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Introduction to generalized type systems

HENK BARENDREGT
Catholic University Nijmegen, The Netherlands

Abstract

Programming languages often come with type systems. Some of these are simple, others are
sophisticated. As a stylistic representation of types in programming languages several versions
of typed lambda calculus are studied. During the last 20 years many of these systems have
appeared, so there is some need of classification. Working towards a taxonomy, Barendregt
(1991) gives a fine-structure of the theory of constructions (Coquand and Huet 1988) in the
form of a canonical cube of eight type systems ordered by inclusion. Berardi (1988) and
Terlouw (1988) have independently generalized the method of constructing systems in the
A-cube. Moreover, Berardi (1988, 1990) showed that the generalized type systems are flexible
enough to describe many logical systems. In that way the well-known propositions-as-types
interpretation obtains a nice canonical form.

Capsule review

This paper presents a possible classification for the simplest class of typed systems: only
R-reduction is considered, and the only type constructors are n and First, various
Automath-like typed systems are analysed, with a brief presentation of their main properties
(subject reduction, unicity of types and strong normalization).

This analysis suggests rather naturally the notion of generalized type systems which provide
a neat notation for describing the ‘propositions-as-types’idea. The relevance of this notation
is shown by the fact that it allows us to sharply express new problems, as the relative
completeness of various interpretations, or to state concisely and precisely type-theoretic
results (for instance, the exact formalism in which Girard’s paradox is derived).

1 Introduction

In several programming languages types are assigned to expressions (occurring in
a program) in a way that may be compared to dimensions assigned to entities in
physics. These dimensions provide a partial correctness check

2 Volt+ 3 Ampére

is definitely wrong; the equation
= me
is consistent at least from the point of view of dimensions, since both sides are
expressed in kg.m2.sec-2.
The analogy between types and dimensions is not perfect. A physical entity always
has a unique dimension. Expressions in programming may have more than one type.

5 FPR 1



126 Henk Barendregt

This is the case when implicit (or Curry style) typing is allowed : the expression Ax.x
denoting the identity function obtains all types A for A an arbitrary type. We
write (ax.x): (A A)

which should be pronounced as ‘lambda x dot x in A arrow A’, and has as its
intended meaning that ‘for each (element) a in A the application (Xx.x)a is also in
A’ (which is intuitively true, since (Ax.x) a = a). Examples of programming languages
with this style of typing are ML (Milner 1984) and Miranda (Turner 1985).

There is also another paradigm, the explicit or Church style of typing, in which each
correct expression has exactly one type. Now there are several versions of the identity
function 1A= Ax A X
and this one has as its unique type A “mA. Examples of languages with explicit typing
are LCF (Gordon et al. 1979) and TALE (Barendregt and van Leeuwen 1985).

During the last 20 years many systems have appeared for typing lambda calculi,
both in the style of Curry and that of Church (see Barendregt (1991) for a survey).
In this paper we give some flavour of a class of systems a la Church using the
following methodology : Only the simplest versions ofa system are considered; that is,
only with R-reduction, but not with, for example r\-reduction\ only with types built up
using -> and N, not using, for example, x or I. As will be seen, the systems become
complicated anyhow. (For a discussion on types in programming languages see
Cardelli and Wegner (1985); Reynolds (1985) and Barendregt and Hemerik (1990).)

2 A finestructure of the theory of constructions

Recently a quite powerful typed lambda calculus has been introduced by Coquand
and Huet (1988). The system is called ‘the theory of constructions’, and is denoted
here by AC. By analysing the way in which terms and types are built up, a fine-
structure of this system is given, consisting of eight systems of typed lambda calculi
forming under inclusion a natural cube with oriented edges (see fig. 1). Each edge ->
represents the inclusion relation £. This cube is referred to as the X-cube.

Most of the systems in the >.-cube are known, albeit in a somewhat different form.
The system X ” is the simply typed lambda calculus (Church, 1940). The system X2
is the polymorphic or second order typed lambda calculus, and is a subsystem of the
system F introduced by Girard (1972). It has been introduced independently by
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Reynolds (1974). The system Xw is essentially the system Fco of Girard (1972). System
XP corresponds reasonably to one of the systems in the family ofautom ath languages
(see de Bruijn, 1980): System AP also appears under the name LF in Harper et al.
(1987), System XP2 is studied by Longo and Moggi (1988) under the same name.
System AC is one of the versions of the theory of constructions introduced by
Coquand and Huet (1988), and system A is related to the polyrec system studied
by Renardel de Lavalette (1985). System APco seems not to have been studied before.
(For A®and APm read ‘weak tao’ and ‘weak XPco’, respectively.)

Before defining the X-cube, it is useful to describe informally some ideas which play
a role in the various systems.

The first informal idea is the construction of function space types. If A and B are
types, then A ->B is the type of functions from A to B. So, if F :(A->B) and x:A, then
(Fx):B.

The second idea is that of dependency. Types and terms are mutually dependent;
there are

e terms depending on term;
« terms depending on types;
« types depending on terms;
* types depending on types.

Some explanation is necessary here. Terms depending on terms are extremely
common :
FM

is a term that depends on the term M. A term depending on a type is the identity on
A IA= XX:A . X
A type depending on a term is, for example,

An-B
(with n a natural number) defined by
A°"B = B;
Antl->B = A~A(An~B).

And a type depending on a type is, for example,

. A-*A
for A a given type.

Once there are types depending on terms one may introduce cartesian products.
Suppose that for each a;A a type B, is given, and that there is an element ba:Ba, Then

we may want to form the function
Xa:A .ba

that should have as type the cartesian product
rTa: A. Ba

of the Bas. Once these product types are allowed, the function space type of A and

B can be written as
(A"MB) = ITa:A.B(= BA informally),
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where a is a variable not occurring in B. This is similar to the fact that a product of
equal factors is a power n
nbi becomes bn

i-1
provided that bj = b for 1~ i~ n. So by using products, the type constructor -> can
be eliminated.
The next idea has to do with the formation of types. For some simple systems the
types are - so to say - given in the metalanguage. For example, if one has informally
constructed a type A, then one can formally derive

HAa:A.a) (A >A).

Since in the /.-cube terms and types are mutually dependent, one moves the formation
of types from the metalevel to the formal system itself- the idea comes from the
autom ath languages of de Bruijn (1970). To do this a constant * is introduced that
is the sort of all types; then “A: *’is a statement expressing ‘A is a type’. A sentence
in the meta language like

‘if A is a type, then so is A->A"

now becomes a formal type derivation
A*HA->A):*

Here A stands for a variable, and since it is in *, one can say that A is a type variable.
For each of the four dependencies one may want to introduce function abstraction

Xm:A.Fm): (A" B);
Xa:*. 1,):(ITa:*. (a->a));
(A.N:W.An"B ) :f\J"*;
(tax: *.a ->a) :(*->-*).

Now what is * *? Probably not a type, because then one should have (*-»*):* and
this may lead to contradictions. Therefore, one introduces a new ‘sort’ O, the sort
of all kinds, and postulates that *: O and (*->*):0. The inhabitants of *->*, like
our F, are called constructors. Similarly, one postulates (N

The expression (na:*.(a->a)) being a cartesian product of types will also be a
type, so (Flot:*. (a->a)) :*. Since it is a product over all possible types a, including the
one in statu nascendi (that is, (IToc:*.(oi”0i)) is among the types in *), there is an
essential impredictativity here.

We now start to define the cube of type lambda calculi.

2.1 Definition
(i) The system of the tacube are based on a set of pseudo-terms 3T defined by the
following abstract syntax

ST —x |¢j 3~2T |AX:HT2T jux :2T2T
where x is the category of variables and c that of constants.
(i) On 2T the notions of B-conversion and B-reduction and defined by the following
contraction rule (tac:A.B)C B[x: = C]
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(iii) A statement is of the form A:B with A, BeJ. A is the subject and B is the
predicate of A:B. A declaration is of the form x:A with A eJ and x a variable. A
pseudo-context T is a finite ordered sequence of declarations, all with distinct subjects.
The empty context is denoted by <). If T = (x*Aj, ...,xn:An>, then

r,x:B = <Xj:Aj, ..., xn:An,x:B>.

Usually we do not write the <).
(iv) The rules of type assignment will axiomatize the notion

r HA: B

stating that A :B can be derived from the context T. Pronounce F b-A:B as 'T yields
A in B

The rules are given in two groups: (1) the general rules, valid for all systems of the
A-cube ; and (2) the specific rules, differentiating between the eight systems. Two of
the constants in C are selected and given the names *and O. These two constants are
called sorts. Write S = {*, 0} and let s, s? s2range over S.

(1) General axiom and rules.
Axiom

Start rule
TI—A:s
F x At—x'A’ w”"ere x 's f-fresh (x does not occur in T).
Weakening rule

r —A:B rhC:s
rx:.Cl—A:B

where x is ]i'-Fresh.

Application rule
r +F:(Fix:A.B) Th-a:A
rH(Fa):B[x:= a] '
Conversion rule
n—A:B Ti—B :s B=RB/
TI—A:B'

(2) The specific rules are all introduction rules, and are parametrized by two sorts.
Let sb5s, e S. Consider the following pair of rules

(Sj, 82 rules
n-rule D-A" rx:Ah-B:s,
r —(Fix:A .B):s2
A-rule

Th-AiSj r,x:Ahb:B r,x:Al—B:s,
r h- (Xx:A .b) :(Fix:A.B)

(v) The eight systems of the X-cube are defined by taking the general rules plus a
specific subset of the set of rule pairs {(*,*), (*,O), (O0,*), (O, O0)}
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**
12 =>% (0.
A *7
AD &% O oo
Xp * ™ (*.0)
XP2 >* OB (*.0)
APco (> %) (0.0) (*;o)
APco=AC (X% (O%) (*,0)

The A-cube will usually be drawn in the following standard orientation (see fig. 2). The
inclusion relations are left implicit.

APcq = XC

XPco

Fig. 2

Notation
(i) Derivability for a system ~ is denoted by TI—XA:B. If there is no danger of
confusion, or if a statement holds for all systems, then we simply write Tt—A:B.
(i) (A"*B) = (lix:A.B) with x<EFV(B). This follows the intuition given before.
(iii) r t- A:B:C means TH A:B and T —B:C.

The rule pairs have the following meaning, as will become clear after studying the
examples in section 2.7

(*,*) allows forming terms depending on terms;
(O, *) allows forming terms depending on types;
(*,0) allows forming terms depending on terms;

(O0,0) allows forming terms depending on types.

2.2 Definition
Consider derivability in one of the systems of the A.-cube.
(i) Let THA:B. Then A and B are called (legal) terms and T is called a (legal)
context.
(i) Let TI—A:B:*. Then A is called an object and B a type.
(iii) Let TI1- A:B:0O. Then A is called a constructor and B a kind.
It can be shown that a term is an object, a type, a constructor, a kind or a sort. The
only overlap is that all types B are also constructors (indeed B:*:00).
We state some properties about the systems in the A-cube.
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2.3 Church-Rosser Theorem for ST
Let A, B, Then

(i) [A-»B& A-»B'] =3Ce™'[B-»C&B"'-»C].
(i) A=pB=>3Celr[A-»C&B-»C].

Proof

Proofs of the Church-Rosser theorem for A generalize to -T (see Barendregt and
Dekkers, 1990). =

The following generalizes a result due to Curry et al. (1958); see de Vrijer (1975) and
van Daalen (1980) for the result in type systems.

2.4 Theorem (subject reduction for the X-cube)
For any system in the X-cube one has
THAB&A-»pA'=F I-A":B.

Proof
See Barendregt (1991) or Geuvers and Nederhof (1991). m=m

The following result is due to Coquand. A nice modular proof using the edges of the
X-cube is due to Geuvers and Nederhof (1991).

2.5 Theorem (strong normalization for the X-cube)
For any system in the X-cube one has

T A :B=>A and B are strongly normalizing,
that is all B-reductions starting with A or B terminate.

Proof
See Barendregt (1991) or Geuvers and Nederhof (1991). =

The following result is folklore.

2.6 Theorem (unicity of types)
For any system in the X-cube one has

rJ-A:B&rh-A:B'=>B =pB-.

Proof
See Barendregt (1991) or Geuvers and Nederhof (1991). =

Some derivable type assignments in the X-cube

We end this subsection by giving for each of the systems in the X-cube some examples
of type assignment. The reader is invited to carefully study these examples in order
to gain some intuition in the systems of the X-cube. Some of the examples are followed
by a comment {in brackets}. In order to understand the intended meaning for the
systems on the right plane in the X-cube (that is, the rule pair (*,0) is present), some
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of the elements of * have to be considered as sets and some as propositions. The
examples show that the systems in the X-cube are related to logical systems and form
a preview of the propositions-as-type interpretation described in section 4. Names of
variables are chosen freely, in order to follow the intended interpretation.

2.7 Examples
(i) In X the following can be derived
A*HA A)*;
A:* (Xa:A.a):(A->A);
A:* B:* b:Bb-(Xa:A.b):(A"B);
A:* b:AH((Xa:A.a)b):A;
A:*B: c:A/b:Bh-((Xa:A.b)c):B;
A: B:*b-(Xa:AXb:B.a):(A->(B" A)):*

(i) In X2 the following can be derived

a:*h—(Xa:cc.a):(e->a);
—Xa:*Xa:a.a):(Fla:*. (a a)):*;
A:*1-(Xa:*Xa:a.a)A:(A A);
A:* b:Al- (ko.:*Xa:a.a) Ab :A;

of course the following reduction holds

(Xa:*Xa:a.a) Ab “m(Xa:A .a)b
“b.

The following two examples show a connection with second order proposition logic
b- (XB:*Xa:(lloc:*.a).a((lla:*.a) ->R)a) : (1B :*. (lia:*.a)-*R).

{For this last example one has to think twice to see that it is correct; a simpler term
of the same type in the following; write 1 = (Fla:*.a), which is the second order

definition of falsum.
}/ H(XRB:*Xa:x.aB):(I1B:*.£-*R).

{The type considered as proposition says: ‘ex falso sequitur quodlibet’; the term in
this type is its proof.}

(iii) In Xoo the following can be derived
b-(Xa:*.a->a):(*->*): O
{(Xa:* .a™a.) is a constructor mapping types into types};

RB:*H—Xa.:*.a->a)R:*;
B: x:BHMXy:B.x):(Xa:*.a a)B

{note that (Xy\R.x) has type B -mR in the given context}

a:* f:*->*f(fa):*;
a:*p- (Xf:* * f(foc)) :(*->*)-*e*

{in this way higher order constructors are formed}.
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(iv) In XP the following can be derived

A* (A->7%):Q
{if A is a type considered as set, then A ->* is the kind of predicates on A}
A:*P:(A *,a:AtPa:*

{if A is a set, aeA and P is a predicate on A, then Pa is a type considered as
proposition (true if inhabited ; false otherwise)}

A:*P:(A>A *)(ITa:A .Paa):*

{if P is a binary predicate on the set A, then Vae A Paa is a proposition}
A:*P:(A->%),Q:(A-** I—(lia:A.(Pa->Qa)):*
{this proposition states that the predicate P considered as a set is included in the
predicate Q) A;.,P:(A™.)H(na: A.(Pa~Pa)):.
{this proposition states the reflexivity of inclusion}
A:* P:(A-m*) <(Xa:AXx:Pa.x):(lia:A.(Pa->Pa)):*

{the subject in this assignment provides the ‘proof’ of reflexivity of inclusion}

A:* P:(AN*), Q:*

H((na:A.Pa-*Q)"(na:A.Pa)-Q):*
A:*P:(A->%),Q:*a0:A

1- (Xx:(ITa:A .Pa-mQ) Xy:(ria: A .Pa).xal(ya0) :
(Nx:(Lia:A.Pa Q) (lly:(Fla:A.Pa). Q ) =
(Ita:A.ParQ )" (L1a:A.Pa)"Q

{this proposition states that the proposition (Va6 A .Pa->Q)->(V aeA .Pa)is
true in non-empty structures. A; notice that the layout explains the functioning of
the /.-rule; in this type assignment the subject is the ‘proof’ of the previous true
proposition; note that in the context the assumption a0:A is needed in this proof.}

(v) In Xoo the following can be derived. Let a& R = ny:*.(a” B-*y)-*-Y, then
ct: P:*Fa& B:*

{this is the ‘second order definition of &’ and is definable already in X2}. Let
AND = Xa:*XB:*.a& B and K = Xa:*XB:*Xx:aXy:B.x, then

FAND :(*->e%-%%),
K :(lia:*lR:*.a R" a).

{Note that cc&B and K can be derived already in X2, but the term AND cannot}
a:* B:*+—Xx:AND af.xa(KaR)):(AND aR ->a) :*

{the subject is a proof that AND alR * a is a tautology}.
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(vi) In XP2 {corresponding to second order predicate logic} the following can be
derived

A: *,IE’:(A’\ *) h- (Xa: A .Par- _L):A->*
A:*P:i(A~>A N *) h-[(ITa:AITb:A .Pab” Pba_L) -*(ITa: A.Paa- L)]:*
{the proposition states that a binary relation that is asymmetric is irreflexive}.
(vii) In XPra the following can be derived
A*—XP:(A->A->*)Xa:A.Paa) ((A->A->*) (A *):0O

{this constructor assigns to a binary predicate P on A its ‘diagonalization "}

I-(XA:*XP:(AMNAN*)Xa:A.Paa):(ITA:*nP:(A-"A**)na:A.*):n
{the same is done uniformly in A}.
(viii) In XPcu = XC the following can be derived
h- (XA :*XP: (A ->*)Xa:A.Pa LD :(ITA:*. (A->*) >(A->%):[J

{this constructor assigns to a type A and to a predicate P on A the negation of P}. Let
ALL = (XA:*XP:A —*.ITa:A .Pa); then
A: P:(A>*1-ALLAP:*and (ALLAP) =,,(na:A.Pa)

{universal quantification done uniformly}.

Exercises
1. Define -i = Xa:*.a->1. Construct a term M such that in Xco

a:*B:*HM :((a->RB)->(>R->-ma)).
2. Find an expression M such that in XP2
A:*P:(AMNAN*h-M:[(Ila:AITb:A .Pab”" P b a 1)~ (lia: A.Paa” )]:*.
3. Find a term M such that in XC

A: P:(A" *),a:AM:(ALLAP" Pa).

3 Generalized type systems

The method of generating the systems in the X-cube has been generalized
independently by Berardi (1988) and Terlouw (1988). This resulted in the notion of
a generalized type system (GTS). Many systems of typed lambda calculus & la Church
can be seen as GTSs. Subtle differences between systems can be described neatly using
the notation of GTSs.

One of the successes of the GTS notion is concerned with logic. In section 4 a cube
of eight logical systems is introduced. The systems on this ‘logic cube’ are in a
one-to-one correspondence with the systems on the X-cube. There is a canonical
translation A [A] for sentences A such that for a logic Lscorresponding to a system
X, on the X-cube one has
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for some M canonically depending on the proof of A in Lt; here T is some natural
context corresponding to the signature of the language in which the logic L4 is
formulated. This result is the so called ‘propositions-as-types’ interpretation. As was
observed by Berardi (1988), the eight logical systems can each be described as a GTSs
in such a way that the propositions-as-types interpretation obtains a canonical simple
form.

Another reason for introducing GTSs is that several propositions about the
systems in the X-cube are needed. The general setting of the GTSs makes it nicer to
give the required proofs.

The generalized type systems are based on the same set of pseudoterms 2T for the
X-cube. We repeat the abstract syntax for 3T

2T = x|c|y .T |Xx:ST2T |fix :3T2
Let C be the set of constants in .T.

3.1 Definition
A specification of a GTS consists of a triple S = (S, A, R) where

1. Sis a subset of C, called the sorts.
2. A is a set of axioms of the form c:s, with ceC and se S.
3. R is a set of rules of the form (s1 s2s3), with §j, s2 s3eS.

3.2 Definition

The GTS XS determined by the specification (S, A, R), notation XS = X(S, A, R), is
defined as follows. Statements and pseudo-contexts are defined as for the X-cube. The
notion of type derivation T kxsA :B (we often just write T A :B) is defined by the
following axiom and rules

Axiom .
<>l-=c:s, if(c:s)eA.
Start rule
rt—A:s
where x is fresh.
F . x:Ahx:A”’ ere s 1Tes

Weakening rule

r —B:C Th-A:s .
,  where x is fresh.
rx: AHB:C

Application rule
ri—F:(rix:A.B):s Tt-a:A

ri—(Fa):(B[x:= a])
Conversion rule
r—A:B rt-B''s B~*B'
ri—A:B'
ri-rule
Fh A:Sj rx:Al-B:s,

h j R.
TE(lIx:A.B):s3 ' here (siszs3e
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A -rule

D-A.-Sj T,x:AKB:s2 T,x:Akb:B
,  Wwhere (s1s,,s3eR for some s3.
T H(Xx:A.b):(ITx:A .B)

In the above we use the following conventions

s ranges over S the set of sorts;
X ranges over variables;

‘x is fresh’ means that x does not occur in T, A, B or C.

The proviso B =pB' in the conversion rule is not decidable. However, it can be
replaced by the decidable condition

B'-“3R or B~pB'

without changing the set of derivable statements.

3.3 Definition

(i) The rule (s”s,) is an abbreviation for (s1(s,, s,). In the A.-cube only systems with
rules of this simpler form are used.

(i) The GTS X(S, A,R) is called full if

R = {(s1,s2)|sls,eS}.
(iii) If T —A:B:s, then we say that A is an element of type B; if F —B:s, then B is
a type ofsort s.

3.4 Examples
(i) AP2 is the GTS determined by

S= {0}
A= {*0}
R={(*).@*).(*.0)}e

Specifications like this will be given more stylistically as follows: AP2 = X(S, A ,R)
with XV2

S * 0O
A *:0
R (*,*).(0,%),(*.0)
(i) XC is the full GTS X(S, A, R) with
XC
s * O
A * 0O

R (=), (d, ®), (~0), @, 0)
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(iii) A variant XC' of XC is the full GTS X(S, A, R) with

XC'
S *p, O
A 0O, *p O

R S2, that is all pairs

(iv) X-*is the GTS determined by

xX—
S * 0O
A *:0
R *, ™)

(v) A variant of X-* called XTin Barendregt (1984—Appendix A) is the GTS
determined by

X
S *
A 0:*
R *™

The difference with X-> is that in XTno type variables are possible. One only has
constant types like 0,070,070 0,... and variables for elements in these types.

(vi) The system X* in which * is the sort of all types, including itself, is specified by

xX*
S *
A *,*
R *, %

The system X* is ‘inconsistent’, in the sense that all types are inhabited. This result
is known as Girard’s paradox (see for example, Barendregt, 1991). One may think
that the inconsistency is caused by the circularity in *:*; however Girard (1972) also
showed that the following system is inconsistent in the same sense

XU
S JA
A O:A
R ** 06" 0GoD (AD), A

Also, Coquand (1989) showed that XU minus the rule (A,*) is inconsistent.
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So far none of the rules was of the form (sx s3 s3). In section 4 we encounter such
rules (in order to represent first order but not higher order functions).

Without proof we mention that the subject reduction theorem holds for all GTSs.
The unicity of types theorem does not hold for trivial reasons: there may be two
axioms c:sxand c:s2 The following examples show the flexibility of the notion of
GTS.

3.5 Examples (van Benthem Jutting)
Leaving out the definition mechanism, several members of the automatn family can
be exactly described as GTSs. For a description of the systems, see van Daalen, 1980).

(i) The AUT-68 system is described by the following GTS
XAUT-68

The point is that one may form predicates over a set, but not abstract over them

A KA A-»-*)A;

As* Jaut-68(ANAN-*):A;

A*a:AP:(A>A % ?aa;*!

AFHANXF ((A- A)- A).FOXX:A X)) ((A->A)->A) ->A).

Note the correspondence between XAUT-68 and X-*.

(i) The AUT-QE system is exactly described by the following GTS

XAUT-QE
S * 0, A
A *0

R (5.0,
@ *A), @ 0 A,
AAOCAA

A% a:A >-xautge(p (A —*). Pa) (((A ->*)->%);
Note the correspondence between XAUT-QE and XP.

(iii) The PAL system, a subsystem of AUT-68, is exactly described as follows
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APAL

In this system A-abstraction is possible only in a restricted way at the ‘outside’.
However, one may form arbitrary applications

A*Fapal(A-NA): A,

A:*a:AF:(AMA)t- PALFa:A;

A:*G:(A—A"™ A),a:A b:Af"PALGab :A;

A:* G:(AMANA) I-XPALAD: AAa: A .Gab: (AN AN A);
A:*b\PAAG:(A->A->A)Ab:AAa:A.Gab:(A-*A*A)MNANANA).

4 Propositions-as-types

In this section eight systems of intuitionistic logic are introduced—four systems of
proposition logic and four systems of many-sorted predicate logic. The systems are
the following

PROP  proposition logic;

PROP2 second order proposition logic;

PROPrn weakly higher order proposition logic;

PROPco higher order proposition logic;

PRED predicate logic;

PRED2 second order predicate logic;

PREDco weakly higher order predicate logic;

PRED® higher order predicate logic.

All these systems are minimal logics in the sense that the only operators are  and
V. However, for the second and higher order systems the operations &, v and 3,
as well as Leibniz’s equality, are all definable. Also in these systems one may put in
the context a:(ITa:*.-"-'a®ac) in order to obtain classical logics. Weakly higher
order logics have variables for higher order propositions or predicates, but no
quantification over them ; a higher order proposition has lower order propositions as
arguments.

The systems form a cube as shown in fig. 3. This cube is referred to as the L-cube.
The orientation of the L-cube as drawn is called the standard orientation. Each
system L* on the L-cube corresponds to the system on the A-cube on the
corresponding vertex (both cubes in standard orientation). The edges of the L-cube
represent inclusions of systems in the same way as on the A-cube.

A formula A in the logic L, on the L-cube can be interpreted as a type [A] in the
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/ PROPco PREDco
PROP2 PRED2
PROPe PREDco
PROP----—--- PRED
Fig. 3

corresponding X4on the X-cube. The transition Ai—»[A] is called the propositions-as-
types interpretation of de Bruijn (1970) and Howard (1980), first formulated for
extensions of PRED and XP. The method has been extended by Martin-L6f (1984),
who added to XP types Sx :A .B corresponding to (strong) constructive existence and
a constructor =a:A —A-~* corresponding to equality on a type A. Since Martin-
Lo6f’s principle objective is to give a constructive foundation of mathematics, he does
not consider the impredicative rules (O,*).

This interpretation satisfies the following soundness result: if A is provable in
PRED, then [AJ is inhabited in XP. In fact, an inhabitant of |A] in XP can be found
canonically from a proof of A in PRED; different proofs of A are interpreted as
different terms of type [AJ.

The propositions-as-types interpretation has been extended to several other
systems (for example, see Martin-L6f 1984 and Stenlund 1972). In Geuvers (1988)
it is verified that for all systems Lion the L-cube soundness holds with respect to the
corresponding system X on the X-cube: if A is probable in L4then [AJ is inhabited in
Xj. Barendsen (1989) verifies that a proof D of such A can be canonically translated
to [D] being an inhabitant of [AJ.

After seeing Geuvers (1988), it was realised by Berardi (1988; 1990) that the
systems in the L-cube can be considered as GTSs. Doing this the propositions-as-
types interpretation obtains a simple canonical form. We first give a description of
PRED in its usual form, and then in its form as a GTS.

The soundness result for the propositions-as-type interpretation raises the question
whether one also has completeness in the sense that if given a formula A of a logic
Lt is such that [A] is inhabited in Xt then A is probable in L4

For the proposition logics this is trivially true, for PRED completeness with respect
to XP is proved by Martin-L6f (1970), Barendsen and Geuvers (1989) and Berardi
(1990) (see also Swaen 1989). For PREDco completeness with respect to XC fails, as
is shown by Geuvers (1989) and Berardi (1990).

Many sorted predicate logic
4.1 Definition

The notion of a many sorted structure is defined by an example. The following
sequence is a typical many sorted structure

S\] = <Av Blfl gv PY Q7C>
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with A, B are non-empty sets, the sorts of sé (we use the standard terminology ; in
the context of GTSs it would be better to call A and B ltypes”); f:(A->(A A)) and
g:A”"B are functions; P¢ A and Q £ Ax B are relations; and ce A is a constant.

4.2 Definition

Given the many sorted structure sé of Section 4.1, the language Lv of minimal many
sorted predicate logic over sé is defined as follows

0] has the following special symbols

A, IB sort symbols;

P, O relation symbols;
f.,g  function symbols;
c constant symbol.

(if) The set of variables of is
V = {XAlx variable} u {xB|x variable}.

(iii) The set of terms of sort A and of sort B, notation TermAand TermBrespectively,
are defined inductively as follows

XAeTermA xBeTermB;

ceTermA

se TermAand teTerm A=>f(s,t)eTermA;
seTermA=>8§(s)e TermB.

(iv) The set of formulas of L”, notation Form, is defined inductively as follows

seTermA teTermB=>P(s), Q(s, t)eForm;
e Form, y e Form =>(p->\[/)e Form ;
e Form => (VxA.q)e Form and (VxB.q)e Form.

4.3 Definition

Let sé be a many sorted structure. The minimal many sorted predicate logic over sé,
notation PRED = PRED rf, is defined as follows. If Ais a set of formulas, then A @
denotes that qis derivable from assumptions A. This notion is defined inductively as
follows (C ranges over A and B, and the corresponding C over A, IB)

cper =r @
rHcp”™-y, Fl—@3>F +V/
r,cpHvy=>ri—cp~vy
Tl—Vxc.cp,teTermc=>ri—cp[x:= ]
r1- @ XCEFV(r) =>r I- vXC. g

where [x:= t] denotes substitution of t for x, and FV is the set of free variables in a
term, formula or collection of formulas.

For 0 pone writes simply @ and one says that @ is a theorem.
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These rules can be remembered best in the form of the following natural deduction
form

[
tp—»l) <P ¥
\Y
VxC(p ,te TERMC; © . x fresh.
(X =1 VXc @

Some examples of terms, formulas and theorems are the following. The expressions
xA c,fl(xAc) and f(c, c) are all in TermA; g(xA is in TermB. Moreover

VXAP (fI(XA, X A), (€Y}
VXAIP (xA)MP (f(xAc)], 2)
VXAIP (xA) -> P (f(xA, c)] VXAP(xA) P(f(c, c) €)

are formulas. The formula (3) is even a theorem. A derivation of (3) is as follows

[VXA[IP(xf) -> P (f(xA, c))]]12 [VXAP(xA)] 1
P(c)-»P(f(c, c)) P(c)
_ P(ff(c, )
VXAP (xA) -» P (f(c, c))
VXAP (xA) -> P (f(xA,c))] VxAP(xa) P(f(c,c))

the numbers 1, 2 indicating when a cancellation of an assumption is being made. A
simpler derivation of the same formula is

[VXAP (xA)] 1

P (f(c, ¢)
[VXA(P (xA)->P (f(xA,c)]2 VXAP(xA) P(f(c,c)) ~»
VXA(P (xA) - P(f(xA €)) VXAP(xA)->P(f(c, €) 2

Now we explain, first somewhat informally, the propositions-as-types interpretation
form PRED into XP. First one needs a context corresponding to the structure s3l. This
is r 1f defined as follows (later Td is defined as little differently)

Ty = A: %, B:*
P:AN* Q:ANBA"™,
f:A AsA g:A™B,
c. A
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For this context one has

r,hc:A ©)
r rfH(fcc):A

HFix:A .P(fxx)] : * 19
rK[nx:A.(Px"P(fxc))]:* 2"
Ty h- [[TIx:A . (Px-» P(fxc))] - [(Fix:A .Px)  P(fcc)]] : ™ 39

We see how the formulas (1) to (3) are translated as types. The inhabitants of * have
a somewhat ‘ambivalent’ behaviour, they serve both as sets (for example, A:*), and
as propositions (for example, Px: * for x: A). The fact that formulas are translated as
types is called the propositions-as-types (or also formulas-as-types) interpretation. The
provability of formula (3) corresponds to the fact that the type in (3') is inhabited. In

fact
rrf-Xop: [Fix:A.(Px  P(fxc))] Xq:(ITx:A .Px).pc(qc) :
lip :[Fix:A .(Px—P(fxc))] ITq:(11x :A.Px).P(fcc).

A somewhat simpler inhabitant of the type in (3"), corresponding to the second proof
of the formula (3), is

XP:[Fix:A .(Px P(fxc))] Xq:(Fix:A .Px).q(fcc).

In fact, one has the following result, which at the moment we state informally (and
which in fact, is not completely correct; therefore, no number is given to the item).

Theorem (soundness of the propositions-as-types interpretation)
Let sd be a many sorted structure and let @ be a formula of L~. Suppose

I-pRED<P with derivation D;
then

r*1-"p [D] :fod] %,

where [D] and [go] are canonical translations of g and D, respectively.

Now we show that PRED can be viewed as a GTS, and then it follows that the map
@ [o can be factorized as a composition of an isomorphism PRED ->XPRED and
a canonical forgetful homomorphism XPRED X P/

4.4 Definition (Berardi 1988)
PRED considered as a GTS, notation XPRED, is determined by the following
specification

XPRED
S *s, *p, *f, Ds, Dp
A *s:Ds, *p:mp
R (P; *P), (*s, *P), (*s, d p),
*$  (*s )
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Some explanations are necessary here. The sort *sis for sets (the ‘sorts’ of the many
sorted logic). The sort *pis for propositions (the formulas of the logic will become
elements of *p). The sort *ris for first order functions between the sets in *s. The sort
O s contains *s, and the sort [I]p contains *p. (There is no otherwise it would be
allowed to have free variables for function spaces.) The rule (*p, *p) allows the
formation of implication of two formulas

@:*p, il *p Hop-my) = (TIx:cp.<4):*p.
The rule (*s,*p) allows quantification over sets:
A*s, @ p (VKA. " = (HIXC:A @) *p.
The rule (*s, D p) allows the formation of first order predicates:

A:*sA"*p = (Fix: A. *p): Dp;
hence
A*s, XA, P (A ->*p) +PX :*p,
that is, P is a predicate over the set A.
The rule (*s, *s, *f) allows the formation of a function space between the basic sets

in *s A *s,B:*sA ->B) :*r;

the rule (*s, *f, *") allows the formation of curried functions of several arguments in
the basic sets A:*sH (A->(A->A)) :*f

This makes is possible to have, for example, g:A->B and f:(A-m(AA)) in a
context.

Now it is shown that A.PRED is able to simulate the logic PRED. Terms, formulas
and derivations of PRED are translated into terms of APRED. Terms become
elements, formulas become types and a derivation of a formula qgbecomes an element
of the type corresponding to q

4.5 Definition

Let si be as in Section 4.1. the canonical context corresponding to si, notation r vy,
is defined by = A:*SB:*§

P:B->*p,Q :A~B "*p,

f:A-+(A-*B),g:A"B,

c.B.

Given a term te rv, the canonical translation of t, notation [tj, and the canonical
context for t, notation Tt, are inductively defined as follows

t It] rt

XN X x:C

s ¢ ()

f(s, ) fls] [s1] rsu rs-

g g ls] rs
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Given a formula @ in Lv, the canonical translation of {4 notation [cp], and the
canonical context for gy notation T are inductively defined as follows

P Fp

P(t) plt] r\

Q(S,t) Q[S]t rsurt
Gi > <Pl —» @u <
VA=Y nx:C . Nj Fy- {xC}

4.6 Lemma
(i) teTERMA=r", TtHFRD|tj :A; similarly for B.
(i) P6FORM =>r ]  b->FRED(q : *p.

Proof
By an easy induction. =

In order to define the canonical translation of derivations, it is useful to introduce
some notation. The following definition is a reformulation of definition 4.3, now
giving formal notations for derivations.

4.7 Definition
In PRED the notation ‘D is a derivation showing Al—tp’, notation D:Ab-cp, is
defined as follows 6 A=>P:Al-cp;

DjiAl—p->i|/, D,: Ap=(DjD2:A I;
D:A @ty =>(Icp).D :Al- p->\i;
D :AHVxc.q te TERMC= (Dt) :Al—g[x:= {];
D:Arq xc FV(A) =>(GxcA):D h-Vxc.q
Here C is A or IB P stands for ‘projection’, Iop stands for introduction and has a
binding effect on gy and Gxc stands for ‘generalization’ (over C) and has a binding
effect on xc.

4.8 Definition

(i) Let A= {og,...cpr}£ FORM. Then the canonical translation of A, notation r 4,
is the context defined by

ri =r9iU... ur,nx,i:cpl,...,x Ffcpr.

(i) For D:AHcp in PRED the canonical translation of D, notation [D], and the
canonical context for D, notation TD, are inductively defined as follows

D ID] rD

Pp Xp (>

Dj Dj 1Di] :d 2 I'd, N rD2
IpeDt kxcp:*<pVD i] I'd,- x(p: 19-1
Dt 1D] it] I'd urt

Gxc .D Xx:C.]D] rD-{x:C}



146 Henk Barendregt

4.9 Lemma

D:Al pREDP" Fjl, r4UFf UgD} iPRED[D] : [(p].
Proof
By induction on the derivation in PRED. =

The following lemma is a kind of converse lemma 4.9.

410 Lemma (K. Fujita 1989)

Suppose T+ (RDA :B:*p. Then there is a many sorted structure -s¢, a set of formulas
A£ L”, aformula e and a derivation D such that

r=r",rd4ur,u r D,
A = [D], B EE o]
D:Al—-PRED}p |

The following result gives the soundness of the interpretation [ L Note, however, that,
for example, a sentence @, that is, FV(cp) = 0, one has in general

FREDY ~ b XEREDA [

The reason is that logic is such that it assumes that the intended domains are non-
empty. For example

(VXA.(Px->Q))  ((VXA.Px)->Q)
is provable in PRED, but only valid in structures with A + 0.

4.11 Definition
The extended context rt/ is defined by = Fv,a:A, b:B

So, explicitly states that the domains in question are not empty. Now one does
have completeness.

4.12 Corollary
(i) Let be a formula and A be a set of formulas of L”. Then

d :ahpred@<>r*.r Aur™u r Dh “pred P-)] o[-
(i) Let Au{g}be a set of sentences of La. Then

Al RDp<>r™, Tal xREDM sirA some M.
(iii) Let @ be a sentence of L*. Then

PRED" FA\ YREDM oHYle
Proof

(i) By definition 4.9 and 4.10, and the fact that [] is injective on derivation and
formulas.

(i) If the members of A and @ are without free variables, then

DAl prd®P Ur DHXRDID] : [o]
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A statement in r Dis of the form x:C. Since TAl—a: A ,b:B one has

Al prid9” D :At~PRDp
3Drs/,r AurDi XEDP i il
<>3M r?, Fal=>FRDM : [oo].

(For the last =>take M = [D][x,y:= a,b]; for <= use lemma 4.10).
(iii) By (ii), taking A= 0. =

The system XPRED is also flexible enough to cover so-called free logic with empty
domains as developed by Peremans (1949) and Mostowski (1951); simply work in
context instead of

Now that it has been established that PRED and XPRED are isomorphic, the
propositions-as-types interpretation from PRED to XP can be factorized in two
simple steps: from PRED to XPRED via the isomorphism and from XPRED to XP
via a canonical forgetful map.

4.13 Definition (propositions-as-types interpretation)
(i) Define the forgetful map IL:term (XPRED) -» term (XP) be deleting all superscripts
in *and O
*Sp*
*ph_)*
os*D
O pi-*

for example, [Xx:*Ax| = Xx:*.x. Write |T| = {xx:|AX,..} for T = {XjiAls..}.
(i) Let s/ be a signature and let t, g Aand D be, respectively, a term, a formula, a
set of formulas and a derivation in PRED formulated in L”. Write

[0 =10k
[ = 1
[D] = 1[D] I
[A] = |F+], IFal.

4,14 Corollary (Soundedness for the propositions-as-tvpes interpretation)
() THFRDA: B=[r| HXPA|:|B|.
(if) For sentences A and @in LAone has

D :A1l pred P=>[A] f-"p M :[cp], for some M.

Proof
(i) By a trivial induction on derivations in XPRED.
(i) By corollary 4.12 (i) and (i). m

As was remarked before, the converse, completeness for the propositions-as-types
interpretation holds for PRED and XP, but not for PREDco and XC.
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4.15 Theorem (Berardi 1989; Geuvers, 1989)
Consider the similarity type of the structure sé = <A>, i.e. there is one set without any
relations. Then there is in the signature of sé a sentence @ of PREDco such that

PREDioV
but for some M one has

HxcM:[cp],
Proof sketch (Bernardi)

Define

EXT s np:*np":*. [(p<*p") ->nQ :*->* (Qp-mQpH]
@s EXT 1A does not have exactly two elements’

Obviously, (/-PREDuq Claim: interpreted in XC one has
EXTif Aisnon-empty, then A is a type-free A-model’.

The reason is that if a: A, then

HXx:(A->A).a):(A->A) A)
and always
(- Xy:AXz:A.2):(A (A A)),

therefore, ‘A <»(A ->A) "and since ‘A = A’ (that is, there is a bijection from A to A),
it follows by EXT that ‘A s (A-+A)’, that is, ‘A is a type-free X-model’.

By the claim A cannot have two elements, since only the trivial X-model is
finite. =

The counterexample of Geuvers is technically simpler, but intuitively somewhat
more complicated; it is also related to the statement EXT.

The definition of the other systems in the /.-cube is now given. After having seen
the equivalent between PRED and APRED, each system is described directly as a
GTS and not as a more traditional logical system.

4.16 Definition
(i) Systems A.PROP, A.PROP2, XPROPra and XPROPco are the GTSs specified as
follows

XPROP
S *P, DP
A *pigp
R (*p, *P)

XPROP2 = /UPROP + (Np, *p)
S nDp
A *n:Dp

R (*P; *P)>(a P, *P)
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XPROP¢o = XPROP + (Op, mp)
S "pDp
A *p, Dp

R (0P, Op.Dp

XPROPco = XPROP + (Dp, *p) + (np,Dp)
S *p, Dp
A *p, Dp

R (o (Op.*p). (Op.Dp)

(if) Systems XPRED, XPRED2, XPRED® and XPREDco are the GTSs specified as
follows

XPRED
S *p, *s, *f, Dp, Ds
A *n, Dp, *s,n s
R (*p.*p), (*s,*p), (*s, Dp)
(*s, *s, *f), (*s, ™)

XPRED2 = XPRED + (mp, *p)
S *p, *s, *f, Dp, Ds
A *p, Dp, *SD S
R (p. *P), (*s, *P), (*s, nP)
(*s; *s) *); (*s5 )

(Cp, *p)

XPREDco = XPRED + (Dp, QP)
S *p,*s, *f, N ds
A *p, Dp, *s, Ds
R (p. *P) (*s, *P), (*s,n p)
(*s(*s; *f)5(*s,*f, *f)
(©p, Dp)
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XPREDco = XPRED + (dp, *p) + (Dp,Dp)
S *p, *s, *f, mp, Ds
A *P, g p, *s,ms
R (*P, *P) (*s, *P), (*s,00?)
(*s5*s;  (*s;  *)
(©p, *p). (Dp, Dp)

The eight systems form a cube as shown in fig. 4.

XPROPco ) XPREDco

y
XPROP2 XPRED2
XPI?OP(Q -/ XPREDco
XPROP-------- XPRED
Fig. 4

Since the description of these GTSs is more uniform than the original description
of the logical systems, this cube will be considered as the L-cube. In particular, fig.
4 displays the standard orientation of the L-cube, and each L, (ranging over XPROP,

XPRED, etc.) corresponds to a unique system \ on the similar vertex in the X-cube
(in standard orientation).

4.17 Theorem (soundness of the propositions-as-types interpretation)
Let L, be a system on the L-cube, and let X{ be the corresponding system on the

X-cube. The forgetful map ILthat erases all superscripts in the *sand D ssatisfies the

followi
oflowing THLA:B:s: mIHK |A[[B:[s|. @)

Proof
By a trivial induction on the derivation in L,, =
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As is well-known, logical deductions are subject to reduction (for example, see
Prawitz 1965; or Stenlund 1972). For example, in PRED one has

\' D
¥
(—\ m
., T — = (Xcp.DO D2
—D"cp —D2] =
¥
and
¥
= .D
Vx i) (Gx "
¥[x =1
— Dj[x —t] =

If the deductions are represented in XPRED, then these reductions become ordinary
R-reductions

[Kep.Dt)DJ = (Xx:[cp].[DJ) [DY [DJ[x:= [DJ] = [DIx:=DJ];
[(Gxc.D)t] = (Xx:C.[D]) [f]  [D] [x:= [t]] = [D[x:= t]]

In fact, the best way to define the notion of reduction for a logical system on the
L-cube is to consider that system as a GTS subject to B-reductions.

Now it follows that reductions in all systems of the L-cube are strongly normalizing.

4.18 Corollary
Deductions in a system on the L-cube are strongly normalizing.
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Proof
The propositions-as-types map

1 L-cube  X-cube

preserves reduction; moreover, the systems on the X-cube are strongly normal-
izing. m

In Leivant (1989) interesting use has been made of the propositions-as-types
interpretation concerning the representation of data types.

The following example again shows the flexibility of the notion of GTS.

4,19 Example (Geuvers 1990)

The system of higher order logic in Church (1940) can be described by the following
GTS
XHOL

S * 0O, A
A *:O,0: A

R (*/*).(3,%),(0.,0)

That is XHOL is X0 plus O :A. The sound interpretation of XPREDco in XHOL is
determined by the map given by P

*Si-» 0

O 8i-+A.

Geuvers (1990) proves that completeness holds for this interpretation.
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