typing-checking is standard, recalling that we do not assign
types to statements or statement sequences.

(TSSKIP)

0 ` ;

(TSCOND)

0 ` e: boolean

0 ` s1
0 ` s2

0 ` if (e) {s1} else {s2};



We now provide types for statement sequences in the
obvious way, whereε denotes the empty sequence (usually
omitted):

(TSSEQ1)

0 ` ε

(TSSEQ2)

0 ` s1
0 ` s2

0 ` s1s2

Finally, a program is well-typed if all of its classes and
relationships are well-typed, if classes and relationships are
disjoint, and if the subtyping relationship is antisymmetric:

(TSPROGRAM)

∀c ∈ dom(CP) : P ` c
∀r ∈ dom(RP) : P ` r

dom(CP) ∩ dom(RP) = ∅

∀n1, n2 : ` n1 ≤ n2 ∧ ` n2 ≤ n1 ⇒ n1 = n2
` P

A.2 Operational Semantics

First, we give full definitions ofinitial, which returns an
appropriate initial value for a variable of typet ; dynType,
which returns the dynamic type of an address in the store;
and offld, which returns the value of fieldf in the object at
ι in storeσ , delegating the field lookup to the superinstance
as appropriate.

newP(c) =

{
〈〈Object||〉〉 if c = Object

〈〈c|| f1 : v1, f2 : v2, . . . , fi : vi 〉〉 otherwise

where

{ f1, f2, . . . , fi } = dom(FDP,c)

vi = initialP(FDP,c( fi ))

initialP(t) =


null if t = n′

false if t = boolean

∅ if t = set<n>

⊥ otherwise

dynType(o) =


c if o = 〈〈c|| . . .〉〉

r if o = 〈〈r, , , || . . .〉〉

⊥ otherwise

fld(σ, f, ι) =


σ(ι)( f ) if f ∈ dom(σ (ι))

fld(σ, f, ι′) if f 6∈ dom(σ (ι))

∧ σ(ι) = 〈〈r, ι′, , ||...〉〉

⊥ otherwise

We then give the remaining rules of the operational se-
mantics, covering the routine aspects of the Java-like core,
as well as rules for raising null-pointer errors:
(OSEMPTY) 〈0, σ, ρ, λ, empty〉

P 〈0, σ, ρ, λ, ∅〉

(OSVAR) 〈0, σ, ρ, λ, x〉
P 〈0, σ, ρ, λ, λ(x)〉

(OSFLDN) 〈0, σ, ρ, λ, null. f 〉

〈0, σ, ρ, λ,NullPtrError〉

(OSFLD) 〈0, σ, ρ, λ, ι. f 〉
P 〈0, σ, ρ, λ, fld(σ, ι, f )〉

(OSRELINSTN) 〈0, σ, ρ, λ, null:r 〉
P 
〈0, σ, ρ, λ,NullPtrError〉

(OSEQ) 〈0, σ, ρ, λ, u == u〉
P 〈0, σ, ρ, λ, true〉

(OSNEQ) 〈0, σ, ρ, λ, u == u′
〉

P 〈0, σ, ρ, λ, false〉

where
u 6= u′

(OSNEW) 〈0, σ, ρ, λ, new c()〉 P 
〈0, σ [ι 7→ newP(c)], ρ, λ, ι〉

where
ι 6∈ dom(σ )

(OSBODY) 〈0, σ, ρ, λ, { return u; }〉
P 〈0, σ, ρ, λ, u〉

(OSASS) 〈0, σ, ρ, λ, x = u〉
P 〈0, σ, ρ, λ[x 7→ u], u〉

(OSADD) 〈0, σ, ρ, λ, x += u〉
P 

〈0, σ, ρ, λ[x 7→ λ(x) ∪ u], u〉

(OSSUB) 〈0, σ, ρ, λ, x -= u〉
P 

〈0, σ, ρ, λ[x 7→ λ(x) \ u], u〉

(OSFLDASSN) 〈0, σ, ρ, λ, null. f = u〉
P 

〈0, σ, ρ, λ,NullPtrError〉

(OSFLDADDN) 〈0, σ, ρ, λ, null. f += u〉
P 

〈0, σ, ρ, λ,NullPtrError〉

(OSFLDADD) 〈0, σ, ρ, λ, ι. f = u〉
P 

〈0, fldUpd(σ, ι, f, fld(σ, ι, f ) ∪ u), ρ, λ, u〉

(OSFLDSUBN) 〈0, σ, ρ, λ, null. f -= u〉
P 

〈0, σ, ρ, λ,NullPtrError〉

(OSFLDSUB) 〈0, σ, ρ, λ, ι. f -= u〉
P 

〈0, fldUpd(σ, ι, f, fld(σ, ι, f ) \ u), ρ, λ, u〉

(OSRELADDN) 〈0, σ, ρ, λ, ιnull1 .r += ιnull2 〉
P 

〈0, σ, ρ, λ,NullPtrError〉
where

ιnull1 = null or ιnull2 = null

(OSRELSUBN) 〈0, σ, ρ, λ, ιnull1 .r -= ιnull2 〉
P 

〈0, σ, ρ, λ,NullPtrError〉
where

ιnull1 = null or ιnull2 = null

(OSCALL N) 〈0, σ, ρ, λ, null.m(u)〉 P 
〈0, σ, ρ, λ,NullPtrError〉

(OSSTAT) 〈0, σ, ρ, λ, u;〉 P 〈0, σ, ρ, λ, ;〉

(OSCONDT) 〈0, σ, ρ, λ, if (true) {s1} else {s2};〉
P 

〈0, σ, ρ, λ, s1〉

(OSCONDF) 〈0, σ, ρ, λ, if (false) {s1} else {s2};〉
P 

〈0, σ, ρ, λ, s2〉


