Supplement to:
The key to blame: Gradual typing meets cryptography

Jeremy Siek

Indiana University, USA
jsiek@indiana.edu

1. Examples of \B

Example programs (1)—(7) from Section 2.1 and 2.2 of the paper
are worked out in detail in Figures [T} 2] and 3] Readers interested
in following the details may wish to begin with Figure 8] which is
simpler than the other two. We write —"" to indicate the result of
n reduction steps.

2. Type Safety of \B
Lemma 1. I[fVX.A < B, then A[X:=%] < B.

Proof. We proceed by induction on VX.A < B.

e Case| A’ < VY.B’ |(where A" = VX.A):

We have VX.A < B’. By the induction hypothesis, A[X:=%] <
B’. Therefore, A[X:=«] < VY.B'[Y].

e Case| VX.A< B |
We have A[X:=x] < B, which completes this case.

e Case (where A’ = VX.A):

We immediatley have A[X:=+] < .
O

Lemma 2 (Subject Reduction). If X+ M : A and M — N,
then X - N : A.

Proof. The proof is by cases on M —— N. Many of the cases are
trivial or standard. We give the cases that are novel or non-trivial.

o Case’ AX V)X —V ‘:
We immediately have ¥ - V' : A.

(V:A 5B=2CoD)W
— VW:C=%4):B=%D

We have A'=B <? C—D. So C <% A’ and B <% D.
Thus, the RHS also has type D = A.

e Case

(V:VX.A =% VX.B) X
— VX:A=%B

We have VX. A" <? VX.B, so A <% B. Also, we have
YV X : A’ sothe RHS has type B = A.

e Case| (V: AL VXB)X+—V:A L Bj

We have A’ < VX.B, so A’ < B. Thus, the RHS has type
B=A.

. Case’ V VXA £ Br— (Vx): A[X:=«] = B ‘:
We have VX.A” < B, so A’[X:=+] < B by Lemmall| Thus,
the RHS has type B.

e Case

Philip Wadler

University of Edinburgh, UK
wadler@inf.ed.ac.uk

O
Definition 3. Well-typed contexts, written ¥ > € : B = A, are
defined in the usual way.
Lemma 4 (Decomposition). If X = M : A, then either

1. M=V,

2. M = &'[blame p],

3. M =E&va:=A".N'), or

4. M =¢&[M']and M' — N'.

where all primed variables are existentially quantified.

Proof. The proof is by induction on M : A.

o[—————————] PickV'tobec.
Tk c:type(c)

op : A5B I'FM:A
C'+op(M):B

If M are all values, then we have op(V) — [op] (V) (We
require the primitive operators to be type safe.) Pick &' = [J,
M’ = op(V),and N’ = [op](V) to conclude.
If one of M is not a value, let M; be the first such. Then either
M; = &{[blame p'| or M; = E1[M;] and M] — Nj. Either
way, we pick & = op(V,&{, M) In the first case we have
Y > &'[blame p’] — ¥ F blame p’. In the second case we
have ¥ > &' [M]] — T F E'[N]].
A:tp TZo:AFN:B
. P_.% Pick V' to be (Az:A. N[z]).
' (A\z:A.N): A— B

I''X:tp-V:B .
. P Pick V' to be (AX. V).
' (AX.V):VX.B
A:tp ' X:=AFN:B X ¢B
' (vX:=A.N): B
We satisfy the third option by picking & = .
T'FL:A—-B TH+FM:A
T+ (LM):B
» If L and M; are values, then pick & = O and M’ =
(L My). By canonical forms, L is in one of the following
forms:
1. L = \z:A. Ny,
2.L=V:A B =% A B,or
3.L=V:A'-B = A—B.
In each of these cases, a reduction rule applies, so we have
M’ — N’ for some N'.

2016/7/7

Example 1 two = (AX.Nf: X=X Ae:X. f (f z))

twox = (Af: X=X e:X. f (f x))

inc® = [Az.z + 1]
inc* 7" = (A% [z +1])

two* = (two : VX.(X X)X X =5 %)
o > [two™ inc™ 0]
L o (((two : VX.(X X)X X =55 « E2 5i) inc®) : « =2 x—%) [0]
— o (((two * 1 (x—3%)— % =k =% % T2 43) inc?) : k =% x—x) [0]
L o (X = two X : (X=X) XX X (ki) = % ox) 1 (kk) = ok =+ 2B ses) inc®) 1 % 2%) [0]
— Xi=+D> (((two X : (X—=X)—>X—-X X (k%)= * —>k Y *—k) inct) 1k =% x—r) [0]

— Xi=# (((twox : (X—=X) XX B (ki) 5 =k £ 1 *—rx) inc*) : x == x—>%) [0]

— Xi=+D> (((twox : (X—>X)>X—X X (k%)= * —* N == *—r%) inc*) 1 x =% x—sx) [0]
— Xe=+1 (((twox : (X>X) X=X E2 (ko) o % o £ *—k) inc*) s x = x—k) [0]

— Xi=+D (((twox : (X=>X)=>X—>X X (k—x)— * —%) (inc* : == *—rk)) 1k £ 22 *—x) [0]

— Xi=x b ((twox (inc* : % =% *—k == X5X)) : XX 25 sk L5 5« 22 55) [0]
) ((inc* % =5 x4 =5 X5X)) 2) : XX 22 i 25 5 2 55) [0]

A:U:X.(inc*:*%*—)*gX%X) (

Az X, (inc” 1 % = *—x = X X)) ((inc* : % = x>+ = X5 X)) 2) : X=X 22 55 [0]

Az X (inc” 1 x =% x—k =5 X5X)) ((inc* : % = x—% == X X))) ([0] 1 => X)) : X =2
et % = x—k = XX) ’mc*:*%*ﬁ*_:)gXHX)) ([o] :*_:X>X)):X+:X>*

NC* : * = x—k = X=X

(

(

(

()
() =
(inc* : = xox = X—X)

()

()

(

(

(

((

((Inc ™" 1k 22 % =5 %yx == X X)) ([0] : % = X)) : X 22 &
((inc*™* 1 vk =% X X)) ([0] 1+ == X)) : X 22 &
((
((

*

et % =k = XX mc*—**([()];*’:X>X+:X>*));**:X>X));X+:X>*
inc** [0]) 1+ == X)) : X 22 &

et s x = k—k = X X)) ([1] 1% == X)) : X 25 «

. —¢ - X
mne’ k= x—x —= X—X

)
)
)
)
)

L Xima i (07 14—k 22 % =% hk == X X)) ([1] 1% == X)) 1 X 2= «
— Xi=k D (((ine" 7" xox == X5 X)) ([1] 1+ == X)) : X 2 &

— Xi=xp> inc*%*([l]:*ng*))::*ng*

Example 2
o > [two* 0 inc™]
1 X > ([0 % =% 4k == X X)) (([0] 1 % =2 x4 == X5 X)) (inc* : % => X)) : X =5 «
L Xo=a > ((([0] 1 % = %=k == X X)) ((0: num =2 5+ =5 x4 =2 X X)) (inc® : % = X)) : X =5 «
— X:=%[>blame —/¢

Figure 1. Example, untyped code with typed component

= If L is a value but not M;, then we apply the induction
hypothesis for M; : A to obtain a decomposition £” of
M; and then pick &' = (L &").

= If L is not a value, then we apply the induction hypothesis
for L : A — B to obtain a decomposition £&” of L and then
pick & = (&" My).
I'FL:VX.B X:=AeTl

'-(LX):B

* If L is a value, then pick & = Oand M’ = (L «). By

canonical forms, L is in one of the following forms:
. L=(AX.V"),

2. L=V':VYX.A=% VX.B,or
3.L=V': A= vVX.B.

In each of these cases, a reduction rule applies, so we have
M’ — N’ for some N'.

= If L is not a value, we apply the induction hypothesis to
obtain a decomposition £ of L and then pick &' = (£ a).

M :A TFHA<®B

't (M:A=%B): B

= If M, is a value V, we proceed by cases on A <® B.
1. Case ¢ <? v
Pick & =Dand M’ = (V : 1 =% 1).
VitV

2. Case A1 — Ay <® B1— Bo:
(V:A1—A =2 B, —By) is a value.

2016/7/7

Example 3
two™ = [Af. Az. f (f z)]

two* ™ = (Afix. [Az. f (f 2)])
e > two num inc 0
= oD (two™ : % =4 VX.(X—X)—X—X) num inc 0

X:=num > (two* : % £ (X—=>X)»X—>X X (num—num)—num—num) inc 0

X:=num >

Fwor T s £ 4 A (X=5X)=»X—=X = (num—num)—num—num) inc 0

. -X -4 ¢ X
(inc : num—num = X X =) : x = X—X == num—num) 0
. -X -4 -4 ¢ X
two*™* (inc : um—num => XX —% k—x —= %) : * == X—X == num—num) 0
A -X —¢ —¢ ¢ X
(inc : num—num == X —X =5 x—* — *) : x —> X —X == num—num) 0
. —-X —¢ —¢ “+n
.(inc : num—num == X =X = %% => x == *x—r*)

two = (two™ : x == VX.(X > X)X —X)

inc = (Aznum. z + 1)

o > (vX:=num.(two* : % £ VX (X=X)»X—=X) X (X—=X)» X=X X (num—num)—num—num) inc 0

¢ ¢ X ,
1wo* " kx 2B % Eo sk 5 (X5 X)X X 25 (nun—snum) —num—snum) inc 0

N
£ (
— (
— (
— X:=num > (((fwo* ™™ : x—x £ (X—=X)—>X—X) (inc : nun—num =X X—=X)): X=X X num—num) 0
— (
— (
— (
— (

. —X — — 14 X
((inc : nun—num =5 XX =5 % —% % =2 x—%) 7)) | x4 =L % =5 X —X = num—snum) 0

4 -X —¢ —¢ ¢ X
((inc : num—num == XX =5 x—% = * =2 x—%) 7)) : *—% == X=X == num—num) 0

(
(
—2 X:=num > ((A\z: % . (inc : num—num XXX =5 s =5+ 22 *—%)
(
(

. -X —0 —¢
(inc : num—num == X X =% %% —o % =% *—k)

((mc:num—>num7:X>X—>Xé>*—>*é>*§>*—>*)w)) (0:num7:X>X££>*)):*£Z>X+:X>num

— X:=num > ((inc : nun—num =X XX =5 e =5 8 *—rk)
((inc : num—num =3 XX =5 x—k =5 + =2 x—#) (0: num == X =5 %)) : &

—* X:=num > ((4nc : num—num = XxoHx = *—k)

((inc(O:nm%X%*%X%nm)):nm%Xé*)):*%X%nm

—2 X:=nun > ((
(

(
— X:=num > (
(

) -X 4 ¢ X -X —¢ ¢ X
—2 X:=nun &> (inc (1 : num == X =5 x == X 2= pum)) : num == X =5 + == X 25 num

. -X —¢ ¢ X
—? X:=num > (inc 1) : num = X =% + =% X &5 num
X —¢ ¢ X
— X:=num> 2:num — X =% x == X == num
—2 X:=num > 2

Example 4

o> ([AfA2.2] 1 % =5 VX (X5 X)X —X) num inc 0
—19 Xe—num > ((Az: . [2]) : *—x £ xox 2 num—num) 0
—? X:=num> ((A2:x. [2]) (O:num_:X>X£Z>*) =5 X EX num

¢
— X:=num> [2] : % =5 X == num
L X—num> 2 num 22« =5 X X num
— X:=num[> blame +¢

¢ X
2L x X num

mc:num—>num_:X>X—>X£Z>*—>*) ((incO):num_:X>X£Z>*)):*£e>X+:X>num
mc:numﬂnumfzx;X%Xé*ﬁ*)(l:num%X%*)):*;@Xgnum

Figure 2. Example, typed code with untyped component

3. Case VX.A <% VX.B:
(V 1 VX.A =2 VX.B) is a value.
4. Case X <*¥ B:

So V : X and by canonical forms, V =V’ : B 7:X> X.

Pick &’ =Oand M’ = (V' : B=> X %2 B).
v :B=2xXEB)— Vv

5. Case A <~ X:
(VA =X X) is a value.

6. Case X <% X:

Pick &’ =Uand M' = (V :
(V:X%

7. Case x <% «:
Pick £’ =Oand M' = (V

=2).

Vix=*)+r—V

2016/7/7

Example 5

[Az.x] : * %VX.X%X) num 1
Atk T) 1 h—k 22 % =5 VX X X)) num 1

def (

= ((

—r o> ((Az:*.x): *—>*£’>*£€>*—>*£e>VX.X—>X) num 1
((

o>
>

— e (Azi%.1) t k—x == VX.X—X) num 1

N (vX:=num.((Az: x.z) : *ﬁ*%VX.X—)X) X:X—>X +:X>num—>num) 1
— X:=num > (((Az: % .z) :*—>*£Z>VX.X—>X) X: X=X +:X>num—>num) 1
— X:=num > ((Az: % .2) : x—* =L XX Jr:X>num%num) 1

— X:=num > ((()\x:*.x):*—M%X—U() (1:num == X)) : X ££ num

— X:=num > ((Az: x.z) (1 :num_:X>X£Z>*)) k=% X EX pum

— Xo=num > 1 : num =% X =% » == X X pup

— X:=num > 1 : nun == X =% num

— X:=num > 1

Example 6

o> ([Az.2] : x =5 VX.X—X) num 1
&f o|>((/\a::*.2:num2>*):*—>*§>*£€>VX.X—>X)num1
—% X:=num > ((Az: % .2 : num =2 %) (1:nmé>X;>*)):*;e>X+:>(>nm
+n | 44 +X
— X:i=numD> Az:+.2:num — * — X == num

— X:=num > blame +/

Example 7

o> ([Az.z+1] 1 % =% VX.X—X) num 1
&f ol>((/\a7:*.((a::*£n>num)+1):num%*):*ﬁ*%*%VX.X%X)numl
—% X:=num > ((Az: % . ((z : x == num) + 1) : num == &) (1:nm;{>Xé>*)):*;é>X+:)(>nm
— X::numl>((1:num_:X>X£[>*2>num)+1):num£>*£l>X+:X>num

— X:=num > blame +m

Figure 3. Example, generators and conversion

= If M; is not a value, apply the induction hypothesis for Pick&' =0, M' =V :VX.A' =% B.
M to obtain a decomposition £” of M;j. Then we pick 5. X < X:
g =(E":A=%B). Pick & = Dand M’ = (V : X =& X).
'-Mi:A THA<B (V:X:p>X)|—>V
I'-(My: A= B): B 6. A<
— If A= G, then (V : G =% x) is a value.
— If A = «, then

= If M; is a value V/, we proceed by cases on A < B.
o<

Pick &' = Oand M’ = (V : 1 == 0).
Vi i—V
2. Ai—As < B1—DBo:
(V: Ai1—As = B —By) is a value.
3. A<VX.B"
— If A =VX.A’, then
V VXA £ Br— (V) : A[X:=+] = B
Pick ' =0, M' =V :¥X.A' = B.
— Otherwise, (V : A =% VX.B') is a value.
4.¥X.A' < B:

V VXA = Br— (V) : A[X:=+] == B

Vik== x—V

Pick& =Oand M’ =V : % == «.
— If A is not ground and not %, then

ViA=L x+—V 422602 «
Pick& =Oand M' =V : A = «.

7. x < B:
By canonical forms, we have V = (V' : G =% %).

— If B=H and G = H, then
V.G« Gc—V
Pick&' =Oand M’ =V : x = G.
— If B= H and G # H, then

V':G= x> H+— blanep

2016/7/7

Pick& =Oand M' =V : « =% H.
— If B = %, then
Vix= x—V
Pick & =Oand M' =V : % == %,
— If B is not ground and not «, then
Vik==Br—V:x=G=B

where G < B.Pick &' = Dand M' =V : « =
B.
= If M is not a value, the induction hypothesis for M; gives
us a decomposition £”, so we pick &' = (£ : A == B).

A:tp
blamep: A
We satisfy the second option, picking &' = .

O

Lemma 5 (Context Inversion). If X > E[M]: A, then ¥ > M : B
and ¥ > € : B = A for some B.

Lemma 6 (Plug). I[f X > M : Band ¥ > &€ : B = A, then
Y EM]: A

Proposition 7 (Type safety).

LIFYS>M:Aand¥> M — X' > M then X' > M’ : A
2. If¥ > M : A then either
e M=V
e M = blame p’
eX>M—Y 1M
where all primed variables are existentially quantified.

Proof.

1. The proof of the first part (preservation) is by cases on ¥ >
M—3Y>M.
Y E[M] — X E[M] ‘
We have X - M; : Band ¥ - £ : B = A for some
B by Lemma Then ¥ - M; : B by Lemma (subject
reduction). We conclude that & - £[M{] : A by Lemma@
Y > Eblame p] — ¥ Dblamep‘
We immediately have > - blame p : A.
S EpXi=A'N] — %, X=Ar £[N]]
We have X > vX:=A"N : Band X > € : B = Aby
Lemma So we also have ¥, X:=A' > N : B. Then we
weaken the context to get 3, X:=A' > € : B = A and
conclude that 22, X:=A’ > £[N] : A by Lemmal6]
2. The proof of the second part (progress) is a direct result of
Decomposition (Lemma[d).

O

3. Blame Safety of \B

Figure [] presents three subtyping relations. Positive and negative
subtyping, A <:* B and A <:” B, characterise when a cast
A =P B can never result in blaming p or —p, respectively. Naive
subtyping, A <:, B, characterises when type A is more precise
than type B. All three relations are reflexive, and positive and naive
subtyping are anti-symmetric and transitive. All three relations
imply compatibility: if A <:™ Bor A <:~ Bor A <., B
then A < B. The definition of the subtyping rules is driven by
the corresponding rules for cast reductions.

Proposition 8 (Blame safety).

1. If M safepand ¥ > M — X' > M’ then M’ safe p.
2. If M safe p then ¥ > M —/~ ¥’ 1> blame p.

Proof. We proceed by caseson X > M — X' > M.

1. > E[Ml] — x> S[Nl} and M; — Nj.
We proceed by cases on M; — N;i. We focus our attention
on reductions that involve casts.
@V:ii=1r—V:
We immediately have V' safe p.
b)) (V:A=B =% C=D) W +— V (W :C = A):
B =% D:
eIf p # g and p # —q, then we immediately have
(C =% A) safe pand (B == D) safe p.
elf p = ¢ then A-B <:7 C—=D.So C <:= A
and B <:T D. Therefore (C => A) safe p and
(B =% D) safe p.
elfp = —q, then A»B <:~ C—D.So C <t A
and B <:~ D. Therefore (' =% A) safe p and
(B =% D) safe p.
© (V:A=%VXB)X+—V:A=% B:
Because (V : A == VX.B) is a value, we know that
A #VX.A.
e If p# gand p # —q, then (A == B) safe p.
eIfp = g, then A <:7 VX.B.So A <:™ B and we
conclude that (A == B) safe p.
eIfp=—q,then A <:~ VX.B.So A <:~ B and we
conclude that (A == B) safe p.
(d) V:VYX.A= B (V) : A[X:=+ == B:
eIf p # gand p # —q, then we have (A[X:=+] ==
B) safe p.
If p=gq,thenVX.A <:T B.
First, we show that A[X:=+] <:* B, considering two
cases. Suppose B = VX.B' for some X, B’. We have
VX.A <:* VX.B’ by one of the following two typing

derivations.
AlX:=«] <:t B’ A[X:=+] <:t B’
VX A<t B A[X:=+] <:T VX.B’

VX.A<:TVX.B VX.A<:TVX.B

In either case we have A[X:=«] <:* B’, from which
we can deduce A[X:=«] <:T B.
Suppose B # VX.B'. Then we immediately have
A[X:=+] <:T B.
We may now conclude that (A[X:=+] == B) safe p.
eIfp = —q then VX.A <:~ B.So A[X:=«] <:~ B
and therefore (A[X:=+] == B) safe p.
@V:X=LXr—V:
We immediately have V' safe p.
OV :ix=L x—V:
We immediately have V' safe p.
@QV:iA=L x—V:A=L G «
o If p # qgand p # —q, then we have (A == G) safe p
and (G == x) safe p.
o If p = ¢, then A <:T x. We immediate have G <:T *.
To show A <:* G, we proceed by cases on G.If G = «,
then A=G=candt <:" .. IfG = X,then A = X
and X <7 X. If G = x—*, then A = A1 —A,

2016/7/7

Positive subtype

[X : tp]

C<~A B<tD A<tB X¢gA A[X:=+] <:* B X :tp A:tp
v<t A—-B<tC—D A<:TVX.B VX.A<tB X <tX A<t
Negative subtype A<~ B

[X : tp]
C<tA B<—D A<:"B X¢A A[X:=«] <:™ B X :tp A<~ G B:tp
L <" L A—-B<~C—D A<~ VX.B VX.A<:™ B X<~ X A< % *<:~ B
Naive subtype []
X :tp
A<, C B<wD A<, B X<&A A[X:=«] <:n B X :tp A:tp
L <" A—B<,C—D A<, VX.B VX.A<:, B X <in X A <ip *

Figure 4. Subtyping

and we need to show that A;— Ay <:t x—*. Indeed,
% <:7 Ajpand Ay <:T
o Ifp=—g,then A <:~ % So A <:7 G and therefore
(A =5 @) safe p. Also, we have G <:~ « because
G <:~ G, and therefore (G ==) safe p
) Vix= Ar—V x=5G= A
If p # g and p # —q, then we have (x == G) safe p
and (G =% A) safe p.
o If p = ¢, then x <:™ A. From the reduction rule, we
have U (A), but that contradicts <:* A, so this case is
vacuously true.
Suppose p = —q. We immediately have x <:~ G but
still need to show that G <:~ A. From the reduction
rule, we have U(A) and A < G,s0 A = A1 — A,
and G = x—. We have x—* <:~ A; — A, because
A <:T xand x <:7 As.
2. ¥ > E[blame p| — blame p.
We have a contradiction with the premise M safe p because it
is not the case that £[blame p] safe p.
3. 3> EvX:=A.N] — X, X:=A > E[N]
From E[v X:=A.N] safe p we have E[N] safe p.

4. Type Safety of \K
Lemma 9 (Subject Reduction). If A - M : Aand M — N,
then A+ N : A

Proof. The proof is by cases on M +—— N. We skip the two
standard cases and focus on the two cases unique to AK.

We have A F [[V]«]2 : A, so A F K : key(A) and
At |V] : bits. Therefore we conclude that A - V' : A.

J Case’ [LlV]x]2, — blame p ‘:
We immediately have A F blame p : A.

Lemma 10 (Decomposition). If ¥+ M : A, then either

1. M=V,

2. M = &'[blame p'],

3. M = &'[new(B)], 0

4. M = 8’[M]andM'r—>N'

where all primed variables are existentially quantified.

Proof. The proof is by induction on M : A.

o |new(B) : key(B) \
Pick &' =

+ [0

= Suppose M; and M, are values. Let Vi = M. By canoni-
cal forms, M2 = . Then pick V' = |V | .

= Suppose M is a value V; but Ms is not a value. Then we
apply the induction hypothesis for M> to obtain £ then
pick & = [Vi]gr.

= Suppose M is not a value. Then we apply the induction
hypothesis for M; to obtain £” then pick £ = | €' | m,-

YA

= Suppose M; and M2 are values. By canonical forms, M; =
|[V']. and My = &'. We satisfy the fourth option by
picking &' = Oand M’ = [|V']]%,. If k = &’ we have

(V110

O to satisfy the third option.

— vV’

Otherwise we have

ngne
= Suppose M; is a value Vi but My is not a value. Then we
apply the induction hypothesis for Mz to obtain £ then
pick & = [Vi]%.,.
= Suppose M; is not a value. Then we apply the induction
hypothesis for M; to obtain £ then pick & = [€"]},, .

The rest of the cases are standard. O

— blame p

Proposition 11 (Type safety).

LIA>M:Aand A> M — A" > M’ then A' > M' : A.
2. If ¥ > M : A then either
M=V
e M = blame p’
oS> M-—¥p>M
where all primed variables are existentially quantified.

Proof.

1. The proof of the first part (preservation) is by cases on A >
M — A'> M.

2016/7/7

Ml—)N
A E[M] — A > E[N]
We have A> M; : Band A > & : B — A for some B.

So A > N : B by subject reduction (Lemma[J). Finally, we
have A > E[N].

A > E[blame p] — A > blame p
We immeidately have A F blame p : A.
KE&A
A Enew(B)] — A, k : key(B) > E[«]
We have A F new(B) : key(B),s0 A F & : key(B) = A.
Thus, A, & : key(B) - E[x] : A.
2. The proof of the second part (progress) is a direct result of
Decomposition (Lemma[T0).

O

5. Results for Translation of \B to \K
Fi=e|T,2:=A|T, X |T, X:=A

I'~R
I~R X (e,2)€R
e~ R
(T, X)~R
'~R X (zj,zr) €R)
(T, X:=A)~R
~R
T, z:=A)~R

Y~ R=VX:=Ac¢€ E.Hﬂjlik. X — (Iﬁj,lik) €ER
(TDr

(eDr=-e
(T, z:=A)r = (T)r, z:=(A]
(T, X)r = (T')r, xk : key(bits)

if X — (eo,71) € R
(0, X:=A)g = (), x; : key{(A]), 21 key (bits)

if X — (zj,25) € R
(e)r="e

(%, X:=A)r = (X),k; : key((A]), xx : key(bits)
if X — (kj,kk) €ER
Lemma12. If ;T A <® B, X~ R, andT ~ R,
then (S)r; (T)r F (A =2 B)r : (A) — (B).

Proof. by induction on the derivation of ;T - A <% B.

e Case straightforward

. Case’ Ai1—As <® Bi—Bs ‘
follows immediately from the two induction hypotheses.

e Case|VX.A <? VX.B

We have

Av:key(bits)—(A].
(VX.A=2VX.B)r = Mekey(bits). (vk)e
(1A=L B)g

where ' = (R, X ~ (e,k)) and we need to show that the
RHS has type

(VX.A) — (VX.B)
So it suffices to show that
[
(XD (T, XD = (A= B)r : (B)

which we obtain by the induction hypothesis, noting that
(I, X) ~ (R, X > (o, k)).

» Case| X < |

Because X := B € 'or X := B € 3, we have R(X) =
(k,7) with (2)r; (T)r F 7 : key{(B])). We also have

(X £ B)r = Avbits. [v]5
We conclude that
(ZDr; (T)r F (Avbits. [v]]) : bits — (B)
. CaseBecauseX =AcTorX:=A€X, we
have R(X) = (k, j) with (X)r; (T')r F j : key((A]). So
(A= X)r = Av:(A). [v];
We conclude that
(Z)r; (TDr F (M:(A). |v];) : (A) — bits

e Case straightforward
e Case straightforward

Lemma 13. [f ;- G, £~ R, and ' ~ R,

then (%) r; (T)r F (GDr : key((G)).
Lemma 14. [f¥;' - A < B, S ~ R, andT ~ R,
then (S)r; (C)r - (A== B)r : (A) — (B).

Proof. The proof is by induction on the sum of the size of A and
B. Then we proceed by caseson ;" A < B.

e Case| 3;TH A <«
Suppose A = G. We have

(IG :p> *DR = A\v: (IGD LUJ}C
Where k = (G|) gr. We have
(2Dr; (CDr b K : key((G))
by Lemma T3] Therefore
F (v : (G). |v]k): (G) — bits
Suppose A # G. We have
(A= x)r=Xv:(A). (ve (A= G)r)e (G = x)r

and A = A; — As and G = x — x. We use the induction
hypothesis for (* == A1|)r and (A2 == x| to obtain

(ZDa; (T)r - (A== Gr : (A) = (G)
Also, by the same reasoning as in the A = G case, we have

(ZDr; (TDr F (G == *Dr : (G) — ()
Therefore

. v (A). (ve (A= G)r) @ (G = *
(Z)r; (Thr :(‘Aé\j(‘(wd = G)r) € (G = *)r

2016/7/7

Suppose A = G. We have
(* == G)r = vbits. [v]?
where k = (G| r. We have
(XD r; (T)r, v:bits - k : key((G))
by Lemma T3] Therefore
(ZDr; (T)r F Av:bits. [v]} : bits = (G)
Suppose A # G. We have
(* = A)r = Mubits. (v@ (x = G)r) @ (G == A)r
We have
(2D r; (T)r, vibits F (x == G| & : bits — (G|

by the same reasoning as in the case for A = G followed by
weakening. We have G = x—+ and A = A;— A. We use the

induction hypothesis for (A; == *)) g and (* == As)) g and
weakening to obtain

(X)r; (T)r,v:bits F (G == A)r: (G) = (A)
We conclude that
(Z)r; (T)r F Avbits. (ve(x == G)r)e(G == A)r : (A

[T A< VX.B/[X]]
We have

Av:(A]). Ak:key(bits).
ve (A= B'[X])r

where R’ = (R, X + (e, k)). We need to show that the RHS
has type

(AL vX.B'[X])r =

(A) — key(bits) — (B'[X])

Let " = (T, X) and note that " ~ R’ and ~ R'. So by the
induction hypothesis, we have

(SD)ws (T')r F (A =5 B'[X])w : (A) = (B'[X])
Thus it is straightforward to conclude this case.
] S:TFVYX.A < B ‘We have

Avkey(bits)—(A’).
let 7 = new(bits) in
(VX.A' =L B)r = let k = new(bits) in

(v k)@ (A" 22 A'[X:=A]))

e(A'[X:=+] == B)r
where R = (R, X ~ (j, k)). We need to show that the RHS
has type

(key(bits) — (A')) — (B)

By Lemmawe have the following, noting that > ~ R’ and
I ~ R, where I" = (', X:=x).
(Z).(T') (A = A'X:=+]) g : (A) = (A'[X:=+])
By the induction hypthesis, we have
(Z)r; (T)r F (A'[X:=4] = Bl : (A'[X:=+]) — (B)
We then conclude this case with some uses of weakening and
the typing rule for function application.
[SiTF Ai>4; < BioBs |

Use the induction hypotheses for (B; == A:|) g and (A2 ==
B> DR.

. straightforward
o | 3:I'F X < X |straightforward
. straightforward

Proposition 15 (Type preservation, AB to AK).
If3T'oM:A Y ~R, andD ~ R,
then (X)r; (C)r > (M) : (A

Proof. The proof is by induction on 3; ' > M : A.

(AX. VIX])r = M : key(bits). (VIX]Dr, xvso |

We have A = VX.A" and Z;T, X + V[X] : A". We need to
show

(XDr; (T)r F (M : key(bits). (V[X])r, x(e.k)) : (A)

where (A]) = key(bits) — (A').Let R = R, X > (o, k),
We apply the induction hypothesis for V[X], noting that ¥ ~
R and (T, X) ~ R'.

(ZDrs (T, X)r = (VIX]Dre : (A')

so
(XD r; (), K : key(bits) - (V[X])r : (A)
thus
(XD g ; (TDrr F Ak = key(bits). (V[X])r : (A)
and we conclude because (X)) g = (X)) g and (') g = () &-
e [(L XD = (Lbr kand (X — (3,k) € R
We have ;1" + L : VX.B and A = B. Also, either X:=A €

TorX:=AeX.
By the induction hypothesis for L we have

(%)r; (CDr F (L& : key(bits) — (B
Next, we show that (X)) r; (I') r b & : key(bits), considering
two cases.
"If X:=A € T, then k : key(bits) € (I')r (because
I' ~ R) and our goal follows.

" If X:=A € 3, then k : key(bits) € (X)r (because
3 ~ R) and our goal follows.

Therefore
(XDr; (C)r F (LDg K : (B)
let j = new((B)) in
o | (vX:=B.N)r = | letk =new(bits)in
(IND R, x.k)

We have 3; T, X:=B - N : A. Let R = R[X — (j,k)].
By the induction hypothesis we have the following, noting that
Y~ R and (T, X:=B) ~ R

(‘EDR’; (|F, X::BDR’ = (INDR/ : qAD
SO
(XDr; (TDrr, - key((B)), k : key(bits) b (N)r : (A]
and we conclude that
let j = new((B)) in
let k = new(bits) in
(IND R, x5, k)

noting that (X)) rr = (X))r and (I')) gr = (T &-

(XDr; (T)r (4D

2016/7/7

o (|M1 : Al :¢> ADR = (IMlDR@ (|A1 :¢> ADR ‘
We have ;T' - M, : A; and A; <® A. By the induction
hypothesis, (S)r; (T)r = (Mi)r : (A1). By Lemmal[i2]
(S)r; (T)a F (A1 =2 A)g : (A1) — (A). Therefore

(SDa; (T)r F (Mi)g @ (A1 =2 A)g : (A)

° (|M1 DAy == ADR = (IMlDR@ (|A1 == ADR
We have >;I" H M; : A; and A; < A. By the induction

hypothesis, (S)r; (I)r = (Mi)r : (A:1]). By Lemma [14]

(Z)r; (T)r F (A1 == A)r : (A1) — (A). Therefore

(S)r; (D)r b (Mi)r e (Ar == A)g : (A)

Lemma 16. If M — M’ then (M|)r —" (M’')r.

Proof. We proceed by cases on M —— M.

(AX.V[X]) X —p V[X] \ Note that R(X) = (j, k). We
have

(M)r = ((AX.V[X]) X)r
= (k- (VIXID R x5 (0.00)) K
—k (VIXID R X0 = (MR
Because (V[X]) g, x(e,k) = (V[X]) r, this case is finished.

. V:L:¢>L'—>BV We have

(M)r = (V)re (=2 i)r = (V])r e (vi.v) = (M)r

o|(V:A5B =2 CD) V' g V (V':C =2 A):B =2 D
We have

(A—B =2, C—D)r =
2. dw. (v (we (C =2 A)gr)) e (B =2 D)

So
(M)r = ((V:A—>B =% C—D) V')r
= ((V)r:(A—=B =% C—D)r) (V)&
sk ((V)r ((V'Dr e (C =2 A)r)) @ (B =% D)r

o |(V:VXALVYXB) X+—VX:A=2B
We have

(VX.A =2 VX.B)g =
MK () @ (A =2 B)axos(or
and R(X) = (j, k). So
(MDr = ((VDr k) @ (A =2 B)p xesio)
= ((V)r k)@ (A=% B)r
=(VX:A=% B)g
= (M'Dr

lv.x L x vV
We have

(X =2 X)r = Av.v

So
(M)r = ((V)r@Iv.v) = (V)r=(M')r

V:A7:X>X+:X>A»—>V‘
We have

(1A=2 X)r =2v. [v];
(X 22 A)r = o [0]]
By Proposition[17] (part 1), (V) & is a value. So
(M)r = [LVDr];15 —x (VDR = (M')r

o |V x =¢> * —p V| straightforward

° ’ Vi, —g V ‘straightforward

(V:iA—-B=%C—-D)W
g V(W:C=2A4):B=%D
We have
(A=B =% C—D)r =

2. Aw. (v (we (C =2 A)r))e (B = D)r

So
(M)r = ((V:A-B =2 C—D) V')r
= ((V)r:(A=B = C—=D)g) (V)&
—k ((VDr ((V'Dre(C = A)r)) e (B == D)r

| (VAL VX B X+—pV:A=B
We have

(A= VX.B)r = . k' ve (A= B)gr, xos(o,k)
and R(X) = (4, k), so
(M)r=((V:A=VX.B) X)r
=(V)re (A= B)rk
= (K. (V)r @ (A= B)r xes(er) k
—k (VDR @ (A= B)r xos ok
=(M')r

o | (V:VX. A= Br—pg (V*): A[X:= == B
We have
(VX.A =% B)r
Av.let j = new(bits) in let k' = new(bits) in
(vE)e (AR AX:=«])p) @ (A[X:=+] == B)r
where R = R, X > (4,k"). So
(M)r = ((V:VX.A= B)r
let j = new((%))) in let k' = new(bits) in
T ((VDr K) e (A2 AX =) @ (A[X:=+] =& B)xr
= (vX:=+.V X : AEE A[X:=4] = B)g
= ((V %) : A[X:=+] == B)r = (M')r

|V XX —s V ‘ straightforward

Vik= x5V ‘ straightforward

2016/7/7

| ViA=L x—gV AL G«

(M)r=(V:A=Z>%)r
=(V)re (A= «)r
=(V)re (A= G)re (G = «)r
= (M')r

o VixL AV ix=2G2 A

(M)r=(V:+x= A)r
= (VDre(x== ADr
=(V)re(x == G)re (G = A)r
= (M')r

e V:G=L «=L G+—g V|Wehave

(IG :p> *DR va. I_Ujk

(% == G)r = Iv. [v]}

where k = (G| r. By part 1, (
(V:G = %= G)r = [L(V)rJ, —x (V)&

V| g is a value, so

o |V:G=% x=% H+—p blame q | We have

(lG:p>*DR :X’U. Lka
(x =% H)r = \v. [v]%,

where k = (G|)r and ¥ = (H|)r. Because G # H, we have
k # k' Bypart 1, (V| g is a value, so

(‘V : G:p>*:q>HDR = [LGVDRJIJZ/ ——k blame q

O

Proposition 17 (Simulation, AB to AK).
Assume X > M : Aand ¥ ~ R. Then

1. If M =V then (M|)r is a value.

2. IfS>M —g X'>M then (S)r>(M)r —k (X')rr>(M') rrs

for some R’

Proof.
1. We proceed by induction on V.
e Case V =c:

lehr=c
e Case V = Az:A;. N[z]:

e Case V =AX.V'[X]:
(AX.V'[X])r = Mekey(bits). (V'[X]]) . x0s (o)

o Case V =V':B1—B; == Aj—Ay
By induction, (V'|) g is a value. We have

(V')r@(B1—B: =% A1 —As)r
= w Ay (V') (we (A =2 Bi))) e (B2 == As)g

e Case V = V' : VX.B =% VX.A’ By induction, (
a value. We have

(V')r@(VX.B =2 VX.A')r
= Akkey(bits). ((V/)r k) @ (B =2 A') g xvs (o)

V,DR is

eCaseV=V':B=X
By induction, (V') g is a value. We have R(X) = (4, k)
because X:=A € Y and ¥ ~ R, so

(V'Dre (B = X)r = (V')nl;
e Case V =V': Bi—By == A;—Ay: Similar to the case
for V.=V': Bi—B; =2 A,—As.
e Case V=V':B=VXA"
By induction, (V’|) g is a value. We have
(V')re (B = VX.A')r
= Mekey(bits). (V/)r @ (B == A') g, xws(e.5)
e Case V =V’ : G = «: By induction, (V'] is a value.
We have
(V')re (G = *)r = L(V'Drlicpn
2. We proceed by caseson X > M —g X' > M.

M— M
S EM] — E[M]
This case follows from Lemma [T6l
0’2[>5[b1a.mep] —s EDblamep‘
We have (blame p)r = blame p and

(X)r > (€) r[blame p] —k (X)) r > blame p

N> EpX:=A.N] —5 %, X:=A > E[N] \
Pick ' = R, X — (k;, ki). We have

()R > (EDr[(vX:=A.N|) 8]

i (2, X:=A) > (EDR[IN) 5]

because
let j = new((A]) in
(vX:=A.N)r = 1letk =new(bits) in
(NDRr,x (00
and
(2, X:=A)r = (X)) .,k : key((A]), ki : key(bits)

O

6. Results for Translation between \F and \G
Compilation and decompilation preserve values.
Lemma 18 (Preservation of values).

o (V) = V', for some value V'
o (V') =V, for some value V.

Decompilation is the inverse of compilation.
Lemma 19 (Compiling and decompiling). ((M))]) = M.
6.1 Proof of Proposition 12 of the paper
Decompilation is a bisimulation.

Proposition 20 (Decompilation is a bisimulation).
Assume Xy M' : Aand (S ; M')) = M.

2016/7/7

o IfY; M’ —36 IT; N’ then M— N and (I1; N'|) = N for
some N.

o [fM —sxp NthenS ; M'—311; N and (I1; N') = N
for some TI, N'.

The first part is proved by case analysis over reductions of AG.
The second part is proved using the following lemmas.

Lemma 21. Assume ¥ g M’ : Aand (S; M) = op(V). Then
either:

o M' = op(V")and (X ; V') = V for some V', or
oYM — e ;N and (X ; M')) = (I ; N') for some 1,
N'.
Lemma 22. Assume ¥ x¢ M’ : Band (X ; M') = (Az.N) V.
Then either:

o M' = (Az:A.N")W and (X; N') = N, (Z; V') =V for
some A, N', V', or
oYM — g ;N and (X ; M')) = (O ; N') for some 1,
N'.
Lemma 23. Assume X x¢ M’ : Band (;M')) = (AX.N) C.
Then either:

e M'=(AX.N")Cand (Z; N')) = N for some N', or
oY : M —g I1; N and (X ; M')) = (IL; N'|) for some II,

N’

We consider the proof of the third lemma, the other two are
similar. By progress, the term M’ must reduce. We cannot have re-
duction of an operator, since then the erasure would not be as given.
The only possible reductions are reduction of a type application, in
which case the first clause holds, or reduction of a binding or of a
static cast, in which case the second clause holds.

We have the following easy corollary of bisimulation.

Corollary 24. Assume - Fxg M’ : 1. Then M' —3¢ k iff

(M) —3¢ k.

6.2 Proof of Proposition 13 of the paper

Let C range over arbitrary contexts of A, and C’ range over arbitrary
contexts of AG.

Definition 25 (Context typing). For a context C of A, write
C:('+A)= (AF B)
if for any M such that T = M : A it holds that A + C[M] : B.

The same holds, mutatis mutandis, for AG.

It is straightforward to give direct rules for typing contexts, in
the style of |Ahmed and Blume| (2011), but the above definition
suffices for our purposes.

We extend compiling and decompiling to contexts in the ob-
vious way. Both compilation and decompilation preserve substitu-
tion.

Lemma 26 (Substitution).
- (CM]) = (CDI(MD].
o (C'IM7]) = (CDI(MD]-
We define contextual equivalence as usual.

Definition 27 (Contextual equivalence). Suppose I' = M : A and
' N : A We say M and N are contextually equivalent, and
write M =xp N, if for every context C : (I' = A) = (- F 1) we
have C[M] —3¢ k if and only if C[N] —3f k.

The same applies, mutatis mutandis, for AG.
Decompilation is fully abstract.

Proposition 28 (Decompilation is fully abstract). Assume I
M’ : A andT' = N': A'. Then M' =5¢ N iff (M')) =x¢ (N').

In the forward direction, we have for all C’ that C'[M'] — 3¢
k iff C'[N'] —3¢ k, and we need to show for all C that
CHM)] —%e K iff C[N] —%¢ k. Given C, take C' = (CC).
Then (C'[M'])) = C[(M'])], by Lemmas [26|and |19} and similarly
for N and N’. The result then follows by Corollary

In the backward direction, we have for all C that C[(M)] — 3¢
kiff C[N] — 3¢ k and we need to show forall C’ that C'[M'] — 3¢
kiff C'[N'] —3¢ k- Given C’, take C = (/C’|). Then (C'[M'])) =
C(M)), and similarly for N and N’. The results then follows by

Corollary 4]
As corollary, we have that compilation is fully abstract.

Proposition 29 (Compilation is fully abstract). Assume I' = M :
AandT' F N : A ThenM:,\p NlﬁCGMD =\G (IND

This follows immediately from Proposition Take M’ =
(M| and N’ = (N|) and apply Lemma

References

A. Ahmed and M. Blume. An equivalence-preserving CPS translation via
multi-language semantics. In International Conference on Functional
Programming (ICFP), pages 431444, 2011.

2016/7/7

	Examples of B
	Type Safety of B
	Blame Safety of B
	Type Safety of K
	Results for Translation of B to K
	Results for Translation between F and G
	Proof of Proposition 12 of the paper
	Proof of Proposition 13 of the paper

