
GJ: Extending the JavaTM programming language with type
parameters

Gilad Bracha, Sun Microsystems
Martin Odersky, University of South Australia

David Stoutamire, Sun Microsystems
Philip Wadler, Bell Labs, Lucent Technologies

March 1998; revised August 1998

Say you wish to process collections. Some may be collections of bytes, others collec-
tions of strings, and yet others collections of collections of strings. The Java program-
ming language supports such variation by allowing you to form a collection of Object,
so the elements may have any reference type. In order to keep the language simple,
you are forced to do some of the work yourself: you must keep track of the fact that
you have a collection of bytes, and when you extract an element from the collection you
must cast it to class Byte before further processing.

This situation is becoming more common as the Java platform evolves, notably with
the addition of collection classes to JDK 1.2. Other languages provide additional support
for this situation: in C++, it is supported with templates; in Ada, it is supported with
generics; and in ML and Haskell, it is supported with parametric polymorphism.

This note proposes GJ, an extension to the Java programming language that sup-
ports types with parameters. GJ programs look much like the equivalent Java programs,
except they have more type information and fewer casts. The semantics of GJ is given
by a translation into the Java programming language. The translation erases type pa-
rameters, replaces type variables by their bounding type (typically Object), adds casts,
and inserts bridge methods so that overriding works properly. The resulting program
is pretty much what you would write if generics weren’t available. The translation is
designed so that new GJ code will work with existing Java libraries, even when the
libraries are available only in binary class file form.

GJ comes with a cast-iron guarantee: no cast inserted by the compiler will ever fail.
(Caveat: this guarantee is void if the compiler generates an unchecked warning, which
may be necessary in certain cases for purposes of compatibility.) Furthermore, since GJ
translates into Java virtual machine (JVM) byte codes, all safety and security properties
of the Java platform are preserved. (Reassurance: this second guarantee holds even in

1



the presence of unchecked warnings.)
In pathological cases, the translation requires bridge methods that must be encoded

directly as JVM byte codes. Thus GJ extends the expressive power of the Java pro-
gramming language, while remaining compatible with the JVM.

GJ is backward and forward compatible with the Java programming language and
the JVM.

• Compatible with the Java programming language. Every Java program is still legal
and retains the same meaning in the extension to GJ. This is true for both Java
source code and JVM class files.

• Compatible with JVM. GJ compiles into JVM code. No change to the JVM is re-
quired. The code is verifiable and can be executed on any JDK compliant browser.

• Compatible with existing libraries. One can compile a program that uses a param-
eterized type against existing class file libraries for an unparameterized version of
that type. For instance, one can use parameterized collections with the existing
collections library.

• Transparent translation. There is a straightforward translation from GJ into the
Java programming language. The translation leaves field and method names un-
changed, and bridge methods are easy to predict. It is therefore easy to use
reflection with GJ. The translation introduces minimal overhead, so program per-
formance remains easy to predict.

• Efficient. GJ is translated by erasure: no information about type parameters is
maintained at run-time. This means GJ code is pretty much identical to Java code
for the same purpose, and equally efficient.

• Futureproof. Greater flexibility may be achieved by carrying type parameters at
run-time, and this may be possible in future implementations. GJ is designed so
it smoothly extends to include run-time type parameters.

GJ is based closely on the handling of parametric types in Pizza [OW97]. The Pizza
compiler (itself written in Pizza) has been freely available on the web since 1996. GJ
differs from Pizza in providing greater support for backward compatibility, notably in
allowing new code to work with old libraries. GJ also uses a simpler type system. In
Pizza the type of an expression may depend on the type expected by its context, whereas
in GJ the type of an expression is determined solely by the type of its constituents.

GJ, like Pizza, implements parametric types by erasure. A similar idea has been
proposed and implemented for Oberon [RS97]. There are a number of other proposals
for adding parameterized types to the Java programming language, all based on carrying

2



type information at run-time [AFM97, CS97, MBL97]. Run-time types may be less
efficient to implement than erasure, and may be harder to interface with legacy code.
As noted above, GJ is designed to extend smoothly if it is later judged practicable to
use run-time types.

Virtual types have been suggested as an alternative to parametric types for increasing
the expressiveness of types [Tho97, Tor98]. A comparison of the relative strengths of
parameteric and virtual types appears elsewhere [BOW98]. It may be possible to merge
virtual and parametric types [BOW98, TT98], but it is not clear whether the benefits
of the merger outweigh the increase in complexity.

This paper is intended as a readable introduction, motivating the features of GJ. A
companion paper provides a more precise specification [BOSW98].

This paper is structured as follows. Sections 1–3 introduce the basic features of
GJ, using a running example based on collections and linked lists. Section 4 describes
how bridge methods must be expressed by direct translation into the JVM. Section 5
explains why an invariant subtyping rule is used for parameterized types. Section 6
explains type inference for parametric method calls. Section 7 discusses object and
array creation. Sections 8–10 discuss casts and techniques that allow GJ to fit with
legacy code.

1 Generic classes

The first example demonstrates the fundamentals of generic classes. For this example
and the following ones, we first consider Java code for a task, then see how it is rewritten
in GJ.

Here are interfaces for collections and iterators, and a linked list class (all much
simplified from the Java collections library).

interface Collection {
public void add (Object x);
public Iterator iterator ();

}
interface Iterator {

public Object next ();
public boolean hasNext ();

}
class NoSuchElementException extends RuntimeException {}
class LinkedList implements Collection {

protected class Node {
Object elt;
Node next = null;
Node (Object elt) { this.elt=elt; }

}

3



protected Node head = null, tail = null;
public LinkedList () {}
public void add (Object elt) {

if (head==null) { head=new Node(elt); tail=head; }
else { tail.next=new Node(elt); tail=tail.next; }

}
public Iterator iterator () {

return new Iterator () {
protected Node ptr=head;
public boolean hasNext () { return ptr!=null; }
public Object next () {

if (ptr!=null) {
Object elt=ptr.elt; ptr=ptr.next; return elt;

} else throw new NoSuchElementException ();
}

};
}

}

The collection interface provides a method to add an element to a collection (add), and a
method to return an iterator for the collection (iterator). In turn, the iterator interface
provides a method to determine if the iteration is done (hasNext), and (if it is not) a
method to return the next element and advance the iterator (next). The linked list class
implements the collections interface, and contains a nested class for list nodes and an
anonymous class for the list iterator. Each element has type Object, so one may form
linked lists with elements of any reference type, including Byte, String, or LinkedList
itself.

Here is code utilizing linked lists.

class Test {
public static void main (String[] args) {

// byte list
LinkedList xs = new LinkedList();
xs.add(new Byte(0)); xs.add(new Byte(1));
Byte x = (Byte)xs.iterator().next();

// string list
LinkedList ys = new LinkedList();
ys.add("zero"); ys.add("one");
String y = (String)ys.iterator().next();

// string list list
LinkedList zss = new LinkedList();
zss.add(ys);

4



String z = (String)((LinkedList)zss.iterator().next()).iterator().next();

// string list treated as byte list
Byte w = (Byte)ys.iterator().next(); // run-time exception

}
}

The user must recall what type of element is stored in a list, and cast to the appropriate
type when extracting an element from a list. Extracting an element from a list of lists
requires two casts. If the user accidentally attempts to extract a byte from a list of
strings, this raises an exception at run-time.

Now, here are collections, iterators, and linked lists rewritten in GJ.

interface Collection<A> {
public void add(A x);
public Iterator<A> iterator();

}
interface Iterator<A> {

public A next();
public boolean hasNext();

}
class NoSuchElementException extends RuntimeException {}
class LinkedList<A> implements Collection<A> {

protected class Node {
A elt;
Node next = null;
Node (A elt) { this.elt=elt; }

}
protected Node head = null, tail = null;
public LinkedList () {}
public void add (A elt) {

if (head==null) { head=new Node(elt); tail=head; }
else { tail.next=new Node(elt); tail=tail.next; }

}
public Iterator<A> iterator () {

return new Iterator<A> () {
protected Node ptr=head;
public boolean hasNext () { return ptr!=null; }
public A next () {

if (ptr!=null) {
A elt=ptr.elt; ptr=ptr.next; return elt;

} else throw new NoSuchElementException ();
}

};
}

5



}

The interfaces and class take a type parameter A, written in angle brackets, representing
the element type. Each place where Object appeared in the previous code, it is now
replaced by A. Each place where Collection, Iterator, or LinkedList appeared in the
previous code, it is now replaced by Collection<A>, Iterator<A>, or LinkedList<A>
(the one exception being the declaration of the class constructor). The nested class Node
has A as an implicit parameter inherited from the scope, the full name of the class being
LinkedList<A>.Node.

Here is the test code rewritten in GJ.

class Test {
public static void main (String[] args) {

// byte list
LinkedList<Byte> xs = new LinkedList<Byte>();
xs.add(new Byte(0)); xs.add(new Byte(1));
Byte x = xs.iterator().next();

// string list
LinkedList<String> ys = new LinkedList<String>();
ys.add("zero"); ys.add("one");
String y = ys.iterator().next();

// string list list
LinkedList<LinkedList<String>> zss

= new LinkedList<LinkedList<String>>();
zss.add(ys);
String z = zss.iterator().next().iterator().next();

// string list treated as byte list
Byte w = ys.iterator().next(); // compile-time error

}
}

Instead of relying on the user’s memory, parameters document the type of each list’s
elements, and no casts are required. The code to extract an element from a list of lists
is more perspicuous. Now an attempt to extract a byte from a list of strings indicates
an error at compile-time.

To translate from GJ into the Java programming language, one replaces each type
by its erasure. The erasure of a parametric type is obtained by deleting the parameter
(so LinkedList<A> erases to LinkedList), the erasure of a non-parametric type is the
type itself (so Byte erases to Byte) and the erasure of a type parameter is Object (so
A erases to Object). A suitable cast is inserted around each method call where the

6



return type is a type parameter. Translating the GJ code for lists yields the Java code
we started with (except for the line that was in error). Thus, a new program compiled
against the GJ code could be used with an old library compiled against the Java code.

The scope of a type parameter is the entire class, excluding static members and
static initializers. This is required since different instances of a class may have different
type parameters, but access the same static members. Parameters are irrelevant when
using a class name to access a static member, and must be omitted.

Angle brackets were chosen for type parameters since they are familiar to C++
users, and since they avoid confusion that may otherwise arise. Each of the other form
of brackets may lead to confusion. If round brackets are used, it is difficult to distinguish
type and value parameters. If square brackets are used, it is difficult to distinguish type
parameters and array dimensions. If curly brackets are used, it is difficult to distinguish
type parameters from class bodies.

Phrases like LinkedList<LinkedList<String>> pose a problem to the parser, since
>> is treated as a single lexeme. (Similarly for >>>.) In C++, users are required to add
extra spaces to avoid this problem. In GJ, there is no worry for the user, the problem
is instead solved by a slight complication to the grammar.

2 Parametric methods and bridges

The second example demonstrates a parametric method and illustrates the need for
bridges.

Here is an interface for comparators, a comparator for bytes, and a class with a static
method to find the maximum of a collection (all based on the Java collections library).

interface Comparator {
public int compare (Object x, Object y);

}
class ByteComparator implements Comparator {

public int compare (Object x, Object y) {
return ((Byte)x).byteValue() - ((Byte)y).byteValue();

}
}
class Collections {

public static Object max (Collection xs, Comparator c) {
Iterator xi = xs.iterator();
Object w = xi.next();
while (xi.hasNext()) {

Object x = xi.next();
if (c.compare(w,x) < 0) w = x;

}
return w;

7



}
}

The comparator interface specifies a method that takes a pair of objects, and returns
an integer that is negative, zero, or positive if the first object is less than, equal to, or
greater than the second. In the byte comparator class, the two objects are cast to bytes,
and then subtracted to generate a comparison value. The last class defines a static
method that accepts a collection and a comparator and returns the maximum element
in the collection (if it is non-empty).

Here is code utilising comparators.

class Test {
public static void main (String[] args) {

// byte list with byte comparator
LinkedList xs = new LinkedList();
xs.add(new Byte(0)); xs.add(new Byte(1));
Byte x = (Byte)Collections.max(xs, new ByteComparator());

// string list with byte comparator
LinkedList ys = new LinkedList();
ys.add("zero"); ys.add("one");
String y = (String)Collections.max(ys, new ByteComparator());

// run-time exception
}

}

As before, the user must keep track of the result type and cast the results as appropriate.
Using a string collection with a byte comparator raises an exception at run-time.

Now, here are comparators and maximum rewritten in GJ.

interface Comparator<A> {
public int compare (A x, A y);

}
class ByteComparator implements Comparator<Byte> {

public int compare (Byte x, Byte y) {
return x.byteValue() - y.byteValue();

}
}
class Collections {

public static <A> A max (Collection<A> xs, Comparator<A> c) {
Iterator<A> xi = xs.iterator();
A w = xi.next();
while (xi.hasNext()) {

A x = xi.next();

8



if (c.compare(w,x) < 0) w = x;
}
return w;

}
}

The interface now has a type parameter A, and the compare method takes two arguments
of type A. The byte comparator class implements the comparator interface with the type
parameter instantiated to Byte, and so the compare method takes two arguments of type
Byte, and no casts are required. In the last class, the static method max takes a type
parameter, indicated by writing <A> before the method signature; the type parameter A
appears in the result type, argument types, and method body.

Here is the test code rewritten in GJ.

class Test {
public static void main (String[] args) {

// byte list with byte comparator
LinkedList<Byte> xs = new LinkedList<Byte>();
xs.add(new Byte(0)); xs.add(new Byte(1));
Byte x = Collections.max(xs, new ByteComparator());

// string list with byte comparator
LinkedList<String> ys = new LinkedList<String>();
ys.add("zero"); ys.add("one");
String y = Collections.max(ys, new ByteComparator());

// compile-time error
}

}

As before, no casts are required. Now using a string collection with a byte comparator
indicates an error at compile-time.

Type parameters are inferred for a parametric method call as follows: the smallest
type parameter that yields a valid call is chosen. In the example above, the call to
max with a byte collection and a byte comparator infers that the type parameter A is
Byte. If there is no unique smallest type, inference fails, as in the call to max with a
string collection and a byte comparator. An extra rule, described in Section 6, supports
inference when there are no argument types involving an inferred variable, or when the
argument is null.

To translate from GJ one erases types and adds casts as before. The Comparator
interface and Collections class in GJ translate back to the Java source code given
above. The ByteComparator requires a little more cleverness.

class ByteComparator implements Comparator {

9



public int compare (Byte x, Byte y) {
return x.byteValue() - y.byteValue();

}
// bridge
public int compare (Object x, Object y) {

return this.compare((Byte)x, (Byte)y);
}

}

A bridge method must be introduced, since overriding occurs only when types match
exactly. Overloading allows the bridge and the original method to share the same name.
In general, a bridge is introduced whenever a class implements a parameterized interface
or extends a parameterized class at an instantiated type. A problematic case arises if
the overridden method has a parameterized type but no arguments, as discussed in
Section 4.

A class can implement an interface in only one way. Thus, a class cannot implement
the parameterized interfaces I<S> and I<T> unless S is identical to T. Similarly for the
superinterfaces of an interface.

3 Bounds

The third example demonstrates that type parameters may be bounded.
As an alternative to comparators, one may specify that the object itself contains a

suitable comparison method. Here is an interface for comparable objects, the standard
byte class that implements this interface, and a variant method to find the maximum of
a collection (all based on the Java collections library).

interface Comparable {
public int compareTo (Object that);

}
class Byte implements Comparable {

private byte value;
public Byte (byte value) { this.value = value; }
public byte byteValue () { return value; }
public int compareTo (Byte that) {

return this.value - that.value;
}
public int compareTo (Object that) {

return this.compareTo((Byte)that);
}

}
class Collections {

public static Comparable max (Collection xs) {

10



Iterator xi = xs.iterator();
Comparable w = (Comparable)xi.next();
while (xi.hasNext()) {

Comparable x = (Comparable)xi.next();
if (w.compareTo(x) < 0) w = x;

}
return w;

}
}

Whereas a comparator defines a method compare that takes two objects, a comparable
class defines a method compareTo that takes one object, which is compared with the
method’s receiver. The standard Byte class implements the Comparable interface (as
of JDK 1.2). It defines two version of compareTo, one which expects a Byte, and one
which expects an Object; the second of these overrides the method in the interface. The
last class defines a static method that returns the maximum element in the collection
(if it is non-empty and all the elements in it are comparable.

Here is code utilising comparable objects.

class Test {
public static void main (String[] args) {

// byte collection
LinkedList xs = new LinkedList();
xs.add(new Byte(0)); xs.add(new Byte(1));
Byte x = (Byte)Collections.max(xs);

// boolean collection
LinkedList ys = new LinkedList();
ys.add(new Boolean(false)); ys.add(new Boolean(true));
Boolean y = (Boolean)Collections.max(ys); // run-time exception

}
}

As before, the user must keep track of the result type and cast the results as appropriate.
Booleans do not implement the comparable interface, so an attempt to find the maximum
of a collection of booleans raises an exception at run-time.

Now, here are comparable objects rewritten in GJ.

interface Comparable<A> {
public int compareTo (A that);

}
class Byte implements Comparable<Byte> {

private byte value;
public Byte (byte value) { this.value = value; }

11



public byte byteValue () { return value; }
public int compareTo (Byte that) {

return this.value - that.value;
}

}
class Collections {

public static <A implements Comparable<A>> A max (Collection<A> xs) {
Iterator<A> xi = xs.iterator();
A w = xi.next();
while (xi.hasNext()) {

A x = xi.next();
if (w.compareTo(x) < 0) w = x;

}
return w;

}
}

In Byte, the compareTo method now only needs to be defined at type Byte, the definition
for Object being automatically derived by the insertion of a bridge method. In max the
type parameter is constrained by a bound, A implements Comparable<A>, indicating
that the type variable should only be instantiated by a class that is comparable with
itself. It is legal to apply max at type Byte because Byte implements Comparable<Byte>.
In the body of max it is permitted to call the compareTo method since the receiver and
argument are both of type A, and A implements Comparable<A>.

Here is the test code rewritten in GJ.

class Test {
public static void main (String[] args) {

// byte collection
LinkedList<Byte> xs = new LinkedList<Byte>();
xs.add(new Byte(0)); xs.add(new Byte(1));
Byte x = Collections.max(xs);

// boolean collection
LinkedList<Boolean> ys = new LinkedList<Boolean>();
ys.add(new Boolean(false)); ys.add(new Boolean(true));
Boolean y = Collections.max(ys); // compile-time error

}
}

Now an attempt to find the maximum of a collection of booleans indicates an error at
compile-time.

In general, a bound is introduced by following the parameter with extends and
a class, or implements and an interface. The bounding class or interface may itself

12



be parameterized, and may include type variables appearing elsewhere in the parameter
section; recursion or mutual recursion between parameters is allowed. Omitting a bound
is equivalent to using the bound Object.

The definition of erasure is extended so that the erasure of a type variable is the
erasure of its bound (so A erases to Comparable in max). The GJ versions of Comparable,
Byte, and Collections translate back to the Java source code given above.

4 A bridge too far

A problematic case of bridging may arise if the overridden method has a identical argu-
ments but different return types.

Here is the iterator interface in GJ (adopted from the collections library), and a class
that implements that interface.

inteface Iterator<A> {
public boolean hasNext ();
public A next ();

}
class Interval implements Iterator<Integer> {

private int i;
private int n;
public Interval (int l, int u) { i = l; n = u; }
public boolean hasNext () { return (i <= n); }
public Integer next () { return new Integer(i++); }

}

Here the next method of the class returns an Integer, to match the instantiation of
the type parameter.

Translating from GJ yields the following. As one would expect, a bridge must be
added to the Interval class.

interface Iterator {
public boolean hasNext ();
public Object next ();

}
class Interval implements Iterator {

private int i;
private int n;
public Interval (int l, int u) { i = l; n = u; }
public boolean hasNext () { return (i <= n); }
public Integer next/*1*/ () { return new Integer(i++); }
// bridge
public Object next/*2*/ () { return next/*1*/(); }

}

13



Unfortunately, this is not legal Java source code, as the two versions of next cannot be
distinguished because they have identical arguments. The code above distinguishes our
intention by suffixing the declarations and calls with /*1*/ and /*2*/ as appropriate.

Fortunately, the two versions of next can be distinguished in the JVM, which iden-
tifies methods using a signature that includes the result type. This situation represents
the one place where GJ must be defined by translation directly into JVM byte code.

This loophole points out an underspecification of the Java programming language
and the JVM. Since legal JVM code may in fact contain more than one implementation
of a method with the same name and the same argument types, it needs to be specified
which of these is returned by Class.getMethod. (Tests show the Sun and Microsoft
implementations differ.)

GJ also permits covariant overriding: an overriding method may have a result type
that is a subtype of the method it overrides. This is lllegal in the Java programming
language, which requires that the result type be identical in the overriding method. Note
that both languages require that the argument types be identical. Here is an example
that is legalin GJ.

class C implements Cloneable {
public C copy () { return (C)this.clone(); }

}
class D extends C implements Cloneable {

public D copy () { return (D)this.clone(); }
}

Translation introduces a bridge method into the second class.

class D extends C implements Cloneable {
public D copy/*1*/ () { return (D)this.clone(); }
// bridge
public C copy/*2*/ () { return this.copy/*1*/(); }

}

This is implemented using the same technique as above.

5 Subtyping

For purposes of type comparison, subtyping is invariant for parameterized types: for
instance, even though the class String is a subtype of Object, the parameterized type
LinkedList<String> is not a subtype of LinkedList<Object>. In comparison, arrays
use covariant subtyping, so the array type String[] is a subtype of Object[].

Invariant subtyping ensures that the type constraints enforced by GJ are not violated.
Consider the following code.

14



class Loophole {
public static String loophole (Byte y) {

LinkedList<String> xs = new LinkedList<String>();
LinkedList<Object> ys = xs; // compile-time error
ys.add(y);
return xs.iterator().next();

}
}

This code is illegal, because otherwise it would violate the type constraints by returning
a byte when a string is expected. Both the method call (which adds a byte, which is
itself an object, to a list of object) and the return (which extracts a string from a list of
string) are unobjectionable, so it must be the assignment (which aliases a list of string
to a list of object) that is at fault.

It is instructive to compare the above to analogous code for arrays.

class Loophole {
public static String loophole (Byte y) {

String[] xs = new String[1];
Object[] ys = xs;
ys[0] = x; // run-time error
return xs[0];

}
}

Now the code is legal, but raises an array store exception. Observe that the type safety
of covariant subtyping depends upon the fact that an array carries its type at run-time,
making the store check possible. This approach is not viable for parameterized types,
since type parameters are not available at run-time.

Observe that explicitly declared subtyping is not a problem. For instance, it is fine
to pass a LinkedList<String> when a Collection<String> is expected.

6 Inference

Recall that type parameters are inferred for a parametric method call as follows: the
smallest type parameter that yields a valid call is chosen. This rule does not apply when
there is no unique smallest type to choose, as may happen if there are no argument types
involving an inferred variable or if some argument is null.

To support inference in these cases, the type inferencer may bind a type variable
to the special type *. This type is used only by the type inference algorithm, and
cannot appear in type declarations in GJ programs. The type * is a subtype of every
other type. Further, any type containing * is regarded as a subtype of any type that

15



results from replacing * with any other type. (This is the one exception to the rule of
invariant subtyping.) Thus, LinkedList<*> is a subtype of LinkedList<String>, and
Pair<Byte,*> is a subtype of Pair<Byte,Byte>. The type of null is taken to be *.

The inference rule then applies as before, with the smallest type parameter that
yields a valid call being chosen. Consider the following method declarations and calls.

class Test {
public static <A> LinkedList<A> empty () {

return new LinkedList<A>();
}
public static <A> LinkedList<A> singleton (A x) {

LinkedList<A> xs = new LinkedList<A>();
xs.add(x);
return xs;

}
public static void main (String[] args) {

LinkedList<Byte> xs = empty();
LinkedList<String> ys = singleton(null);

}
}

In both calls in main, the type parameter is inferred to be *. The assignments are valid
side LinkedList<*> is a subtype of both LinkedList<Byte> and LinkedList<String>.

One additional restriction is required: a type parameter cannot be instantiated to *
if it appears more than once in the result type. Consider the following code.

class Cell<A> {
public A value;
public Cell (A v) { value = v; }
public static <A> Cell<A> allocate (A x) {

return new Cell(x);
}

}
class Pair<A,B> {

public A fst;
public B snd;
public Pair (A x, B y) { fst = x; snd = y; }
public static <A> Pair<A,A> duplicate (A x) {

return new Pair<A>(x,x);
}

}
class Loophole {

public static String loophole (Byte y) {
Pair<Cell<String>,Cell<Byte>> p =

Pair.duplicate(Cell.allocate(null)); // compile-time error

16



p.snd.value = y; return p.fst.value;
}
public static String permitted (String x) {

Pair<Cell<String>,Cell<String>> p =
Pair.duplicate(Cell.allocate((String)null));

p.fst.value = x; return p.snd.value;
}

}

The call to duplicate in loophole is illegal, because the smallest choice for A is *, but A
appears twice in the result type of loophole. On the other hand, the call to duplicate
in permitted is ok, because the cast ensures the smallest choice for A is String. But
without the cast, the smallest choice is * and the call would be illegal.

7 Object and array creation

A new expression where the type is a type variable is illegal. Thus, new A() is illegal,
when A is a type variable. Such expressions cannot be executed, since type parameters
are not available at run-time. This is no great loss, since such generic creation is of
limited value. Rather than create an object of variable type, one should pass in an
object with a suitable method for creating new objects (commonly called a factory
object).

A new expression where the type is an array over a type variable generates an
unchecked warning. Thus, new A[n] is unchecked, when A is a type variable. Such
expressions cannot be executed with the usual semantics, since type parameters are not
available at run-time. Rather than create arrays of variable type, it is recommended
that one should use the Vector class from the collection library, or pass in an array of
the same type to be used as a model at run-time (a poor man’s factory object).

To facilitate the latter, the following method is provided in the
gj.lang.reflect.Arrays class.

public static <A> A[] newInstance (A[] a, int n)

A call returns a new array with the same run-time type as a, with length n and each
location initialized to null. This method allows an array to act as a factory for more
arrays of the same type. The erasure of the above method can be implemented in terms
of existing reflection primitives.

public static Object[] newInstance (Object[] a, int n) {
return Arrays.newInstance(a.getClass().getComponentType(), n);

}

17



But the types here are not parametric, so the typed version is added to the GJ library.
It can be implemented using the retrofitting feature discussed in Section 10.

For some purposes, such as defining Vector itself, it is necessary to create new arrays
of variable type. This is why such expressions are unchecked rather than illegal. In this
case the translation replaces the type variable by its bound, as usual. Thus, new A[n]
translates to new Object[n], when A is a type variable bounded by Object.

Creating a new array of variable type must generate an unchecked warning, to in-
dicate that the type soundness constraints normally enforced by GJ may be violated.
Consider the following code.

class BadArray {
public static <A> A[] singleton (A x) {

return new A[]{ x }; // unchecked warning
}
public static void main (String[] args) {

String[] a = singleton("zero"); // run-time exception
}

}

This code passes the compiler, but an unchecked warning is issued for the expression
new A[]{ x }. In this case, the creation expression does indeed violate GJ’s type
constraints, as when called with A bound to String it creates an array with run-time
type Object[] rather than String[]. Here is the translation of the above code.

class BadArray {
public static Object[] singleton (Object x) {

return new Object[]{ x };
}
public static void main (String[] args) {

String[] a = (String[])singleton("zero"); // run-time exception
}

}

It is important to recognise that the run-time type system of JVM remains secure, as
the marked line fails at run-time.

However, it is safe to create a new array of variable type if one takes care to ensure
the array does not escape the scope of the type variable. The method above is unsafe
because the new array escapes the scope of the type variable A attached to the singleton
method.

As an example of sensible use of arrays, here is a vector class (simplified from the
collection library).

class Vector<A> {
public final int MIN_CAPACITY = 4;

18



protected int n;
protected A[] a;
public Vector () {

n = 0;
a = new A[MIN_CAPACITY];

}
public void add (A x) {

if (n == a.length) {
A[] b = new A[2*n];
for (int i = 0; i < n; i++) b[i] = a[i];
a = b;

}
a[n++] = x;

}
public A get (int i) {

if (0 <= i && i < n) return a[i];
else throw new IndexOutOfBoundsException();

}
public A set (int i, A x) {

if (0 <= i && i < n) a[i] = x;
else throw new IndexOutOfBoundsException();

}
public int size () { return n; }
public A[] asArray (A[] b) {

if (b.length < n) b = Arrays.newInstance(b,n);
for (int i = 0; i < n; i++) b[i] = a[i];
for (int i = n; i < b.length; i++) b[i] = null;
return b;

}
}

The array a of type A[] always has run-time type Object[], but never leaves the scope
of the class. The method asArray returns an array that leaves the scope of the class,
but this array is either the argument array b (if b is large enough) or is an array with
the same run-time type as b (created by newInstance). As usual, the code is translated
by replacing A everywhere by Object, including replacing A[] by Object[].

8 Casts and instance tests

Since type parameters are not available at run-time, not all casts and instance tests
on parameterized types are permitted. It is legal to include parameters in a cast or
instance test if the parameters are determined by a combination of information known
at compile-time and determinable at run-time.

19



class Convert {
public static <A> Collection<A> up (LinkedList<A> xs) {

return (Collection<A>)xs;
}
public static <A> LinkedList<A> down (Collection<A> xs) {

if (xs instanceof LinkedList<A>) return (LinkedList<A>)xs;
else throw new ConvertException();

}
}

In up the cast could be omitted, but is included for clarity. In down, run-time information
can be used to check whether the collection is a linked list; if it is a linked list, then the
compile-time constraints ensure that the type parameters match.

Parameterized types cannot be used in casts or instance tests when there is no way
to verify the parameter. The following is illegal.

class BadConvert {
public static Object up (LinkedList<String> xs) {

return (Object)xs;
}
public static LinkedList<String> down (Object o) {

if (o instanceof LinkedList<String>) // compile-time error
return (LinkedList<String>)o; // compile-time error

else throw new ConvertException();
}

}

Here the marked lines indicate compile-time errors.
A workaround is to create a wrapper class.

class Convert {
private class Wrapper {

private LinkedList<String> value;
public Wrapper (LinkedList<String> value) { this.value = value; }
public LinkedList<String> value () { return value; }

}
public static Object up (LinkedList<String> xs) {

return new Wrapper(xs);
}
public static LinkedList<String> down (Object o) {

if (o instanceof Wrapper) return ((Wrapper)o).value();
else throw new ConvertException();

}
}

While one cannot test the parameter type at run-time, one can test whether an object
belongs to class Wrapper, which contains a field of parameterized type.

20



9 Raw types

It is occasionally necessary to refer to a parameterized type stripped of its parameters,
which we call a raw type. Raw types maintain consistency with legacy code: for instance,
new code may refer to the parameterized type Collection<A> while legacy code will
refer to the raw type Collection. Raw types are also useful in cast and instance tests,
where there may not be adequate information at run-time to check the full parameterized
type.

Here is an extension to the linked list class of Section 1 to define equality.

class LinkedList<A> implements Collection<A> {
...
public boolean equals (Object that) {

if (!that instanceof LinkedList) return false;
Iterator<A> xi = this.iterator();
Iterator yi = ((LinkedList)that).iterator();
while (xi.hasNext() && yi.hasNext()) {

A x = xi.next();
Object y = yi.next();
if (!(x==null ? y==null : x.equals(y))) return false;

}
return !xi.hasNext() && !yi.hasNext();

}
}

One might expect the object passed to equals to have the type LinkedList<A>, but
a cast to that type cannot be checked, since type parameters are not available at run-
time. However, it is possible to check a cast to the raw type LinkedList. Roughly
speaking, the raw type LinkedList corresponds to the type LinkedList<B> for some
indeterminate value of B.

In the above, the method call iterator() with receiver this of type List<A> returns
a value of type Iterator<A>, while the same method with receiver (List)that of raw
type List returns a value of raw type Iterator. Similarly, the method call next() with
receiver xi of type Iterator<A> returns a value of type A, while the same method with
receiver yi of type Iterator returns a value of type Object.

In general, the signature of a member of an object of raw type is the erasure of the
signature of the same member for an object of parameterized type. Further, a value of
parameterized type is assignable to a variable of the corresponding raw type. A value of
raw type may also be assigned to a variable of any corresponding parameterized type,
but such an assignment generates an unchecked warning.

Some method calls to objects of raw type must also generate unchecked warnings, to
indicate that the type soundness constraints normally enforced by GJ may be violated.
Consider the following code.

21



class Loophole {
public static String loophole (Byte y) {

LinkedList<String> xs = new LinkedList<String>();
LinkedList ys = xs;
ys.add(y); // unchecked warning
return xs.iterator().next();

}
}

This code passes the compiler, but an unchecked warning is issued for the call to the
add method. In this case, the call does indeed violate GJ’s type constraints, as it adds
a byte y to the list of strings xs. Here is the translation of the above code.

class Loophole {
public static String loophole (Byte y) {

LinkedList xs = new LinkedList();
LinkedList ys = xs;
ys.add(y);
return (String)xs.iterator().next(); // run-time exception

}
}

The run-time type system remains secure, as the marked line fails at run-time.
The rules for generating unchecked warnings for raw types are as follows:

• A method call to a raw type generates an unchecked warning if the erasure changes
the argument types.

• A field assignment to a raw type generates an unchecked warning if erasure changes
the field type.

No unchecked warning is required for a method call when only the result type changes,
for reading from a field, or for a constructor call on a raw type. For example, in the
equality test for linked lists given above, none of the raw method calls is unchecked,
since they all have empty argument lists, so erasure leaves the type unchanged. But in
the loophole method, the call to add is unchecked, since erasure changes the argument
type from A to Object.

The unchecked method calls and field accesses may be needed to interface with
legacy code, which is why they are not illegal. For example, one could compile the GJ
versions of Collection<A>, Interface<A>, LinkedList<A> and Comparator<A> with
the unparameterized version of Collections. The test code will compile, but generate
a unchecked warning for the method calls to compare or compareTo, though in this case
the calls happen to be sound.

22



The rule used by GJ to generate unchecked warnings is conservative. In practice,
when interfacing legacy Java code to new GJ code, many calls may be labelled as
unchecked that are nevertheless sound. Proliferation of unchecked warnings can be
avoided by updating the legacy code, or by using the retrofitting technique discussed in
the next section.

10 Retrofitting

To support independent compilation, the GJ compiler must store extra type information
at compile-time. Fortunately, the JVM class file format supports adding extra attributes.
Information about parameterized types is stored in a ‘Signature’ attribute, which is read
and written by the GJ compiler, but ignored by the JVM at load-time.

GJ is designed so that new code will run with old libraries. For instance, new code
may refer to a parameterized linked list type, but run with old code (source or binary)
that implements an unparameterized linked list type using the generic idiom.

To make this work smoothly, the GJ compiler has a retrofitting mode that can be
used to add ‘Signature’ attributes to existing code. Type information is specified in a
source file that contains only type information for fields and methods. For instance, say
one has a class file for the unparameterized version of LinkedList, but one wishes to
use it as if it has parameterized types. This can be done using the following retrofitting
file.

class LinkedList<A> implements Collection<A> {
public LinkedList ();
public void add (A elt);
public Iterator<A> iterator ();

}

The GJ compiler takes the above file as source, and looks up the unparameterized
class file along a specified classpath. It then outputs the new class file, including an
appropriate ‘Signature’ attribute, in a directory specified by the user. (In the current
GJ compiler, these are specified using the flags -retrofit path and -d directory). At
compile-time, the classpath must specify the retrofitted class file. At run-time, the
classpath may specify either the retrofitted or the legacy class file. In particular, new
code can compile against the retrofitted linked list class file, then run in a browser
containing the legacy linked list library.

The entire collection class library available in JDK 1.2 has been retrofitted in this
way. All public methods in the JDK 1.2 collection classes — without a single exception
— can be given sensible parameterized type signatures in GJ. Only the type signatures
were rewritten; the legacy code did not even need to be recompiled.

23



In most cases, one would anticipate eventually rewriting the source library with
parameterized types. The advantage of the compatibility offered by GJ is that one may
schedule this rewriting at a convenient time — it is not necessary to rewrite all legacy
code before new code can exploit parametric types.

References

[AFM97] Ole Agesen, Stephen Freund, and John C. Mitchell. Adding parameterized
types to Java. In Symposium on Object-Oriented Programming: Systems, Lan-
guages, and Applications, ACM, 1997.

[BOSW98] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. GJ
Specification. Draft document, 1998.

[BOW98] Kim B. Bruce, Martin Odersky, and Philip Wadler. A statically safe alterna-
tive to virtual types. 5th Workshop on Foundations of Object-Oriented Languages,
January 1998.

[CS97] Corky Cartwright and Guy Steele. Yet another parametric types proposal. Mes-
sage to Java genericity mailing list, August, 1997.

[MBL97] Andrew C. Myers, Joseph A. Bank, and Barbara Liskov. Parameterized types
for Java. In Symposium on Principles of Programming Languages, pages 132–145,
ACM, 1997.

[RS97] P. Roe, C. A. Szyperski, Lightweight Parametric Polymorphism for Oberon,
Joint Modular Languages Conference, Johannes Kepler University Linz Schloß
Hagenberg Austria, March, 1997
http://www.fit.qut.edu.au/~szypersk/Gardens/

[OW97] Martin Odersky and Philip Wadler. Pizza into Java: Translating theory into
practice. In Symposium on Principles of Programming Languages, pages 146–159,
ACM, 1997.

[Tho97] Kresten Krab Thorup. Genericity in Java with virtual types. In European Con-
ference on Object-Oriented Programming, pages 444–471, LNCS 1241, Springer-
Verlag, 1997.

[Tor98] Mads Togersen. Virtual types are statically safe. 5th Workshop on Foundations
of Object-Oriented Languages, January 1998.

24



[TT98] Kresten Krab Thorup and Mads Togersen. Structural virtual types. Informal
session on types for Java, 5th Workshop on Foundations of Object-Oriented Lan-
guages, January 1998.

25


