
The case for reactive objects

Johan Nordlander, Luleå Univ. och Technology
(with Mark Jones, Andrew Black, Magnus Carlsson, Dick Kieburtz – all (ex) OGI)

Links meeting, April 6

1

Links killer apps
Web services...
Games...
Web-based games...

A challenge to implement!

2

Particular challenges

Multiple, asynchronous inputs
• Languages tend to allow only one input at a time

(read symmetric to write)
Distributed state and concurrency
• Languages tend to decouple state from concurrency
- OO languages structure according to state,

concurrency aspect crosscuts the OO design
- Concurrent languages structure around threads,

shared state must be manually protected

3

Erlang
Supports blocking for multiple messages
Lets state follow a process
However, Erlang is
• untyped
• not referentially transparent
• still dependent on encodings, in order to support a

model of communicating boxes
- event-loop pattern
- restricted use of the blocking op receive
- disciplined use of message tags

4

Back to our boxes

Notice the OO intuition!
What stops languages from directly supporting boxes that
are both objects (encapsulating a state, communicating
with messages) and processes (evolving in parallel)?

5

... is such a language (an evolution of O’Haskell, which
in turn is an OO and concurrency extension of Haskell)

http://www.csee.ltu.se/index.php?subject=timber

Local state

Method A

Method B

Local state

Method C

Method D

Timber...

In parallel

Mutually
exclusive

No event-loops,
objects are passive
by default

Synchronous

Asynchronous

p <- newP env
x <- p.m 7
v = [y | y <- ys, q y]
s := f v
p.m2 s

Monadic
Sequential

Messages
Finite
Non-blocking

6

The role of objects
Core programming model:

Every object is a process
Equally important:

Everything is not an object!
Values (lists, trees, records, functions, ...) replace
most uses of objects in traditional OO
Timber objects correspond closely to Erlang processes
(including efficiency implications)
Timber is strict, and purely functional (in the Haskell
sense), with a stratified formal semantics (λ+CHAM)
Also first-class: methods (important for callbacks)

7

Example
A directory server:
directoryServer =
 template
 assoc := []
 insert k v = action
 assoc := (k,v) : assoc
 query k = request
 return (lookup k assoc)
 return (Directory {...})

Using it:
s <- directoryServer
...
s.insert “Johan” 12345
...
v <- s.query “Johan”

In Erlang:
serverloop(Assoc) ->
 receive
 {insert, K, V} ->
 serverloop([{K,V}|Assoc]);
 {query, K, Pid} ->
 Pid ! {reply,lookup(K,Assoc)},
 serverloop(Assoc)
 end.

S = spawn(fun()->serverloop([]) end),
...
S ! {insert, “Johan”, 12345},
...
S ! {query, “Johan”, self()},
receive {reply,V} -> ... end

8

Types
Message-passing = calling methods
Object/process interfaces can thus be described as a
product of methods (c.f. using channels and sum types):
 struct Directory a =
 insert :: Key -> a -> Action asynchronous method
 query :: Key -> Request (Maybe a) synchronous method

Note that communication semantics, including
rendezvous result, is visible in types
Unreliable communication can also be captured:
 unreliable_query :: Key -> (Maybe a -> Action) -> Action

In general, object interfaces can be any data structure
containing methods, and a single object can support
multiple interfaces

9

Reactivity

Objects are “always” responsive
Events unify with method calls (never with returns)
Decentralized event-handling by every object
Close to the plain communicating-boxes-model
(no stuck states that transparently hook up clients)

Times approach 0 as CPU speed increases

Cannot freeze, cannot constrain order

Single object
execution pattern:

10

More
Components:
 comp1 :: A -> Template B
 comp2 :: B -> Template C
 comp3 = comp1 <||> comp2
 comp3 :: A -> Template C

• Declare object generators, not objects directly
(stateless source code)
• No global interfaces, object dependencies through

parameters only
Nominal subtyping system, integrated in qualified
types framework
Upper and lower time-constraints on methods (time-
driven behavior and deadline scheduling)

11

Last slide
Reactive objects (à la Timber) offers:
• event handling and concurrency, with enforced
- state encapsulation
- state protection (mutual exclusion)
- responsivity
• object-orientation (not in the Java sense, but in the

classical modelling sense)
• type-safe communication with precise interfaces
• a matching context for purely functional programming
Would any of that fit into Links?

12

