First-class relationships in an object-oriented language

Gavin Bierman Alisdair Wren
Microsoft Research, Cambridge University of Cambridge Computer Laboratory
gmb®@microsoft.com aw3450cl.cam.ac.uk
Abstract
In this paper we investigate the addition of first-class re- attends
lationships to a prototypical object-oriented programming mark : int
language (a “middleweight” fragment of Java). We provide ! f

Student

Course

language-level constructs to declare relationships between
classes and to manipulate relationship instances. We allow

relationships to have attributes and provide a novel notion of Course \ \ LazyStudent } | HardCourse
relationship inheritance. We formalize our language giving ‘ ‘

. . d |luctantlyAttend:
both the type system and operational semantics and prove attends releantyrTenes
certain key Safety properties. mark : int missedLectures : int

(a) Association Class (b) Parallel Hierarchy

1. Introduction

Object-oriented programming languages, and object mod-
elling techniques more generally, provide software engineersFigure 1. Relationships represented as UMissociation
with useful abstractions to create large software systems.classes
The grouping of objects into classes and those classes into
hierarchies provides the software engineer with an extremely
flexible way of representing real-world semantic notions di-
rectly in code.

However, whilst object-oriented languages easily repre-
sent real-world entities (e.g. students, lectures, buildings),

the programmer is poorly served when trying 1o represent class-based inheritance to these ‘relationship classes’ does

the many naturafelationshipsbetween those entities (e.g. not adequately capture the intuitive semantics of relationship

attends lecture’, ‘is taught in’). inheritance, which must otherwise be encoded in standard

Relationships clearly can be represented in object—oriente(%ava Such an encodina can onlv lead to further comolexit
languages—indeed patterns have been established for the ~ "™ g y piexity

L . . and more opportunities for inconsistency.
purpose [8]—but this important abstraction can get lost in .) o
. . . The importance of relationships is clearly reflected by
the implementation that is forced upon the programmer by , . : : .)
:) their prominence in almost all modelling languages: from
the lack of first-class support. Different aspects of the rela- (Extended) Entity-Relationship Diagrams (ER-Diagrams) [4]
tionship can be implemented by fields and methods of the Y bLiag 9

participating classes, but this distributes information about toivgrggemi'\g;:ﬁ]m&i t??glgzgis(#MsL<)a>E7]r-e|snsg(Ijgil:1r?J|%/|tw(awe
the relationship across various classes. Alternatively, small g P psS exp

. . use these as running examples throughout this paper).
classes can be defined to contain references to the two re- . .)
We argue that such important abstractions deserve first-
class support from programming languages. We are the not
the first to do so; Rumbaugh also pointed out the importance
of first-class language support for relationships [11]. No-
Permission to make digital or hard copies of all or part of this work for personal or ble and Grundy also proposed that relationships should per-
classroom use is granted without fee provided that copies are not made or distributedgjst from the modelling to the implementation stage of pro-

for profit or commercial advantage and that copies bear this notice and the full citation .S
on the first page. To copy otherwise, to republish, to post on servers or to redistribute gram development [9] Albano et al. propose a similar exten-

lated objects along with any attributes of the relationship.
In both cases, without great care the structure can become
internally inconsistent, especially in the presence of alias-
ing. Furthermore, we argue that the application of standard

to lists, requires prior specific permission andjor a fee. sion to a language for managing object-oriented databases
FOOL 2005 15 January 2005, Long Beach, California : :
Copyright(© 2005 ACM ... $5.00 (OODB) [1], but do so in a much richer data model and do

not give a full description of their language.

In contrast to these works, our approach is more for-

tend a particula€ourse by relating an instance dfutor to

mal. We believe that such a formal, mathematical approachan instance ofkttends, the relationship that specifies which
is essential to set a firm foundation for researchers, usersstudents attend which courses.

and implementors of advanced programming languages. To We relate two object); and oy, with a relationshipr,
that end we describe precisely how Java (or any other class-y creating an instance of which then existbetween o
based, strongly-typed, object-oriented language) can be ex-ando,, and stores the values fois fields. Relationship in-
tended to support first-class relationships. Our tool is a small stances are first-class runtime object®éh and so can, for

core languageRelJ, which is a subset of Java (much like
Middleweight Java [3]) with suitable extensions for the sup-
port of relationshipskelJ provides means to define relation-

example, be stored in variables and fields. This immediately
introduces design issues relating to the removal of relation-
ship instances and consequent creation of dangling pointers:

ships between objects, to specify attributes associated withthese are discussed later.

those relationships, and to create hierarchies of relationships.

We also support relationship inheritance, which is de-

RelJ is intended to capture the essence of these extensionsioted idiomatically as inheritance between association
to Java, yet is small enough to formalize completely. Other classes (Figure 1b). To the best of our knowledge, our sup-

features could be added RelJ to make it a more complete

port for this inheritance is novel and, as we will detail later,

language, but these would not impact on the extensions foris significantly different from the standard class-based inher-

relationships.
The remainder of the paper is organized as follow$2n

we introduce our calculus and give a grammar. The type sys-

tem ofRelJ is defined in§3, where the formal notion of sub-
typing is discussed and well-typdttlJ programs are char-
acterized §4 gives the dynamics dRelJ with a small-step

itance model.

Class inheritance vs relationship inheritance

While class inheritance iRelJ is identical to that in Java,
RelJ’s relationship inheritance is based on a restricted form
of delegation, as found in languages such as Self [14] and,

operational semantics. We outline a proof of type soundnessmore recentlys [2]. Consider theRelJ code for a simple

for RelJ in §5. §6 describes an extension [kelJ which al-
lows the addition of UML-style multiplicity restrictions to
relationships. Finally, ir§7, we conclude and consider fur-
ther and related work.

2. TheReld calculus

As mentioned earlier, the core BklJ is a subset of Java,
similar to other fragments of Java-like languages [3, 5, 6].

The fragment we use consists of simple class declarations
that contain a number of field declarations and method dec-

larations. The exact form of the class declarations will be
made more precise later.
Relationship Model

The main feature oRel] is its support for first-class rela-
tionships. In addition to class declarations, thereforiReld

program consists of a number of relationship declarations,

which are written:

relationship I extends r’
from n to n’ { FieldDecl*}

This defines a new relationship, with a number of
type/field name pairs;ieldDecl*. To simplify the presenta-

example, adapted from Pooley and Stevens [13], which is
shown in Figure 2.

When alice and programming are placed in the
Attends relationship, an instance dfttends is created
between those objects. Subsequently, whérnce and
programming are further placed iReluctantlyAttends,
an instance ofReluctantlyAttends iS created be-
tween alice and programming, but containsonly the
missedLectures field. If that ReluctantlyAttends in-
stance receives a field look-up requestifark, it passes—
delegates-the request to théttends instance—theuper-
instance—that exists between those same objects.

To ensure all instances are ‘complete’, specifically that
they have all the fields one would expect by inheritance, we
impose the following invariant:

INVARIANT 1. Consider a relationshipa which eztends

ri1. For every instance of relationship between objects;o
and o, there is an instance ofir also betweenpand @, to

which it delegates requests for's fields.

By this invariant, if alice and programming were
placed in theReluctantlyAttends relationship without
first having been placed in thettends relationship, then
an Attends instance would be implicitly created between

tion, and to save space, we do not allow relationships to havethem.

methods (though these can be easily added in the obviou

way). The relationship is betwe@randn’ wheren, n’ range
over classeand relationships. This provides a means for

relationship instances to participate in further relationships.

This feature is known aaggregationn E/R modelling [12].
An example is shown in Figure 2: tR@commends relation-
ship specifies thatButor may recommend &tudent to at-

SINVARIANT 2. For every relationship r and pair of objects

01 and @, there is at most one instance of r betweegrand
02.
According to this second invariant, ifalice

and programming were later placed in the
CompulsorilyAttends relationship, then its instance

class Student {
String name;
}
class LazyStudent extends Student {
int hours0fSleep;
}
class Course {
String title;
}
class Tutor {
String name;
}
relationship Attends
from Student to Course {
int mark;
}
relationship ReluctantlyAttends
extends Attends
from LazyStudent to Course {
int missedLectures;
}
relationship CompulsorilyAttends
extends Attends
from Student to Course {
String reason;
}
relationship Recommends
from Tutor to Attends {
String reason;

alice = new LazyStudent();
programming = new Course();
typeSystems = new Course();
alice.Attends += programming;
// Alice attends Programming
alice.ReluctantlyAttends += typeSystems;
// Alice reluctantly attends Type Systems
for (Course c : alice.Attends) {
print "Attends: " + c.title;
};
// Prints:
// Attends: Programming
// Attends: Type Systems

ReluctantlyAttends

CompulsorilyAttends
A
Attends
v
Relation

programming

Figure 2. ExampleRelJ code and possible instantiation

and that ofReluctantlyAttends would share a common
super-instance: théttends instance betweealice and
programming. This situation is shown at the bottom of
Figure 2, with the dotted lines indicating delegation of field
lookups.

The motivation for such a mechanism is based on what
one might intuitively expect from relationships: Clearly, if
Alice reluctantly attends a course, then she also attends it
and will receive a mark, thus we require sub-relationships to
be included in their super-relationship, giving rise to Invari-
ant 1. Also, if Alice is both compulsorily and reluctantly at-
tending some course, the mark will be the same regardless of
whether one views her attendance as reluctant, compulsory
or without any annotation. Thus, for each pair of related ob-
jects, there should be only one instance of each relationship
so that relationship properties are consistent, hence Invari-
ant 2.

RelJ also allows the removal of relationship instances.
For example, we could extend the code of Figure 2 to remove
the fact thatAlice attendrogramming:

alice.Attends -= programming;
// Remove Alice attending programming
for (Course c : alice.Attends){
print "Attends: " + c.title;
}
// Prints:
// Attends: Type Systems

In fact, both the relationship addition and removal operations
arestatement expressiond/hen used as an expressiaos,
returns the relationship instance that was created: this pro-
vides a short-cut for setting the new instance’s fields. For
regularity,-= returns the value of the expression on the right,
in common with other assignments.

We return now to the issue raised earlier concerning rela-
tionship instance removal. Consider the following code:

bob = new Student();
bob.name = "Bob";
databases = new Course();
databases.title = "DB 101";
bobdb = (bob.Attends += databases);
bobdb.mark = 99;
for (Course cs : bob.Attends) {
print cs.title;
};
// Prints DB 101
print bobdb.mark;
// Prints 99
bob.Attends -= databases;
// Remove bob from databases
for (Course cs : bob.Attends) {
print cs.title;

// Prints nothing

The second iteration shows that the relationship betweenempty sequence of statements. Metavariables may not take
bob anddatabases has been correctly removed. We must the undefined value.

then choose the fate of the reference tofthieends-instance As usual for such language formalizations, we assume
in bobdb: what happens if we append the statemenint that given aRelJ program, P, the class and relationship
bobdb.mark;? declarations give rise to class and relationship tables that

There are clearly a number of options: either the instance are denoted b¢p andR p, respectively. (We will drop the
is removed, in which case we would expect a runtime er- subscript when it is unambiguous.) A class (relationship)
ror; or the runtime maintains some liveness information so table is then a map from a class (relationship) name to a
that an access to the varialidebdb would generate a spe- class (relationship) definition. Signatures for these maps are
cific relationship exception; or finally, we could choose not to be found in Figure 4.
to remove the relationship instance at all, in which case the A class definition is a tupleic, 7, M), wherec is the
code would prin®9. We have opted for the third case. Thus, superclassf is a map from field names to field types; and
in RelJ, the relationship instance itself is not removed upon M is a map from method names to method definitions.
deletion, but rather is treated like any other runtime value Method definitions are tuple&, L, t1, to, mb) wherex is
and is removed by garbage collection. More experience in the parameterf is a map from local variable names to their
relationship programming is needed before we can deter-types;t; is the parameter typé; is the return type; anthb

mine if this is the correct design decision. is the method body. For brevity, we wrifg, and M_ for the
field and method definition maps of class

Language Definition Relationship definitions are tuples’, n, n’, F) wherer’

We give the grammar foRel) programs and types in Fig- IS the super-relationshimy and n" are the types between

ure 3. which the relationship is formed (tleurceanddestination

The Java types used RelJ are class hames and a single respectively); andr is a field map, as found in class defi-
primitive type,boolean (the inclusion of further primitive nitions. As for classes, we writ&; for r’s field definition
types does not impact on the formalization). As discussed, Map.
we provide relationship names as types. To allow relation- [N summaryRelJ offers the following operations to ma-
ship processingRel) has a (generic) set typset<n>, that nipulate relationships.r finds the objects related to the re-
denotes a set of values of typeThis set type isiota generic sult of e through relationship; e:r finds the instances of
class type, but is a generic value type, much like the genericthat exist between the result efand the objects to which
literal types used by the ODMG [18]RelJ does not support it is related; and the pseudo-fieldsom andto are made
nested sets—sets of sets are not permiftetll offers afor available on relationship instances, and return the source and
iterator over set values (We adopt the same Syntax as Java 5_destination objects between which the instance exists (or ex-
offers for iterating over collections). We also provide oper- isted). These are further described in the following sections.
ators for explicitly adding an element to a set), and for
removing an elementg).

For simplicity, we require some regularity in the class 3. Type System

(and relationship) declarations BelJ programs: (1) we in- \ye provideabject for the root of the class hierarchy as
sist that all class declarations include the supertype; (2) We ;g 5| andelation as its counterpart in the relationship hi-
write out the receiver of field access or method invocation in erarchy, and assume appropriate entrie€ andR respec-

full; (3) all methods take just one argument; (4) all method tively. We define the usual subtyping relatiéh- t < t'

declarations end with @aeturn statement; and (5) we as- \yheret is a subtype of’, directly populated with the infor-
sume that in &RelJ program exactly one clas_s supports & ation about immediate super-types provided’and R,
main method. To be concise, we do not consider CONSIUC- then closed under transitivity and reflexivity. is omitted
tor methods;_fleld_ |n!t|al|zat|on,_ other than the provision of \where the context makes it unambiguous.
type-appropriate initial values, is performed explicitly. We leave the less important typing rules to Appendix A,

The metavariable ranges over the set of class names, pt two rules worth particular note are shown here:
ClassName; r ranges over the set of relationship names,

RelName; n ranges over botlilassName andRelName; f (STCov) (STOBJECT)
ranges over the set of field namé&sName; m ranges over Fni<n
the set of method namelglethName; andx ranges over the F set<n;> < set<ny> F Relation < Object

set of variable name¥,arName, which we assume contains ,) ,)
the elementhis, which cannot be on the left-hand side of STCov makes set types covariant with their contained type.

an assignment. We use the notat®to denote a possibly ~ If set< — > types were generic classes, then this kind of
covariance would be unsound. Howewest< — > is a value

1Having sets as a generic value type allows us to soundly support type, thus such values are not referenced or mutated, only
covariance—this is discussed in more detai{3n copied.

p € Program ::= ClassDecl* RelDecl*
ClassDecl ::= class C extends ¢ { FieldDecl* MethDecl* }
RelDecl ::= relationship I extends r’
from n to N’ { FieldDecl* }

n € NominalType :=c|r
t € Type ::=boolean | N | set<n>
FieldDecl ::=1t f;
MethDecl ::=t m(t’ x) mb

mb e MethBody ::={ S return e; }

v € Value ::= true | false | null | empty

| € LValue ::= x |

e.f| field access
e.r related object access
e € Expression ::= v | value
I |-value
e == e | equality test
e:r | relationship access
e.from | relationship source
e.to | relationship destination
se statement expression
see StatementExp ::=new c() | instantiation
x =elef =¢€| assignment
e.m(¢e) | method call
| += ¢e| set addition
| -=e set removal
S € Statement = ; | skip
se; | expression
if (&) {51} else {S); | conditional
for (nx:e) {s}; set iteration

Figure 3. The grammar oRelJ types and programs

C € ClassTable : ClassName — ClassName x FieldMap x MethMap
R € RelTable : RelName — RelName x NominalType x NominalType x FieldMap
F € FieldMap : FldName — Type

M € MethMap : MethName — VarName x LocalMap x Type x Type x MethBody
L € LocalMap : VarName — Type

Figure 4. Signatures of class and relationship tables

To unify the relationship and class hierarchies—desirable (TSRELADD) (TSRELSUB)

in the absence of generics—we ta@€l ation as a subtype R(r) = (., N1, Ny,) R() = (., N1, N2,)

of Object in rule STABJECT.? T'Hep:n3 I'Hep:ng
While F¢ and M give us the fields and methods declared 'Fex:ng F'Fey:ng

directly in ¢, we defineFD; and M D¢ to provide us with Fng<n Fnz<ng

all the fields and methods available fs instances, includ- Fng<np Fng <ny

ing those inherited from its superclasses, so that their types CHe.r +=e:r FFe.r —=e:my

might be checked in the later type rules:
Finally, TSRELADD and TSRLSUB specify typing of

Fp,c(f) if f edom(Fp) the operators that relate and unrelate objects. In both cases,
Fbc/(f) if f¢ dOm(fp’C) e; ande; must be of the source and destination type, respec-
FDp(f) = andCp () _ .. tively, of relationshipr. For TSRELADD, the result will be
P T an instance of : the instance that was created. For TE2R
1 otherwise .
SuB, the result ok is returned.
Mp c(m) if f edom(Mp,c) The type-checking relation for statements is of the form
MDp (M) if f &dom(Mp.c) I s, the rules for which are largely routine. We show some
MDpc(m) = ’ andCp(©) = (¢'. ..) examples, however:
€L otherwise (TSFoR)
(TSEXP) [+ e: set<ny>
FD can be defined similarly for relationships, usiRgin _Irset P[x —no] s
[+ se Fni<n

place ofC.

We type expressions and statements in the presence of
a typing environmentl", which assigns types to variable
names. Selected typing judgementsRefJ expressions are

X & dom(I")

C'Ffor (Nnpx:e) {s};

TSEXP allows type-correct statement expressions to be
used as statements, while T&®&checks that théor con-

given below: . .)
struct is only asked to iterate over a set of object references.
(TSReELOBY) (TSRELINST) Note that we require an explicit type for the iterating vari-
'e:m e able to be consistent with the Java 5.0 syntax; although there
R(r) = (.,nz,ng,) R(@r)=(,nz,) is no reason why this type couldn’t be inferred. For simplic-
Fhi=n Fnp=n ity, we also require that the iteration variable is not already
I'-e.r: set<nz> I'Fe:r: set<r> .
in scope.
TSReLOBJ types the lookup of objects related through The setvalidTypesp specifies the types that may be as-

to the result ok. As our relationships are implicitly many-to- signed to fields and variables:
many, the result of this lookup is a setrcé destination type,

n2. The relationship instances that sit between the result

of e and the result ok.r are accessed throughr. The validTypesp = {boolean}
result of such a lookup is a set pfinstances, as specified

in TSRELINST. There is a bias here between the source and U dom(Cp) Udom(Rp)

destination of a relationship: the relationship instances may U {set<n>|n e dom(Cp) Udom(Rp)}
only be accessed from the source object. It is not difficult

to extend the language so that access from the destination

objects is also possible. In the following two rules, we check fields and methods
(TSFrROM) (TSTo) in the presence of their enclosing class or relationship:
'e:r 'e:r
RO =(No) REO= (o) (TSRELD)
I Fe.from: n FFe.to:n C=m,_,) v RM=(M,__.)

Given anr-instance, the objects between which it exists fé dom(.]-"Dn/)
(or between which it once existed) can be accessed with the 3 Fn(f) € validTypesp
from andto properties. TSRom and TS assign types R =CGMmm,)= Fnsn
according to the relationship’s declaration—therefore, these P.nif

are typed covariantly with the relationship type, but this is . . .
sound as they are immutable for all instances of such a TSHELD checks thatf is a good field for class or relation-

relationship. shipn by verifying (1) thatf is not defined in any super-type

of n; (2) that f’s type is valid in a well-typed program and
21f we added generics tBelJ it would be possible to remove this typing ~ (3) that there is no relationship with the same namé &sat
rule. might make references tb ambiguous.

(TSMETHOD) t € Address

Cp(c) = (¢, -, Mc) Ml e Address U {null}
Mec(m) = (X, L, 11, tp, { Sreturn €; }) u € DynValue = {null, true, false}

L ty € validTypesp U Address U P(Address)

2. this, X ¢ dom(L) w € Error = {NullPtrError}

s {X+— t1,this > cJUL S 0 € Object

4 {X > t1, this > C}U L - e: t] o : Address — Object

5. iy <t 0 (Address x Address x RelName) — Address

6. MDe(M) =(_ tats,)= Ftg<ty A Flh<ts A : VarName — DynValue

P,ckm Objects, ranged over by, are either class instances or

TSMETHOD checks (1) that the input type of methadin relationship instances. We write class instances as an an-
classc is valid; (2) that the parameter name atigis do notated pair((c| f1 : v1,..., fi : v;)), containing a map-
not clash with any local variables; (3) that the method body Ping from field names to values, and the object’s dynamic
is well-typed when the parametehis and the local vari- type, ¢. Relationship instances are written as an annotated

ables are assigned the types specified in the class’ method-tuple, (r, ™, 1, i2] f1 1 v, ..., fi : vi), containing the

table; (4, 5) that theeturn expression has a subtype of the familiar field value map and dynamic type, as well as the ob-
method’s declared return type; and (6) that the input type of Ject addresses the instance relatesind:», and a reference
this method is a supertype of any previous declaratiomof ~ to the relationship instance®uper-instance:™**; specifi-

in a superclass af and that the return type aiis a subtype cally, the instance af's super-relationship which relates the
of any previous method declaration: that is, that this defini- Same object addressgsand:>. Wherer = Relation, there
tion of m may be used anywhere a superclass’ version of is no super-relationship and this referenceni3l. For both

m can be used. We then specify the validity of classes andtypes of object, we take(f) anddom(0) as if they were

relationships: applied too's field value map.
Dynamic values (as opposed to syntactic value literals),
(TSCLAsS) ranged over by, are either addresses, ranged over, sgts
C©)=(c #¢, F, M) of addresses, arrue, false ornull. A small-step seman-
PrC tics means that expressions may at times be only partially
Vf edom(F): P,ct f evaluated, so we include these run-time values and partially-
vm e dom(M) : P,ckm evaluated method bodies in language expressions by extend-
Pkc ing Expression as follows:

TSCLASS specifies that a class type is well-formed if its _
superclass is well-formed, and if all of its methods and fields € € DynExpression ::=

are well-typed. Relationships are similarly checked: ul dynamic values
(TSRELATIONSHIP) mb| method body
Rp(r) = (t' 1,01, Ny, F) terms fromExpression grammar
r’ e validTypesp

L. Rp(r') = (., N3, N5,) DynLValue and DynStatement are generated frohValue
Fnp<n] andStatement in the obvious way, and, | ands will range

Fnp<n over these new definitions from this point onward.

Vf edom(F): P,r f A store,o, is a map from addresses to objects, while lo-

PEr cal variables are given values by a locals stare relation-

TSRELATIONSHIP imposes many of the same restrictions Ship storeo maps relationship tuples to addresses such that
as TS@Ass, except without method checking, and with the #(T, t1, t2) indicates the address of the instance afhich
addition of conditions 1-3, which check the types related by €Xists betweemn and:o.

r's super-relationship are supertypes of those thatates. During execution, the store and its constituent objects are
modified by updating the relevant map. Update of some map

. f is written f[a — b] such thatf[a — b](@) = b and

4. Semantics fla — b](c) = f(a) wherea # c. Such substitutions are

We specify evaluation rules for a small-step semantics. We commonly applied to stores [t — 0Oney]) and to objects

use evaluation contexts to specify evaluation order [15], and (o[f — vpey])-

use variable renaming to avoid the need for an explicit frame Substitution of variables in program syntax uses the stan-

stack [5]. dard notationg[x’/x], for the replacement of all variables
The meta-variables used in the semantics range over adx in e with x’, and similarly with statements[x’/x], and

dresses, values, errors, objects and stores as follows: statement sequencegx’/x].

& € LValContext ::=

] OS&EqQl

Ee. f field (D o739 % Top iy

| Ee.r relation r .) B (T N)
» 01, P1, A1, S1) > (12,02, 02, A2, S
Ee € ExpContext ::= (OSEqQ2) —— T =
e € ExpContex . (T1,01, p1, 11,81 S) ~ (T2, 02, 2, 42, %2 S)

. ole
| & I-value
| €e == €|u == Ce equality test RelJ provides two relationship operations on an expres-
| ge:r c re:at!onsg!p ?cce/ss sion, e, returning an object addressfirstly, the objects re-
| fe-from| fe.to relationship fromo 14164 tos by relationshipr may be accessed usiegr; sec-

Ee, Ese € SExpContext ::= ondly, the instances aofthat relate those objects tanay be

{ € return e; } method body accessed witk:r so that relationship attributes may read or
| { return Ee; } method body modified:
| Ee. T = e|x = E|u.f = & assignment (OSRELOBY) (I, 0, p, A, 0.1) %
| Ee. (e/) | u.m(&e) method call (C.op o {0 13 () = "))
| 5 o e|5X - 5+e . set addition (OSRELOBIN) (T, 0, p, A, null.r) -5
| = Celur += &e (T, o, p, A, NullPtrError)
| &§ -=e|x -= & set removal
|

(OSRELINST) (T, 0, p, A, :r) 2

uf -=&jlur -=¢&
e © (T, 0,0, 0, (0 131 p(r, 0,) = 0'))

&s € StatContext 1= _ OSReELOBJ and OSRLOBJIN give the semantics for
Ese; _ expression obtaining the objects related tahroughr. Notice that the
| for én X:fe) {Sh; set 'é‘.a.rat'oln result is not just a matter of looking-up the result in a table;
it (Ee) {81} else (S); conditiona the objects are found by querying If null is the target of
€ € Context ::= the lookup, a null-pointer error occurs. Similar rules are left
EsS statement sequence

for the appendix.

Figure 5. Grammar for evaluation contexts The pseudo-fieldérom andto provide access to the ob-
jects between which a relationship instance exists, returning
the source and destination objects respectively:

Figure 5 gives the evaluation contexts feelJ expres- (OSFROM) (T, 0, p, %, 1. £rom) & (T, 0. p, A, 1)
sions and statements. All contextgontain a hole, denoted where
e, which indicates the position of the sub-expression to be o =0,)
evaluated first—in this case the left-most, inner-most. It can (os0) (T, 0, p, A, 1.80) B (T, 0, p, 1, V)
be shown that all (non-value) expressions and statements where
may be decomposed into a context with a (strictly smaller) o) = {1
expression in hole position. OSReLADD and OSRLSUB give semantics to the re-

A configurationin the semantics is a 5-tuple of typ- lationship addition and removal operatersand-= respec-
ing environment, heap, relationship store, locals map, and atively, and are based entirely addRel anddelRel from Fig-
statement sequencé, o, p, A, S). An error configuration ure 6:
is a configurationT, o, p, A, w), with an error in place of ~ (OSRELADD) (T',o1,p1, 4, 11.1 += 12) ~ B (T, 09, p2, &, 13)
a statement sequenck.is included for the proof of type where
soundness. (02, p2) = addReIp(r, (1,12, 01, p1)

Expression execution proceeds when a sub-expression 3= p2(s 11, 12) .
in hole position may be reduced, as specified by @8¢ ~ (OSRELSUB) (I'.0.p1. 2. 111 == 13) ~ (. 0. p2. 4. 12)

TEXTE, below, which also lifts to statement contexts: where
p2 = delRelp(r, 11, 12, p1)

addRel adds an instance af between; and if such

(OSCONTEXTE) (Lo, p.h, € 3 (I 0/ p/ V. €) an instance does not already exist. With a recursive call, it
(T.o,p. x Eelel) & (I, 0", p/, 1, Eel€]) also ensures that instancesrc$ super-relationships exist

We also define OSEROR, which propagates an error raised between; andip, ensuring Invariant 1 is maintained.

by a sub-expression upward through the syntax: delRel removes an instance of from between:; and

o t2, but doesnot alter the heap, only the relationship store,
(T,0,p, 2,8 > (I",0", ', M, w)

(OSERROR) o p. Again, to maintain Invariant 1, all instances of sub-
(Lo, p, 4, E[6]) = (I, 07, o', A, w) relationships to are similarly removed from betweepand
It remains now to define the base cases for the operational:s.
semantics. Firstly, OSR)1 strips ‘skip’ statements from the In the case of a relationship addition in expression con-

front of statement sequences, while ®3 executes the text, a reference is returned to the relationship instance that
statement at the head of a statement sequence: was added. Relationship removal simply evaluates to the

null ((I’ [null

newPartp(r,

s 2l frivg, f2ivg, e
where{ fq, fo, ..
vj = initialp (Fp r (

J11,12)

(017 pl)

addRelp(r, 11, t2, 01, p1)
(03, p3)

where: ¢ dom(oq) or dom(o?)

I # Relation = Rp(r) =

(01[t = newPartp (r,null, 11, 12)], p1[(r, L1, t2) = (])

i)

., fi} = dom(Fpc)

fi)

if o(r,11,10) =1"
if r = Relation
otherwise

(r/7 - = *)

(02, p2) = addRelp (', 11, t2, 01, p1)
03 = oot > newPartp(r, po(r’, 11, t2), 11, 12)]

p3 = p2[(r, 11, 12) = (]

P\ 1,) >0 | Brl<r)

delRelp(r, i1, t2, p)

olt = o@[f — ul]
fldUpd(o, f, !, u)
1

fldUpd(o, f, ¢, u)

if f €dom(o(t))
if f &dom(c() A o) ={(r,d, _]...)
otherwise

Figure 6. Definitions of auxiliary functions for creating relationship instaneesvPart, in which /**!! ranges over addresses
and the undefined value), for putting objects in relationshigdRel) and for removing objects from relationshipiRel).
fldUpd demonstrates delegation of field updates to super-relationship instances.

right-hand side of the assignment, in common with other as-
signment operators.

Field update is performed with an auxiliary function
fldUpd, also found in Figure 6, which demonstrates the del-
egation of field lookup to super-relationship instances:
(OSADASS) (T,o,p, At f = w5
(T, fldUpd(o, ¢, f, u), p, A, U)

We conclude our discussion of the operational semantics
with the two circumstances in which variables are scoped—
method call, and theor iterator.

The semantics for method call is given in O&C :

(OSCaLL) (T1,0, p, A1, .MU >
(F2,0,p,A2,{ S return e; })

where
o) ={c]...)
MDp (M) = (X, L, t1, -, 5] return ej;)
dom(L) = {Xq, ..., X }
X/, x,’:his, x’l, ..., X &dom(rq)
Iy =T1[X — t1][X{;, ;5 — C
[Xi..i = L(X1.i)]
Ao =X = ullXgp o 0
[x3 ; > initial(T2(x] ;)]
52 = SIX/X1Ixy /X j1[X¢pse/this]
€ = e]_[X//X][X:/L“i /X1][X(;his/this]
Access to the formal parameter,local variablesx; i, and
this must be scoped within the body of, so we freshen
these syntactic names 10, X3 ; andxg,; in the style of
Drossopoulou et al. [5]. We extend the typing environment,
', with new local variable type bindings for the fresh
names (as well as those for the formal parametertand),
and include appropriate initial values in the locals stage,
Finally, the old syntactic names are updated in the method

body,S, andreturn expressiong, by substitution.

A similar strategy is used to avoid binding clashes for the
for iterator:
(OSFoRr1) (T,o,p, A, for (nx: %) {3};) >

(I'yo,p, 4, 5)
(OSFoR2) (T1,0,p, A1, for (NX: W) {5};) >
(FZa o, p, A2, for (nx:(u \ 1) {s};)
where
u € P(Address),t € u
X' & dom(rq)
Iy =T1[X — X]
o= M[X (]
S = S1[X'/x]

Iteration of the empty set evaluates immediately to ‘skip’,
while iteration over the non-empty set picks an element
from the set, assigns this to the iterator variable, and unfolds
the statement block, in which the bound iterator variable is
freshened. We do not specify the order in which the elements

of u are bound tx.

5. Soundness

In this section we outline proofs of two key safety properties:
that no type-correct program will get ‘stuck'—except in a
well-defined error state—and that types are preserved during
program execution.

Firstly, however, we define some well-formedness prop-
erties of stores and values, so that we can check type preser-
vation through subject reduction.

Value typing and well-formedness

We redefine our typing relation to include the store,so
that values may be typed—particularly important for show-
ing subject-reduction. Typings ofrue and false with

boolean, and ofnull with any valid nominal type are
elided.

Firstly, an address has a type, if the object at that
address in the store has a dynamic type (writtsm-
Type(o (1)) subordinate tm. This condition is then mapped
over the members of a set of addresses in BT.S
F dynType(o (1)) <n

P,T,okt(:n
Vieli:P,ILoky:n
0 F{tq,...,¢}: set<n>

(DTADDR)

(DTSET) B

We also provide a typing rule for the method body con-

struction introduced in Figure 5:
P,T,o -5
P.I',ore:t

P,I",o -{ Sreturn e; }:t

We make use of a ‘well-formed object’ relatioR, o -
0 %inst » Wheno is a well-formed object in some store, the
rules for which follow:

(DTMETHBODY)

dynType(0) =n
FDpn(f) =t
P,d,0 Fo(f):t
P,o,0F T ogq

(WFFIELD)

WFFIELD checks that the field stores a value of appropri-
ate type for its definition in class or relationshipaccord-
ing the dynamic typing relation given above. This relation is

(WFRELATION1)
o(p(Relation,(q,tp)) = ((Relation, null, (1, (o)
P, o, p - (Relation, i, t2) el
(WFRELATION2)
Rp(r)=(0',,.))
(r', 11, 12) € dom(p)
o(p(r 11, 2) = (r, p(t', 11, 12), 11, 120 .. .)
P,o, p (I, 11, 12) O
WFRELATION2 ensures that the-instance between
and:» has a super-instance that also sits betweemd,.
WFRELATION1 acts as a base-case feflation, instances
of which do not take a super-instance.
We then map the conditions for well-formed instances,
relations and local variables over the heapthe relation-
ship heapp, and the locals map,:

(WFHEAP)
Vi e dom(o) : P,o o (1) Ojnst
PFo ©heap
(WFRELHEAP)

V(r,i1,t2) € dom(p) : P,o, p (I, 11, 12) Opel
P,okp ©relheap
(WFLocCALS)

Vx edom) : P, T, 0 = A(X) : T'(X)
P.T, 0 F A 9gcals

We consider a configuratiofT, o, p, A, S) to be well-

mapped across the fields of classes and relationships in theformed wheno, p and are well-formed, and wherg is

following rules:

WFOBJECTL -

() P 5T (0b3ect T oingt
{f1,..., fj} = dom(FDp)
Vieli:P,o,0F fj Ofld

P,o - {clfy:ve, ..., fi 1 vi) Oinst

t1, 2 € dom(o)
{(Relation, null, i1, t2])) Oinst

(WFOBJECT2)

(WFRELINSTL1) PoF

(WFRELINST2)
{f1,..., fj} =dom(Fp)
Vjiel.i:P,o,0F fJ Ofld
Rp(r) = (dynType(o (1)), N1, N2,)
FdynType(o(17)) <M
= dynType(o(12)) < n2
Poo - {r, i, frivn, .0, fio2 i) Onst
WFOBJECTL and WFRELINSTL specify that instances of
Object and Relation, respectively, are valid. WF&
JECTZ2, requires that all fields are well-formed and that the

type-correct. Error configurationy;, o, p, A, w), are well-
formed under similar conditions.

Safety

Type safety is shown by a subject reduction theorem, central
to which is the idea that context substitution respects types:

LEMMA 1 (Substitution).For expressionsgand &, which are
typed § and b respectively, wheretis a subtype ofitand where
Eleq] is typed g, then&[eo] has a subtype oft

The proof follows by induction on the structure of the typing
derivation. Next, we show type preservation, which follows
naturally from the previous lemma, and by induction on the
structure of the derivation of execution:

THEOREM 2 (Subject Reduction)n a well-typed program,

P, where (I'1, 01, p1, A1, 51) executes to a new configuration
(T2, 02, p2, A2,), that configuration will be well-formed. Fur-
thermore,I'1 C I'> and all objects inrq retain their dynamic type

In os.

class instance has precisely those fields that were declared Similarly where the original configuration executes to an error

or inherited. WFRLINST2, checks that only those fields
immediatelydeclared inr are present in the relationship

instance; that those fields are well-formed; that the super-

instance, at, is present, and has a dynamic type equalgo
supertype; and that threinstance sits between two instances
of appropriate type according té definition.

configuration.

Finally, we show that a well-typed program may always
perform an execution step:

THEOREM 3 (Progress)For all well-typed programs, P, all
well-formed configurationél'q, o1, p1, A1, 51) €xecute to either:

We check that the relationships are properly specified in - an error configurationI'2, 02, p2, A2, w), Or

o according to the following two rules:

ii. a new statement configuratidfi,, o2, p2, A2,)

By Theorems 2 and 3, any well-typed program can make
a step to a new well-formed configuration: well-typed pro-
grams do not go wrong.

6. Restricting Multiplicities

In UML, associations can be annotated withultiplicities
which restrict the number of instances that may take part
in any given relation. For example, it could be that every

student attends exactly eight courses, but that a course mayNVARIANT 3. For

have any number of students:

* attends 8

Student Course

More exotic multiplicities can include ranges (‘1..7’), and

comma-separated ranges (‘1..7, 10..*). There are a number

of ways in which such restrictions could be expressed in
Rell). Here, we describe both a flexible, but dynamically

checked approach, as well as a more restricted, statically

checked approach:

Dynamic approach

The use of a run-time check at every relationship addition
would allow us to represent most of the possible multiplic-
ities that can be expressed in UML. When, say, too many
courses are added to thetends relationship, an exception
could be raised:

relationship Attends
from many Student to 2 Course {

int mark;
}
alice.Attends += Programming;
alice.Attends += Semantics;
alice.Attends += Types; // Exception!

We deviate from UML slightly: an association annotated at
one end with ‘2’ would always have exactly two associated
instances. Instead, we interpret @uannotation orCourse

as ‘0.2’ in UML notation: that is, courses start without any
students.

Static approach

Our preference, however, is for a static approach to the ex-

pression of multiplicities. While less flexible, we need not

In the declarations above, we see that students’ course atten-
dance is unrestricted, but thaPassedStudent may have
failed at most one course.

We further restrict relationship inheritance so that a
many-to-one relationship may only inherit from a many-to-
one or many-to-many relationship. We impose similar re-
strictions on many-to-many and one-to-many relationship
definitions. We then add to the invariantsgat

a relationship r, declared
relationship I from N1 to ny”, where m is
annotated withone, there is at most onejainstance related
through r to every p-instance. The converse is true where
Ny is annotated withone.

There is a tension between Invariants 1 and 3. Consider
the following relationship definitions, where a course can
only be taught by a single lecturer, and where lecturers enjoy
teaching hard courses, but teach them slowly:

relationship Teaches
from one Lecturer to many Course;
relationship ExcitedlyTeaches extends Teaches
from one Lecturer to many HardCourse;
relationship SlowlyTeaches extends Teaches
from one Lecturer to many HardCourse;

charlie = new Lecturer();

deirdre = new Lecturer();

advancedWidgets = new HardCourse();

Suppose that charlie ExcitedlyTeaches

advancedWidgets, then by Invariant 1,charlie also

Teaches advancedWidgets.
Now suppose thatdeirdre

advancedWidgets:

is to slowly teach

deirdre.SlowlyTeaches += advancedWidgets;

By Invariant 1, deirdre must also be related to
advancedWidgets via Teaches. However, by Invari-

ant 3, charlie and deirdre cannot both Teach
advancedWidgets. In our formalised semantics, we re-
movecharlie from Teaches with advancedWidgets: the

+= becomes an assignment, rather than an addition, in this
case. Furthermore, by Invariant dharlie cannot be in
ExcitedlyTeaches with advancedWidgets once he has
been removed frormeaches—therefore, he is also removed

generate wrapper code for relationship additions, and we from ExcitedlyTeaches.

provide more robust guarantees that the multiplicity con-

This behaviour, where not only sub-relationships afe

straints are satisfied. Rather than give the formal details, wealtered by a change tds contents, but possibly also the con-

shall give an overview of this extensionRelJ.
We only allowone andmany annotations. The former is
equivalent to ‘0..1" in UML, the latter to ‘0..*";

relationship Attends

from many Student to many Course;
relationship Failed

from many PassedStudent to one Course;

tents of parents and siblingsmfmight seem unexpected. At
the same time, they make sense when examining examples,
and provide a means for avoiding run-time checks.

7. Conclusion

In this paper, we have present®dlJ, a core fragment of
Java that offers first-class support for first-class relation-

ships. Unlike other work, we have formally specified our ous systems routines written in a language sudReabwith
language; giving mathematical definitions of its type sys- those written using the APIs.

tem and operational semantics. Given such definitions we

are able prove an important correctness property of our lan-Further work

guage. Clearly RelJ is just a first step in providing comprehensive
first-class support of relationships in an object-oriented lan-
Related Work guage. There are several features available in modelling lan-

. . . guages, such as UML, that cannot be currently expressed in
Modelling languages like UML [7] and ER Diagrams [4] RelJ; notably, we only support relationships that are one-

provide associations and relationships as core abstractions, ay. We hope to add relationships that may be traversed in
Several database systems, for example object databases a@{

hering to the ODMG standard [10], also provide relation- pﬁ(t:riliggecnons safely, as well as further investigating multi-
ships as primitive. Unfortunately the language access to such y

imit . ised by the lack of first-cl ¢ In this paper we have not given details of h&aiJ can
primiives Is compromised by e fack ot first-class support o implemented. To support it directly in the runtime would
in the language, and so is limited to weak API access.

: ; : require considerable extensions to the JVM. The design and
.AS we mentlone_d earl_ler, Rumbaugh [11] was the first to evaluation of such extensions is interesting future work. In
point out that relationships have an importadlkerto play

. . X . the short term, one can systematically ‘compiRel) pro-
in general object-oriented languages, and gave an mformalgrams into ‘pure’ Java. In future work we plan to specify
(rjneast?erzlrpg? rnegti?)rl]‘:ﬂ?u%gheeﬁ?asfgec\)/cair;a;:zg(ﬁ;jogvrive;stggsuch a compilation formally, and consider techniques for
nal cl irf)h ritan nd no formal tr tmy nt f rverfying the correctness of such a compilation.
ﬁﬂg grgtl:]ee Ignc 325 o asa\?vhi)?é 3vas (r)ov(i)deda eatment 1o Finally, we conclude by recording our hope that our lan-
Noble has gres%nted some patterr?s for proéramming Withguage may provide a first step in the process of principled
. . unification of modelling languages (UML, ER-diagrams),
relationships [8]. In fact, many of these patterns could be g languages (g)

used in translatingrelJ programs in ‘pure’ Java. Noble and programming languages (Javé)Gand data query and spec-

Grundy also suggested that relationships should be made expclcatlon languages (SQL, schema design).

plicit in object-oriented programs [9]. Again neither works Acknowledgments

provide any concrete details of language support for rela-)))
tionships. Much of this work was completed whilst Bierman was at

After completing this work we discovered the paper by the University of Cambridge Computer Laboratory and sup-
Albano, Ghelli and Orsini [1], which specifies a language Ported by EU grants Appsem-Il and EC FET-GC project
for use in an object-oriented database environment. They!ST-2001-33234 Pepito. Wren is currently supported by an
offer many of the same constructions as well as a richer setEPSRC studentship. We are grateful to Sophia Drossopoulou
of available constraints, but build on a data model that is &nd her group for useful comments on this work, as well as to
much richer than that of Java and similar languages. TheyMatthew Fairbaimn, Alan Mycroft, Matthew Parkinson, An-
give no formal description of the language. A more detailed drew Pitts and Peter Sewell.' We would also like to thank the
comparison between our approaches is future work. anonymous referees for their efforts.

Interest in relationships is not restricted to modelling and
programming languages. In the timeframe of the next gener- References
ation of Microsoft Windows, code-named ‘Longhorn’, the

. ! . 1] A. Albano, G. Ghelli, and R. Orsini. A relationshi
Windows storage subsystem will be replaced with a new 1] P

mechanism for a strongly typed object-oriented database

system calledMinFS WInFS provides a database-like file programming language. Proceedings of VLDBL991.

§tore, the_ core of which is a COIIeCt'Qn @éms like ob- [2] C. Anderson and S. Drossopouloil.An imperative object-
jects, which represent data such as images, Outlook con- =~ pageq calculus with delegation. Proceedings of USE2002.
tacts, and user-defined items. The other key component of [3] G. Bierman, M. Parkinson, and A. Pitts. MJ: A core
the WinFS data model is relationships, which are defined imperative calculus for Java and Java with effects. Technical
between items. WinFS thus represents a move away from Report 563, University of Cambridge Computer Laboratory,
the traditional tree-based file system hierarchy to an arbi- 2003.

trary graph-based file system, where the key abstraction is [4] p. P-S. Chen. The entity-relationship model — toward
the relationship. At the time of writing, details of the API a unified view of data. ACM Transactions on Database

for WIinFS are scarce, but it is clear that a language such Systemsl(1):9-36, 1976.

as RelJ would provide a more direct programming frame- [5] S. Drossopoulou, T. Valkevych, and S. Eisenbach. Java type
work, where various compile-time checks and optimizations soundness revisited, September 2000.

would be possible. When the details of WinFS are finalized [6] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and
and made public, it would be interesting to compare vari- mixins. InProceedings of POPLlpages 171-183, 1998.

[7] 1. Jacobson, G. Booch, and J. Rumbaughhe unified (TSEQ) (TSFLD)

software development procegsddison-Wesley, 1999. F'ke:n Cke:n
[8] J. Noble. Basic relationship patterns. Pnoceedings of FFe:n FDn(f) =t
EuroPLOR 1997. ' e == e: boolean Fke.f:t

[9] J. Noble and J. Grundy. Explicit relationships in object-
oriented development. IRroceedings of TOOL3995.
[10] R.G.G. Cattell et alThe Object Data Standard: ODMG 3.0.
Morgan Kaufmann, 2000.
[11] J. Rumbaugh. Relations as semantic constructs in an object-
oriented language. IRroceedings of OOPSL Adages 466—

New class-instance allocation is typed in the obvious way.
The equality test is valid as long as both expressions are
addresses. (Similar rules are requireddpande; asset<—

> Or boolean types, but these are obvious and omitted.)
Field look-up is typed from the field table of the receiver’s
static type. Rules TSARADD to TSH.DSUB demonstrate

481, 1987. bi dditi d f lues:
[12] J. Smith and D. Smith. Database abstractions: Aggregation object addition and removal from set values:
and generalization&CM Transactions on Database Systems (TSVARADD) (TSVARSUB)
2(2):105-133, 1977. F'kep;:ng FHe:ng
[13] P. Stevens and R. Pooleysing UML: software engineering [(X) = set<ny> ['(X) = set<ny>
with objects and componentadddison-Wesley, 1999. Fni<np Fny<ny
[14] D. Ungar and R. B. Smith. Self: The power of simplicity. In FEx+=e:m FEx -=e;:ng
Proceedings of OOPSL Aages 227-242. ACM Press, 1987. (TSFLDADD) (TSFLDSUB)
[15] A. K. Wright and M. Felleisen. A syntactic approach to type Fe:n e :n
soundness.Information and Computatignl15(1):38-94, IFe:ny Iey:n,
1994. FDn, (f) = set<ng> FDny () = set<nz>
Fny <n3 Fnz <ng
FFe.f +=e:ny F'Fe.f -=e:ny

A'_ Deta|I§ of Type SyStem and Semantl_cs In all cases, the right-hand operand must be the address of
This appendix contains the details of the semantics not cov- g, object with a type subordinate to the set's static type.

ered in the main body of the paper. The entire expression takes the right-hand operand’s type:
unlike the use of=/-= on relationships, no new instances
A.1 Typing Rules are created.
In addition to the subtyping rules given in Section 3, the fol- (TSAsS) (TSFLDASS)
lowing rules populate the subtyping relation with the imme- rEx: F'Hep:ng
. . . X: g
diate supertypes provided by the language syntax, and give M et ety
the reflexive, transitive closure: it <t FDm(f) =12
T 2="1_ x-£this Ftp <ty
TFx=et
(STTRANS) F'e.f =e: 1y
(STREF) (STCLASS)
= :::1 i :2 C(cy) = (Ccp, -,) Variables and fields may be assigned, but note that no such
- ﬁ Fa=c rule exists for relationships. As usual, values of type subor-
N dinate to a field’s type may be assigned to such a field.
(STREL)
R(r)=(02,---) (TSCaLL)
Fri<rop '-e:np
. .) ety
Next, we provide rules for typingelJ expressions. Mp, (M) = (X, £, 1, 13,)
Fty <t
(TSBooLNuULL) F'Fe.m(e): t3
I F true: boolean (TSVAR))]
[t false: boolean rx) =t Method call is typed directly from the method look-up table.
[Fnull:n TFx:t The for statement was typed in the body of the paper.
I' - empty: set<n> The ‘skip’ statement is always well-typed. The conditional’s

typing-checking is standard, recalling that we do not assign

Literal values are typed with rules T®®L and TSNJLL. types to statements or statement sequences.

Variables are typed by TSA®R simply by look-up in the

typing environment. Note that TSW covers the type of (TSConb)
this by its inclusion inVarName. (TSXIP) [e: boolean
—TF. reEs
(TSNEW)) res;

I'Fnew cQ:cC I'Fif (&) {51} else {%};

We now provide types for statement sequences in the (OSA.DN)

obvious way, where denotes the empty sequence (usually

omitted):
(TSSEQ2)
(TSs=Q1) ks
TFe res
'

Finally, a program is well-typed if all of its classes and

(OSH.D)

(T, 0, p, A,null. f)
(T, o, p, ., NullPtrError)
([0, p, 2t F) 2 (D0, 0,4, fld(o, ¢, F))

(OSRELINSTN) (T, 0, p, A, null:r)

(OSK)
(OSNEQ)

relationships are well-typed, if classes and relationships are(OSNew)

disjoint, and if the subtyping relationship is antisymmetric:

(TSPROGRAM)
YVcedom(Cp): PFc
Vr edom(Rp): Pk

dom(Cp) Ndom(Rp) =0

Yny,no: FNp<npA Fnp<nig=n3=np

FP

A.2 Operational Semantics

First, we give full definitions ofinitial, which returns an

appropriate initial value for a variable of typedynType,

which returns the dynamic type of an address in the store;
and offld, which returns the value of fieldl in the object at
¢ in storeo, delegating the field lookup to the superinstance

as appropriate.

{Object]|)

(el f1:vg, fazvp, ..., fi
where

{f1, T2, ..

newp(C) =

D))

v = initialp (FDp ¢ (i)

ift=n'

if t = boolean
] if t = set<n>
€ otherwise

null

o false
initialp(t) =

c ifo=¢{c|...)
r ifo=(r__]...)
1 otherwise

dynType(0)

o(W(f)

/
fldo. f.) = fld(o, f,¢)

1 otherwise

We then give the remaining rules of the operational se-
mantics, covering the routine aspects of the Java-like core,
as well as rules for raising null-pointer errors:

(T, 0, p, A, empty) £ (T, 0, p, 1, D)
(T, 0, p, A, X) 2 (T, 0, p, A, A(X))

(OSBvPTY)
(OSWAR)

if f edom(o())
if f &dom(o())
Ao =(rd, . .)

(OSBoDY)
(OSAsy)
(OSADD)

(0SUB)
(OSH.DAsSSN)
(OSH.DADDN)
(OSH.DADD)

(OSH.DSUBN)

if c=0bject (OSHDSUB)

otherwise

., fi} = dom(FDp)

(OSReELADDN)

(OSReLSUBN)

(OSCALLN)

(OSSraT)
(OSCoNDT)

(OSCoNDF)

(T, o, p, ., NullPtrError)
(F,o,p, A, Uu == U) £ (I, 0, p, A, true)
(T, o, p, kU == U) % ([, 0, p, A, false)
where
u#u
(T, 0, p, A,new cQ)) £
(I'y o[t = newp(C)], p, A, 1)
where
t € dom(o)
(I',o, p, A, { return u; }) A (T, 0, p, A, U)
(T,0, p, A, X = U) % (T, 0, p, A[X — U], u)
(T, 0, p, h, X += U) 2
(T, 0, p, \[X = A(X) Uu], u)
(T 0,0, 0, X == u) &
(T, 0, p, A[X > A(X) \ U], u)
(T,o,p0,A,null. f = u) A

(T, o, p, ., NullPtrError)

(T,o,p,A,null. f += u) £

(T, o, p, ., NullPtrError)
(Mo, p ae. f=uy &

(T, fldUpd(o, ¢, T, fld(o, ¢, f)UU), p, A, U)

(T,o0,p,A,null. f -= u) £

(T, o, p, ., NullPtrError)
(T,o,p,A,t.f —=u) £
(T, fldUpd(o, ¢, f, fld(o, ¢, f)\ U), p, A, U)
(T, 0,p, A, inull.r += trzmll) £
(T, o, p, A, NullPtrError)
where
Lriull =nullor ermll =null
ull'r = L121u11> P

(T, o, p, A, NullPtrError)

n
(Tyo,p, 4,19

where
Lllmll =null or lemll =null
(T, 0, p, A, null.m(u)) 2
(T, o, p, A, NullPtrError)
(T, 0,0, 4, U3) & (T, 0,0, 4, 3)
(T,0,p, A, if (true) {3} else {F};) >
(I'yo, p, A, 51)
(T,0,p, A, if (false) {57} else {5};)
(I'yo,p, A,)

