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Introduction to generalized type systems
H E N K  B A R E N D R E G T

Catholic University Nijmegen , The Netherlands

Abstract

Programming languages often come with type systems. Some of these are simple, others are 
sophisticated. As a stylistic representation of types in programming languages several versions 
of typed lambda calculus are studied. During the last 20 years many of these systems have 
appeared, so there is some need of classification. Working towards a taxonomy, Barendregt 
(1991) gives a fine-structure of the theory of constructions (Coquand and Huet 1988) in the 
form of a canonical cube of eight type systems ordered by inclusion. Berardi (1988) and 
Terlouw (1988) have independently generalized the method of constructing systems in the 
A.-cube. Moreover, Berardi (1988, 1990) showed that the generalized type systems are flexible 
enough to describe many logical systems. In that way the well-known propositions-as-types 
interpretation obtains a nice canonical form.

Capsule review
This paper presents a possible classification for the simplest class of typed systems: only 
ß-reduction is considered, and the only type constructors are n  and First, various 
Automath-like typed systems are analysed, with a brief presentation of their main properties 
(subject reduction, unicity of types and strong normalization).

This analysis suggests rather naturally the notion of generalized type systems which provide 
a neat notation for describing the ‘propositions-as-types’ idea. The relevance of this notation 
is shown by the fact that it allows us to sharply express new problems, as the relative 
completeness of various interpretations, or to state concisely and precisely type-theoretic 
results (for instance, the exact formalism in which Girard’s paradox is derived).

1 Introduction

In several program m ing languages types are assigned to expressions (occurring in 
a program ) in a way tha t may be com pared to dimensions assigned to entities in 
physics. These dimensions provide a partial correctness check

2 V o lt+  3 Ampère

is definitely w rong; the equation _
E =  me

is consistent at least from the point o f view of dimensions, since both sides are 
expressed in k g .m 2.sec-2.

The analogy between types and dimensions is not perfect. A physical entity always 
has a unique dimension. Expressions in program m ing may have more than one type.

5 F P R  1
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This is the case when implicit (or Curry style) typing is allowed : the expression Âx.x
denoting the identity function obtains all types A for A an arbitrary type. We
write ,, . , .  . .

( a x . x ) : ( A ^  A)

which should be pronounced as ‘lam bda x dot x in A arrow A ’, and has as its 
intended meaning tha t ‘for each (element) a in A the application (Xx.x)a is also in 
A ’ (which is intuitively true, since (Àx.x) a =  a). Examples of program m ing languages 
with this style o f typing are M L (M ilner 1984) and M iranda (Turner 1985).

There is also another paradigm , the explicit or Church style of typing, in which each 
correct expression has exactly one type. N ow there are several versions of the identity 
function

IA =  Ax: A .x

and this one has as its unique type A -*■ A. Examples of languages with explicit typing 
are LCF (G ordon et al. 1979) and TA LE (Barendregt and van Leeuwen 1985).

D uring the last 20 years many systems have appeared for typing lam bda calculi, 
both in the style of Curry and that o f Church (see Barendregt (1991) for a survey). 
In this paper we give some flavour o f a class o f systems à la Church using the 
following m ethodology : Only the simplest versions o f  a system are considered ; that is, 
only with ß-reduction, but not with, fo r  example r\-reduction \ only with types built up 
using -> and n, not using, fo r  example, x or I .  As will be seen, the systems become 
complicated anyhow. (For a discussion on types in program m ing languages see 
Cardelli and W egner (1985); Reynolds (1985) and Barendregt and Hemerik (1990).)

2 A finestructure of the theory of constructions

Recently a quite powerful typed lam bda calculus has been introduced by Coquand 
and H uet (1988). The system is called ‘the theory of constructions’, and is denoted 
here by À.C. By analysing the way in which terms and types are built up, a fine
structure o f this system is given, consisting of eight systems of typed lam bda calculi 
forming under inclusion a natural cube with oriented edges (see fig. 1). Each edge -> 
represents the inclusion relation £ .  This cube is referred to as the X-cube.

M ost o f the systems in the >.-cube are known, albeit in a somewhat different form. 
The system X ^  is the simply typed lam bda calculus (Church, 1940). The system X2 
is the polymorphic or second order typed lambda calculus, and is a subsystem of the 
system F introduced by G irard (1972). It has been introduced independently by
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Reynolds (1974). The system Xw is essentially the system Fco o f G irard  (1972). System 
XP corresponds reasonably to one o f the systems in the family o f a u t o m a t h  languages 
(see de Bruijn, 1980): System A.P also appears under the nam e LF in H arper et al. 
(1987), System XP2 is studied by Longo and Moggi (1988) under the same name. 
System A.C is one of the versions of the theory o f constructions introduced by 
Coquand and Huet (1988), and system A.co is related to the p o l y r e c  system studied 
by Renardel de Lavalette (1985). System APco seems no t to have been studied before. 
(For À.® and ÄPm read ‘weak tao’ and ‘weak XPco’, respectively.)

Before defining the X-cube, it is useful to describe informally some ideas which play 
a role in the various systems.

The first informal idea is the construction o f function space types. If  A and B are 
types, then A -> B is the type of functions from A to B. So, if F  : (A -> B) and x : A, then 
(Fx):B.

The second idea is that o f dependency. Types and terms are mutually dependent; 
there are

•  terms depending on term ;
•  terms depending on types ;
•  types depending on terms;
•  types depending on types.

Some explanation is necessary here. Terms depending on terms are extremely
common : ,

FM

is a term that depends on the term M. A term depending on a type is the identity on 

^  IA =  Xx : A . x.

A type depending on a term is, for example,

An- B
(with n a natural number) defined by

A ° ^ B  =  B;
An+1 -> B =  A ^ ( A n^ B ) .

And a type depending on a type is, for example,

A -* A
for A a given type.

Once there are types depending on terms one may introduce cartesian products. 
Suppose that for each a ; A a type B., is given, and tha t there is an element ba : Ba, Then 
we may want to form the function

Xa : A . ba

that should have as type the cartesian product

rTa: A . Ba

of the Bas. Once these product types are allowed, the function space type o f A and 
B can be written as

(A ^ B )  =  IT a :A .B (=  BA, informally),

5-2
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where a is a variable not occurring in B. This is similar to the fact that a product of 
equal factors is a power n

n b i  becomes bn
i - 1

provided that bj =  b for 1 ^  i ^  n. So by using products, the type constructor -> can 
be eliminated.

The next idea has to do with the form ation o f types. For some simple systems the 
types are -  so to say -  given in the m etalanguage. For example, if one has informally 
constructed a type A, then one can formally derive

I— (A.a : A . a) : (A ->• A).

Since in the /.-cube terms and types are m utually dependent, one moves the formation 
of types from the metalevel to the formal system itself -  the idea comes from the 
a u t o m a t h  languages of de Bruijn (1970). To do this a constant * is introduced that 
is the sort o f all types; then ‘A : * ’ is a statem ent expressing ‘A is a type’. A sentence 
in the m eta language like

‘if A is a type, then so is A -> A ’

now becomes a formal type derivation

A : * (— (A -> A) : *.

Here A stands for a variable, and since it is in *, one can say that A is a type variable. 
F or each o f the four dependencies one may w ant to introduce function abstraction

(X,m : A . Fm) : (A ^  B) ;
(Xa : *. I„) : (ITa : *. (a -> a)) ;

(A.n:W.An^ B ) : f \ J ^ * ;
(tax: *. a -> a) :(*->-*).

Now what is * *? Probably not a type, because then one should have (*-»*):*  and 
this may lead to contradictions. Therefore, one introduces a new ‘so r t’ □ ,  the sort 
o f all kinds, and postulates that *: □  and (* -> * ) :□ . The inhabitants of *->*, like 
our F, are called constructors. Similarly, one postulates (N

The expression (n a :* .( a -> a ) )  being a cartesian product of types will also be a 
type, so (Flot : *. (a -> a)) : *. Since it is a product over all possible types a, including the 
one in statu nascendi (that is, (IToc:*.(oi^oi)) is am ong the types in *), there is an 
essential impredictativity here.

We now start to define the cube o f type lam bda calculi.

2.1 Definition
(i) The system o f the tacube are based on a set o f pseudo-terms 3T defined by the 
following abstract syntax

ST — x |cj 3~2T |A.x : HT2T j ü x  : 2T2T 

where x is the category of variables and c tha t of constants.
(ii) On 2T the notions of ß-conversion and ß-reduction and defined by the following 

contraction rule (tac : A . B) C B[x : =  C]
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(iii) A statement is o f the form A :B  with A, B e J .  A is the subject and B is the 
predicate of A :B. A declaration is o f the form x :A  with A e J  and x a variable. A 
pseudo-context T  is a finite ordered sequence of declarations, all with distinct subjects. 
The empty context is denoted by < ). If  T = (x ^ A j,  . . . ,x n:A n>, then

r ,x :B  =  <Xj: Aj, . . . ,x n: An,x:B > .

Usually we do not write the < ).
(iv) The rules of type assignment will axiomatize the notion

r  H- A: B

stating that A : B can be derived from the context T. Pronounce F b- A : B as ' T yields 
A in B ’.

The rules are given in two groups: (1) the general rules, valid for all systems of the 
À-cube ; and (2) the specific rules, differentiating between the eight systems. Two of 
the constants in C are selected and given the names * and □ .  These two constants are 
called sorts. W rite S =  {*, □} and let s, s1? s2 range over S.

(1) General axiom and rules.

Axiom

Start rule

T l—A :s
F x A t—x 'A ’ w^ere x ' s f-fresh  (x does not occur in T).

W eakening rule

r  I— A :B  r h C : s  , • r  e ,---------------------------  where x is T-Iresh.
r ,x :C I —A :B  ’

r  1— F : (Fix : A . B) T h -a :A  
rH (F a ) :B [x :=  a] '

n —A :B  Ti—B : s B =ßB/
Tl—A :B '

(2) The specific rules are all introduction rules, and are param etrized by two sorts. 
Let s15 s, e S. Consider the following pair of rules

(Sj, s2) rules

n -ru le  D - A ^  r ,x :A h - B :s ,

Application rule

Conversion rule

À.-rule
r  I— (Fix : A . B) : s2

T h-A iS j r , x : A h b : B  r ,x :A l—B :s, 
r  h- (Xx : A . b) : (Fix : A . B)

(v) The eight systems o f  the X-cube are defined by taking the general rules plus a 
specific subset of the set of rule pairs {(*,*), (*, □ ) , (□ ,* ) , ( □ ,  □)}
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(*, *)
12 (*> *) (0 ,* )
A.ÇÛ (*, *)
A.C0 (*» *) (□ ,*) (□ ,□ )
XP (*, *) (*,□)
XP2 (*» *) (□, =1=) (*,□)
APco (*> *) (0 ,0 ) (*,□)
ÀPco = À.C (*, *) (□ ,*) (*,□)

The À-cube will usually be drawn in the following standard orientation (see fig. 2). The 
inclusion relations are left implicit.

ÂPcq = XC

XPco

Fig. 2

Notation
(i) Derivability for a system ^  is denoted by Tl—X.A :B . If there is no danger of 
confusion, or if a statem ent holds for all systems, then we simply write T t— A :B .
(ii) (A^*B) =  (I ïx :A .B ) with x<£FV(B). This follows the intuition given before.
(iii) r  t -  A : B : C means T H A : B and T I— B : C.

The rule pairs have the following meaning, as will become clear after studying the 
examples in section 2.7

(*,*) allows forming terms depending on term s;
( □ ,  *) allows forming terms depending on types;
(*, □ )  allows forming terms depending on terms;

( □ ,  □ )  allows forming terms depending on types.

2.2 Definition
Consider derivability in one of the systems of the A.-cube.
(i) Let T I— A : B. Then A and B are called (legal) terms and T is called a (legal) 
context.
(ii) Let Tl— A :B :* . Then A is called an object and B a type.
(iii) Let T I- A : B : □ .  Then A is called a constructor and B a kind.

It can be shown that a term is an object, a type, a constructor, a kind or a sort. The 
only overlap is that all types B are also constructors (indeed B :* :□ ) .

We state some properties about the systems in the À-cube.
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2.3 Church-Rosser Theorem fo r  ST 
Let A, B, Then

(i) [A -» B &  A -» B ']  => 3 C e ^ '[B -» C & B '-» C ] .
(ii) A = pB = > 3 C e Jr [A -» C & B -» C ].

Proof
Proofs of the C hurch-R osser theorem for A generalize to -T  (see Barendregt and 
Dekkers, 1990). ■

The following generalizes a result due to Curry et al. (1958); see de Vrijer (1975) and 
van D aalen (1980) for the result in type systems.

2.4 Theorem (subject reduction fo r  the X-cube)
For any system in the X-cube one has

T 1— A :B & A -»p A ' => F  I— A ' : B.

Proof
See Barendregt (1991) or Geuvers and N ederhof (1991). ■

The following result is due to Coquand. A nice m odular p roof using the edges o f the 
X-cube is due to Geuvers and N ederhof (1991).

2.5 Theorem (strong normalization fo r  the X-cube)
For any system in the X-cube one has

T I— A : B => A and B are strongly normalizing,
tha t is all ß-reductions starting with A or B terminate.

P roof
See Barendregt (1991) or Geuvers and N ederhof (1991). ■

The following result is folklore.

2.6 Theorem (unicity o f  types)
For any system in the X-cube one has

rJ-A:B&rh-A:B'=>B =p B'.

Proof
See Barendregt (1991) or Geuvers and N ederhof (1991). ■

Some derivable type assignments in the X-cube

We end this subsection by giving for each of the systems in the X-cube some examples 
o f type assignment. The reader is invited to carefully study these examples in order 
to gain some intuition in the systems of the X-cube. Some of the examples are followed 
by a comment {in brackets}. In order to understand the intended m eaning for the 
systems on the right plane in the X-cube (that is, the rule pair (*, □ )  is present), some
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of the elements of * have to be considered as sets and some as propositions. The 
examples show that the systems in the X-cube are related to logical systems and form 
a preview of the propositions-as-type interpretation described in section 4. Names of 
variables are chosen freely, in order to follow the intended interpretation.

2.7 Examples
(i) In X the following can be derived

A : * I— (A A) :* ;
A : * (Xa : A . a) : (A -> A) ; 

A :* ,B :* ,b :B b - (X a :A .b ) :(A ^ B ) ;
A : *, b : A I— ((Xa : A . a) b) : A ;

A : *, B : c : A, b : B h- ((Xa : A . b) c) : B ;
A : B : * b- (Xa : AXb : B . a) : (A -> (B ^  A)) : *.

(ii) In X2 the following can be derived

a : * I— (Xa : cc. a) : (ce -> a) ;
I— (Xa : *Xa : a . a) : (Fla : *. (a a)) : * ;

A : * 1- (Xa : *Xa : a . a) A : (A A) ;
A : *, b : A I -  (ko. : *Xa : a . a) Ab : A ;

of course the following reduction holds

(Xa : *Xa : a . a) Ab -*■ (Xa : A . a) b 
^ b .

The following two examples show a connection with second order proposition logic

b- (Xß : *Xa : (IIoc : *. a ) . a ((IIa  : *. a) -> ß) a) : (Ilß  : *. ( l i a : *. a) -* ß).

{For this last example one has to think twice to see tha t it is correct; a simpler term
of the same type in the following ; write 1  =  (Fla : *. a), which is the second order
definition of falsum.}

/ H (X ß :* X a :± .a ß ) :( I Iß :* .± -* ß ) .

{The type considered as proposition says : ‘ ex falso sequitur quodlibet ’ ; the term in 
this type is its proof.}

(iii) In Xco the following can be derived

b- (Xa : *. a  -> a) :(*->*): □

{(Xa:* .a ^ a .)  is a constructor m apping types into types};

ß : * I— (Xa. : *. a -> a) ß : * ; 
ß : x : ß I— (Xy : ß . x) : (Xa : *. a a) ß

{note tha t (Xy \ ß . x) has type ß -*■ ß in the given context}

a : *, f  : * -> * I— f(fa) : * ; 
a : * b- (Xf : * *. f(foc)) :(*->*)-*•*

{in this way higher order constructors are formed}.



(iv) In XP the following can be derived

A : * (A -> *) : Q

{if A is a type considered as set, then A -> * is the kind of predicates on A}

A : *, P : (A *), a : A t— Pa : *

{if A is a set, a e A  and P is a predicate on A, then Pa is a type considered as 
proposition (true if inhabited ; false otherwise)}

A : *, P : (A -> A *) I— (ITa : A . Paa) : *

{if P is a binary predicate on the set A, then Vae A Paa is a proposition}

A : *, P : (A -> *), Q : (A -* *) I— (lia  : A . (Pa -> Qa)) : *

{this proposition states that the predicate P considered as a set is included in the 

predicate Q) A ; . ,  P : ( A ^ . )  H (n a :  A . ( P a ^ P a ) ) : .

{this proposition states the reflexivity of inclusion}

A : *, P : (A -»■ *) I— (Xa : AXx : P a . x) : ( l ia  : A . (Pa -> Pa)) : *

{the subject in this assignment provides the ‘p ro o f’ o f reflexivity o f inclusion} 

A :* ,P : ( A ^ * ) ,  Q :*

H ( ( n a : A .P a - * Q ) ^ ( n a : A .P a ) - Q ) : *
A : *, P : (A -> *), Q : *, a0 : A

1- (Xx : (ITa : A . Pa ->■ Q) X y:(ria: A . P a ) . xa0(ya0)) :
(IIx : (Lia : A . Pa Q) (Ily  : (Fla : A . P a ) . Q ) =  

( I I a : A .P a ^ Q ) ^  (L Ia :A .P a )^ Q

{this proposition states that the proposition (Va6 A .P a ->Q )-> ( V a e A . P a ) i s  
true in non-em pty structures. A ; notice that the layout explains the functioning of 
the /.-rule; in this type assignment the subject is the ‘p ro o f’ o f the previous true 
proposition; note that in the context the assum ption a0:A is needed in this proof.}

(v) In Xco the following can be derived. Let a & ß  =  n y : * . ( a ^  ß-*y)-*-Y, then

ct: P : * I— a&  ß: *

{this is the ‘second order definition of & ’ and is definable already in X2}. Let 
A N D  =  Xa : *Xß : *. a & ß and K  =  Xa : *Xß : *Xx : aXy : ß . x, then

I— A N D  :(*->•*-**),
I— K : ( l ia  : *Ilß  : *. a ß ^  a).

{Note tha t cc&ß and K  can be derived already in X2, bu t the term  A N D  cannot}

a  : *, ß : * t— (Xx : A N D  a ß . xa(K aß)) : (A N D  aß -> a) : *

{the subject is a p roof tha t AN D  aß ^  a  is a tautology}.

Introduction to generalized type systems 133



(vi) In XP2 {corresponding to second order predicate logic} the following can be
derived . ^  .

A: * ,P : ( A ^  *) h- (Xa: A .P a ^ -  _L): A -> *
A: *,P:(A ~> A ^  *) h- [(ITa : AITb : A . Pab ^  P b a _ L )  -^(ITa: A .P a a -^  _L)] : *

{the proposition states that a binary relation tha t is asymmetric is irreflexive}.

(vii) In XPra the following can be derived

A : * \— (XP : (A -> A -> *) Xa : A . Paa) : ((A -> A -> *) (A *)) : □

{this constructor assigns to a binary predicate P on A its ‘ diagonalization ’} 

l - ( X A :* X P :( A ^ A ^ * ) X a :A .P a a ) : ( I T A :* n P :( A - ^ A ^ * ) n a :A .* ) :n  

{the same is done uniformly in A}.

(viii) In XPcu =  XC the following can be derived

h- (XA : *XP: (A -> *) X a:A . Pa _L) : (ITA : *. (A  -> *) ->• (A -> *)) : [J

{this constructor assigns to a type A and to a predicate P on A the negation o f P}. Let 
ALL =  (XA : *XP : A — *. ITa : A . Pa) ; then

A : P : (A ->• *) 1- ALL A P : * and (ALL A P) = „ (n a :A .P a )

{universal quantification done uniformly}.

Exercises
1. Define -i =  Xa : *. a  -> 1 . Construct a term M such tha t in Xco

a  : *, ß : * H M : ((a -> ß) -> (-> ß -> -■ a)).

2. Find an expression M such that in XP2

A: *, P : ( A ^  A ^  *) h- M : [(Ila : AITb : A . Pab ̂  P b a 1 ) ^  ( l ia :  A .P a a ^  ! ) ] :* .

3. Find a term M such that in XC

A : P : (A ̂  *), a : A I— M : (ALL A P ^  Pa).

3 Generalized type systems

The m ethod of generating the systems in the X-cube has been generalized 
independently by Berardi (1988) and Terlouw (1988). This resulted in the notion of 
a generalized type system  (GTS). M any systems o f typed lam bda calculus à la Church 
can be seen as GTSs. Subtle differences between systems can be described neatly using 
the notation of GTSs.

One o f the successes of the GTS notion is concerned with logic. In section 4 a cube 
o f eight logical systems is introduced. The systems on this ‘logic cube’ are in a 
one-to-one correspondence with the systems on the X-cube. There is a canonical 
translation A [A] for sentences A such that for a logic L s corresponding to a system 
X, on the X-cube one has
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for some M canonically depending on the p roof o f A in Lt ; here T is some natural 
context corresponding to the signature o f the language in which the logic L4 is 
formulated. This result is the so called ‘propositions-as-types’ interpretation. As was 
observed by Berardi (1988), the eight logical systems can each be described as a GTSs 
in such a way that the propositions-as-types interpretation obtains a canonical simple 
form.

A nother reason for introducing GTSs is that several propositions about the 
systems in the X-cube are needed. The general setting o f the GTSs makes it nicer to 
give the required proofs.

The generalized type systems are based on the same set of pseudoterm s 2T for the 
X-cube. We repeat the abstract syntax for 3T

Let C be the set of constants in .T .

3.1 Definition
A specification o f  a G TS  consists o f a triple S =  (S, A, R) where

1. S is a subset o f C, called the sorts.
2. A is a set of axioms of the form c:s, with c e C  and se  S.
3. R is a set of rules o f the form (s1; s2,s 3), with Sj, s2, s3eS .

3.2 Definition
The GTS XS determined by the specification (S, A, R), notation XS =  X(S, A, R), is 
defined as follows. Statements and pseudo-contexts are defined as for the X-cube. The 
notion of type derivation T I—xs A : B (we often just write T I— A : B) is defined by the 
following axiom and rules

2T =  x |c| y  .T |Xx : ST2T | fix  : 3T2/

Axiom
< > I— c:s, if (c :s )e A .

Start rule

r t —A :s
where x is fresh.

F , x : A h x : A ’
Weakening rule

r  I— B :C  T h -A : s
, where x is fresh.

r ,x :A H B :C
Application rule

r i —F :( r ix :A .B ) :s  T t-  a: A 
r i —(Fa):(B [x :=  a])

Conversion rule
r  t— A: B r t - B ' : s  B ^ B '  

r i —A :B '
ri-rule

F h  A:Sj r ,x :A ! - B :s ,  
T f— (IIx : A . B) : s3

, where (s j,s2, s3)e R .
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A,-rule

D -A .-S j T, x : A I— B : s2 T, x : A I— b : B
, where (s1,s , , s 3) e R  for some s3.

T I— (Xx : A . b) : (ITx : A . B)

In the above we use the following conventions

s ranges over S the set of sorts; 
x ranges over variables ;

‘x is fresh’ means that x does not occur in T, A, B or C.
The proviso B = p B' in the conversion rule is not decidable. However, it can be 

replaced by the decidable condition

B' -^ßß or B ^ p B '

without changing the set of derivable statements.

3.3 Definition
(i) The rule (s^s ,) is an abbreviation for (s1(s,, s,). In the A.-cube only systems with 
rules of this simpler form are used.
(ii) The GTS X(S, A ,R ) is called fu ll  if

R =  {(s1,s 2)|s1,s,eS } .

(iii) If T I— A : B : s, then we say that A is an element o f  type B ; if F I— B : s, then B is 
a type o f sort s.

3.4 Examples
(i) ÀP2 is the GTS determined by

S =  {*,□}
A =  {*,□}
R =  { (* ,* ),(□ ,* ),(* ,□ )} •

Specifications like this will be given more stylistically as follows: ÂP2 =  X.(S, A ,R) 
with XV2

S *, □

A * : □

R (* ,* ) ,(□ ,* ) ,(* ,□ )

(ii) XC is the full GTS X(S, A, R) with 

XC

s *, □

A *, □

R (*> *), (d, *), (*, □), (□, □)



(iii) A variant XC' of XC is the full GTS X(S, A, R) with 

XC'
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s *p, □

A : □, *p □

R S2, that is all pairs

(iv) X-* is the GTS determined by

X—>

S *, □

A * : □

R (*, *)

(v) A variant of X,-*, called XT in Barendregt (1984—Appendix A) is the GTS 
determined by

X

s *

A 0 : *

R (*, *)

The difference with X-> is that in XT no type variables are possible. One only has 
constant types like 0 , 0 ^ 0 ,0 ^ 0 ^ 0 , . . .  and variables for elements in these types.

(vi) The system X* in which * is the sort of all types, including itself, is specified by

X*

s *

A * ; *

R (*, *)

The system X* is ‘inconsistent’, in the sense that all types are inhabited. This result 
is known as Girard’s paradox (see for example, Barendregt, 1991). One may think 
that the inconsistency is caused by the circularity in *:*; however Girard (1972) also 
showed that the following system is inconsistent in the same sense

XU

S , A

A □ : A

R (*, *), (□, *), (□, □), ( A, □), (A, *)

Also, Coquand (1989) showed that XU minus the rule (A,*) is inconsistent.
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So far none of the rules was of the form (sx, s3, s3). In section 4 we encounter such 
rules (in order to represent first order but not higher order functions).

Without proof we mention that the subject reduction theorem holds for all GTSs. 
The unicity of types theorem does not hold for trivial reasons: there may be two 
axioms c :sx and c :s2. The following examples show the flexibility of the notion of 
GTS.

3.5 Examples (van Benthem Jutting)
Leaving out the definition mechanism, several members of the a u t o m a t h  family can 
be exactly described as GTSs. For a description of the systems, see van Daalen, 1980).

(i) The AUT-68 system is described by the following GTS

XAUT-68

The point is that one may form predicates over a set, but not abstract over them

A :* l-XAUT.<jg(A-»-*):A;
A • * )iaut-68(A^A^-*):A;
A : *, a : A, P : (A -> A *) ? aa ; * !
A : * H ^ ^ X F  : ((A -  A) -  A ). F(Xx : A . x)) : (((A -> A) -> A) -> A).

Note the correspondence between XAUT-68 and X-*.

(ii) The AUT-QE system is exactly described by the following GTS

XAUT-QE

S *, □ , A

A *, □

R (*, *), (*, □),

(□, *, A), (□, □ , A),

(*, A, A), (□, A, A)

A : *, a : A >-xaut-qe(^p  : (A — *). Pa) : ((A -> *)->*) ;

Note the correspondence between XAUT-QE and XP.

(iii) The PAL system, a subsystem of AUT-68, is exactly described as follows
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À.PAL

In this system À-abstraction is possible only in a restricted way at the ‘outside’. 
However, one may form arbitrary applications

A :* !“ âpal(A-^ A): A;
A :* ,a :A ,F :(A ^ A ) t- ,PALFa:A ;
A : *. G : (A — A ^  A), a : A, b : A f-^PAL Gab : A ;
A :* ,G :(A ^ A ^ A )  l -XPALÀb: AÀa: A .G a b :(A ^  A ^  A); 
A :* b \PALÀ G :(A -> A -> A )À b :A À a :A .G ab :(A -* A ^ A )^ (A ^ A ^ A ).

4 Propositions-as-types

In this section eight systems of intuitionistic logic are introduced—four systems of 
proposition logic and four systems of many-sorted predicate logic. The systems are 
the following

PROP proposition logic;
PROP2 second order proposition logic;
PROPrn weakly higher order proposition logic;
PROPco higher order proposition logic;
PRED predicate logic;
PRED2 second order predicate logic;
PREDco weakly higher order predicate logic;
PRED® higher order predicate logic.

All these systems are minimal logics in the sense that the only operators are and 
V. However, for the second and higher order systems the operations &, V and 3, 
as well as Leibniz’s equality, are all definable. Also in these systems one may put in 
the context a :(IT a:* .- '- 'a^ac) in order to obtain classical logics. Weakly higher 
order logics have variables for higher order propositions or predicates, but no 
quantification over them ; a higher order proposition has lower order propositions as 
arguments.

The systems form a cube as shown in fig. 3. This cube is referred to as the L-cube. 
The orientation of the L-cube as drawn is called the standard orientation. Each 
system L* on the L-cube corresponds to the system on the À-cube on the 
corresponding vertex (both cubes in standard orientation). The edges of the L-cube 
represent inclusions of systems in the same way as on the À-cube.

A formula A in the logic L, on the L-cube can be interpreted as a type [A] in the
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PROPco
/

PROP2

PROPœ 

P R O P -------

PRED2

PREDco

PREDco

PRED
Fig. 3

corresponding X4 on the X-cube. The transition Ai—► [A] is called the propositions-as- 
types interpretation of de Bruijn (1970) and Howard (1980), first formulated for 
extensions of PRED and XP. The method has been extended by M artin-Löf (1984), 
who added to XP types Sx : A . B corresponding to (strong) constructive existence and 
a constructor = a :A — A -^* corresponding to equality on a type A. Since Martin- 
Löf’s principle objective is to give a constructive foundation of mathematics, he does 
not consider the impredicative rules (□ ,* ).

This interpretation satisfies the following soundness result: if A is provable in 
PRED, then [AJ is inhabited in XP. In fact, an inhabitant of |A] in XP can be found 
canonically from a proof of A in PRED; different proofs of A are interpreted as 
different terms of type [AJ.

The propositions-as-types interpretation has been extended to several other 
systems (for example, see M artin-Löf 1984 and Stenlund 1972). In Geuvers (1988) 
it is verified that for all systems Li on the L-cube soundness holds with respect to the 
corresponding system Xj on the X-cube : if A is probable in L4 then [AJ is inhabited in 
Xj. Barendsen (1989) verifies that a proof D of such A can be canonically translated 
to [D] being an inhabitant of [AJ.

After seeing Geuvers (1988), it was realised by Berardi (1988; 1990) that the 
systems in the L-cube can be considered as GTSs. Doing this the propositions-as- 
types interpretation obtains a simple canonical form. We first give a description of 
PRED in its usual form, and then in its form as a GTS.

The soundness result for the propositions-as-type interpretation raises the question 
whether one also has completeness in the sense that if given a formula A of a logic 
Lt is such that [A] is inhabited in Xt then A is probable in L4.

For the proposition logics this is trivially true, for PRED completeness with respect 
to XP is proved by M artin-Löf (1970), Barendsen and Geuvers (1989) and Berardi 
(1990) (see also Swaen 1989). For PREDco completeness with respect to XC fails, as 
is shown by Geuvers (1989) and Berardi (1990).

Many sorted predicate logic
4.1 Definition
The notion of a many sorted structure is defined by an example. The following 
sequence is a typical many sorted structure

sJ  =  <A, B,f, g, P, Q,c>
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with A, B are non-empty sets, the sorts of sé (we use the standard terminology ; in 
the context of GTSs it would be better to call A and B 1 types ’) ; f  : (A -> (A A)) and 
g :A ^ B  are functions; P ç  A and Q £  A x  B are relations; and ce  A is a constant.

4.2 Definition
Given the many sorted structure sé of Section 4.1, the language L v of minimal many 
sorted predicate logic over sé is defined as follows

(i) has the following special symbols

A, IB sort symbols;
P, O relation symbols ;
f,g  function symbols;
c constant symbol.

(ii) The set of variables of is

V = {xA I x variable} U {xB | x variable}.

(iii) The set of terms of sort A and of sort B, notation TermA and TermB respectively, 
are defined inductively as follows

xAeTerm A, xBeT erm B; 
ceT erm A;
se  Term A and teT erm A => f(s, t)eT erm A; 
s e TermA => §(s) e TermB.

(iv) The set of formulas of L^, notation Form, is defined inductively as follows

seT erm A, teT erm B => P(s), Q(s, t)eF o rm ; 
cp e Form, y  e Form => (cp -> \|/) e Form ;
<p e Form => (VxA. cp) e Form and (VxB. cp) e Form.

4.3 Definition
Let sé be a many sorted structure. The minimal many sorted predicate logic over sé , 
notation PRED = PRED rf, is defined as follows. If A is a set of formulas, then A I— cp 
denotes that cp is derivable from assumptions A. This notion is defined inductively as 
follows (C ranges over A and B, and the corresponding C over A , IB)

cpe r  => r  I— cp 
rH c p ^ -y , FI— cp =î> F I— \|/

r,cpH vy= > ri— cp^vy
Tl— Vxc .cp,teTerm c = > ri— cp[x:= t] 

r  I- cp, xc £ FV(r) => r  I- vxc . cp,

where [x:= t] denotes substitution of t for x, and FV is the set of free variables in a 
term, formula or collection of formulas.

For 0  I— cp one writes simply I— cp and one says that cp is a theorem.



These rules can be remembered best in the form of the following natural deduction 
form __________________________________________
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[<p]

tp—»I)/ <p ¥  .
V

VxC(p , t e TERMC ;
(p [X := t]

(D
. x f re s h .

Vxc cp

Some examples of terms, formulas and theorems are the following. The expressions 
xA, c,fl(xA,c) and f(c, c) are all in TermA; g(xA) is in TermB. Moreover

VxAP(fl(xA,x A)), (1)

VxA[P (xA) ^ P ( f ( x A,c)], (2)

VxA[P(xA) -> P (f(xA, c)] VxAP(xA) P(f(c, c) (3)

are formulas. The formula (3) is even a theorem. A derivation of (3) is as follows

[VxA[lP(xffl) -> P (f(xA, c))]]2  [VxAP(xA)] 1 
P (c )-» P (f(c , c)) P(c)

______P(ff(c, c)_____
___________ VxAP(xA) -» P (f(c , c)) _________
VxA[P (xA) -> P (f (xA, c))] VxAP(xa) P (f (c, c))

the numbers 1, 2 indicating when a cancellation of an assumption is being made. A 
simpler derivation of the same formula is

[VxAP(xA)] 1 
P (f(c , c)

[VxA(P (xA)-> P (f(x A,c )]2  VxAP(xA) P (f(c , c)) ^
VxA(P (xA) -  P (f(xA, €)) VxA(P (xA) -> P (f(c , €)) 2

Now we explain, first somewhat informally, the propositions-as-types interpretation 
form PRED into XP. First one needs a context corresponding to the structure s$l. This 
is r rf defined as follows (later T d is defined as little differently)

Tjy = A: *, B : *,
P :A ^ * ,Q :A ^ B ^ * ,  
f : A A -s- A, g : A ^  B, 
c: A.
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For this context one has

r ,h c :A  (O')
r rfH(fcc):A

1— [Fix : A . P(fxx)] : * (1')
r^ K [n x :A .(P x ^ P (fx c )) ] :*  (2')
Ty h- [[Tlx : A . (Px -» P(fxc))] -  [(Fix : A . Px) P(fcc)]] : *. (3')

We see how the formulas (1) to (3) are translated as types. The inhabitants of * have 
a somewhat ‘ambivalent’ behaviour, they serve both as sets (for example, A:*), and 
as propositions (for example, Px: * for x: A). The fact that formulas are translated as 
types is called the propositions-as-types (or also formulas-as-types) interpretation. The 
provability of formula (3) corresponds to the fact that the type in (3') is inhabited. In 
fact

r^ f -X p : [Fix : A . (Px P(fxc))] Xq : (ITx : A . Px). pc(qc) : 
lip  : [Fix : A . (Px — P(fxc))] ITq : (IIx : A . Px). P(fcc).

A somewhat simpler inhabitant of the type in (3'), corresponding to the second proof 
of the formula (3), is

XP : [Fix : A . (Px P(fxc))] Xq : (Fix : A . Px). q(fcc).

In fact, one has the following result, which at the moment we state informally (and 
which in fact, is not completely correct; therefore, no number is given to the item).

Theorem (soundness o f  the propositions-as-types interpretation)
Let sd be a many sorted structure and let cp be a formula of L^. Suppose

l-pRED<P with derivation D;
then

r^ l-^ p  [D] : [cp] : *,

where [D] and [cp] are canonical translations of cp and D, respectively.

Now we show that PRED can be viewed as a GTS, and then it follows that the map 
cp [cp] can be factorized as a composition of an isomorphism PRED -> XPRED and 
a canonical forgetful homomorphism XPRED ^ X P /

4.4 Definition (Berardi 1988)
PRED considered as a GTS, notation XPRED, is determined by the following 
specification

XPRED

s *s, *p, *f, Ds, Dp

A *s : Ds, *p : mp

R (*P; *P), (*s, *P), (*s, d p),

*S5 (*S, *f)
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Some explanations are necessary here. The sort *s is for sets (the ‘sorts’ of the many 
sorted logic). The sort *p is for propositions (the formulas of the logic will become 
elements of *p). The sort *r is for first order functions between the sets in *s. The sort 
□ s contains *s, and the sort [I]p contains *p. (There is no otherwise it would be 
allowed to have free variables for function spaces.) The rule (*p, *p) allows the 
formation of implication of two formulas

cp : *p, i|/ : *p I— (cp -*■ y) =  (TJx : cp. <|/) : *p.

The rule (*s,*p) allows quantification over sets:

A : *s, cp : *p (— ‘ (VxA. cp) ’ =  (IIx : A . cp) : *p.

The rule (*s, D p) allows the formation of first order predicates:

A :*s l—( A ^ * p) =  (Fix: A. *p): D p;
hence

A : *s, x : A, P : (A -> *p) t— Px : *p,

that is, P is a predicate over the set A.
The rule (*s, *s, *f) allows the formation of a function space between the basic sets

in *s A : *s, B : *s I— (A -> B) : *r ;

the rule (*s, *f, *') allows the formation of curried functions of several arguments in 
the basic sets A : *s H (A -> (A -> A)) : *f

This makes is possible to have, for example, g:A ->B  and f : (A ->■ ( A A ) )  in a 
context.

Now it is shown that A.PRED is able to simulate the logic PRED. Terms, formulas 
and derivations of PRED are translated into terms of À.PRED. Terms become 
elements, formulas become types and a derivation of a formula cp becomes an element 
of the type corresponding to cp.

4.5 Definition

Let s i  be as in Section 4.1. the canonical context corresponding to s i ,  notation r y, 
is defined by =  A :*S,B :* S,

P :B -> *p, Q : A ^ B ^ * p,
f:A -+ (A -* B ),g :A ^ B ,
c.B.

Given a term t e r v , the canonical translation o f t, notation [tj, and the canonical 
context for t, notation Tt, are inductively defined as follows

t It] r t
x^ X X : C

s c ( )

f (s, s') f  Is] [s'] r s u  r s-
g (s) g Is] r s
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Given a formula cp in L v, the canonical translation of <p, notation [cp], and the 
canonical context for cp, notation T are inductively defined as follows

<p Fcp
P(t) p[t] r,
Q (s, t) Q [s] t r s u  r t
Cpi —> CP2 I<PlJ —» ĉp, u  r<p2

>Ü>

nx:C . ]\|/j Fy- {x:C}

4.6 Lemma
(i) teT E R M A => r ^ ,  Tt H->PRED |tj : A; similarly for B.
(ii) <p 6 FORM => r rJ, b->PRED ([cp! : *p.

Proof
By an easy induction. ■
In order to define the canonical translation of derivations, it is useful to introduce 
some notation. The following definition is a reformulation of definition 4.3, now 
giving formal notations for derivations.

4.7 Definition
In PRED the notation ‘D is a derivation showing AI— tp’, notation D:Ab-cp, is 
defined as follows <p6 A=>P,:AI-cp;

D jiA l— <p->i|/, D ,: A I— cp => (Dj D 2):A I— y ;
D : A, cp I— y  => (Icp). D : A I- cp -> \\i ;

D : A I— Vxc . cp, t e TERM C => (Dt) : AI— cp[x : = t] ;
D : A I— cp, xc FV(A) => (GxcA) : D h- Vxc . cp.

Here C is A or IB, P stands for ‘projection’, Icp stands for introduction and has a 
binding effect on cp, and Gxc stands for ‘generalization’ (over C) and has a binding 
effect on xc.

4.8 Definition
(i) Let A = {cpj, ...,cpn} £  FORM. Then the canonical translation of A, notation r 4, 
is the context defined by

r i  =  r 9 iU ... u r , n.x , i :[cp1l, . . . ,x (Pn:[cpnl.

(ii) For D:AHcp in PRED the canonical translation of D, notation [D], and the 
canonical context for D, notation TD, are inductively defined as follows

D ID] r D

P<p X(p ( >

Dj Dj ]Di] :d 2. I 'd ,  ^  r D2

Icp • D t kxcp:*<pVD i] I 'd , -  1 x(p: 19- 1

Dt ]D] it] I 'd u  r t

Gxc . D Xx:C.]D] r D-{x:C }



4.9 Lemma
D : A 1 pRED *P ^  Fj,!, r 4 UFf U cpD I- iPRED [D] : [(pj.

Proof
By induction on the derivation in PRED. ■

The following lemma is a kind of converse lemma 4.9.

4.10 Lemma (K. Fujita 1989)
Suppose T I—, (>RED A : B : *p. Then there is a many sorted structure -sé, a set of formulas 
A £  L^, a formula cp e and a derivation D such that

r  =  r ^ ,  r 4 u r , u  r D,
A = [D], B EE [cp]
D:AI—PREDcp. I

The following result gives the soundness of the interpretation [ 1. Note, however, that, 
for example, a sentence cp, that is, FV(cp) =  0 ,  one has in general

PRED 9 ^  I- XPRED A : [Cp].

The reason is that logic is such that it assumes that the intended domains are non
empty. For example

(VxA. (Px -> Q)) ((VxA. Px) -> Q) 

is provable in PRED, but only valid in structures with A + 0 .

4.11 Definition
The extended context r t /  is defined by =  F v, a : A, b : B.

So, explicitly states that the domains in question are not empty. Now one does 
have completeness.

4.12 Corollary
(i) Let cp be a formula and A be a set of formulas of L^. Then

d  : a h~pred cp -<=> r* .  r Au r ^ u  r D h p̂red P-)] • [<pl-

(ii) Let A U {cp} be a set of sentences of La. Then

AI pRED cp <=> r ^ ,  Ta I xpRED M ■ IÎ Pl some M.

(iii) Let cp be a sentence of L^. Then

PRED̂  F ̂  \ 'xpRED M • Ĥpl•

Proof
(i) By definition 4.9 and 4.10, and the fact that [] is injective on derivation and 
formulas.
(ii) If the members of A and cp are without free variables, then

D : A I prEd <P U r D H-XPRED [D] : [cp]
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A statement in r D is of the form x:C. Since T^l— a: A ,b :B one has 

AI prEd 9 ̂  D : A t~PRED cp
3D r s/, r Au r D i xPrED P i  : i<pl

<=> 3M r ^ ,  F a I— XPRED M : [cp].

(For the last => take M = [D ][x,y:=  a,b]; for <= use lemma 4.10).

(iii) By (ii), taking A =  0 .  ■

The system XPRED is also flexible enough to cover so-called free logic with empty 
domains as developed by Peremans (1949) and Mostowski (1951); simply work in 
context instead of 

Now that it has been established that PRED and XPRED are isomorphic, the 
propositions-as-types interpretation from PRED to XP can be factorized in two 
simple steps : from PRED to XPRED via the isomorphism and from XPRED to XP 
via a canonical forgetful map.

4.13 Definition (propositions-as-types interpretation)
(i) Define the forgetful map 11 : term (XPRED) -» term (XP) be deleting all superscripts 
in * and □

*s I—► *
*p h-> *

□ Ŝ D
□ pi-*

for example, |Xx:*‘\x |  = Xx:*.x. Write |T| =  {xx: |Ax| , ...} for T = {Xji A ls ...}.
(ii) Let s /  be a signature and let t, cp, A and D be, respectively, a term, a formula, a 
set of formulas and a derivation in PRED formulated in L^. Write

[t] =  I [tj I ;
[<p] =  I [<pl I ;
[D] = I [D] I ;
[A] =  |F+,|, |Fa|.

4.14 Corollary (Soundedness for the propositions-as-tvpes interpretation)
(i) T I—xPRED A: B => [r| H-XP|A| : |B|.
(ii) For sentences A and cp in LA one has

D : A 1 prEd <P => [A] f-^p M : [cp], for some M.

Proof
(i) By a trivial induction on derivations in XPRED.
(ii) By corollary 4.12 (ii) and (i). ■

As was remarked before, the converse, completeness for the propositions-as-types 
interpretation holds for PRED and XP, but not for PREDco and XC.
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4.15 Theorem (Berardi 1989; Geuvers, 1989)
Consider the similarity type of the structure sé =  <A>, i.e. there is one set without any 
relations. Then there is in the signature of sé  a sentence cp of PREDco such that

P̂REDioV
but for some M one has

H xcM:[cp],
Proof sketch (Bernardi)
Define

EXT s  n p  : * n p ' : *. [(p <-* p') -> n Q  : * -> *. (Qp -*■ Qp')] 
cp s  EXT 1A does not have exactly two elements ’

Obviously, (/-PREDu<p. Claim: interpreted in XC one has

E X T i f  A is non-empty, then A is a type-free A-model’.

The reason is that if a: A, then

I— (Xx : (A -> A ). a) : ((A -> A) A)
and always

(- (Xy : AXz : A . z) : (A (A A)),

therefore, ‘ A <-► (A -> A) ’ and since ‘ A =  A ’ (that is, there is a bijection from A to A), 
it follows by EXT that ‘A s  (A -+A )’, that is, ‘A is a type-free X-model’.

By the claim A cannot have two elements, since only the trivial X-model is 
finite. ■

The counterexample of Geuvers is technically simpler, but intuitively somewhat 
more complicated; it is also related to the statement EXT.

The definition of the other systems in the /.-cube is now given. After having seen 
the equivalent between PRED and ÂPRED, each system is described directly as a 
GTS and not as a more traditional logical system.

4.16 Definition
(i) Systems A.PROP, A.PROP2, XPROPra and XPROPco are the GTSs specified as 
follows

XPROP

s *P, DP

A *p : qp

R (*p, *P)

XPROP2 = /UPROP + (np, *p)
S *p, Dp

A *p : Dp

R (*P; *P)> (q P, *P)



XPROPço = XPROP + (□p, mp)

S *p, Dp 

A *p, Dp 

R (*p, *p), (Dp, Dp)

XPROPco = XPROP + (Dp, *p) + (n p, Dp)

S *p, Dp 

A *p, Dp

R (*p, *p), (Dp. *p), (Dp, Dp)

(ii) Systems XPRED, XPRED2, XPRED® and XPREDco are the GTSs specified as 
follows
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XPRED

s *p, *s, *f, D p, Ds

A *p, Dp, *s, n s

R (*p, *p), (*s, *p), (*s, Dp) 

(*s, *s, *f), (*s, *f)

XPRED2 = XPRED + (mp, *p)

S *p, *s, *f, D p, Ds

A *p, Dp, *S,D S

R (*p, *P), (*s, *P), (*s, nP) 

(*s; *s) *f); (*s5 **) 

(□ p, *p)

XPREDco = XPRED + (Dp, QP)

S *p, *s, *f, np, d s

A *p, Dp, *s, Ds

R (*p, *P) (*s, *P), (*s, n p) 

(*s( *s; *f)5 (*s,*f, *f) 

(□p, Dp)
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XPREDco = XPRED + (d p, *p) + (Dp, Dp)

S *p, *s, *f, mp, Ds

A *p, g p, *s, ms

R (*P, *P) (*s, *P), (*s, □?)

(*s5 *s; (*s; *f)

(□p, *p), (Dp, Dp)

The eight systems form a cube as shown in fig. 4.

XPROP2

XPROPco
y /

XPRED2

XPREDco

XPROPco/  —
XPROP--------

-  XPREDco 
/

XPRED

Fig. 4

Since the description of these GTSs is more uniform than the original description 
of the logical systems, this cube will be considered as the L-cube. In particular, fig.
4 displays the standard orientation of the L-cube, and each L, (ranging over XPROP, 
XPRED, etc.) corresponds to a unique system \  on the similar vertex in the X-cube 
(in standard orientation).

4.17 Theorem (soundness o f the propositions-as-types interpretation)
Let L, be a system on the L-cube, and let X{ be the corresponding system on the 
X-cube. The forgetful map 11 that erases all superscripts in the *s and D s satisfies the 
following

T I—L A : B : s : ■IHK |A|:|B|:|s|. (4)

Proof
By a trivial induction on the derivation in L,. ■
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As is well-known, logical deductions are subject to reduction (for example, see 
Prawitz 1965; or Stenlund 1972). For example, in PRED one has

\ D|
¥

(p—>\|/ m
------- 1-------- = (Xcp.DO D2

¥

and

—>ß D^cp — D2] =

¥

¥
Vx . i)/

¥ [ x  :=  t]

= (Gx . D)t

— Dj[x — t] =

If the deductions are represented in XPRED, then these reductions become ordinary 
ß-reductions

[(Xcp. D t) D J  =  (Xx : [cp]. [D J) [D2] [D J [x : =  [D J] = [DJx : = D J] ;
[(Gxc . D) t] = (Xx : C . [D]) [t] [D] [x : =  [t]] =  [D[x : =  t]]

In fact, the best way to define the notion of reduction for a logical system on the 
L-cube is to consider that system as a GTS subject to ß-reductions.

Now it follows that reductions in all systems of the L-cube are strongly normalizing.

4.18 Corollary
Deductions in a system on the L-cube are strongly normalizing.



Proof
The propositions-as-types map

11 : L-cube X-cube

preserves reduction; moreover, the systems on the X-cube are strongly normal
izing. ■

In Leivant (1989) interesting use has been made of the propositions-as-types 
interpretation concerning the representation of data types.

The following example again shows the flexibility of the notion of GTS.

4.19 Example (Geuvers 1990)
The system of higher order logic in Church (1940) can be described by the following 
GTS

XHOL

S *, □, A 

A * : □ ,□ :  A 

R (* ,* ),(□ ,* ),(□ ,□ )

That is XHOL is Xco plus □  : A. The sound interpretation of XPREDco in XHOL is 
determined by the map given by *P (—► *

*si-» □

□ 8i-+A.

Geuvers (1990) proves that completeness holds for this interpretation.
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