
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/216300104

An Introduction to Generalized Type Systems

Article in Journal of Functional Programming · April 1991

DOI: 10.1017/S0956796800020025

CITATIONS

189
READS

637

1 author:

Some of the authors of this publication are also working on these related projects:

Logic and Computability View project

Research on Generalized Typed Lambda Calculi 1982--1987 View project

Henk (Hendrik) Pieter Barendregt

Radboud University

184 PUBLICATIONS 6,444 CITATIONS

SEE PROFILE

All content following this page was uploaded by Henk (Hendrik) Pieter Barendregt on 10 December 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/216300104_An_Introduction_to_Generalized_Type_Systems?enrichId=rgreq-35088ca79f63490c356d561a04f628ab-XXX&enrichSource=Y292ZXJQYWdlOzIxNjMwMDEwNDtBUzo0Mzc3ODk4OTc1NjQxNjBAMTQ4MTM4ODY1MzQ2OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/216300104_An_Introduction_to_Generalized_Type_Systems?enrichId=rgreq-35088ca79f63490c356d561a04f628ab-XXX&enrichSource=Y292ZXJQYWdlOzIxNjMwMDEwNDtBUzo0Mzc3ODk4OTc1NjQxNjBAMTQ4MTM4ODY1MzQ2OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Logic-and-Computability?enrichId=rgreq-35088ca79f63490c356d561a04f628ab-XXX&enrichSource=Y292ZXJQYWdlOzIxNjMwMDEwNDtBUzo0Mzc3ODk4OTc1NjQxNjBAMTQ4MTM4ODY1MzQ2OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Research-on-Generalized-Typed-Lambda-Calculi-1982--1987?enrichId=rgreq-35088ca79f63490c356d561a04f628ab-XXX&enrichSource=Y292ZXJQYWdlOzIxNjMwMDEwNDtBUzo0Mzc3ODk4OTc1NjQxNjBAMTQ4MTM4ODY1MzQ2OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-35088ca79f63490c356d561a04f628ab-XXX&enrichSource=Y292ZXJQYWdlOzIxNjMwMDEwNDtBUzo0Mzc3ODk4OTc1NjQxNjBAMTQ4MTM4ODY1MzQ2OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Henk_hendrik_Barendregt?enrichId=rgreq-35088ca79f63490c356d561a04f628ab-XXX&enrichSource=Y292ZXJQYWdlOzIxNjMwMDEwNDtBUzo0Mzc3ODk4OTc1NjQxNjBAMTQ4MTM4ODY1MzQ2OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Henk_hendrik_Barendregt?enrichId=rgreq-35088ca79f63490c356d561a04f628ab-XXX&enrichSource=Y292ZXJQYWdlOzIxNjMwMDEwNDtBUzo0Mzc3ODk4OTc1NjQxNjBAMTQ4MTM4ODY1MzQ2OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Radboud_University?enrichId=rgreq-35088ca79f63490c356d561a04f628ab-XXX&enrichSource=Y292ZXJQYWdlOzIxNjMwMDEwNDtBUzo0Mzc3ODk4OTc1NjQxNjBAMTQ4MTM4ODY1MzQ2OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Henk_hendrik_Barendregt?enrichId=rgreq-35088ca79f63490c356d561a04f628ab-XXX&enrichSource=Y292ZXJQYWdlOzIxNjMwMDEwNDtBUzo0Mzc3ODk4OTc1NjQxNjBAMTQ4MTM4ODY1MzQ2OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Henk_hendrik_Barendregt?enrichId=rgreq-35088ca79f63490c356d561a04f628ab-XXX&enrichSource=Y292ZXJQYWdlOzIxNjMwMDEwNDtBUzo0Mzc3ODk4OTc1NjQxNjBAMTQ4MTM4ODY1MzQ2OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/17240

Please be advised that this information was generated on 2016-12-10 and may be subject to

change.

http://hdl.handle.net/2066/17240

Journal o f Functional Programming 1 (2): 125-154, Apri l 1991

Introduction to generalized type systems
H E N K B A R E N D R E G T

Catholic University Nijmegen , The Netherlands

Abstract

Programming languages often come with type systems. Some of these are simple, others are
sophisticated. As a stylistic representation of types in programming languages several versions
of typed lambda calculus are studied. During the last 20 years many of these systems have
appeared, so there is some need of classification. Working towards a taxonomy, Barendregt
(1991) gives a fine-structure of the theory of constructions (Coquand and Huet 1988) in the
form of a canonical cube of eight type systems ordered by inclusion. Berardi (1988) and
Terlouw (1988) have independently generalized the method of constructing systems in the
A.-cube. Moreover, Berardi (1988, 1990) showed that the generalized type systems are flexible
enough to describe many logical systems. In that way the well-known propositions-as-types
interpretation obtains a nice canonical form.

Capsule review
This paper presents a possible classification for the simplest class of typed systems: only
ß-reduction is considered, and the only type constructors are n and First, various
Automath-like typed systems are analysed, with a brief presentation of their main properties
(subject reduction, unicity of types and strong normalization).

This analysis suggests rather naturally the notion of generalized type systems which provide
a neat notation for describing the ‘propositions-as-types’ idea. The relevance of this notation
is shown by the fact that it allows us to sharply express new problems, as the relative
completeness of various interpretations, or to state concisely and precisely type-theoretic
results (for instance, the exact formalism in which Girard’s paradox is derived).

1 Introduction

In several program m ing languages types are assigned to expressions (occurring in
a program) in a way tha t may be com pared to dimensions assigned to entities in
physics. These dimensions provide a partial correctness check

2 V o lt+ 3 Ampère

is definitely w rong; the equation _
E = me

is consistent at least from the point o f view of dimensions, since both sides are
expressed in k g .m 2.sec-2.

The analogy between types and dimensions is not perfect. A physical entity always
has a unique dimension. Expressions in program m ing may have more than one type.

5 F P R 1

126 Henk Barendregt

This is the case when implicit (or Curry style) typing is allowed : the expression Âx.x
denoting the identity function obtains all types A for A an arbitrary type. We
write ,, . , . . .

(a x . x) : (A ^ A)

which should be pronounced as ‘lam bda x dot x in A arrow A ’, and has as its
intended meaning tha t ‘for each (element) a in A the application (Xx.x)a is also in
A ’ (which is intuitively true, since (Àx.x) a = a). Examples of program m ing languages
with this style o f typing are M L (M ilner 1984) and M iranda (Turner 1985).

There is also another paradigm , the explicit or Church style of typing, in which each
correct expression has exactly one type. N ow there are several versions of the identity
function

IA = Ax: A .x

and this one has as its unique type A -*■ A. Examples of languages with explicit typing
are LCF (G ordon et al. 1979) and TA LE (Barendregt and van Leeuwen 1985).

D uring the last 20 years many systems have appeared for typing lam bda calculi,
both in the style of Curry and that o f Church (see Barendregt (1991) for a survey).
In this paper we give some flavour o f a class o f systems à la Church using the
following m ethodology : Only the simplest versions o f a system are considered ; that is,
only with ß-reduction, but not with, fo r example r\-reduction \ only with types built up
using -> and n, not using, fo r example, x or I . As will be seen, the systems become
complicated anyhow. (For a discussion on types in program m ing languages see
Cardelli and W egner (1985); Reynolds (1985) and Barendregt and Hemerik (1990).)

2 A finestructure of the theory of constructions

Recently a quite powerful typed lam bda calculus has been introduced by Coquand
and H uet (1988). The system is called ‘the theory of constructions’, and is denoted
here by À.C. By analysing the way in which terms and types are built up, a fine­
structure o f this system is given, consisting of eight systems of typed lam bda calculi
forming under inclusion a natural cube with oriented edges (see fig. 1). Each edge ->
represents the inclusion relation £ . This cube is referred to as the X-cube.

M ost o f the systems in the >.-cube are known, albeit in a somewhat different form.
The system X ^ is the simply typed lam bda calculus (Church, 1940). The system X2
is the polymorphic or second order typed lambda calculus, and is a subsystem of the
system F introduced by G irard (1972). It has been introduced independently by

Introduction to generalized type systems 127

Reynolds (1974). The system Xw is essentially the system Fco o f G irard (1972). System
XP corresponds reasonably to one o f the systems in the family o f a u t o m a t h languages
(see de Bruijn, 1980): System A.P also appears under the nam e LF in H arper et al.
(1987), System XP2 is studied by Longo and Moggi (1988) under the same name.
System A.C is one of the versions of the theory o f constructions introduced by
Coquand and Huet (1988), and system A.co is related to the p o l y r e c system studied
by Renardel de Lavalette (1985). System APco seems no t to have been studied before.
(For À.® and ÄPm read ‘weak tao’ and ‘weak XPco’, respectively.)

Before defining the X-cube, it is useful to describe informally some ideas which play
a role in the various systems.

The first informal idea is the construction o f function space types. If A and B are
types, then A -> B is the type of functions from A to B. So, if F : (A -> B) and x : A, then
(Fx):B.

The second idea is that o f dependency. Types and terms are mutually dependent;
there are

• terms depending on term ;
• terms depending on types ;
• types depending on terms;
• types depending on types.

Some explanation is necessary here. Terms depending on terms are extremely
common : ,

FM

is a term that depends on the term M. A term depending on a type is the identity on

^ IA = Xx : A . x.

A type depending on a term is, for example,

An- B
(with n a natural number) defined by

A ° ^ B = B;
An+1 -> B = A ^ (A n^ B) .

And a type depending on a type is, for example,

A -* A
for A a given type.

Once there are types depending on terms one may introduce cartesian products.
Suppose that for each a ; A a type B., is given, and tha t there is an element ba : Ba, Then
we may want to form the function

Xa : A . ba

that should have as type the cartesian product

rTa: A . Ba

of the Bas. Once these product types are allowed, the function space type o f A and
B can be written as

(A ^ B) = IT a :A .B (= BA, informally),

5-2

128 Henk Barendregt

where a is a variable not occurring in B. This is similar to the fact that a product of
equal factors is a power n

n b i becomes bn
i - 1

provided that bj = b for 1 ^ i ^ n. So by using products, the type constructor -> can
be eliminated.

The next idea has to do with the form ation o f types. For some simple systems the
types are - so to say - given in the m etalanguage. For example, if one has informally
constructed a type A, then one can formally derive

I— (A.a : A . a) : (A ->• A).

Since in the /.-cube terms and types are m utually dependent, one moves the formation
of types from the metalevel to the formal system itself - the idea comes from the
a u t o m a t h languages of de Bruijn (1970). To do this a constant * is introduced that
is the sort o f all types; then ‘A : * ’ is a statem ent expressing ‘A is a type’. A sentence
in the m eta language like

‘if A is a type, then so is A -> A ’

now becomes a formal type derivation

A : * (— (A -> A) : *.

Here A stands for a variable, and since it is in *, one can say that A is a type variable.
F or each o f the four dependencies one may w ant to introduce function abstraction

(X,m : A . Fm) : (A ^ B) ;
(Xa : *. I„) : (ITa : *. (a -> a)) ;

(A.n:W.An^ B) : f \ J ^ * ;
(tax: *. a -> a) :(*->-*).

Now what is * *? Probably not a type, because then one should have (*-»*):* and
this may lead to contradictions. Therefore, one introduces a new ‘so r t’ □ , the sort
o f all kinds, and postulates that *: □ and (* -> *) :□ . The inhabitants of *->*, like
our F, are called constructors. Similarly, one postulates (N

The expression (n a :* .(a -> a)) being a cartesian product of types will also be a
type, so (Flot : *. (a -> a)) : *. Since it is a product over all possible types a, including the
one in statu nascendi (that is, (IToc:*.(oi^oi)) is am ong the types in *), there is an
essential impredictativity here.

We now start to define the cube o f type lam bda calculi.

2.1 Definition
(i) The system o f the tacube are based on a set o f pseudo-terms 3T defined by the
following abstract syntax

ST — x |cj 3~2T |A.x : HT2T j ü x : 2T2T

where x is the category of variables and c tha t of constants.
(ii) On 2T the notions of ß-conversion and ß-reduction and defined by the following

contraction rule (tac : A . B) C B[x : = C]

Introduction to generalized type systems 129

(iii) A statement is o f the form A :B with A, B e J . A is the subject and B is the
predicate of A :B. A declaration is o f the form x :A with A e J and x a variable. A
pseudo-context T is a finite ordered sequence of declarations, all with distinct subjects.
The empty context is denoted by <). If T = (x ^ A j, . . . ,x n:A n>, then

r ,x :B = <Xj: Aj, . . . ,x n: An,x:B > .

Usually we do not write the <).
(iv) The rules of type assignment will axiomatize the notion

r H- A: B

stating that A : B can be derived from the context T. Pronounce F b- A : B as ' T yields
A in B ’.

The rules are given in two groups: (1) the general rules, valid for all systems of the
À-cube ; and (2) the specific rules, differentiating between the eight systems. Two of
the constants in C are selected and given the names * and □ . These two constants are
called sorts. W rite S = {*, □} and let s, s1? s2 range over S.

(1) General axiom and rules.

Axiom

Start rule

T l—A :s
F x A t—x 'A ’ w^ere x ' s f-fresh (x does not occur in T).

W eakening rule

r I— A :B r h C : s , • r e ,--------------------------- where x is T-Iresh.
r ,x :C I —A :B ’

r 1— F : (Fix : A . B) T h -a :A
rH (F a) :B [x := a] '

n —A :B Ti—B : s B =ßB/
Tl—A :B '

(2) The specific rules are all introduction rules, and are param etrized by two sorts.
Let s15 s, e S. Consider the following pair of rules

(Sj, s2) rules

n -ru le D - A ^ r ,x :A h - B :s ,

Application rule

Conversion rule

À.-rule
r I— (Fix : A . B) : s2

T h-A iS j r , x : A h b : B r ,x :A l—B :s,
r h- (Xx : A . b) : (Fix : A . B)

(v) The eight systems o f the X-cube are defined by taking the general rules plus a
specific subset of the set of rule pairs {(*,*), (*, □) , (□ ,*) , (□ , □)}

130 H enk Barendregt

(*, *)
12 (*> *) (0 ,*)
A.ÇÛ (*, *)
A.C0 (*» *) (□ ,*) (□ ,□)
XP (*, *) (*,□)
XP2 (*» *) (□, =1=) (*,□)
APco (*> *) (0 ,0) (*,□)
ÀPco = À.C (*, *) (□ ,*) (*,□)

The À-cube will usually be drawn in the following standard orientation (see fig. 2). The
inclusion relations are left implicit.

ÂPcq = XC

XPco

Fig. 2

Notation
(i) Derivability for a system ^ is denoted by Tl—X.A :B . If there is no danger of
confusion, or if a statem ent holds for all systems, then we simply write T t— A :B .
(ii) (A^*B) = (I ïx :A .B) with x<£FV(B). This follows the intuition given before.
(iii) r t - A : B : C means T H A : B and T I— B : C.

The rule pairs have the following meaning, as will become clear after studying the
examples in section 2.7

(*,*) allows forming terms depending on term s;
(□ , *) allows forming terms depending on types;
(*, □) allows forming terms depending on terms;

(□ , □) allows forming terms depending on types.

2.2 Definition
Consider derivability in one of the systems of the A.-cube.
(i) Let T I— A : B. Then A and B are called (legal) terms and T is called a (legal)
context.
(ii) Let Tl— A :B :* . Then A is called an object and B a type.
(iii) Let T I- A : B : □ . Then A is called a constructor and B a kind.

It can be shown that a term is an object, a type, a constructor, a kind or a sort. The
only overlap is that all types B are also constructors (indeed B :* :□) .

We state some properties about the systems in the À-cube.

Introduction to generalized type systems 131

2.3 Church-Rosser Theorem fo r ST
Let A, B, Then

(i) [A -» B & A -» B '] => 3 C e ^ '[B -» C & B '-» C] .
(ii) A = pB = > 3 C e Jr [A -» C & B -» C].

Proof
Proofs of the C hurch-R osser theorem for A generalize to -T (see Barendregt and
Dekkers, 1990). ■

The following generalizes a result due to Curry et al. (1958); see de Vrijer (1975) and
van D aalen (1980) for the result in type systems.

2.4 Theorem (subject reduction fo r the X-cube)
For any system in the X-cube one has

T 1— A :B & A -»p A ' => F I— A ' : B.

Proof
See Barendregt (1991) or Geuvers and N ederhof (1991). ■

The following result is due to Coquand. A nice m odular p roof using the edges o f the
X-cube is due to Geuvers and N ederhof (1991).

2.5 Theorem (strong normalization fo r the X-cube)
For any system in the X-cube one has

T I— A : B => A and B are strongly normalizing,
tha t is all ß-reductions starting with A or B terminate.

P roof
See Barendregt (1991) or Geuvers and N ederhof (1991). ■

The following result is folklore.

2.6 Theorem (unicity o f types)
For any system in the X-cube one has

rJ-A:B&rh-A:B'=>B =p B'.

Proof
See Barendregt (1991) or Geuvers and N ederhof (1991). ■

Some derivable type assignments in the X-cube

We end this subsection by giving for each of the systems in the X-cube some examples
o f type assignment. The reader is invited to carefully study these examples in order
to gain some intuition in the systems of the X-cube. Some of the examples are followed
by a comment {in brackets}. In order to understand the intended m eaning for the
systems on the right plane in the X-cube (that is, the rule pair (*, □) is present), some

132 H enk Barendregt

of the elements of * have to be considered as sets and some as propositions. The
examples show that the systems in the X-cube are related to logical systems and form
a preview of the propositions-as-type interpretation described in section 4. Names of
variables are chosen freely, in order to follow the intended interpretation.

2.7 Examples
(i) In X the following can be derived

A : * I— (A A) :* ;
A : * (Xa : A . a) : (A -> A) ;

A :* ,B :* ,b :B b - (X a :A .b) :(A ^ B) ;
A : *, b : A I— ((Xa : A . a) b) : A ;

A : *, B : c : A, b : B h- ((Xa : A . b) c) : B ;
A : B : * b- (Xa : AXb : B . a) : (A -> (B ^ A)) : *.

(ii) In X2 the following can be derived

a : * I— (Xa : cc. a) : (ce -> a) ;
I— (Xa : *Xa : a . a) : (Fla : *. (a a)) : * ;

A : * 1- (Xa : *Xa : a . a) A : (A A) ;
A : *, b : A I - (ko. : *Xa : a . a) Ab : A ;

of course the following reduction holds

(Xa : *Xa : a . a) Ab -*■ (Xa : A . a) b
^ b .

The following two examples show a connection with second order proposition logic

b- (Xß : *Xa : (IIoc : *. a) . a ((IIa : *. a) -> ß) a) : (Ilß : *. (l i a : *. a) -* ß).

{For this last example one has to think twice to see tha t it is correct; a simpler term
of the same type in the following ; write 1 = (Fla : *. a), which is the second order
definition of falsum.}

/ H (X ß :* X a :± .a ß) :(I Iß :* .± -* ß) .

{The type considered as proposition says : ‘ ex falso sequitur quodlibet ’ ; the term in
this type is its proof.}

(iii) In Xco the following can be derived

b- (Xa : *. a -> a) :(*->*): □

{(Xa:* .a ^ a .) is a constructor m apping types into types};

ß : * I— (Xa. : *. a -> a) ß : * ;
ß : x : ß I— (Xy : ß . x) : (Xa : *. a a) ß

{note tha t (Xy \ ß . x) has type ß -*■ ß in the given context}

a : *, f : * -> * I— f(fa) : * ;
a : * b- (Xf : * *. f(foc)) :(*->*)-*•*

{in this way higher order constructors are formed}.

(iv) In XP the following can be derived

A : * (A -> *) : Q

{if A is a type considered as set, then A -> * is the kind of predicates on A}

A : *, P : (A *), a : A t— Pa : *

{if A is a set, a e A and P is a predicate on A, then Pa is a type considered as
proposition (true if inhabited ; false otherwise)}

A : *, P : (A -> A *) I— (ITa : A . Paa) : *

{if P is a binary predicate on the set A, then Vae A Paa is a proposition}

A : *, P : (A -> *), Q : (A -* *) I— (lia : A . (Pa -> Qa)) : *

{this proposition states that the predicate P considered as a set is included in the

predicate Q) A ; . , P : (A ^ .) H (n a : A . (P a ^ P a)) : .

{this proposition states the reflexivity of inclusion}

A : *, P : (A -»■ *) I— (Xa : AXx : P a . x) : (l ia : A . (Pa -> Pa)) : *

{the subject in this assignment provides the ‘p ro o f’ o f reflexivity o f inclusion}

A :* ,P : (A ^ *) , Q :*

H ((n a : A .P a - * Q) ^ (n a : A .P a) - Q) : *
A : *, P : (A -> *), Q : *, a0 : A

1- (Xx : (ITa : A . Pa ->■ Q) X y:(ria: A . P a) . xa0(ya0)) :
(IIx : (Lia : A . Pa Q) (Ily : (Fla : A . P a) . Q) =

(I I a : A .P a ^ Q) ^ (L Ia :A .P a)^ Q

{this proposition states that the proposition (Va6 A .P a ->Q)-> (V a e A . P a) i s
true in non-em pty structures. A ; notice that the layout explains the functioning of
the /.-rule; in this type assignment the subject is the ‘p ro o f’ o f the previous true
proposition; note that in the context the assum ption a0:A is needed in this proof.}

(v) In Xco the following can be derived. Let a & ß = n y : * . (a ^ ß-*y)-*-Y, then

ct: P : * I— a& ß: *

{this is the ‘second order definition of & ’ and is definable already in X2}. Let
A N D = Xa : *Xß : *. a & ß and K = Xa : *Xß : *Xx : aXy : ß . x, then

I— A N D :(*->•*-**),
I— K : (l ia : *Ilß : *. a ß ^ a).

{Note tha t cc&ß and K can be derived already in X2, bu t the term A N D cannot}

a : *, ß : * t— (Xx : A N D a ß . xa(K aß)) : (A N D aß -> a) : *

{the subject is a p roof tha t AN D aß ^ a is a tautology}.

Introduction to generalized type systems 133

(vi) In XP2 {corresponding to second order predicate logic} the following can be
derived . ^ .

A: * ,P : (A ^ *) h- (Xa: A .P a ^ - _L): A -> *
A: *,P:(A ~> A ^ *) h- [(ITa : AITb : A . Pab ^ P b a _ L) -^(ITa: A .P a a -^ _L)] : *

{the proposition states that a binary relation tha t is asymmetric is irreflexive}.

(vii) In XPra the following can be derived

A : * \— (XP : (A -> A -> *) Xa : A . Paa) : ((A -> A -> *) (A *)) : □

{this constructor assigns to a binary predicate P on A its ‘ diagonalization ’}

l - (X A :* X P :(A ^ A ^ *) X a :A .P a a) : (I T A :* n P :(A - ^ A ^ *) n a :A .*) :n

{the same is done uniformly in A}.

(viii) In XPcu = XC the following can be derived

h- (XA : *XP: (A -> *) X a:A . Pa _L) : (ITA : *. (A -> *) ->• (A -> *)) : [J

{this constructor assigns to a type A and to a predicate P on A the negation o f P}. Let
ALL = (XA : *XP : A — *. ITa : A . Pa) ; then

A : P : (A ->• *) 1- ALL A P : * and (ALL A P) = „ (n a :A .P a)

{universal quantification done uniformly}.

Exercises
1. Define -i = Xa : *. a -> 1 . Construct a term M such tha t in Xco

a : *, ß : * H M : ((a -> ß) -> (-> ß -> -■ a)).

2. Find an expression M such that in XP2

A: *, P : (A ^ A ^ *) h- M : [(Ila : AITb : A . Pab ̂ P b a 1) ^ (l ia : A .P a a ^ !)] :* .

3. Find a term M such that in XC

A : P : (A ̂ *), a : A I— M : (ALL A P ^ Pa).

3 Generalized type systems

The m ethod of generating the systems in the X-cube has been generalized
independently by Berardi (1988) and Terlouw (1988). This resulted in the notion of
a generalized type system (GTS). M any systems o f typed lam bda calculus à la Church
can be seen as GTSs. Subtle differences between systems can be described neatly using
the notation of GTSs.

One o f the successes of the GTS notion is concerned with logic. In section 4 a cube
o f eight logical systems is introduced. The systems on this ‘logic cube’ are in a
one-to-one correspondence with the systems on the X-cube. There is a canonical
translation A [A] for sentences A such that for a logic L s corresponding to a system
X, on the X-cube one has

134 H enk Barendregt

Introduction to generalized type systems 135

for some M canonically depending on the p roof o f A in Lt ; here T is some natural
context corresponding to the signature o f the language in which the logic L4 is
formulated. This result is the so called ‘propositions-as-types’ interpretation. As was
observed by Berardi (1988), the eight logical systems can each be described as a GTSs
in such a way that the propositions-as-types interpretation obtains a canonical simple
form.

A nother reason for introducing GTSs is that several propositions about the
systems in the X-cube are needed. The general setting o f the GTSs makes it nicer to
give the required proofs.

The generalized type systems are based on the same set of pseudoterm s 2T for the
X-cube. We repeat the abstract syntax for 3T

Let C be the set of constants in .T .

3.1 Definition
A specification o f a G TS consists o f a triple S = (S, A, R) where

1. S is a subset o f C, called the sorts.
2. A is a set of axioms of the form c:s, with c e C and se S.
3. R is a set of rules o f the form (s1; s2,s 3), with Sj, s2, s3eS .

3.2 Definition
The GTS XS determined by the specification (S, A, R), notation XS = X(S, A, R), is
defined as follows. Statements and pseudo-contexts are defined as for the X-cube. The
notion of type derivation T I—xs A : B (we often just write T I— A : B) is defined by the
following axiom and rules

2T = x |c| y .T |Xx : ST2T | fix : 3T2/

Axiom
< > I— c:s, if (c :s)e A .

Start rule

r t —A :s
where x is fresh.

F , x : A h x : A ’
Weakening rule

r I— B :C T h -A : s
, where x is fresh.

r ,x :A H B :C
Application rule

r i —F :(r ix :A .B) :s T t- a: A
r i —(Fa):(B [x := a])

Conversion rule
r t— A: B r t - B ' : s B ^ B '

r i —A :B '
ri-rule

F h A:Sj r ,x :A ! - B :s ,
T f— (IIx : A . B) : s3

, where (s j,s2, s3)e R .

136 Henk Barendregt

A,-rule

D -A .-S j T, x : A I— B : s2 T, x : A I— b : B
, where (s1,s , , s 3) e R for some s3.

T I— (Xx : A . b) : (ITx : A . B)

In the above we use the following conventions

s ranges over S the set of sorts;
x ranges over variables ;

‘x is fresh’ means that x does not occur in T, A, B or C.
The proviso B = p B' in the conversion rule is not decidable. However, it can be

replaced by the decidable condition

B' -^ßß or B ^ p B '

without changing the set of derivable statements.

3.3 Definition
(i) The rule (s^s ,) is an abbreviation for (s1(s,, s,). In the A.-cube only systems with
rules of this simpler form are used.
(ii) The GTS X(S, A ,R) is called fu ll if

R = {(s1,s 2)|s1,s,eS } .

(iii) If T I— A : B : s, then we say that A is an element o f type B ; if F I— B : s, then B is
a type o f sort s.

3.4 Examples
(i) ÀP2 is the GTS determined by

S = {*,□}
A = {*,□}
R = { (* ,*),(□ ,*),(* ,□)} •

Specifications like this will be given more stylistically as follows: ÂP2 = X.(S, A ,R)
with XV2

S *, □

A * : □

R (* ,*) ,(□ ,*) ,(* ,□)

(ii) XC is the full GTS X(S, A, R) with

XC

s *, □

A *, □

R (*> *), (d, *), (*, □), (□, □)

(iii) A variant XC' of XC is the full GTS X(S, A, R) with

XC'

Introduction to generalized type systems 137

s *p, □

A : □, *p □

R S2, that is all pairs

(iv) X-* is the GTS determined by

X—>

S *, □

A * : □

R (*, *)

(v) A variant of X,-*, called XT in Barendregt (1984—Appendix A) is the GTS
determined by

X

s *

A 0 : *

R (*, *)

The difference with X-> is that in XT no type variables are possible. One only has
constant types like 0 , 0 ^ 0 ,0 ^ 0 ^ 0 , . . . and variables for elements in these types.

(vi) The system X* in which * is the sort of all types, including itself, is specified by

X*

s *

A * ; *

R (*, *)

The system X* is ‘inconsistent’, in the sense that all types are inhabited. This result
is known as Girard’s paradox (see for example, Barendregt, 1991). One may think
that the inconsistency is caused by the circularity in *:*; however Girard (1972) also
showed that the following system is inconsistent in the same sense

XU

S , A

A □ : A

R (*, *), (□, *), (□, □), (A, □), (A, *)

Also, Coquand (1989) showed that XU minus the rule (A,*) is inconsistent.

138 H enk Barendregt

So far none of the rules was of the form (sx, s3, s3). In section 4 we encounter such
rules (in order to represent first order but not higher order functions).

Without proof we mention that the subject reduction theorem holds for all GTSs.
The unicity of types theorem does not hold for trivial reasons: there may be two
axioms c :sx and c :s2. The following examples show the flexibility of the notion of
GTS.

3.5 Examples (van Benthem Jutting)
Leaving out the definition mechanism, several members of the a u t o m a t h family can
be exactly described as GTSs. For a description of the systems, see van Daalen, 1980).

(i) The AUT-68 system is described by the following GTS

XAUT-68

The point is that one may form predicates over a set, but not abstract over them

A :* l-XAUT.<jg(A-»-*):A;
A • *)iaut-68(A^A^-*):A;
A : *, a : A, P : (A -> A *) ? aa ; * !
A : * H ^ ^ X F : ((A - A) - A). F(Xx : A . x)) : (((A -> A) -> A) -> A).

Note the correspondence between XAUT-68 and X-*.

(ii) The AUT-QE system is exactly described by the following GTS

XAUT-QE

S *, □ , A

A *, □

R (*, *), (*, □),

(□, *, A), (□, □ , A),

(*, A, A), (□, A, A)

A : *, a : A >-xaut-qe(^p : (A — *). Pa) : ((A -> *)->*) ;

Note the correspondence between XAUT-QE and XP.

(iii) The PAL system, a subsystem of AUT-68, is exactly described as follows

Introduction to generalized type systems 139

À.PAL

In this system À-abstraction is possible only in a restricted way at the ‘outside’.
However, one may form arbitrary applications

A :* !“ âpal(A-^ A): A;
A :* ,a :A ,F :(A ^ A) t- ,PALFa:A ;
A : *. G : (A — A ^ A), a : A, b : A f-^PAL Gab : A ;
A :* ,G :(A ^ A ^ A) l -XPALÀb: AÀa: A .G a b :(A ^ A ^ A);
A :* b \PALÀ G :(A -> A -> A)À b :A À a :A .G ab :(A -* A ^ A)^ (A ^ A ^ A).

4 Propositions-as-types

In this section eight systems of intuitionistic logic are introduced—four systems of
proposition logic and four systems of many-sorted predicate logic. The systems are
the following

PROP proposition logic;
PROP2 second order proposition logic;
PROPrn weakly higher order proposition logic;
PROPco higher order proposition logic;
PRED predicate logic;
PRED2 second order predicate logic;
PREDco weakly higher order predicate logic;
PRED® higher order predicate logic.

All these systems are minimal logics in the sense that the only operators are and
V. However, for the second and higher order systems the operations &, V and 3,
as well as Leibniz’s equality, are all definable. Also in these systems one may put in
the context a :(IT a:* .- '- 'a^ac) in order to obtain classical logics. Weakly higher
order logics have variables for higher order propositions or predicates, but no
quantification over them ; a higher order proposition has lower order propositions as
arguments.

The systems form a cube as shown in fig. 3. This cube is referred to as the L-cube.
The orientation of the L-cube as drawn is called the standard orientation. Each
system L* on the L-cube corresponds to the system on the À-cube on the
corresponding vertex (both cubes in standard orientation). The edges of the L-cube
represent inclusions of systems in the same way as on the À-cube.

A formula A in the logic L, on the L-cube can be interpreted as a type [A] in the

140 Henk Barendregt

PROPco
/

PROP2

PROPœ

P R O P -------

PRED2

PREDco

PREDco

PRED
Fig. 3

corresponding X4 on the X-cube. The transition Ai—► [A] is called the propositions-as-
types interpretation of de Bruijn (1970) and Howard (1980), first formulated for
extensions of PRED and XP. The method has been extended by M artin-Löf (1984),
who added to XP types Sx : A . B corresponding to (strong) constructive existence and
a constructor = a :A — A -^* corresponding to equality on a type A. Since Martin-
Löf’s principle objective is to give a constructive foundation of mathematics, he does
not consider the impredicative rules (□ ,*).

This interpretation satisfies the following soundness result: if A is provable in
PRED, then [AJ is inhabited in XP. In fact, an inhabitant of |A] in XP can be found
canonically from a proof of A in PRED; different proofs of A are interpreted as
different terms of type [AJ.

The propositions-as-types interpretation has been extended to several other
systems (for example, see M artin-Löf 1984 and Stenlund 1972). In Geuvers (1988)
it is verified that for all systems Li on the L-cube soundness holds with respect to the
corresponding system Xj on the X-cube : if A is probable in L4 then [AJ is inhabited in
Xj. Barendsen (1989) verifies that a proof D of such A can be canonically translated
to [D] being an inhabitant of [AJ.

After seeing Geuvers (1988), it was realised by Berardi (1988; 1990) that the
systems in the L-cube can be considered as GTSs. Doing this the propositions-as-
types interpretation obtains a simple canonical form. We first give a description of
PRED in its usual form, and then in its form as a GTS.

The soundness result for the propositions-as-type interpretation raises the question
whether one also has completeness in the sense that if given a formula A of a logic
Lt is such that [A] is inhabited in Xt then A is probable in L4.

For the proposition logics this is trivially true, for PRED completeness with respect
to XP is proved by M artin-Löf (1970), Barendsen and Geuvers (1989) and Berardi
(1990) (see also Swaen 1989). For PREDco completeness with respect to XC fails, as
is shown by Geuvers (1989) and Berardi (1990).

Many sorted predicate logic
4.1 Definition
The notion of a many sorted structure is defined by an example. The following
sequence is a typical many sorted structure

sJ = <A, B,f, g, P, Q,c>

Introduction to generalized type systems 141

with A, B are non-empty sets, the sorts of sé (we use the standard terminology ; in
the context of GTSs it would be better to call A and B 1 types ’) ; f : (A -> (A A)) and
g :A ^ B are functions; P ç A and Q £ A x B are relations; and ce A is a constant.

4.2 Definition
Given the many sorted structure sé of Section 4.1, the language L v of minimal many
sorted predicate logic over sé is defined as follows

(i) has the following special symbols

A, IB sort symbols;
P, O relation symbols ;
f,g function symbols;
c constant symbol.

(ii) The set of variables of is

V = {xA I x variable} U {xB | x variable}.

(iii) The set of terms of sort A and of sort B, notation TermA and TermB respectively,
are defined inductively as follows

xAeTerm A, xBeT erm B;
ceT erm A;
se Term A and teT erm A => f(s, t)eT erm A;
s e TermA => §(s) e TermB.

(iv) The set of formulas of L^, notation Form, is defined inductively as follows

seT erm A, teT erm B => P(s), Q(s, t)eF o rm ;
cp e Form, y e Form => (cp -> \|/) e Form ;
<p e Form => (VxA. cp) e Form and (VxB. cp) e Form.

4.3 Definition
Let sé be a many sorted structure. The minimal many sorted predicate logic over sé ,
notation PRED = PRED rf, is defined as follows. If A is a set of formulas, then A I— cp
denotes that cp is derivable from assumptions A. This notion is defined inductively as
follows (C ranges over A and B, and the corresponding C over A , IB)

cpe r => r I— cp
rH c p ^ -y , FI— cp =î> F I— \|/

r,cpH vy= > ri— cp^vy
Tl— Vxc .cp,teTerm c = > ri— cp[x:= t]

r I- cp, xc £ FV(r) => r I- vxc . cp,

where [x:= t] denotes substitution of t for x, and FV is the set of free variables in a
term, formula or collection of formulas.

For 0 I— cp one writes simply I— cp and one says that cp is a theorem.

These rules can be remembered best in the form of the following natural deduction
form __

142 H enk Barendregt

[<p]

tp—»I)/ <p ¥ .
V

VxC(p , t e TERMC ;
(p [X := t]

(D
. x f re s h .

Vxc cp

Some examples of terms, formulas and theorems are the following. The expressions
xA, c,fl(xA,c) and f(c, c) are all in TermA; g(xA) is in TermB. Moreover

VxAP(fl(xA,x A)), (1)

VxA[P (xA) ^ P (f (x A,c)], (2)

VxA[P(xA) -> P (f(xA, c)] VxAP(xA) P(f(c, c) (3)

are formulas. The formula (3) is even a theorem. A derivation of (3) is as follows

[VxA[lP(xffl) -> P (f(xA, c))]]2 [VxAP(xA)] 1
P (c)-» P (f(c , c)) P(c)

______P(ff(c, c)_____
___________ VxAP(xA) -» P (f(c , c)) _________
VxA[P (xA) -> P (f (xA, c))] VxAP(xa) P (f (c, c))

the numbers 1, 2 indicating when a cancellation of an assumption is being made. A
simpler derivation of the same formula is

[VxAP(xA)] 1
P (f(c , c)

[VxA(P (xA)-> P (f(x A,c)]2 VxAP(xA) P (f(c , c)) ^
VxA(P (xA) - P (f(xA, €)) VxA(P (xA) -> P (f(c , €)) 2

Now we explain, first somewhat informally, the propositions-as-types interpretation
form PRED into XP. First one needs a context corresponding to the structure s$l. This
is r rf defined as follows (later T d is defined as little differently)

Tjy = A: *, B : *,
P :A ^ * ,Q :A ^ B ^ * ,
f : A A -s- A, g : A ^ B,
c: A.

Introduction to generalized type systems 143

For this context one has

r ,h c :A (O')
r rfH(fcc):A

1— [Fix : A . P(fxx)] : * (1')
r^ K [n x :A .(P x ^ P (fx c))] :* (2')
Ty h- [[Tlx : A . (Px -» P(fxc))] - [(Fix : A . Px) P(fcc)]] : *. (3')

We see how the formulas (1) to (3) are translated as types. The inhabitants of * have
a somewhat ‘ambivalent’ behaviour, they serve both as sets (for example, A:*), and
as propositions (for example, Px: * for x: A). The fact that formulas are translated as
types is called the propositions-as-types (or also formulas-as-types) interpretation. The
provability of formula (3) corresponds to the fact that the type in (3') is inhabited. In
fact

r^ f -X p : [Fix : A . (Px P(fxc))] Xq : (ITx : A . Px). pc(qc) :
lip : [Fix : A . (Px — P(fxc))] ITq : (IIx : A . Px). P(fcc).

A somewhat simpler inhabitant of the type in (3'), corresponding to the second proof
of the formula (3), is

XP : [Fix : A . (Px P(fxc))] Xq : (Fix : A . Px). q(fcc).

In fact, one has the following result, which at the moment we state informally (and
which in fact, is not completely correct; therefore, no number is given to the item).

Theorem (soundness o f the propositions-as-types interpretation)
Let sd be a many sorted structure and let cp be a formula of L^. Suppose

l-pRED<P with derivation D;
then

r^ l-^ p [D] : [cp] : *,

where [D] and [cp] are canonical translations of cp and D, respectively.

Now we show that PRED can be viewed as a GTS, and then it follows that the map
cp [cp] can be factorized as a composition of an isomorphism PRED -> XPRED and
a canonical forgetful homomorphism XPRED ^ X P /

4.4 Definition (Berardi 1988)
PRED considered as a GTS, notation XPRED, is determined by the following
specification

XPRED

s *s, *p, *f, Ds, Dp

A *s : Ds, *p : mp

R (*P; *P), (*s, *P), (*s, d p),

*S5 (*S, *f)

144 Henk Barendregt

Some explanations are necessary here. The sort *s is for sets (the ‘sorts’ of the many
sorted logic). The sort *p is for propositions (the formulas of the logic will become
elements of *p). The sort *r is for first order functions between the sets in *s. The sort
□ s contains *s, and the sort [I]p contains *p. (There is no otherwise it would be
allowed to have free variables for function spaces.) The rule (*p, *p) allows the
formation of implication of two formulas

cp : *p, i|/ : *p I— (cp -*■ y) = (TJx : cp. <|/) : *p.

The rule (*s,*p) allows quantification over sets:

A : *s, cp : *p (— ‘ (VxA. cp) ’ = (IIx : A . cp) : *p.

The rule (*s, D p) allows the formation of first order predicates:

A :*s l—(A ^ * p) = (Fix: A. *p): D p;
hence

A : *s, x : A, P : (A -> *p) t— Px : *p,

that is, P is a predicate over the set A.
The rule (*s, *s, *f) allows the formation of a function space between the basic sets

in *s A : *s, B : *s I— (A -> B) : *r ;

the rule (*s, *f, *') allows the formation of curried functions of several arguments in
the basic sets A : *s H (A -> (A -> A)) : *f

This makes is possible to have, for example, g:A ->B and f : (A ->■ (A A)) in a
context.

Now it is shown that A.PRED is able to simulate the logic PRED. Terms, formulas
and derivations of PRED are translated into terms of À.PRED. Terms become
elements, formulas become types and a derivation of a formula cp becomes an element
of the type corresponding to cp.

4.5 Definition

Let s i be as in Section 4.1. the canonical context corresponding to s i , notation r y,
is defined by = A :*S,B :* S,

P :B -> *p, Q : A ^ B ^ * p,
f:A -+ (A -* B),g :A ^ B ,
c.B.

Given a term t e r v , the canonical translation o f t, notation [tj, and the canonical
context for t, notation Tt, are inductively defined as follows

t It] r t
x^ X X : C

s c ()

f (s, s') f Is] [s'] r s u r s-
g (s) g Is] r s

Introduction to generalized type systems 145

Given a formula cp in L v, the canonical translation of <p, notation [cp], and the
canonical context for cp, notation T are inductively defined as follows

<p Fcp
P(t) p[t] r,
Q (s, t) Q [s] t r s u r t
Cpi —> CP2 I<PlJ —» ĉp, u r<p2

>Ü>

nx:C .]\|/j Fy- {x:C}

4.6 Lemma
(i) teT E R M A => r ^ , Tt H->PRED |tj : A; similarly for B.
(ii) <p 6 FORM => r rJ, b->PRED ([cp! : *p.

Proof
By an easy induction. ■
In order to define the canonical translation of derivations, it is useful to introduce
some notation. The following definition is a reformulation of definition 4.3, now
giving formal notations for derivations.

4.7 Definition
In PRED the notation ‘D is a derivation showing AI— tp’, notation D:Ab-cp, is
defined as follows <p6 A=>P,:AI-cp;

D jiA l— <p->i|/, D ,: A I— cp => (Dj D 2):A I— y ;
D : A, cp I— y => (Icp). D : A I- cp -> \\i ;

D : A I— Vxc . cp, t e TERM C => (Dt) : AI— cp[x : = t] ;
D : A I— cp, xc FV(A) => (GxcA) : D h- Vxc . cp.

Here C is A or IB, P stands for ‘projection’, Icp stands for introduction and has a
binding effect on cp, and Gxc stands for ‘generalization’ (over C) and has a binding
effect on xc.

4.8 Definition
(i) Let A = {cpj, ...,cpn} £ FORM. Then the canonical translation of A, notation r 4,
is the context defined by

r i = r 9 iU ... u r , n.x , i :[cp1l, . . . ,x (Pn:[cpnl.

(ii) For D:AHcp in PRED the canonical translation of D, notation [D], and the
canonical context for D, notation TD, are inductively defined as follows

D ID] r D

P<p X(p (>

Dj Dj]Di] :d 2. I 'd , ^ r D2

Icp • D t kxcp:*<pVD i] I 'd , - 1 x(p: 19- 1

Dt]D] it] I 'd u r t

Gxc . D Xx:C.]D] r D-{x:C }

4.9 Lemma
D : A 1 pRED *P ^ Fj,!, r 4 UFf U cpD I- iPRED [D] : [(pj.

Proof
By induction on the derivation in PRED. ■

The following lemma is a kind of converse lemma 4.9.

4.10 Lemma (K. Fujita 1989)
Suppose T I—, (>RED A : B : *p. Then there is a many sorted structure -sé, a set of formulas
A £ L^, a formula cp e and a derivation D such that

r = r ^ , r 4 u r , u r D,
A = [D], B EE [cp]
D:AI—PREDcp. I

The following result gives the soundness of the interpretation [1. Note, however, that,
for example, a sentence cp, that is, FV(cp) = 0 , one has in general

PRED 9 ^ I- XPRED A : [Cp].

The reason is that logic is such that it assumes that the intended domains are non­
empty. For example

(VxA. (Px -> Q)) ((VxA. Px) -> Q)

is provable in PRED, but only valid in structures with A + 0 .

4.11 Definition
The extended context r t / is defined by = F v, a : A, b : B.

So, explicitly states that the domains in question are not empty. Now one does
have completeness.

4.12 Corollary
(i) Let cp be a formula and A be a set of formulas of L^. Then

d : a h~pred cp -<=> r* . r Au r ^ u r D h p̂red P-)] • [<pl-

(ii) Let A U {cp} be a set of sentences of La. Then

AI pRED cp <=> r ^ , Ta I xpRED M ■ IÎ Pl some M.

(iii) Let cp be a sentence of L^. Then

PRED̂ F ̂ \ 'xpRED M • Ĥpl•

Proof
(i) By definition 4.9 and 4.10, and the fact that [] is injective on derivation and
formulas.
(ii) If the members of A and cp are without free variables, then

D : A I prEd <P U r D H-XPRED [D] : [cp]

146 H enk Barendregt

Introduction to generalized type systems 147

A statement in r D is of the form x:C. Since T^l— a: A ,b :B one has

AI prEd 9 ̂ D : A t~PRED cp
3D r s/, r Au r D i xPrED P i : i<pl

<=> 3M r ^ , F a I— XPRED M : [cp].

(For the last => take M = [D][x,y:= a,b]; for <= use lemma 4.10).

(iii) By (ii), taking A = 0 . ■

The system XPRED is also flexible enough to cover so-called free logic with empty
domains as developed by Peremans (1949) and Mostowski (1951); simply work in
context instead of

Now that it has been established that PRED and XPRED are isomorphic, the
propositions-as-types interpretation from PRED to XP can be factorized in two
simple steps : from PRED to XPRED via the isomorphism and from XPRED to XP
via a canonical forgetful map.

4.13 Definition (propositions-as-types interpretation)
(i) Define the forgetful map 11 : term (XPRED) -» term (XP) be deleting all superscripts
in * and □

*s I—► *
*p h-> *

□ Ŝ D
□ pi-*

for example, |Xx:*‘\x | = Xx:*.x. Write |T| = {xx: |Ax| , ...} for T = {Xji A ls ...}.
(ii) Let s / be a signature and let t, cp, A and D be, respectively, a term, a formula, a
set of formulas and a derivation in PRED formulated in L^. Write

[t] = I [tj I ;
[<p] = I [<pl I ;
[D] = I [D] I ;
[A] = |F+,|, |Fa|.

4.14 Corollary (Soundedness for the propositions-as-tvpes interpretation)
(i) T I—xPRED A: B => [r| H-XP|A| : |B|.
(ii) For sentences A and cp in LA one has

D : A 1 prEd <P => [A] f-^p M : [cp], for some M.

Proof
(i) By a trivial induction on derivations in XPRED.
(ii) By corollary 4.12 (ii) and (i). ■

As was remarked before, the converse, completeness for the propositions-as-types
interpretation holds for PRED and XP, but not for PREDco and XC.

148 H enk Barendregt

4.15 Theorem (Berardi 1989; Geuvers, 1989)
Consider the similarity type of the structure sé = <A>, i.e. there is one set without any
relations. Then there is in the signature of sé a sentence cp of PREDco such that

P̂REDioV
but for some M one has

H xcM:[cp],
Proof sketch (Bernardi)
Define

EXT s n p : * n p ' : *. [(p <-* p') -> n Q : * -> *. (Qp -*■ Qp')]
cp s EXT 1A does not have exactly two elements ’

Obviously, (/-PREDu<p. Claim: interpreted in XC one has

E X T i f A is non-empty, then A is a type-free A-model’.

The reason is that if a: A, then

I— (Xx : (A -> A). a) : ((A -> A) A)
and always

(- (Xy : AXz : A . z) : (A (A A)),

therefore, ‘ A <-► (A -> A) ’ and since ‘ A = A ’ (that is, there is a bijection from A to A),
it follows by EXT that ‘A s (A -+A)’, that is, ‘A is a type-free X-model’.

By the claim A cannot have two elements, since only the trivial X-model is
finite. ■

The counterexample of Geuvers is technically simpler, but intuitively somewhat
more complicated; it is also related to the statement EXT.

The definition of the other systems in the /.-cube is now given. After having seen
the equivalent between PRED and ÂPRED, each system is described directly as a
GTS and not as a more traditional logical system.

4.16 Definition
(i) Systems A.PROP, A.PROP2, XPROPra and XPROPco are the GTSs specified as
follows

XPROP

s *P, DP

A *p : qp

R (*p, *P)

XPROP2 = /UPROP + (np, *p)
S *p, Dp

A *p : Dp

R (*P; *P)> (q P, *P)

XPROPço = XPROP + (□p, mp)

S *p, Dp

A *p, Dp

R (*p, *p), (Dp, Dp)

XPROPco = XPROP + (Dp, *p) + (n p, Dp)

S *p, Dp

A *p, Dp

R (*p, *p), (Dp. *p), (Dp, Dp)

(ii) Systems XPRED, XPRED2, XPRED® and XPREDco are the GTSs specified as
follows

Introduction to generalized type systems 149

XPRED

s *p, *s, *f, D p, Ds

A *p, Dp, *s, n s

R (*p, *p), (*s, *p), (*s, Dp)

(*s, *s, *f), (*s, *f)

XPRED2 = XPRED + (mp, *p)

S *p, *s, *f, D p, Ds

A *p, Dp, *S,D S

R (*p, *P), (*s, *P), (*s, nP)

(*s; *s) *f); (*s5 **)

(□ p, *p)

XPREDco = XPRED + (Dp, QP)

S *p, *s, *f, np, d s

A *p, Dp, *s, Ds

R (*p, *P) (*s, *P), (*s, n p)

(*s(*s; *f)5 (*s,*f, *f)

(□p, Dp)

150 Henk Barendregt

XPREDco = XPRED + (d p, *p) + (Dp, Dp)

S *p, *s, *f, mp, Ds

A *p, g p, *s, ms

R (*P, *P) (*s, *P), (*s, □?)

(*s5 *s; (*s; *f)

(□p, *p), (Dp, Dp)

The eight systems form a cube as shown in fig. 4.

XPROP2

XPROPco
y /

XPRED2

XPREDco

XPROPco/ —
XPROP--------

- XPREDco
/

XPRED

Fig. 4

Since the description of these GTSs is more uniform than the original description
of the logical systems, this cube will be considered as the L-cube. In particular, fig.
4 displays the standard orientation of the L-cube, and each L, (ranging over XPROP,
XPRED, etc.) corresponds to a unique system \ on the similar vertex in the X-cube
(in standard orientation).

4.17 Theorem (soundness o f the propositions-as-types interpretation)
Let L, be a system on the L-cube, and let X{ be the corresponding system on the
X-cube. The forgetful map 11 that erases all superscripts in the *s and D s satisfies the
following

T I—L A : B : s : ■IHK |A|:|B|:|s|. (4)

Proof
By a trivial induction on the derivation in L,. ■

Introduction to generalized type systems 151

As is well-known, logical deductions are subject to reduction (for example, see
Prawitz 1965; or Stenlund 1972). For example, in PRED one has

\ D|
¥

(p—>\|/ m
------- 1-------- = (Xcp.DO D2

¥

and

—>ß D^cp — D2] =

¥

¥
Vx . i)/

¥ [x := t]

= (Gx . D)t

— Dj[x — t] =

If the deductions are represented in XPRED, then these reductions become ordinary
ß-reductions

[(Xcp. D t) D J = (Xx : [cp]. [D J) [D2] [D J [x : = [D J] = [DJx : = D J] ;
[(Gxc . D) t] = (Xx : C . [D]) [t] [D] [x : = [t]] = [D[x : = t]]

In fact, the best way to define the notion of reduction for a logical system on the
L-cube is to consider that system as a GTS subject to ß-reductions.

Now it follows that reductions in all systems of the L-cube are strongly normalizing.

4.18 Corollary
Deductions in a system on the L-cube are strongly normalizing.

Proof
The propositions-as-types map

11 : L-cube X-cube

preserves reduction; moreover, the systems on the X-cube are strongly normal­
izing. ■

In Leivant (1989) interesting use has been made of the propositions-as-types
interpretation concerning the representation of data types.

The following example again shows the flexibility of the notion of GTS.

4.19 Example (Geuvers 1990)
The system of higher order logic in Church (1940) can be described by the following
GTS

XHOL

S *, □, A

A * : □ ,□ : A

R (* ,*),(□ ,*),(□ ,□)

That is XHOL is Xco plus □ : A. The sound interpretation of XPREDco in XHOL is
determined by the map given by *P (—► *

*si-» □

□ 8i-+A.

Geuvers (1990) proves that completeness holds for this interpretation.

Acknowledgements

The author wishes to thank Philips Research Laboratories at Eindhoven, Netherlands
where Dr B. van Benthem Jutting explained to him several typed lambda calculi in
the a u t o m a t h family of languages of de Bruijn (1970). Also, thanks are due to
Adriana Compagnoni, Maribel Fernandez and the paper’s referee for pointing out
some misprints, and especially to Erik Barendsen for tidying up the layout of the
manuscript.

This paper is partly sponsored by the EC stimulation project ‘ Lambda calcul typé ’.
An earlier version appeared in the Proceedings o f the Third Italian Conference on
Theoretical Computer Science (Mantova, 1989), World Scientific, Singapore.

References

Barendregt, H. P. 1984. The Lambda Calculus; Its Syn tax and Semantics (2nd Edn). N orth-
Holland.
Barendregt, H. P. 1991. Lam bda calculi with types. In S. A bram sky, D. G abbai and T.
M aibaum (editors), Handbook o f Logic in Computer Science. O xford University Press.

152 Henk Barendregt

Introduction to generalized type systems 153

Barendregt. H. P. and van Leeuwen. M. 1985. Functional program m ing and the language
TALE. In Lecture Notes in Computer Science, 224, pp. 122-208. Springer-Verlag.
Barendregt, H. P. and H emerik, K. 1990. Types in lam bda calculi and program m ing languages.
In Proc. European Symposium on Programming, pp. 1-35, Copenhagen, D enm ark (May).
Barendregt, H. P. and Dekkers, W. 1990. Typed lam bda calculi.
Barendsen, E. 1989. Representation o f Logic, Data Types and Recursive Functions in Typed
Lambda Calculi. M asters thesis, University o f Nijmegen, Netherlands.
Barendsen, E. and Geuvers, H. 1989. Conservativity o f ÀP over PRED . M anuscript. University
of Nijmegen, Netherlands.
Berardi, S. 1988. Personal comm unication.
Berardi, S. 1990. Type Dependence and Constructive Mathematics. PhD thesis, M athem atical
Institute, Torino, Italy.
de Bruijn, N. G. 1970. The m athem atical language A U T O M A T H , its usage and some of its
extensions. In Lecture Notes in Mathematics, 125, pp. 29-61. Springer-Verlag,
de Bruijn, N. G. 1980. A survey o f the A U TO M A TH project. In J. R. H indley and J. P. Seldin
(editors), To H. B. Curry: Essays on Combinatory logic. Lambda Calculus and Formalism, pp.
580-606. Academic Press.
Cardelli, L. and Wegner, P. 1985. On understanding types, da ta abstraction and polymorphism.
A C M Comp. Surveys, 17 (4): 471-522.
Church, A. 1940. A form ulation o f the simple theory o f types. J. Symbolic Logic, 5: 56-68.
C oquand, Th. 1989. An introduction to type theory. To appear in A. R. M eyer (editor), Proc.
Ecole de Printemps du L ITP , Albi.
C oquand, Th. and Huet, G. 1988. The calculus o f constructions. Information and Computation,
76: 95-120.
C urry, H. B. and Feys, R. 1958. Combinatory logic. N orth H olland.
van D aalen, D. 1980. The Language Theory o f A U T O M A T H . PhD . thesis, Technical University
Eindhoven, Netherlands.
van Dalen, D. 1983. Logic and Structure. (2nd edn). Springer-Verlag.
Fujita, K. 1989. Relationship between logic and type system. U npublished manuscript.
Research Institute of Electrical C om m unication, T ohoku University, Japan.
Geuvers, H. 1988. The Interpretation o f Logics in Type Systems. M aster thesis, University of
Nijmegen, N etherlands.
Geuvers, H. 1989. Theory of constructions is not conservative over higher order logic.
M anuscript. University o f Nijmegen, N etherlands.
Geuvers, H. 1990. Type systems for higher order logic. M anuscript. University o f Nijmegen,
Netherlands.
Geuvers, H. and Nederhof, M.-J. 1991. A m odular p ro o f o f strong norm alization for the
theory of constructions. Journal o f Functional Programming 1(2): 155-189.
G irard, J.-Y. 1972. Interprétation Fonctionelle et Élimination des Coupures dans /’Arithmétique
d'Ordre Supérieur. Thèse de D octorat d ’É tat, Université Paris VII, France.
G ordon, M. H ., Milner, R. and W adsw orth, C. 1979. Edinburgh L C F : Lecture Notes in
C om puter Science, 78. Springer-Verlag.
H arper, R., Honsell F. and Plotkin, G. 1987. A fram ew ork for defining logics. In Proc. 2nd
Symp. Logic in Computer Science, pp. 194—204. Ithaca. New York.
H oward, W. A. 1980. The formulae-as-types notion o f construction. In J. R. Hindley and
J. P. Seldin (editors), To H. B. Curry: Essays on Combinatory logic, Lambda Calculus and
Formalism, pp. 479^490. Academic Press.
Leivant, D. 1989. C ontracting proofs to program s. In : Odifreddi. P. (editor), Logic and
Computer Science, pp. 279-327, Academic Press.
Longo, G. and Moggi, E. 1988. Constructive Natural Deduction and its M odest Interpretation.
R eport CMU-CS-88-131, Carnegie Mellon University, Pittsburgh, USA.
M artin-Löf, P. 1970. A construction o f the provable wellorderings of the theory of species.
U npublished M anuscript. M athem atical Institute, University of Stockholm, Sweden.

154 Henk Barendregt

M artin-Löf, P. 1984. Intuitionistic Type Theory. Bibliopolis.
Milner, R. 1984. A proposal for standard M L. In Proc. 1984 A C M Symposium on L IS P and
Functional Programming, pp. 184—197. A ustin, Texas.
Mostowski, A. 1951. On the rules o f p roo f in the pure functional calculus o f first order.
J. Symbolic Logic, 16: 107-111.
Peremans, W. 1949. Een opm erking over intuitionistische logica. R eport ZW-16. C enter for
M athem atics and C om puter Science, K ruislaan 413, 1098 SJ Am sterdam .
Prawitz, D. 1965. Natural Deduction. A lmqvist and Wiksell.
Renardel de Lavalette, G. 1987. Strictness analysis for a language with polym orphic and
recursive types (preprint). D epartm ent o f Philosophy, U trecht University, N etherlands.
Reynolds, J. 1974. Towards a theory of type structure. In Proc. Colloque sur la Programmation.
In Lecture Notes in Computer Science, 19, pp. 408^4-25. Springer-Verlag.
Reynolds, J. 1985. Three approaches to type theory. In Lecture Notes in Computer Science, 185,
pp. 145-146. Springer-Verlag.
Stenlund, S. 1972. Com binators, X-terms and p ro o f theory. D. Reidel.
Swaen, M. D. G. 1989. Weak and Strong Sum-elimination in Institutionistic Type Theory. PhD.
thesis, University o f Am sterdam , N etherlands.
Terlouw, J. 1988. Personal com m unication.
Turner, D. 1985. M iranda: A non-strict functional language with polym orphic types. In Jean-
Pierre Jouannaud (editor). Functional Programming Languages and Computer Architecture.
Lecture Notes in Computer Science, 201, pp. 1-16. Springer-Verlag.
de Vrijer, R. 1975. Big trees in a Â-calculus w ith A-expressions as types. In Proc. Symposium
on X-calculus and computer science theory, Lecture Notes in Computer Science, 37, pp. 252-271.
Springer-Verlag.

Henk Barendregt, Faculty of M athem atics and C om puter Science, Catholic University
Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The N etherlands.

View publication statsView publication stats

https://www.researchgate.net/publication/216300104

