d The case for reactive objects

Johan Nordlander, Lulea Univ. och Technology

(with Mark Jones, Andrew Black, Magnus Carlsson, Dick Kieburtz - all (ex) OGI)

Links meeting, April 6

-

) Web services...

Links killer apps

O Games... A challenge to implement!

() Web-based games...

=

\\C%
4 -
\
—

~ |
&

.\ Particular challenges

C) Multiple, asynchronous inputs

* Languages tend to allow only one input at a time
(read symmetric to write)

©) Distributed state and concurrency
* Languages tend to decouple state from concurrency

- OO languages structure according to state,
concurrency aspect crosscuts the OO design

- Concurrent languages structure around threads,
shared state must be manually protected

Erlang

) Supports blocking for multiple messages
() Lets state follow a process
C) However, Erlang is

* untyped

* not referentially transparent

* still dependent on encodings, in order to support a
model of communicating boxes

- event-loop pattern
- restricted use of the blocking op receive
- disciplined use of message tags

-

Back to our boxes

_ 4
2
\ Sy
S
—

) Notice the OO intuition!

) What stops languages from directly supporting boxes that
are both objects (encapsulating a state, communicating
with messages) and processes (evolving in parallel)?

5

Timber...

Rl B |

() ... is such a language (an evolution of O'Haskell, which
in furn is an OO and concurrency extension of Haskell)

http://www.csee.ltu.se/index.php?subject=timber

In parallel
Local state / \
Method A Local state
etho i
Mutually — Pt fAequedr}hal
: P reu e onadic
exc'”S'Ve\ I / | Synchrof®®) B T Finite
Method B [| Messages — 1~ Non-blocking
A
| Sy ”Chr'onoUS Method D
No event-loops, |

objects are passive
by default

-.f- - The role of objects

() Core programming model:
Every object is a process
C) Equally important:
Everything is not an object!

©) Values (lists, trees, records, functions, ...) replace
most uses of objects in traditional OO

©) Timber objects correspond closely to Erlang processes
(including efficiency implications)

©) Timber is strict, and purely functional (in the Haskell
sense), with a stratified formal semantics (\+CHAM)

O Also first-class: methods (important for callbacks)

7

Example

C) A directory server: In Erlang:
directoryServer = serverloop(Assoc) ->
template receive
assoc := [] {insert, K, V} ->
insert k v = action serverloop([{K,V}| Assoc]);
assoc := (k,v) : assoc {query, K, Pid} ->
query k = request Pid ! {reply lookup(K,Assoc)},
return (lookup k assoc) serverloop(Assoc)
return (Directory {...}) end.
e Using it: S = spawn(fun()->serverloop([]) end),

s <- directoryServer

S | {insert, "Johan", 12345},
s.insert "Johan" 12345

S I {query, "Johan", self()},
v <- s.query "Johan" receive {reply,V}->... end

—

() Message-passing = calling methods

Types

() Object/process interfaces can thus be described as a
product of methods (c.f. using channels and sum types):

struct Directory a =
insert :: Key ->a -> Action asynchronous method
query :: Key -> Request (Maybe a) synchronous method

©) Note that communication semantics, including
rendezvous result, is visible in types

©) Unreliable communication can also be captured:
unreliable_query :: Key -> (Maybe a -> Action) -> Action

() In general, object interfaces can be any data structure
containing methods, and a single object can support
multiple interfaces .
L

9

Reactivity

Cannot freeze, cannot constrain order

/ NN

/ | NER

Single object

\ 4

execution pattern: — — T

Times approach O as CPU speed increases

() Objects are "always" responsive
©) Events unify with method calls (never with returns)
©) Decentralized event-handling by every object

O Close to the plain communicating-boxes-model
(no stuck states that transparently hook up clients)

More

Rl B |

C) Components:

compl :: A -> Template B
comp?2 :: B -> Template C
comp3 = compl <|[> comp2
comp3 :: A -> Template C

* Declare object generators, not objects directly
(stateless source code)

* No global interfaces, object dependencies through
parameters only
©) Nominal subtyping system, integrated in qualified
types framework

©) Upper and lower time-constraints on methods (time-
driven behavior and deadline scheduling)

11

Last slide

() Reactive objects (a la Timber) offers:

e event handling and concurrency, with enforced
- state encapsulation
- state protection (mutual exclusion)
- responsivity
* object-orientation (not in the Java sense, but in the
classical modelling sense)
* type-safe communication with precise interfaces
* a matching context for purely functional programming

) Would any of that fit into Links?

12

