
A Core Calculus of Metaclasses

Sam Tobin-Hochstadt

Northeastern University

samth@ccs.neu.edu

Eric Allen

Sun Microsystems Laboratories

eric.allen@sun.com

Abstract
Metaclasses provide a useful mechanism for abstraction in
object-oriented languages. But most languages that support
metaclasses impose severe restrictions on their use. Typi-
cally, a metaclass is allowed to have only a single instance
and all metaclasses are required to share a common super-
class [6]. In addition, few languages that support metaclasses
include a static type system, and none include a type system
with nominal subtyping (i.e., subtyping as defined in lan-
guages such as the JavaTM Programming Language or C#).

To elucidate the structure of metaclasses and their rela-
tionship with static types, we present a core calculus for a
nominally typed object-oriented language with metaclasses
and prove type soundness over this core. To our knowledge,
no previous formalization of metaclasses in a language with
nominal subtyping exists. This calculus is presented as an
adaptation of Featherweight GJ [13], and is powerful enough
to capture metaclass relationships beyond those expressible
in common object-oriented languages, including arbitrary
metaclass hierarchies and classes as values. We also describe
how the addition of metaclasses allow for integrated and nat-
ural expression of several common design patterns.

1. Introduction
1.1 A Problem of Modeling

One of the stated benefits of object-oriented languages is
their ability to model aspects of the world in the object hi-
erarchy. However, most such languages are unable to model
many simple and common relationships. An excellent exam-
ple is provided by Welty and Ferrucci [19], where they show
the difficulties in modeling a simple ontology including the
notionsSpecies andEagle, while also capturing the rela-
tionship betweenEagle andHarry, a particular eagle. To

FOOL 2005 15 January 2005, Long Beach, California
Copyright c© 2005 Sun Microsystems, Inc. All Rights Reserved

see the problem, consider a system with a classEagle and
an instanceHarry. The static type system can ensure that
any messages thatHarry responds to are also understood by
any other instance ofEagle.

However, even in a language where classes can have static
methods, the desired relationships cannot be expressed. For
example, in such a language, we can write the expression
Eagle.isEndangered() provided thatEagle has the ap-
propriate static method. Such a method is appropriate for
any class that is a species. However, ifSalmon is another
class in our system, our type system provides us no way of
requiring that it also have anisEndangered method. This
is because we cannot classify bothSalmon andEagle, when
treated as receivers of methods, into a larger group, such as
species.

One solution they consider and reject is to separate the
notion of “eagle” into two concepts:the Eagle andEagle,
with the former an instance ofSpecies and the latter a
class whose instances are specific birds. This approach is
inadequate because it fails to express a relationship between
the notionsthe Eagle andEagle. Therefore, if we create
another species such asSalmon in our universe, we must
define one new class and one new instance. This adds new
invariants which the programmer must maintain, with no
help from the type system.

These problems are not unique to the modeling of bi-
ology. Consider the relationship between physical quanti-
ties, units of measurement, and physical dimensions. It is
obvious that “length” is a dimension, and that “3 feet” is
a length. However, modeling this relationship in a conven-
tional language such as the Java Programming Language is
difficult without attributing to some of these concepts prop-
erties which do not properly belong to them. It is natural to
model3 feet as an instance of a classLength. But if we
were to define a classDimension and defineLength to be
an instance of classDimension, thenLength could not be
a class and so3 feet could not be an instance ofLength.
Alternatively, we might defineLength to be a subclass of
Dimension. But then we still cannot define3 feet to be an
instance ofLength because anything that is an instance of
Length would also be an instance of classDimension and
3 feet is obviously not a dimension.



The fundamental problem that both these examples illus-
trate is that we are unable to describe multi-levelinstanceof
hierarchies. Everything must be either a class or an instance.
Classes cannot be instances of classes, and instances cannot
have instances. The solution to this problem is to remove
these divisions, and allow the relationships we want to have
a natural expression in our language.

1.2 Some Previous Solutions

In order to overcome this limitation in expressiveness de-
scribed above, several object-oriented languages that are not
statically typed, such as Smalltalk, Python, and Self, allow
for more flexible object relationships [11], [14], [18]. In the
case of Smalltalk and Python, classes are instances of meta-
classes. Static members of a class are modeled as ordinary
members of the corresponding metaclass. But in both of
these languages there are important limitations on expres-
siveness. For example, in Smalltalk, the metaclass hierarchy
is only two levels deep. If we want to represent the relation-
ships “A is an instance ofB”, “ B is an instance ofC”, and “C
is an instance ofD”, we can only do this in Smalltalk ifD
is the special Smalltalk classMetaclass. This does not allow
the multi-level hierarchies required to model the examples
discussed above [11]. Self, on the other hand, is a prototype-
based object-oriented language, where there are no classes
at all; object instantiation consists of cloning an existing in-
stance. The members of the clone can be modified and added
to at will, dispensing with class relationships entirely and
making static checking difficult.

A more expressive metaclass system is ObjVLisp, de-
scribed informally by Cointe [6]. In ObjVLisp, there is no
restriction on the number of instances of a metaclass, and
metaclasses are not required to share a common superclass.
The instance methods of a metaclass are inherited as the
static members of its instances. Cointe makes a number of
arguments for the benefits of generalized metaclasses. In re-
sponse to complaints that the Smalltalk-80 metaclass system
is too complex, he suggests that a more powerful and flex-
ible system has the potential to be much simpler. However,
ObjVLisp does not include a static type system. As Cardelli
points out in the context of Smalltalk [4], “With respect to
Simula, Smalltalk also abandons ... strong typing, allowing
it to ... introduce the notion of meta-classes”.

1.3 A More Expressive Solution

In this paper, we show that the limitations of previous meta-
class systems are not inherent. We present a semantics for
a calculus with metaclasses in which, as in ObjVLisp, ev-
ery class can serve as both an instance of a class and as a
class of instances, and there is no limitation on the levels of
nesting of metaclasses. But, unlike ObjVLisp, we present a
static type system for this semantics, and use it to allow more
invariants to be checked statically. In the process, we also
reveal several interesting properties about the structure that
a nominal type system for metaclasses must take. We then

present a formal operational semantics for this calculus, as
well as a proof of type soundness.

Our work is motivated by [2], which presents a system
for integrating the static checking of dimensions of physical
quantities in MetaGen, an extension of the Java Program-
ming Language with support for metaclasses. In MetaGen,
metaclasses are used to model the type relationships of di-
mensions. As with ObjVLisp, the notion of a metaclass in
MetaGen is more general than that of languages such as
Smalltalk, but, unlike ObjVLisp, MetaGen includes a static
type system [2]. The calculus in this paper can be viewed as
a formalization of a purely functional core of MetaGen.

In the interests of economy and clarity of presentation,
in the following discussion we restrict ourselves to simple
examples, and do not delve into the complexities of object-
oriented analysis with metaclasses. This is certainly not be-
cause we believe that metaclasses are most useful for the
development of toy object-oriented programs. On the con-
trary, metaclasses are most likely to show their value in large
systems, both in terms of modeling and in the treatment of
design patterns in section 3.

The remainder of this paper is organized as follows. In
section 2 we present a core calculus for metaclasses we dub
MCJ. We introduce the language and describe its key fea-
tures, as well as some of the important design choices. The
motivating examples from the introduction are presented in
MCJ in section 2.3, demonstrating the benefits of meta-
classes. We discuss in section 3 how the need for many
object-oriented “design patterns” is obviated through the use
of metaclasses. We then describe the formal properties of
MCJ in section 4. In section 4.2 we provide a formal se-
mantics for the language, and in section 4.3 we prove a type
soundness result. In section 5 we consider related work and
in section 6 we describe conclusions and future directions.

2. MCJ
2.1 Overview

MCJ is a object-oriented calculus with generic types based
on Featherweight GJ that includes metaclasses. An MCJ pro-
gram consists of a sequence of class definitions followed by
a trailing expression. This trailing expression is evaluated in
the context of the class table induced by the class definitions.
Before discussing the formal specification of MCJ, we first
give a high-level overview of the nature of MCJ class defini-
tions.

Each class is an instance of ametaclass. A metaclass is
either a user-defined class or classObject. We say that if a
classC is an instance of a classD, thenC is aninstance class
of D, and thatD is theimmediate containing class, or kind, of
C. If classE is a superclass ofD then we also say thatC is an
instance class ofE and thatE is a containing class ofC.

There are two key distinguishing features of MCJ. First,
a class (or an instantiation of a generic class) can be used as
an expression. Second, all classes have both a superclass and



a kind. Instances of a class inherit behavior from the super-
class. The class itself, when used in an expression context,
inherits behavior from its kind.

A class definition consists of a header plus a collection
of fields and methods associated with the class. The header
names the class and specifies the type parameters, as well
as the superclass and the kind. For example, the following
header declares a classC with superclassObject and kindD
and no type parameters:

class C kind D extends Object {...}

Each class may have both static members and instance
members. Static members define the behavior of the class
when used as an instance. Instance members define the be-
havior of instances of a class. In the abstract syntax pre-
sented in this paper, static members are distinguished from
instance members by order, and with the keywordstatic.
Members of a class definition are laid out as follows: first,
static fields are defined, followed by static methods, then
instance fields and finally instance methods. For example,
the following class definition includes a static methodm and
an instance methodn. Beginning with this example, we will
leave out thekind andextends declaration when they refer
to Object.

class C {
static Object m() {...}
Object n() {...}

}

Static fields and methods in MCJ bear a strong resem-
blance to static fields and methods, but there are impor-
tant differences. For a given classC, instance members of
C’s kind are inherited as class members ofC. For exam-
ple, a static methodm in C with the same name as an in-
stance method ofC’s kind overrides the definition ofm in the
kind (and it must have the same signature as the overridden
method). Note that if an instance classC of typeT is assigned
to a variablev of typeT, references to the instance members
of v refer to the static members ofC. As in [2], a class is al-
lowed to define both a static method and an instance method
of the same name. We prevent ambiguity in member refer-
ences by requiring that all references to static members in
MCJ must explicitly denote the receiver.

Superclasses behave as in Featherweight GJ, providing
implementation inheritance of instance behavior and subtyp-
ing. A class, when used as an expression, is an instance of
its kind. If a method is invoked on a classC, first the static
methods ofC are examined. If the method is found there, it is
invoked. Otherwise, theinstancemethods of the kindD of C
are searched, and if it is found there, the method is invoked.
Otherwise, the superclass hierarchy ofD is examined as it is
for an ordinary instance ofD.

For example, consider the following class definitions:

class A {...}
class B extends A {...}
class C kind B {...}

To resolve the method callC.m(), first the class methods
of C are examined, and if a match is found, it is invoked.
Then theinstancemethods ofB and thenA are examined.

If the method call were insteadb.m(), whereb denotes an
ordinary (non-class) instance ofB, then the instance methods
of first B thenA would be examined.

The generic type system of MCJ is similar to the generic
type system in Featherweight GJ. However, as in [5, 2], we
allow for type variables to occur in type-dependent contexts
such as casts, preventing the use of type erasure as an im-
plementation technique. In addition, the receiver of a ref-
erence to a static member may be a type variable. Unlike
the system presented in [1], MCJ does not support first-class
genericity because a naked type variable must not appear
in the extends clause orkind clause of a class definition
andnew expressions on naked type variables are not sup-
ported.1 Also, polymorphic methods (which are orthogonal
to the features we explore) are not supported.

Because classes can be used as expressions, we need a
bound on the behavior of classes when used in expression
contexts. Therefore, we place two bounds on every type
variable T in the header of the class definition. The first
bound onT is a bound on the kind of an instantiation ofT; the
second bound is a bound on the superclass ofT. For example,
the following class header declares a classC with one type
parameterT that must be instantiated with a type that is a
subtype ofD and is of kindE :

class C<T extends D kind E> {...}

2.2 Key Design Points

Private Constructors One benefit of a metaclass system is
that constructors no longer need to play such a central role
in the language. Class instances exist at the beginning of a
program execution; they need not be constructed. Non-class
instances are naturally constructed with class (factory) meth-
ods [10]; in this way a class instance can be passed as a type
parameter and factory methods can be called on the class
instance to construct new instances without stipulating the
class of the constructed instance. In a language with first-
class genericity, type parameters may used in arbitrary con-
texts, including innew expressions [5, 1], however additional
bounds, calledwith clauses, are required on the type param-
eters. MCJ provides similar flexibility, but obviates the need
for with clauses because the bound on the kind of a type
variable stipulates what factory methods can be called on it.

1 First-class genericity is difficult to integrate with our presentation of con-
structors.



For example, in MixGen [1] the following program is
legal:

class C<T extends S with T()> {
T foo() { return new T(); }

}

However, to make this program compile, awith clause
is required on the type parameterT. This is because the type
associated with a class does not describe its constructors.

In MCJ, this program can be naturally rewritten with a
factory method.

class C<T extends S> {
T foo() { return T.make(); }

}

Here, nowith clause is required.
A class can define static methods with arbitrary signatures

that return new instances of the class, but each such method
must ultimately include anew expression, which can occur
only within the scope of the class whose instance it returns.
A new expression looks like a call to method namednew,
that takes a single argument for each type parameter and
each instance field of the syntactically enclosing class. The
result of anew expression is a new instance of the enclosing
class whose type parameters are instantiated with, and whose
fields are initialized with, the given arguments. In our formal
semantics,new expressions are annotated with the name of
the enclosing class. These annotations need not be added by
a programmer; they can be added easily by a straightforward
syntactic preprocessing over the program, since they can be
determined merely by the lexical scopes of thenew expres-
sions.

All uses of constructors in Featherweight GJ [13] are
macro-expressible [9] in MCJ; that is, they can be expressed
via local transformations. Of course, not all Featherweight
GJ programs can be expressed in MCJ, because of the differ-
ences in the type system. Specifically, MCJ does not include
polymorphic methods.

While these choices may seem constricting, the architec-
ture of MCJ allows for considerable flexibility in object cre-
ation. We discuss this point further in section 3.

Fields and Initialization To ensure type safety, we must
have an initial value for every field, or prevent fields from
being used before they are initialized. For instance fields
of objects created with a constructor, this is achieved by
requiring that the constructor have an argument for every
instance field. Combined with the solution for flexibility in
object creation outlined above, this allows us the simplicity
in semantics of FGJ, and the flexibility of more general
constructors.

Classes that are themselves instances of other classes
have fields as well, and these fields must also be initialized
before they are used. These fields include instance fields of
the kind, which become static fields of the new class. Our

solution is to require thatall static fields, including those
obtained by inheritance, must be redeclaredand provided
with values.

typeOf Given that class references can be used as expres-
sions, it is natural to ask: what is the type of a class refer-
ence? In MCJ, however, the kind of a class does not capture
all of the properties of the class as a value. For example, a
class may add new static fields or static methods that are not
present in the kind. Therefore, each class freely generates
a new type, which is the type of the class considered as a
value. We represent these types with a compile timetypeOf
operator that takes a class instantiation and produces a new
type that is not also a class. Because this type is not a class,
it cannot be the superclass or kind of another class, and it
cannot serve as the instantiation of a generic type parameter.
We refer to it astypeOf because it returns the type of the
expression that is its argument.

These new types can create complex relationships be-
tween classes and types. For example, the following class
headers:

class A {...}
class B kind A {...}

induce the following type relationships:

B : typeOf[B]
typeOf[B]<:A
B instanceof A

where we use the convention thatA:B denotes thatA has type
B, andA<:B denotes thatA is a subtype ofB.

The nametypeOf has been used in other contexts to refer
to a runtime operation that determines the dynamic type of
a object. However, despite the name similarity, this function
bears no relationship to the operator described here. In MCJ,
an application oftypeOf is a static type reference.

Non-transitivity The standard subclassing relationship,
like subtyping, is transitive. That is, ifB is a subclass ofC and
C is a subclass ofD, thenB is a subclass ofD. However, this
relationship does not hold forinstanceof relationships. In
general, ifB is an instance ofC andC is an instance ofD, no
judgment about the relationship ofB to D can be inferred.

Another difference between subclassing and instance
class relationships is that cycles can occur among instance
class relationships. The simplest such cycle is:

class C kind C {}

Although this pathology appears to be dangerously close
to Russell’s paradox, it does not lead to inconsistencies.
ClassC is an instance of itself. It can be used in any context
where one of its instances can be used.C can be thought
of as a self-replicating value. This class hierarchy causes
no problems for method lookup because method resolution
never proceeds through more than a single containing class



to an instance class. If the programmer uses a field ofC to
initialize a static field ofC the evaluation of the expression
C may fail to terminate. But this is no different than the
possibility of nontermination from any other self-reference.
Therefore, we see no reason to disallow it.

2.3 Examples, Reprised

Having seen this outline of MCJ, we return to the motiva-
tional examples discussed earlier. First, the relationships be-
tween dimensions is easy to capture.2 We define

class Dimension { ... }
class Length kind Dimension { ... }
class Meter kind Length { ... }

HereMeter is a singleton class (there is only one Meter,
in the platonic sense). We have easily expressed the desired
type relationships, and can statically check program invari-
ants that rely on dimensional relationships.

The example from [19] is also easily expressed:

class Species { ... }
class Eagle kind Species {

static Eagle make(String name) { ... }
}
Eagle harry = Eagle.make("Harry")

Here we simply create an object to represent our concrete
instance of an Eagle. The naive implementation of the above
code in a conventional OO language would look something
like this:

class Species { ... }
class TheEagle extends Species { ... }
class Eagle { ... }
Eagle harry = new Eagle("Harry")

There are at least two substantial problems with this code.
First, TheEagle and Eagle have no relationship to each
other in the type system. One is a singleton class, represent-
ing a particular species, and one is a name for a set of objects,
being the members of that species. The fundamental nature
of species has a two-level containment relationship, which
the type system fails to express. This means that our type
checker cannot determine what we want and cannot help us
avoid mistakes.

Another problem, which is in some ways just a symptom
of the first problem but that bears special attention, is the
use of generic types. Consider the following class definition,
added to the definitions ofSpecies, theEagle, etc. above,
where? is a placeholder for the bound.

class C<T extends ?> {
T foo(T x) { return T.isEndangered() }

}

2 Of course, dimensions have many subtleties, not captured here. All we
present is the essence of the type relationships.

If we want to perform the callc.foo(harry), then we
have two choices for the boundX on T. It must be either
Object, in which caseisEndangered must be a method
that Object understands. Otherwise, it must beEagle, in
which case the function cannot handle multipleSpecies.
The “solution” in conventional languages is to use a bound
of Object and insert a downcast, which fails at runtime
if the wrong argument is passed. This is the problem that
generics were intended to alleviate. In MCJ,T can be bound
by kindSpecies, and instantiated withEagle, allowing the
original call to be type-checked. This gives the programmer
both safety and expressiveness.

3. Design Patterns as Language Features
Design patterns, as exemplified in [10], have had a substan-
tial impact on the world of object-oriented programming and
beyond. Design patterns allow programmers to increase the
flexibility and abstraction of their software designs. How-
ever, few design patterns have been integrated into program-
ming languages.

One of the advantages of our metaclass framework is that
it allows clean expression of several common design patterns
in the language, rather than requiring that they be expressed
with abstraction techniques on top of the language. For ex-
ample, a number of the classic design patterns deal with ob-
ject creation, as discussed above in section 2.2. Several of
these are naturally expressed in MCJ.

Factory The requirement that all constructors be private
enforces the factory pattern for all MCJ programs.

class MyClass {
static MyClass make() { return new(); }

}

Sincemake() is a method, any computation can be per-
formed, without the problems of constructors.

Abstract Factory The Abstract Factory pattern is a simple
application of inheritance in the metaclass hierarchy. In this,
several classes could share a kind, giving them all a single
interface for construction. Again, the example is very sim-
ple:

class AbsFac {
AbsFac make() { ... }

}
class Derived kind AbsFac {

AbsFac make() { return new(); }
}



Prototype As mentioned in [10], languages with meta-
classes naturally support the prototype pattern. A class is
in many ways a clone of its metaclass. Thus the following
example uses a prototype:

class Proto {
Object x;

}
class Clone kind Proto {

Object x = ...;
}

Singleton Finally, there is no need for the Singleton pat-
tern; a class itself can serve as a singleton.

class AClass { ... }
class AClassSingleton kind AClass { ... }

If no factory methods are provided, no instances can be
created at runtime. While classes can be used as limited
singletons in the Java Programming Language and in C++,
doing so is undesirable because the static behavior of a class
cannot inherit from another class. In fact, the inflexibility of
class or static operations is one of the rationales cited for the
Singleton pattern.

Seeing that a number of patterns can be expressed quite
simply in MCJ, the question arises: is the simple expression
of these patterns a benefit? We argue that it is. The existence
of design patterns is a sign of shortcomings in language de-
sign. Fundamentally, a design pattern is an abstraction that
cannot be expressed in the language. For example, the Sin-
gleton and Visitor patterns are abstractions that have obvious
invariants, but they cannot be expressed directly and they re-
quire complex cooperation from many parts of the system.

Sophisticated macro systems, such as those found in
Common Lisp [17] and Scheme [8], allow for expression of
many forms of abstraction, as do extremely flexible object
systems such as CLOS. However, these solutions add signif-
icantly to what a programmer must understand in order to
use the language productively. In contrast, the inclusion of
metaclasses does not allow for arbitrary additional abstrac-
tion, but instead makes the commonly needed abstractions
easy to express. One does not need the full power of macros
to encode the Factory pattern. In MCJ, we can easily ex-
press several kinds of patterns, without adding an additional
language on top of the original.

4. Formal Specification of MCJ
Having outlined the motivation for metaclasses, and the ba-
sics of their use, we now turn to a formal exposition of the
syntax and semantics of MCJ, followed by an outline of the
proof of soundness for the calculus.

4.1 Syntax

The syntax of MCJ is given in Figure 1. When describing the
formal semantics of MCJ, we use the following metavari-
ables:

• Expressions or mappings:e, d, r
• Field names:f, g
• Variables:x
• Method names:m
• Values:v
• Method declarations:M, N
• Type names:C, D
• Types:I, J, K, T, U, V, W
• Non-typeOf Types:O, P, Q, R, S
• Types that are eitherObject or a type application:A, B
• Ground types (contain no type variables):G

• Type variables:X, Y, Z
• Mappings (field name7→ value):Φ

As in Featherweight Java,x stands for a possibly-empty
sequence ofx. [X 7→ S] denotes a substitution of theS for the
X, which can be applied to either an expression or a type, and
which can substitute either type or expression variables.

A number of symbols are used to abbreviate keywords:/
stands forextends and : stands forkind. Also @ represents
concatenation of sequences of syntactic constructs. Finally,
CT(C) is a lookup in the class table for the definition of the
class namedC.

A number of restrictions on MCJ programs are implicit
in the formal rules. First, we assume that all sequences of
methods and fields are free of duplicates. Second, there is
an implicit well-formedness constraint on programs that no
class be a superclass of itself, either directly or indirectly
(however, as discussed below, cycles in the kind hierarchy
are allowed). Third, we assume thatthis is never used as the
name of a variable, method or field. We also takeObject to
be a distinguished member of the hierarchy, with no specific
definition that does not have a superclass or a kind.

For example, the simplest MCJ class is:

class C<> : Object/Object{}
This is a class namedC, with no type arguments, with

kind Object and superclassObject which has no fields or
methods whatsoever. In examples that follow, we omit empty
type parameter lists. Note that both the kind and the super-
class ofC areObject. Unlike Smalltalk or ObjVLisp, MCJ
does not have a distinguished classClass.3 Interestingly,
we determined that a classClass would need no considera-
tion from the type system. Because bothClass andObject
would sit atop the hierarchy with no contents, there is no
need to include both of them. In a more substantial language,
whereObject might have methods or fields, there might be
a use for a distinguishedClass class, but it would not need
any special treatment by the type system.

3 This is not the same as theClass class used for reflection in the Java
Programming Language.



CL : := class C<X/T : T> : A/A {static T f e; M; T f; N;} class declaration

N : := T m (T x) {return e;} method declaration
M : := static T m (T x) {return e;} class method declaration

e : := x variable reference
| e.f field access
| e.m(e) method invocation
| newC<R>(e) instance creation
| (T)e cast
| R type reference
| ΦG mapping

T : := R non-typeOf type
| typeOf[R] typeOf application

R : := X type variable
| A

A : := C<R> type application
| Object

Figure 1. MCJ Syntax

A more complicated MCJ class is:

class Pair<A extends Object kind Object,
B extends Object kind Object>

{
static Pair<A,B> make(A a, B b){

return new <A,B> (a,b)
}
A fst;
B snd;
Pair<B,B> setfst(B b){

return new <B,B> (b, this.snd);
}
}

This class specifies a polymorphic pair data structure.
It also demonstrates a number of important MCJ features.
First, we see two different kinds of methods. Themake
method creates a new instance ofPair. This method con-
tains anew expression, which initializes the instance fields
of the class positionally, so that the first argument tomake
becomesfst, and the second becomessnd. Also, note that
we must mention the type parameters of the newly created
instance.

Second, we have an instance method,setfst, which
creates a new pair with the old second element, and a new
first element that has the same type as the second element.

Finally, adding the following to the above definition of
Pair gives a full MCJ program:

class O
{
static O make(){return new () ()};
}

Pair<O,O>.make(O.make(), O.make()).fst

This program, which creates two instances ofO, then cre-
ates aPair to hold them both, and finally selects one of the
two to become the value of the program, demonstrates three
of the expression forms in MCJ.Pair<O,O> is a type that by
itself can be a value.O.make() is a method invocation (here
with a class, as the receiver). The entire expression is a field
access, of thefst instance field.

Other kinds of expressions are seen in the body of the
Pair class.new<A,B> (a,b) is a new expression, which
creates an instance of the enclosing class (herePair). In the
body of make is a variable reference tob. The final form
of expression writable by the programmer is the cast, with
the usual semantics. For example,(Object)O.make() is an
expression of typeObject that evaluates to an instance ofO.

With an understanding of expressions, we can examine
the rest of thePair class. There are two methods: a static
method (make) and an instance method (setfst). There are
also two fields, both of which are instance fields and initial-
ized thenew expressions. In MCJ, anew expression is dif-
ferent from those in Featherweight GJ; eachnew expression
evaluates to an instance of the syntactically enclosing class.4

Had there been additional fields in the superclass ofPair,
it would have been necessary to initialize them in thenew
expression as well.new expressions are explained in detail
in section 2.2.

4 In the grammar of Figure 1,new expressions are annotated with this
enclosing class. In the examples, this redundant information is elided.



4.2 Semantics

There are two forms that a value can take in MCJ: that of an
instance class, and that of a conventional (non-class) value.
If we were to distinguish these two forms of value, we would
significantly increase the number of rules necessary to de-
scribe our semantics because every rule referring to a value
would have to be written twice. To avoid this complexity, we
introduce a specialmapping construct(similar to a record
value) to denote the results of computations.5 A mapping
takes field names to expressions, and is annotated with a
ground type. Mappings from a sequence of fieldsf to a se-
quence of expressionse with typeG are written{f 7→ e}G. A
mapping denoting an instance classC consists of a sequence
of static fields mapped to a sequence of expressions and is
annotated with the typetypeOf[C]. Note that the right hand
sides of such maps need not always be values, and thus com-
putation can take place inside of a mapping. Mappings are
not available to the programmer, and thus can only be cre-
ated by operation of the reduction rules. Therefore, unlike
Featherweight Java, our reductions do not operate entirely in
the user-level syntax of the language. We use the metavari-
ableΦ to range over mappings. When we need to refer to the
type annotation of a mapping explicitly, the metavariable is
writtenΦG. A mapping whose right-hand sides are all values
is itself value, and will be writtenΦv

G.
The semantics are given in figures 2, 3, 4, and 5 with

auxiliary functions given in figure 6.

4.2.1 Typing

Rules governing the typing of MCJ programs are given in
figures 2, 3 and 4. Thebound∆ function is defined as follows:

bound∆(X) = ∆(X)
bound∆(typeOf[X]) = ∆(typeOf[X])

bound∆(S) = S

This function maps type variables andtypeOf applied to
type variables to their bounds, and leaves others unchanged.

The metavariables∆ and Γ range over bounds environ-
ments, writtenX/S and type environments, writtenx : T re-
spectively. A bounds environment contains two bounds for
each type variable, so that if∆ = X/A : B, then∆(X) = A and
∆(typeOf[X]) = B.

The notationA <: B meansA is a subtype ofB. Subtyping
judgments are made in the context of a bounds environment
that relates a type to the declared bound of that type from the
class header.

Type judgments are of the form∆;Γ ` e : T, which states
that in bounds environment∆ and type environmentΓ, ex-
pressione has typeT. Type judgments are not transitive in
the way thatinstanceof relationships are with respect to
subtyping: if∆;Γ ` e : T, and∆ ` T<:S, it is not necessarily
the case that∆;Γ ` e : S. This is important, since our proofs

5 This simplification was suggested by Jan-Willem Maessen in response to
an earlier draft of the MCJ semantics.

depend on having unique derivations of a given typing judg-
ment. We represent empty environments with/0 and we ab-
breviate judgments of the form/0; /0 ` e : T and /0 ` T<:S as
e : T andT<:S respectively.

We now discuss several non-obvious aspects of our type
system resulting from the need to statically check uses of
metaclasses.

Casts and Mappings We follow [1] in typing all casts as
statically correct, so as to avoid the complications of “stupid
casts”. Mappings, which are not expressible in the source
language, are typed merely by a well-formedness constraint.

4.2.2 Well-Formedness

There are three kinds of well-formedness constraints on
MCJ programs. First, type well-formedness, written “∆ `
T ok”, states that typeT refers to a defined class, and that if
it is a type application, the arguments satisfy the bounds.

More important are the class and method well-formedness
constraints, which together determine if a class table is well-
formed, and thus part of a legal MCJ program. Method well-
formedness is a judgment of the form “M ok in G”, whereM
is a method. We make use of the latter portion (G) of this
judgment as a second argument, allowing us to use this rule
to check both instance and static methods. Method well-
formedness consists mostly in fitting the body to the return
type, and checking for invalid overrides.

Class well-formedness involves all of the above checks.
All methods must be well-formed, and all static fields must
have correct initialization expressions. Further, static fields
must contain the instance fields of the kind. Finally, allnew
expressions must have the correct class name annotation.

4.2.3 Evaluation

The evaluation rules for MCJ are given in figure 5. The
evaluation relation, writtene→ e′, states thate transitions to
e′ in one step. The reflexive transitive closure of this relation
is writtene→∗ e′.

Bad Casts There is one way that evaluation in MCJ can get
stuck: the bad cast. This problem occurs for all languages
that allow static downcasts. A expressione is a bad cast iff
e = (S)ΦT whereS is not a supertype ofT.

The evaluation relation given here is non-deterministic.
For example, no order is prescribed for evaluating the argu-
ments to anew expression or method call, or for evaluating
the initializers for static fields. There are also a number of
places where either congruence or reduction rules can be ap-
plied. Therefore, in the presence of non-termination or bad
casts, the results may differ depending on evaluation order.
However, confluence can be regained simply by requiring
that [C-MAPPING] is applied whenever possible. This re-
striction, combined with the requirement in the premise of
[R-NEW] that the arguments be values, ensures that every
program with an error or non-termination will either cause
an error, or fail to terminate.



∆ ` T<:T [S-REFLEX] X/T ∈ ∆
∆ ` X<:T

[S-BOUND]
∆ ` V<:T ∆ ` T<:U

∆ ` V<:U
[S-TRANS]

CT(C) = class C<X/I : J> : B/A {...}
∆ ` typeOf[C<S>]<:[X 7→ S]B

[S-KIND ]
CT(C) = class C<X/I : J> : B/A {...}

∆ ` C<S><:[X 7→ S]A
[S-SUPER]

∆ ` Object ok [WF-OBJECT] ∆ ` X<:T

∆ ` X ok
[WF-VAR] ∆ ` T ok

∆ ` typeOf[T] ok
[WF-TYPEOF]

CT(C) = class C<X/I : J> : B/A {...}
∆ ` S<:[X 7→ S]I ∆ ` typeOf[S]<:[X 7→ S]J ∆ ` S ok

∆ ` C<S> ok
[WF-CLASS]

Figure 2. Subtyping and Well-Formed Types

∆;Γ ` x : Γ(x) [T-VAR]
∆ ` T ok ∆;Γ ` e : U

∆;Γ ` (T)e : T
[T-CAST] ∆ ` S ok

∆;Γ ` S : typeOf[S]
[T-CLASS]

∆;Γ ` e : U
fields(bound∆(U)) = T f

∆;Γ ` e.fi : Ti

[T-FIELD ]

∆ ` C<S> ok fields(C<S>) = T f
∆ ` U<:T ∆;Γ ` e : U

∆;Γ ` newC<S>(e) : C<S>
[T-NEW]

fields(G) = T f
∆;Γ ` e : S ∆ ` S<:T

∆;Γ ` {f 7→ e}G : G
[T-M APPING]

mtype(m,bound∆(W)) = U→T
∆;Γ ` r : W ∆;Γ ` e : V ∆ ` V<:U

∆;Γ ` r.m(e) : T
[T-I NVK ]

Figure 3. Expression Typing

params(T) = X @ (I,J)
∆ = {X/I,typeOf[X]/J} Γ = {x : T,this : T}
∆ ` T ok ∆ ` U ok override(m,super(T),T→U)

∆;Γ ` e : W ∆ ` W<:U

U m (T x) {return e;} ok in T
[WF-METHOD]

M ok in typeOf[C<X>] N ok in C<X> ∆ = {X/I,typeOf[X]/J}
∆ ` B ok ∆ ` A ok ∆ ` I ok ∆ ` J ok ∆ ` T ok ∆ ` W ok

fields(B)⊆ T f ∆; /0 ` e : T′ /0 ` T′<:T
∀ newD<S>(d) ∈ e,M,N. D = C

class C<X/I : J> : B/A {T f e; M; W g; N;} ok
[WF-CLASSDEF]

Figure 4. Well-Formed Constructs

4.3 Type Soundness

With the above definitions, we are now able to turn to a
proof of type soundness. Given the simplicity we are able
to achieve in the definitions, the proof is not significantly
more complex than the soundness proof given for Feather-
weight GJ [13]. However, there are a number of significant
lemmas, of which we list the most important. The full proof
is available at:

http://research.sun.com/projects/plrg/

LEMMA 1 (Fields are Preserved by Subtypes).
If fields(U) = F and /0 ` V<:U then ∃ G where fields(V) =
F @G.

Proof We prove this by induction over the derivation for
fields(V).

CaseV = Object: ThenU = Object and /0 = /0 @ /0.

CaseV = C<R>:
ThenCT(C) = class C<X/I : J> : B/A{...H...}
Continue by induction on the derivation of/0 ` V<:U.

The only interesting cases are [S-SUPER] and [S-TRANS].



Object→{}Object [R-OBJECT]
fields(C<S>) = T f

newC<S>(v)→{f 7→ v}
C<S>

[R-NEW]

/0 ` G<:T

(T)ΦG → ΦG

[R-CAST]
field-vals(typeOf[C<S>]) = T f e

C<S>→{f 7→ e}
typeOf[C<S>]

[R-CLASS]

Φv
G.f→ Φv

G(f) [R-FIELD ]
mbody(m,G) = (x,e0)

Φv
G.m(d)→ [x 7→ d,this 7→ Φv

G]e0

[R-INVK ]

e→ e′

e.f→ e′.f
[C-FIELD ] e→ e′

e.m(d)→ e′.m(d)
[C-RCVR] e→ e′

newC<S>(e)→ newC<S>(e′)
[C-NEW]

e→ e′

d.m(e)→ d.m(e′)
[C-ARG] e→ e′

(T)e→ (T)e′
[C-CAST] e→ e′

{f 7→ e}G →{f 7→ e′}G
[C-MAPPING]

Figure 5. Computation Rules

fields(Object) = /0 [F-OBJECT] field-vals(Object) = /0 [FV-OBJECT] field-vals(C<S>) = /0 [FV-CLASS]

CT(C) = class C<X/I : J> : B/A {T f e; M; W g; N;}
fields([X 7→ R]A) = U h

fields(C<R>) = U h ∪ [X 7→ R]W g
[F-CLASS]

CT(C) = class C<X/I : J> : B/A {T f e; M; W g; N;}
fields(typeOf[C<R>]) = [X 7→ R]T f

[F-TYPEOF]

CT(C) = class C<X/I : J> : B/A {T f e; M; W g; N;}
field-vals(typeOf[C<R>]) = [X 7→ R]T f e

[FV-TYPEOF]

U m (T x) {return e;} ∈ methods(G)
mtype(m,G) = T→U

[MT YPE]
U m (T x) {return e;} ∈ methods(G)

mbody(m,G) = (x,e)
[MB ODY]

methods(Object) = /0 [M ETHODSOBJECT]

CT(C) = class C<X/I : J> : B/A {T f e; M; W g; N;}
methods(C<R>) = [X 7→ R]N ∪ methods([X 7→ R]A)

[M ETHODSCLASS]

CT(C) = class C<X/I : J> : B/A {T f e; M; W g; N;}
methods(typeOf[C<R>]) = [X 7→ R]M ∪ methods([X 7→ R]B)

[M ETHODSTYPEOF]

mtype(m,G) = U→V impliesW = U andT = V

override(m,G,W→T)
[OVERRIDE]

CT(C) = class C<X/I : J> : B/A {...}
params(C<T>) = X @ (I,J)

[PARAMS]
CT(C) = class C<X/I : J> : B/A {...}
params(typeOf[C<T>]) = X @ (I,J)

[PARAMSTYPEOF]

CT(C) = class C<X/I : J> : B/A {...}
super(C<T>) = A

[SUPER]
CT(C) = class C<X/I : J> : B/A {...}

super(typeOf[C<T>]) = B
[SUPERTYPEOF]

Figure 6. Auxiliary Functions

Subcase [S-SUPER]: [X 7→ R]A = U. ThusG = H.

Subcase [S-TRANS]: Let T be the intermediate type. Then
fields(V) = fields(T) @ H′ andfields(V) = fields(T) @ H′′

by the induction hypothesis. ThusG = H′ @H′′.

CaseV = typeOf[C<S>]:

Then CT(C) = class C<X/I : J> : B/A{W h e...}.
We continue by induction over the derivation of/0` V<:U.
The only complex cases are [S-KIND] and [S-TRANS].

Subcase [S-TRANS]: As above.



Subcase [S-KIND ]:
[X 7→ S]A = U Thenfields(V) = [X 7→ S]W h. By well-

formedness ofC, we know thatfields(B) ⊆ W h. Then
[X 7→ S]fields(B)⊆ [X 7→ S]W h, andfields([X 7→ S]B)⊆
[X 7→ S]W h by lemma Substitution Distributes over
f ields.

LEMMA 2 (Subtyping Preserves Method Typing).
If mtype(m,U) = T→S and /0 ` V<:U then mtype(m,V) =
T→S.

Proof By induction over the derivation of/0 ` V<:U.

Case [S-REFLEX ]: Trivial.

Case [S-BOUND]: Not applicable.

Case [S-SUPER]: In this case,V = C<R>, where
CT(C) = class C<X/I : J> : B/A{...M}
andU= [X 7→ R]A. We need to show thatmtype(m,C<R>)=
T→S. By lemmamethodsis well-defined, it suffices to
show thatU m (T x) {return e;} ∈ methods(C<R>).

Since we know thatU m (T x) {return e;} ∈
methods(U), we proceed by induction on the derivation
of methods(U).

SubcaseU = Object: Impossible, sinceObject has no
methods.

SubcaseU = D<W>:
Then,U= [X 7→ R]A. By [M ETHODSCLASS], methods(V)=
methods(C<R>) = ([X 7→ R]M) ∪ methods([X 7→ R]A) =
([X 7→ R]M) ∪ methods(U). Therefore, any method in
methods(U) must be inmethods(V).

Case [S-TYPEOF]: Analogous to [S-SUPER].

Case [S-TRANS]: Let the intermediate type beT. Then /0 `
V<:T and /0 ` T<:U. Thus, by the induction hypothesis,
mtype(m,V) = mtype(m,T) = mtype(m,U).

LEMMA 3 (Substitution Preserves Typing).
If ∆;Γ ` e : T and Γ = x : S and ∆; /0 ` d : U and ∆ ` U<:S
then∆; /0 ` [x 7→ d]e : T′ where∆ ` T′<:T.

Proof With the above two lemmas, this one follows by
straightforward structural induction over the derivation of
∆;Γ ` e : T.

Given the above lemmas, the following subject reduction
proof is a simple structural induction with a case analysis on
the typing rule used to derive/0; /0 ` e : S.

THEOREM 1 (Subject Reduction).
If /0; /0 ` e : S ande→ e′ then /0; /0 ` e′ : T where/0 ` T<:S.

Proof We prove this by structural induction on the deriva-
tion of e→ e′.

Case [R-OBJECT]: Immediate.

Case [R-NEW]: Immediate from the premises of [T-NEW]
and [R-NEW].

Case [R-CLASS]: Immediate from the premises of
[WF-CLASSDEF] and [R-CLASS].

Case [R-CAST]: By [T-CAST], e = (T)ΦG must have type
T. By [T-M APPING], e′ = ΦG must have typeG. By
hypothesis of the reduction rule,/0 ` G<:T.

Case [R-FIELD ]: We know thate = {f 7→ d}G.fi and that
e′ = di . Sincee must have been typed by [T-FIELD], we
know thatfields(G) = T f and /0; /0 ` e : Ti . Further, since
{f 7→ d}G must have been typed by [T-MAPPING], we
know that/0; /0 ` di : S where/0 ` S<:T.

Case [R-INVK ]: We know thate = ΦG.m(d) and that
e′ = [x 7→ d,this 7→ ΦG]e0. Further,e was typed by [T-
INVK ] to have typeU where mtype(m,G) = T→U and
/0; /0 ` d : T′ and /0 ` T′<:T. As a premise of [R-INVK ],
we know thatmbody(m,G) = (x,e′0).

By the lemmamtypeandmbodyagree,/0;x : T,
this : G ` e′0 : U′ where /0 ` U′<:U. Then by the lemma
Substitution Preserves Typing,/0; /0 ` e′ : U′′ wheree′ =
[x 7→ d,this 7→ ΦG]e0 and /0 ` U′′<:U′.

Case [C-CAST]: Trivial, since /0 ` (T)e : T for anye.

Case [C-MAP]: Immediate from the induction hypothesis
and the transitivity of subtyping.

Case [C-NEW]: Immediate from the induction hypothesis
and the transitivity of subtyping.

Case [C-ARG]: Immediate from the induction hypothesis
and the transitivity of subtyping.

Case [C-RCVR]: We know that e = e0.m(d) and e′ =
e′0.m(d). Further,e must have been typed by [T-INVK ],
which means that/0; /0 ` e0 : W for some ground typeW,
and that/0; /0 ` d : V and /0 ` V<:U, and alsomtype(m,W) =
U→T. By the induction hypothesis,/0; /0 ` e′0 : W′ where
/0 ` W′<:W. Therefore, by lemma Subtyping Preserves
Method Typing, mtype(m,W′) = U→T and thus /0; /0 `
e′0.m(d) : T by [T-INVK ].

Case [C-FIELD ]: If e.fi → e′.fi , thene→ e′. Further,e.fi

must have been typed by [T-FIELD] to have typeTi .
Therefore, by the induction hypothesis,/0; /0 ` e : S and
/0; /0 ` e′ : S′ where/0 ` S<:S′. Then, by the lemma Fields
are Preserved by Subtypes,fields(S′) = fields(S) @F for
someF, and by [T-FIELD], /0; /0 ` e′.fi : Ti .

The proof of progress presents no additional complica-
tions, and requires only one new lemma.

LEMMA 4 (Agreement off ieldsandfield-vals).
If fields(G) = T f and field-vals(G) = T′ f′ e thenT = T′,
f = f′ and /0; /0 ` e : S where/0 ` S<:T.

THEOREM 2 (Progress).
If /0; /0 ` e : S then one of the following holds:

• e = {f 7→ v}G
• e→ e′

• e = (S)e′ and /0; /0 ` e′ : T and /0 ` T 6<: S.

Proof By induction over the derivation of/0; /0 ` e : S.

Case [T-VAR]: This is a contradiction, sincee is ground.



Case [T-CLASS]: In this casee = C<S′> whereC<S′> is
ground. Then by the lemma Agreement offield-valsand
fields, field-vals(typeOf[C<S′>]) = T f e for someT, f,
ande. Further,params(C<S′>) = X/I : J for someX,I,J.
Therefore, [R-CLASS] applies and
S→{f 7→ [X 7→ S′]C<S′>}

typeOf[C<S′>].

Case [T-MAPPING]: Either e is already a value, ore =
{f 7→ e}G where not all of thee are values. Then by
the induction hypothesis, there is somei such that either
ei → e′ i , in which case [C-MAPPING] applies, orei

contains a bad cast, and the case is complete.

Case [T-CAST]: Here there are three cases:

• e= (S)e′ wheree′ is not a mapping. Then [C-CAST]
applies.

• e = (S)ΦT where/0 ` T<:S. Then [R-CAST] applies.
• e = (S)ΦT where ` T 6<: S. Thene is a bad cast.

Case [T-NEW]: From the antecedent of [T-NEW] the premise
of [R-NEW] applies.

Case [T-INVK ]: Here there are two cases.

• e = r.m(d) wherer is not a mapping. Then by the
induction hypothesis, eitherr contains a bad cast or
r→ r′ and [C-RCVR] applies.

• e = ΦT.m(d) We know from the antecedent that
mtype(m,boundT)= U→V and thereforemtype(m,T)=
U→V sinceT is ground. Therefore, sincembody is
defined everywheremtypeis defined,mbody(m,T) =
(x,e0) for somex ande0. Thus [R-INVK ] applies.

Case [T-FIELD ]: Here there are two cases, either the re-
ceiver is a mapping or not. In the first, by the antecedent
of the typing rule, we can lookup the field success-
fully and apply [R-FIELD]. Otherwise, we can apply
[C-FIELD].

From these, we can conclude the desired type soundness
result.

THEOREM 3 (Soundness).If e : S then either

• e→∗ {f 7→ v}G
• e→∗ e′ wheree′ is an invalid cast
• e reduces infinitely.

Proof Immediate from Subject Reduction and Progress.

5. Related Work
Other Systems with MetaclassesA number of object-
oriented languages have included some form of metaclass
system. Most notable among these is Smalltalk [11], but
others include Common Lisp with CLOS [14].

All of these systems share a common architecture of the
metaclass system in which each class has its own freely gen-
erated metaclass, defined by the static methods and fields of
the class. In contrast, MCJ provides a hierarchy for struc-

turing metaclass relationships, which provides significantly
more modeling and abstraction flexibility.

The metaclass system present in Python [18] is similar
to that provided here, where classes inherit the instance
methods of their metaclasses as static methods. However,
Python is dynamically-typed, and many of the uses to which
Python metaclasses are put are not possible in a statically
typed language. The work on static type systems for Python
has not included metaclasses [16].

Cointe [6] presents a model of metaclasses similar to
that presented here, but for a dynamically typed object-
oriented language based on Lisp. In it, he provides several
overlapping motivations to our own. One is to regularize
the metaclass system of Smalltalk, and another is to enable
additional programming flexibility. To this we add modeling
freedom, and a relation to static methods in more recent
OO languages. Cointe’s work, however, does not provide
a formal model, so it is difficult to determine the exact
relationship between the two systems. Additionally, his work
is in a untyped setting (Lisp and Smalltalk) and thus the
safety theorems proved here are not possible.

Type Systems for MetaclassesSeveral type systems have
also been proposed for languages with metaclasses, includ-
ing the Strongtalk language [3], which turns Smalltalk into
a structurally-typed language with static checking. However,
because the Smalltalk metaclass system is so different from
the one in MCJ, many of the interesting aspects of the type
system do not carry over. Furthermore, the Strongtalk pa-
pers do not provide a formal semantics and analysis of the
system. A formal analysis of inheritance in Smalltalk is pro-
vided in [7] but this again does not consider the hierarchy of
metaclasses presented here.

Graver and Johnson [12] present another type system for
Smalltalk, with a formalism and sketch of a safety proof.
Again, the metaclass type system is substantially different,
reflecting the underlying Smalltalk system. Additionally, the
paper is concerned primarily with optimization as opposed
to static checking.

Metaclasses and Nested ClassesSome of the problems are
alleviated in a language with nested, or inner classes. In the
language Scala [15] the following program expresses some
of the desired invariants:6

class Species {
class Member {}

}
object Eagles extends Species;
class Eagle() extends Eagles.Member;
val harry = new Eagle;

This program automates many of the invariants required
in a language without metaclasses. However, two separate

6 This example, and this discussion, was suggested by an anonymous re-
viewer.



classes must still be constructed perSpecies. Further, the
fundamental problem of not being able to group classes by
functionality in the same way as instances remains. Inner
classes are not constrained by invariants imposed by their
enclosing class. In MCJ, the invariants of the kind are en-
forced by the type system.

Prototype SystemsWhen viewed as “instance generators”,
our metaclasses are similar to prototypes in untyped lan-
guages such as Self. Prototypes generate new instances,
which themselves can generate new instances. Our language
is more restrictive than prototype-based languages in the
sense that all metaclasses and instance classes must be de-
clared statically (i.e., by writing down class definitions). But
our language is more expressive in the sense that we include
classes and subclassing relationships. Also, unlike typical
prototype-based languages, our language is statically typed.

Formalized calculi for object-oriented languages are
abundant in the programming languages community to-
day, including Featherweight Java [13], upon which MCJ is
based. However, none of them have considered metaclasses,
or even static methods, which are the closest analogue in the
Java Programming Language of the metaclass functionality
in MCJ.

Finally, the motivation for this work comes from the lan-
guage MetaGen, introduced in [2]. MetaGen can be seen as
an extension of MCJ, which provides numerous other ad-
vanced type features. Here we restrict ourselves to meta-
classes and analyze the properties of the system formally.

6. Conclusions and Future Work
With MCJ, we have devised a core calculus for metaclasses
that is more flexible than that available in more traditional
metaclass systems such as Smalltalk and that allows clean
expression of many common design patterns. In doing so,
we have demonstrated that metaclasses can be added to a
nominally-typed, statically-checked language without either
significant complication of the semantics or difficulty in the
proof of soundness.

In addition to this contribution, we have elucidated sev-
eral other important points about the integration of meta-
classes into an object-oriented system. ThetypeOf type op-
erator is to our knowledge unique, and plays a key role in the
soundness of the system. The discovery that theClass class
played no special role, and that thus the class and metaclass
hierarchies could both be rooted atObject is also novel. Fi-
nally, we have shown how an expressive framework of meta-
classes has positive effects in other areas of the language,
such as mechanisms for object construction.

A natural extension of the work in this paper is to expand
MCJ to include more of the features presented in [2], so as
to allow inclusion of the system for checking dimensions
of physical quantities. Such an extension would allow for a
proof of “dimensional soundness” in the resulting system.
Further, the calculus presented here is sufficient for demon-

strating the technical detail, but not for practical program-
ming. Many extensions would be necessary for MCJ to be-
come a usable language in practice.

One of the most important extensions is a mechanism for
side effects. Imperative features present some difficulties for
this calculus as formulated. The most important problem is
that the initializers for static fields are re-evaluated every
time the class is used as an expression. If those expressions
had side effects, this prospect would make static fields un-
usable. One potential solution is to remember the previously
evaluated results, as is done in the Java Programming Lan-
guage, but more work remains in this area.

Another interesting extension would be to expand our cal-
culus to include either multiple inheritance (as does Python)
or some alternative such as mixins or traits, as there may be
interesting interactions between metaclasses and these fea-
tures that have yet to be discovered.

Finally, the language has not yet been implemented. An
implementation might suggest changes to the language, or
make the differences with other languages clearer. Further,
an implementation on the Java Virtual Machine would be a
useful area of exploration.

Acknowledgments
We would like to thank Jan-Willem Maessen for his feed-
back on the formal rules presented in this paper. We also
thank David Chase for helpful skepticism, Victor Luchangco
for many valuable discussions, and Guy Steele for his many
helpful comments. Finally, several anonymous reviewers
gave very helpful critiques.

References
[1] Eric Allen, Jonathan Bannet, and Robert Cartwright. A first-

class approach to genericity. InProceedings of the 2003 ACM
SIGPLAN conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 96–114. ACM
Press, 2003.

[2] Eric Allen, David Chase, Victor Luchangco, Jan-Willem
Maessen, and Guy Steele. Object-Oriented Units of
Measurement. InProceedings of the 2004 ACM SIG-
PLAN Conference on Object-oriented Programing, Sys-
tems, Languages, and Applications, 2004. Available at
http://research.sun.com/projects, under Programming Lan-
guages.

[3] Gilad Bracha and David Griswold. Strongtalk: Typechecking
Smalltalk in a Production Environment. InProceedings of the
OOPSLA ’93 Conference on Object-Oriented Programming
Systems, Languages and Applications, pages 215–230,
September 1993.

[4] Luca Cardelli. A semantics of multiple inheritance. InProc.
of the international symposium on Semantics of data types,
pages 51–67. Springer-Verlag New York, Inc., 1984.

[5] Robert Cartwright and Guy L. Steele, Jr. Compatible
genericity with run-time types for the Java Programming
Language. InProceedings of the 1998 ACM SIGPLAN



Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 201–215. ACM Press,
1998.

[6] Pierre Cointe. Metaclasses are first class: the ObjVLisp
model. In Proceedings of the OOPSLA ’87 Conference
on Object-Oriented Programming Systems, Languages and
Applications, pages 156–162. ACM Press, 1987.

[7] William R. Cook. A Denotational Semantics of Inheritance.
PhD thesis, Brown University, May 15 1989.

[8] R. Kent Dybvig. Writing Hygienic Macros in Scheme with
Syntax-Case. Technical report, Indiana University Computer
Science Dept., July 03 1992.

[9] Matthias Felleisen. On the expressive power of programming
languages. In Neil D. Jones, editor,ESOP’90, 3rd European
Symposium on Programming, volume 432 ofLecture Notes in
Computer Science, pages 134–151, Copenhagen, Denmark,
15–18 May 1990. Springer.

[10] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison Wesley, Reading, Massachusetts,
1994.

[11] Adele Goldberg and David Robson.Smalltalk-80: The
Language and Its Implementation. Addison-Wesley, Reading,
Massachusetts, 1989.

[12] Justin O. Graver and Ralph E. Johnson. A type system for
Smalltalk. InConference Record of the Seventeenth Annual
ACM Symposium on Principles of Programming Languages,
pages 136–150, San Francisco, California, January 1990.

[13] Atshushi Igarashi, Benjamin Pierce, and Philip Wadler.
Featherweight Java: A minimal core calculus for Java and
GJ. InProceedings of the 1999 ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and
Applications, pages 132–146. ACM Press, 1999.

[14] Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow.
The Art of the Metaobject Protocol. MIT Press, Cambridge,
MA, 1991.

[15] Martin Odersky et al. The Scala Language Specification.
http://scala.epfl.ch, 2004.

[16] Michael Salib. Static Type Inference with Starkiller. In
PyCon DC, 2004. http://www.python.org/pycon/dc2004/

papers/1/paper.pdf.

[17] Guy L. Steele Jr.Common Lisp: The Language, Second
Edition. Digital Press, Bedford, Massachusetts, 1990.

[18] Guido van Rossum. Unifying types and classes in Python
2.2. http://www.python.org/2.2.2/descrintro.html, 2002.

[19] Christopher A. Welty and David A. Ferrucci. What’s in an
instance? Technical report, Rochester Polytechnic Institute
Computer Science Dept., 1994.


